JP4929763B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4929763B2
JP4929763B2 JP2006059124A JP2006059124A JP4929763B2 JP 4929763 B2 JP4929763 B2 JP 4929763B2 JP 2006059124 A JP2006059124 A JP 2006059124A JP 2006059124 A JP2006059124 A JP 2006059124A JP 4929763 B2 JP4929763 B2 JP 4929763B2
Authority
JP
Japan
Prior art keywords
negative electrode
space holding
positive electrode
active material
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006059124A
Other languages
Japanese (ja)
Other versions
JP2007242262A (en
Inventor
正弥 宇賀治
宣明 長尾
辰治 美濃
慶一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006059124A priority Critical patent/JP4929763B2/en
Publication of JP2007242262A publication Critical patent/JP2007242262A/en
Application granted granted Critical
Publication of JP4929763B2 publication Critical patent/JP4929763B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明はリチウム二次電池に関し、特にSi単体、Sn単体、Si酸化物、Sn酸化物、Si合金およびSn合金からなる群より選ばれたを少なくとも一種類以上含む負極活物質層を有する負極を備えたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and in particular, a negative electrode having a negative electrode active material layer including at least one selected from the group consisting of Si simple substance, Sn simple substance, Si oxide, Sn oxide, Si alloy and Sn alloy. The present invention relates to a provided lithium secondary battery.

近年、パーソナルコンピュータ、携帯電話などのポータブル機器の開発に伴い、その電源としての電池の需要が増大している。上記のような用途に用いられる電池には、常温使用が求められると同時に、高いエネルギー密度と優れたサイクル特性が要望される。   In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as power sources has increased. A battery used for the above applications is required to be used at room temperature, and at the same time, a high energy density and excellent cycle characteristics are required.

この要求に対し、正極、負極それぞれにおいて新たに高容量の活物質が開発されており、中でも非常に高い容量が得られるSiもしくはSnの単体、酸化物あるいは合金の負極活物質を用いることによる解決が図られようとしている。   In response to this requirement, new high capacity active materials have been developed for each of the positive electrode and the negative electrode, and in particular, a solution by using a negative electrode active material of a simple substance of Si or Sn, an oxide, or an alloy that can obtain a very high capacity. Is going to be planned.

その際に問題となるのは充放電に伴う負極活物質の微粉化であり、充放電を繰り返し行うに従い負極活物質粒子が集電性を失い、サイクル特性が低下することが懸念されていた。この問題を解決するために負極活物質として非晶質Si薄膜を用いることで集電性を高めサイクル特性の劣化を抑制する技術が開示されている(例えば特許文献1参照)。   At that time, the problem is the fine powdering of the negative electrode active material that accompanies charging and discharging, and there has been a concern that the negative electrode active material particles lose their current collecting ability and the cycle characteristics deteriorate as charging and discharging are repeated. In order to solve this problem, a technique is disclosed in which an amorphous Si thin film is used as a negative electrode active material to improve current collection and suppress deterioration of cycle characteristics (see, for example, Patent Document 1).

また、金属リチウムを負極として用いた際に、セパレータの損傷やリチウムの異常析出を防いで、内部短絡を抑制すると共にサイクル劣化を解決する手段として、負極表面とセパレーターとの間に緩衝空隙を設ける技術が開示されている(例えば特許文献2参照)。
特開2002−83594号公報 特開平10−12279号公報
In addition, when metallic lithium is used as the negative electrode, a buffer gap is provided between the negative electrode surface and the separator as a means of preventing damage to the separator and abnormal precipitation of lithium, suppressing internal short circuit and solving cycle deterioration. A technique is disclosed (for example, see Patent Document 2).
JP 2002-83594 A Japanese Patent Laid-Open No. 10-12279

しかしながら、Siの単体、酸化物あるいは合金の負極活物質は充放電に伴う膨張収縮が大きいため、特許文献1で負極活物質として用いられている非晶質Si薄膜であっても、充放電を繰り返し行うに従い、負極集電体が大きく変形し皺ができたり、破断したりするためサイクル特性における容量低下が生じやすい。   However, since the negative electrode active material of a simple substance of Si, an oxide or an alloy has a large expansion / contraction due to charge / discharge, even an amorphous Si thin film used as a negative electrode active material in Patent Document 1 is charged / discharged. As the process is repeated, the negative electrode current collector is greatly deformed and wrinkles or breaks, so that the capacity of the cycle characteristics is likely to decrease.

この負極活物質の膨張による悪影響を低減するために、特許文献2に記載された技術を適用した場合には、新たな課題が生じる。すなわち、緩衝空隙を設けるためのスペーサ(絶縁構造部材)の対向部分にある正極活物質は、それに対向する負極活物質がないために充放電反応に関与することができず、容量ロスが生じる。   In order to reduce the adverse effect due to the expansion of the negative electrode active material, a new problem arises when the technique described in Patent Document 2 is applied. That is, the positive electrode active material in the facing portion of the spacer (insulating structure member) for providing the buffer gap cannot participate in the charge / discharge reaction because there is no negative electrode active material facing it, resulting in a capacity loss.

さらにこのように対向する負極が存在しない正極活物質付近では充電が進んだ活物質とそうでない活物質が隣接しているため局部電池をつくりやすい。この場合、充電が進まなかった正極活物質から充電が進行した活物質へとリチウムの拡散が生じる可能性がある。リチウムの拡散が起こると負極からリチウムが戻る前に負極と対向している正極活物質の一部がすでにリチウムの供給を受けるしまうため、放電時には充電で放出されたリチウムが正極活物質内に戻ることができず、充放電容量が減少しサイクル特性が著しくて低下する。   Further, in the vicinity of the positive electrode active material where there is no opposing negative electrode in this way, an active material that has been charged and an active material that is not so are adjacent to each other, so that it is easy to make a local battery. In this case, lithium diffusion may occur from the positive electrode active material that has not been charged to the active material that has been charged. When lithium is diffused, a part of the positive electrode active material facing the negative electrode is already supplied with lithium before the lithium returns from the negative electrode. Therefore, during discharge, lithium released by charging returns into the positive electrode active material. In other words, the charge / discharge capacity is reduced and the cycle characteristics are remarkably deteriorated.

本発明は、前記従来の課題を解決するもので、容量ロスおよびサイクル特性の劣化を防止することが可能なリチウム二次電池を提供することを目的とする   The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a lithium secondary battery capable of preventing capacity loss and cycle characteristic deterioration.

前記従来の課題を解決するために、本発明のリチウム二次電池は、
負極集電体と、負極集電体の表面の一部分に形成されたリチウムイオンを吸蔵・放出するSi単体、Sn単体、Si酸化物、Sn酸化物、Si合金およびSn合金からなる群より選ばれたを少なくとも一種類以上含む負極活物質層と、を有する負極と、
正極集電体と、正極集電体の表面の一部分にリチウムイオンを吸蔵・放出可能な活物質材料を含む正極活物質層と、を有する正極と、
負極と正極との間に配置されたセパレータと、を有するリチウム二次電池であって、
負極集電体の露出部分とセパレータとの間に空間保持部材が形成され、
空間保持部材が正極集電体の露出部分と対向配置されていること、を特徴とする。
In order to solve the conventional problems, the lithium secondary battery of the present invention is
Selected from the group consisting of a negative electrode current collector and Si simple substance, Sn simple substance, Si oxide, Sn oxide, Si alloy and Sn alloy that occlude / release lithium ions formed on a part of the surface of the negative electrode current collector A negative electrode active material layer containing at least one or more of
A positive electrode having a positive electrode current collector, and a positive electrode active material layer containing an active material capable of inserting and extracting lithium ions on a portion of the surface of the positive electrode current collector;
A lithium secondary battery having a separator disposed between a negative electrode and a positive electrode,
A space holding member is formed between the exposed portion of the negative electrode current collector and the separator,
The space holding member is arranged to face the exposed portion of the positive electrode current collector.

本構成によって、負極活物質の膨張・収縮するために必要な空間を空間保持部材により事前に確保できるので、サイクル特性の劣化を防止することが可能となる。   With this configuration, a space necessary for expanding and contracting the negative electrode active material can be secured in advance by the space holding member, so that deterioration of cycle characteristics can be prevented.

本発明のリチウム二次電池によれば、負極活物質の膨張収縮するために必要な空間を空間保持部材により事前に確保できるので、サイクル特性の劣化を防止することが可能となる。また、空間保持部材は負極集電体の露出部分とセパレータとの間に形成されるとともに、正極集電体の露出部分と対向配置されているので、正・負極活物質の反応を阻害することがない。   According to the lithium secondary battery of the present invention, since the space necessary for the expansion and contraction of the negative electrode active material can be secured in advance by the space holding member, it is possible to prevent deterioration of cycle characteristics. In addition, the space holding member is formed between the exposed portion of the negative electrode current collector and the separator, and is disposed opposite to the exposed portion of the positive electrode current collector, thereby inhibiting the reaction of the positive and negative electrode active materials. There is no.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお本発明は、本明細書に記載された基本的な特徴に基づく限り、以下の内容に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following contents as long as it is based on the basic features described in this specification.

(実施の形態1)
本発明のリチウム二次電池について説明する。
(Embodiment 1)
The lithium secondary battery of the present invention will be described.

図1は、本実施の形態1による積層型のリチウム二次電池の概略断面図である。図1において、リチウム二次電池10は、正極1と、正極1に対向し充電時にリチウムイオンを吸蔵し放電時にリチウムイオンを放出する負極2と、正極1と負極2とに介在するセパレータ3と、セパレータ3に含浸されているリチウムイオンを伝導する電解質(図示せず)とを有する。正極1と負極2とは、セパレータ3と電解質とともに、ケース4内に収納されている。負極2は、負極集電体21と、負極集電体21の表面の一部に形成された負極活物質層22と、を有する。負極集電体21の表面で、負極活物質層22が形成されていない露出部分とセパレータ3との間に空間を確保する空間保持部材23が配置されている。正極1は正極集電体11と、正極集電体11の表面の一部に形成された正極活物質層12と、を有する。空間保持部材23は、正極集電体11の表面で、正極活物質層12が形成されていない露出部分と対向配置されている。   FIG. 1 is a schematic cross-sectional view of a stacked lithium secondary battery according to the first embodiment. In FIG. 1, a lithium secondary battery 10 includes a positive electrode 1, a negative electrode 2 that opposes the positive electrode 1 and occludes lithium ions during charging and releases lithium ions during discharging, and a separator 3 interposed between the positive electrode 1 and the negative electrode 2. And an electrolyte (not shown) that conducts lithium ions impregnated in the separator 3. The positive electrode 1 and the negative electrode 2 are accommodated in the case 4 together with the separator 3 and the electrolyte. The negative electrode 2 includes a negative electrode current collector 21 and a negative electrode active material layer 22 formed on a part of the surface of the negative electrode current collector 21. On the surface of the negative electrode current collector 21, a space holding member 23 that secures a space between the exposed portion where the negative electrode active material layer 22 is not formed and the separator 3 is disposed. The positive electrode 1 includes a positive electrode current collector 11 and a positive electrode active material layer 12 formed on a part of the surface of the positive electrode current collector 11. The space holding member 23 is disposed on the surface of the positive electrode current collector 11 so as to face an exposed portion where the positive electrode active material layer 12 is not formed.

空間保持部材23は、負極集電体21の表面で、負極活物質層22が形成されていない露出部分に配置されているので、負極活物質層22とは対向しないので負極活物質層22はすべて充放電反応に関与することができる。また、空間保持部材23は、正極集電体11の表面で、正極活物質層12が形成されていない露出部分と対向配置されているので、正極活物質層12とは対向しないので正極活物質層12はすべて充放電反応に関与することができる。そのため、負極活物質層22と正極活物質層12とは均一に充放電反応が行われる。従って良好なサイクル特性を示す。   Since the space holding member 23 is disposed on the exposed portion of the negative electrode current collector 21 where the negative electrode active material layer 22 is not formed, the space holding member 23 does not face the negative electrode active material layer 22. All can participate in charge / discharge reactions. Further, since the space holding member 23 is disposed on the surface of the positive electrode current collector 11 so as to face the exposed portion where the positive electrode active material layer 12 is not formed, the space holding member 23 does not face the positive electrode active material layer 12. All layers 12 can participate in the charge / discharge reaction. Therefore, the negative electrode active material layer 22 and the positive electrode active material layer 12 are uniformly charged and discharged. Accordingly, good cycle characteristics are exhibited.

空間保持部材23の幅は任意であるが、エネルギー密度を保持することを考慮して10μm以上1cm以下であることが好ましい。空間保持部材23の厚みも任意であるが、負極活物質層22の充電時の膨張による負極2と正極1との短絡を抑制するとともに、正極1と負極2とをセパレータ3を介して充分に密着させることができる厚みであることが好ましい。   The width of the space holding member 23 is arbitrary, but is preferably 10 μm or more and 1 cm or less in consideration of holding the energy density. Although the thickness of the space holding member 23 is also arbitrary, the short-circuit between the negative electrode 2 and the positive electrode 1 due to expansion of the negative electrode active material layer 22 during charging is suppressed, and the positive electrode 1 and the negative electrode 2 are sufficiently connected via the separator 3. It is preferable that the thickness be in close contact.

また、空間保持部材23は空間を形成するために少なくとも2箇所以上が必要である。例えば、負極集電体21が直方体の場合は、図1に示すように、同一面の対向する2つの辺の近傍の一部または全体に空間保持部材23が必要となる。   In addition, the space holding member 23 needs at least two places in order to form a space. For example, when the negative electrode current collector 21 is a rectangular parallelepiped, as shown in FIG. 1, a space holding member 23 is required in a part or the whole in the vicinity of two opposing sides on the same surface.

なお、図1では積層型電池の場合を示したが、スパイラル型の電極群を有する円筒型電池や角型電池の場合など、正極1の両面がいずれも負極2に対向する電池構成の場合には、負極2が対向する両面に活物質層22と空間保持部材23と、正極1が対向する両面に正極活物質層12とを設ける構成をとることができる。   Although FIG. 1 shows the case of a stacked battery, in the case of a battery configuration in which both surfaces of the positive electrode 1 are opposite to the negative electrode 2, such as a cylindrical battery or a rectangular battery having a spiral electrode group. Can have a configuration in which the active material layer 22 and the space holding member 23 are provided on both sides of the negative electrode 2 facing each other, and the positive electrode active material layer 12 is provided on both sides of the positive electrode 1 facing each other.

負極活物質層22は、リチウムを吸蔵・放出する活物質として、Si単体、Sn単体、Si酸化物、Sn酸化物、Si合金およびSn合金からなる群より選ばれたを少なくとも一種類以上含む負極活物質層を有する。より具体的にはSiやSnおよびその合金、酸化物などであり、結晶であっても、非晶質であってもかまわない。   The negative electrode active material layer 22 is a negative electrode including at least one selected from the group consisting of Si simple substance, Sn simple substance, Si oxide, Sn oxide, Si alloy, and Sn alloy as an active material that occludes and releases lithium. It has an active material layer. More specifically, Si, Sn and their alloys, oxides, etc. may be crystalline or amorphous.

空間保持部材23はリチウムイオンおよび電解質と電気化学的あるいは化学的に反応しないものであれば使用できる。例えばポリマー材料、金属材料、酸化物、窒化物材料、炭素材料などが挙げられる。空間保持部材23が多孔質体であることが好ましい。これは電解質の注液を容易にするためである。また、多孔質体でない場合には空間保持部材23の一部に貫通孔などの空孔部分を有していても、多孔質体である場合と同様の効果が得られる。   The space holding member 23 can be used as long as it does not react electrochemically or chemically with lithium ions and electrolyte. Examples thereof include a polymer material, a metal material, an oxide, a nitride material, and a carbon material. It is preferable that the space holding member 23 is a porous body. This is to facilitate electrolyte injection. In the case of not being a porous body, even if the space holding member 23 has a hole portion such as a through hole in the part, the same effect as in the case of the porous body can be obtained.

負極集電体21は、構成された負極2において実質的に化学安定な電子伝導体であればよい。例えば、材料として銅(Cu)、ニッケル(Ni)、チタン(Ti)などが一般的に使用できる。   The negative electrode current collector 21 may be an electron conductor that is substantially chemically stable in the configured negative electrode 2. For example, copper (Cu), nickel (Ni), titanium (Ti), etc. can be generally used as a material.

正極活物質層12は、コバルト酸リチウムLiCoOといった一般的にリチウム二次電池用の正極活物質として知られている材料を使用することができる。 The positive electrode active material layer 12 can be made of a material generally known as a positive electrode active material for a lithium secondary battery, such as lithium cobalt oxide LiCoO 2 .

正極集電体11は、アルミ(Al)、Al合金、Ni、Tiなどが一般的に使用できる。   As the positive electrode current collector 11, aluminum (Al), Al alloy, Ni, Ti, or the like can be generally used.

電解質、セパレータ3、ケース4には、一般にリチウム化合物やリチウム合金を電極活物質に適用して構成される電池に用いられる材料や形状がすべて適用可能である。
(実施の形態2)
図2は、本実施の形態2による積層型リチウム二次電池の概略断面図である。図2において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
For the electrolyte, the separator 3 and the case 4, all materials and shapes used for a battery generally constituted by applying a lithium compound or a lithium alloy to an electrode active material can be applied.
(Embodiment 2)
FIG. 2 is a schematic cross-sectional view of the stacked lithium secondary battery according to the second embodiment. In FIG. 2, the same components as those in FIG.

図2において、リチウム二次電池20は、正極集電体11の表面で、正極活物質層12が形成されていない露出部分とセパレータ3との間に空間を確保する空間保持対向部材13が配置されており、空間保持部材23と空間保持対向部材13とがセパレータ3を介して対向していること以外、実施の形態1のリチウム二次電池10と同じ構成である。   In FIG. 2, the lithium secondary battery 20 includes a space holding facing member 13 that secures a space between the exposed portion where the positive electrode active material layer 12 is not formed and the separator 3 on the surface of the positive electrode current collector 11. The configuration is the same as that of the lithium secondary battery 10 of Embodiment 1 except that the space holding member 23 and the space holding facing member 13 are opposed to each other with the separator 3 interposed therebetween.

空間保持部材23は、負極集電体21の表面で、負極活物質層22が形成されていない露出部分に配置されているので、負極活物質層22とは対向しないので負極活物質層22はすべて充放電反応に関与することができる。また、空間保持対向部材13は、正極集電体11の表面で、正極活物質層12が形成されていない露出部分に配置されているので、正極活物質層12とは対向しないので正極活物質層12はすべて充放電反応に関与することができる。そのため、負極活物質層22と正極活物質層12とは均一に充放電反応が行われる。従って良好なサイクル特性を示す。   Since the space holding member 23 is disposed on the exposed portion of the negative electrode current collector 21 where the negative electrode active material layer 22 is not formed, the space holding member 23 does not face the negative electrode active material layer 22. All can participate in charge / discharge reactions. Further, since the space holding facing member 13 is disposed on the exposed portion where the positive electrode active material layer 12 is not formed on the surface of the positive electrode current collector 11, the space holding facing member 13 does not face the positive electrode active material layer 12. All layers 12 can participate in the charge / discharge reaction. Therefore, the negative electrode active material layer 22 and the positive electrode active material layer 12 are uniformly charged and discharged. Accordingly, good cycle characteristics are exhibited.

本実施の形態2においても、空間保持部材23および空間保持対向部材13の幅は、エネルギー密度を保持すると共に、物理的強度などを考慮して10μm以上1cm以下であることが好ましい。   Also in the second embodiment, the widths of the space holding member 23 and the space holding facing member 13 are preferably 10 μm or more and 1 cm or less in consideration of physical strength and the like while maintaining energy density.

空間保持部材23および空間保持対向部材13の厚みは任意であるが、負極活物質層22の充電時の膨張による負極2と正極1との短絡を抑制するとともに、正極1と負極2とをセパレータ3を介して充分に密着させることができる厚みであることが好ましい。   Although the thickness of the space holding member 23 and the space holding counter member 13 is arbitrary, a short circuit between the negative electrode 2 and the positive electrode 1 due to expansion of the negative electrode active material layer 22 during charging is suppressed, and the positive electrode 1 and the negative electrode 2 are separated from each other. It is preferable that the thickness be sufficiently close to each other via 3.

また、空間保持部材23と空間保持対向部材13とは、空間を形成するためにそれぞれ少なくとも2箇所以上が必要である。強度維持を考慮すると同じ場所に対向できるように一部または全体に空間保持部材23および空間保持対向部材13が必要となる。   In addition, the space holding member 23 and the space holding facing member 13 each need at least two places in order to form a space. Considering the maintenance of strength, the space holding member 23 and the space holding facing member 13 are required in part or in whole so that they can face the same place.

なお、図2では積層型電池の場合を示したが、スパイラル型の電極群を有する円筒型電池や角型電池の場合など、正極1の両面がいずれも負極2に対向する電池構成の場合には、負極2が対向する両面に負極活物質層22と空間保持部材23と、正極1が対向する両面に正極活物質層12と空間保持対向部材13とを設ける構成をとることができる。   Although FIG. 2 shows the case of a stacked battery, in the case of a battery configuration in which both surfaces of the positive electrode 1 are opposed to the negative electrode 2, such as a cylindrical battery or a rectangular battery having a spiral electrode group. Can be configured such that the negative electrode active material layer 22 and the space holding member 23 are provided on both surfaces of the negative electrode 2 facing each other, and the positive electrode active material layer 12 and the space holding and facing member 13 are provided on both surfaces of the positive electrode 1 facing each other.

空間保持対向部材13はリチウムイオンおよび電解質と電気化学的あるいは化学的に反応しないものであれば使用できる。例えばポリマー材料、金属材料、酸化物、窒化物材料、炭素材料などが挙げられる。空間保持対向部材13が多孔質体であることが好ましい。これは電解質の注液を容易にするためである。また、多孔質体でない場合には空間保持対向部材13の一部に貫通孔などの空孔部分を有していても、多孔質体である場合と同様の効果が得られる。   The space holding facing member 13 can be used as long as it does not react electrochemically or chemically with lithium ions and electrolyte. Examples thereof include a polymer material, a metal material, an oxide, a nitride material, and a carbon material. It is preferable that the space holding facing member 13 is a porous body. This is to facilitate electrolyte injection. In the case of not being a porous body, the same effect as in the case of a porous body can be obtained even if a part of the space holding facing member 13 has a hole portion such as a through hole.

また、空間保持部材23と空間保持対向部材13とがそれぞれ凹構造または凸構造、凸構造または凹構造とを有して、図2に示すようにセパレータ3を介して嵌め合せるように形成されていることが好ましい。これは嵌め合せが可能になると正極1と負極2との位置あわせが容易になるだけでなく、正極1と負極2との位置ずれがなくなるため空間保持部材23が正極活物質層12に対向し容量ロスが生じることが抑制できる。凹凸の構造は嵌め合せができるような形状なら良い。例えば、矩形型、三角型、円径型などがあげられる。
図2では積層型電池の場合を示したが、スパイラル型の電極群を有する円筒型電池や角型電池の場合など、正極1の両面がいずれも負極2に対向する電池構成の場合には、負極2が対向する両面に活物質層22と空間保持部材23と、正極1が対向する両面に活物質層12と空間保持対向部材13とを設ける構成が好ましい。
Further, the space holding member 23 and the space holding facing member 13 have a concave structure or a convex structure, and a convex structure or a concave structure, respectively, and are formed so as to be fitted via the separator 3 as shown in FIG. Preferably it is. This is because not only the positioning of the positive electrode 1 and the negative electrode 2 is facilitated but also the positional holding between the positive electrode 1 and the negative electrode 2 is eliminated, so that the space holding member 23 faces the positive electrode active material layer 12. It is possible to suppress the occurrence of capacity loss. The uneven structure may be any shape that can be fitted. For example, there are a rectangular shape, a triangular shape, a circular diameter shape, and the like.
Although FIG. 2 shows the case of a stacked battery, in the case of a battery configuration in which both surfaces of the positive electrode 1 are opposed to the negative electrode 2, such as a cylindrical battery or a rectangular battery having a spiral electrode group, A configuration in which the active material layer 22 and the space holding member 23 are provided on both surfaces facing the negative electrode 2 and the active material layer 12 and the space holding facing member 13 are provided on both surfaces facing the positive electrode 1 is preferable.

なお各構成で使用できる材料は実施の形態1と同様である。   The materials that can be used in each configuration are the same as those in the first embodiment.

以下、具体的な実施例によって本発明の実施の形態をさらに詳細に説明する。なお、本発明は以下に示す実施例に限定されない。   Hereinafter, the embodiments of the present invention will be described in more detail by way of specific examples. In addition, this invention is not limited to the Example shown below.

(実施例1)
以下のようにして銅箔からなる負極集電体21上に負極活物質層22と空間保持部材23を形成した。
Example 1
The negative electrode active material layer 22 and the space holding member 23 were formed on the negative electrode current collector 21 made of copper foil as follows.

本実施例1では、リチウム二次電池として正極活物質にコバルト酸リチウム(LiCoO)、負極活物質にSiO(x=0〜1.0)薄膜を用いたときについて説明する。 In Example 1, a case where lithium cobaltate (LiCoO 2 ) is used as a positive electrode active material and a SiO x (x = 0 to 1.0) thin film is used as a negative electrode active material as a lithium secondary battery will be described.

実施例1においては、以下の要領で負極およびアルミラミネート型電池を作製し、そのサイクル寿命と放電容量について評価した。   In Example 1, a negative electrode and an aluminum laminate battery were prepared in the following manner, and their cycle life and discharge capacity were evaluated.

(1)負極の製造
図3に示すような、電子ビーム(EB)加熱手段(図示せず)を具備する蒸着装置30((株)アルバック製)を用いて、表1に示すサンプル1〜4の負極2を作製した。蒸着装置30は、酸素ガスをチャンバー31内に導入するためのガス管(図示せず)と、ノズル32を具備する。ノズル32は、真空チャンバー31内に導入された配管33に接続した。配管33は、マスフローコントローラを経由して、酸素ボンベと接続した。ノズル32からは、純度99.7%の酸素ガス(日本酸素(株)製)を、流量0〜150sccmで放出した。ノズル32の上方には、負極集電体21を固定する固定台34を設置した。固定台34の鉛直下方には、負極集電体21の表面に柱状に堆積させるターゲット35を設置した。ターゲット35には、純度99.9999%のケイ素単体((株)高純度化学研究所製)を用いた。負極集電体21には大きさ30mm×30mmの負極活物質層22が形成できるよう金属マスクを被せた。
(1) Manufacture of negative electrode Samples 1 to 4 shown in Table 1 using a vapor deposition apparatus 30 (manufactured by ULVAC, Inc.) having an electron beam (EB) heating means (not shown) as shown in FIG. A negative electrode 2 was prepared. The vapor deposition apparatus 30 includes a gas pipe (not shown) for introducing oxygen gas into the chamber 31 and a nozzle 32. The nozzle 32 was connected to a pipe 33 introduced into the vacuum chamber 31. The pipe 33 was connected to an oxygen cylinder via a mass flow controller. From the nozzle 32, oxygen gas with a purity of 99.7% (manufactured by Nippon Oxygen Co., Ltd.) was released at a flow rate of 0 to 150 sccm. A fixing base 34 for fixing the negative electrode current collector 21 was installed above the nozzle 32. A target 35 that is deposited in a columnar shape on the surface of the negative electrode current collector 21 was installed vertically below the fixed base 34. As the target 35, a simple substance of 99.9999% silicon (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was used. The negative electrode current collector 21 was covered with a metal mask so that a negative electrode active material layer 22 having a size of 30 mm × 30 mm could be formed.

ケイ素単体のターゲット35に照射する電子ビームの加速電圧を−8kVとし、エミッションを500mAに設定した。ケイ素単体の蒸気は、酸素雰囲気を通過してから、固定台34に設置された銅箔上に堆積し、ケイ素と酸素とを含む化合物からなる負極活物質層22を形成した。蒸着時間は1〜2.5時間に設定した。こうして得られた負極を負極1Aとする。   The acceleration voltage of the electron beam applied to the silicon target 35 was set to -8 kV, and the emission was set to 500 mA. After passing through the oxygen atmosphere, the vapor of silicon alone was deposited on the copper foil placed on the fixed base 34 to form the negative electrode active material layer 22 made of a compound containing silicon and oxygen. The deposition time was set to 1 to 2.5 hours. The negative electrode thus obtained is referred to as negative electrode 1A.

得られた負極活物質層22に含まれる酸素量を燃焼法により定量した。燃焼法では酸素量を高温状態での熱分解である不活性ガス−インパルス加熱融解法により抽出し、COガスとして高感度型非分散赤外線検出器にて、シリコン量を誘導結合高周波プラズマ分光分析法(ICP分光分析法)にて測定した。この手法によると、上記組成物の組成は表1に示すとおりであった。   The amount of oxygen contained in the obtained negative electrode active material layer 22 was quantified by a combustion method. In the combustion method, the amount of oxygen is extracted by an inert gas-impulse heating and melting method, which is thermal decomposition at high temperature, and the amount of silicon is inductively coupled with a high-sensitivity non-dispersive infrared detector as CO gas. It was measured by (ICP spectroscopy). According to this method, the composition of the composition was as shown in Table 1.

集電体シートとしては電解Cu箔(古河サーキットフォイル(株)製、厚さ35μm、大きさ40mm×40mm、5mm×10mmのリード部付)を用いた。   As the current collector sheet, an electrolytic Cu foil (manufactured by Furukawa Circuit Foil Co., Ltd., thickness 35 μm, size 40 mm × 40 mm, with lead portion of 5 mm × 10 mm) was used.

これらの薄膜に対し、X線回折分析を行ったところ、集電体シートであるCuに帰属される結晶性のピークが観察され、どの薄膜においても2θ=15−40°の位置にブロードなピークが検出された。   When X-ray diffraction analysis was performed on these thin films, a crystalline peak attributed to Cu as a current collector sheet was observed, and a broad peak at a position of 2θ = 15-40 ° in any thin film. Was detected.

この結果から、活物質は非晶質であることが判明した。負極活物質層の厚みはそれぞれ表1に示すとおりであった。   From this result, it was found that the active material was amorphous. The thickness of the negative electrode active material layer was as shown in Table 1, respectively.

上記負極を再度、上記真空蒸着装置中に導入し、次に抵抗加熱によって金属Liターゲット(本庄ケミカル(株)製)を負極に蒸着した。蒸着量は蒸着時間を変えることで変化させ、それぞれのサンプルの不可逆容量を補充するようにリチウムを負極表面上に付加させた。   The negative electrode was again introduced into the vacuum vapor deposition apparatus, and then a metal Li target (manufactured by Honjo Chemical Co., Ltd.) was vapor-deposited on the negative electrode by resistance heating. The deposition amount was changed by changing the deposition time, and lithium was added on the negative electrode surface so as to supplement the irreversible capacity of each sample.

蒸着後、各サンプルの負極集電体21上に空間保持部材23として厚さ110μm、長さ40mm、幅3mmの粘着テープ(基材:ポリプロピレン、アクリル系粘着剤)(サンプル1〜4)を負極活物質層22を囲むようにして形成した。   After vapor deposition, an adhesive tape (base material: polypropylene, acrylic adhesive) (samples 1 to 4) having a thickness of 110 μm, a length of 40 mm, and a width of 3 mm as a space holding member 23 on the negative electrode current collector 21 of each sample (samples 1 to 4). It was formed so as to surround the active material layer 22.

またサンプル1〜4の特性と比較するために、空間保持部材23を形成しない比較サンプル1を作製した。   Moreover, in order to compare with the characteristics of Samples 1 to 4, Comparative Sample 1 in which the space holding member 23 was not formed was produced.

負極2を作製した後、いったん100℃−10時間真空乾燥を行った後、露点−60℃以下のドライ雰囲気において室温で保管し、上記Li補填後も同様に露点−60℃以下のドライ雰囲気に保管することによって電極中の水分を脱水および管理した。   After the negative electrode 2 was prepared, vacuum drying was performed at 100 ° C. for 10 hours, and then stored at room temperature in a dry atmosphere with a dew point of −60 ° C. or less. The moisture in the electrode was dehydrated and controlled by storing.

また、活物質層22の充電時の厚みは事前に活物質層22を作用極、Li金属を対極に用いた電池セルで定電流充電後、膜厚測定して確認した。   Moreover, the thickness at the time of charge of the active material layer 22 was confirmed by measuring the film thickness after charging with a constant current in a battery cell using the active material layer 22 as a working electrode and Li metal as a counter electrode in advance.

(2)正極の作製
正極活物質であるLiCoOを、LiCOとCoCOとを所定のモル比で混合し、950℃で加熱することによって合成し、これを45μm以下の大きさに分級したものを用いた。正極活物質100重量部に対して、導電剤としてアセチレンブラックを5重量部、結着剤としてポリフッ化ビニリデン4重量部、分散媒として適量のN―メチル−2−ピロリドンを加え、充分に混合し、正極合剤ペーストを得た。
(2) Production of positive electrode LiCoO 2 which is a positive electrode active material was synthesized by mixing Li 2 CO 3 and CoCO 3 at a predetermined molar ratio and heating at 950 ° C., and this was made into a size of 45 μm or less. What was classified was used. To 100 parts by weight of the positive electrode active material, 5 parts by weight of acetylene black as a conductive agent, 4 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone as a dispersion medium are added and mixed thoroughly. A positive electrode mixture paste was obtained.

正極合剤ペーストを厚み15μmのアルミニウム箔(昭和電工(株)製)からなる集電体に塗布、乾燥、圧延、大きさ50mm×50mm(5mm×10mmをリード部付き)に切り出し、その後、負極活物質層22と対向するように10mm幅で正極合剤を剥離し、厚み75μm、大きさ30mm×30mmの正極活物質層12を作製した。
。その結果、正極集電体11と、その集電体に担持された正極活物質層12からなる正極1が得られた。
The positive electrode mixture paste was applied to a current collector made of an aluminum foil having a thickness of 15 μm (manufactured by Showa Denko KK), dried, rolled, cut into a size of 50 mm × 50 mm (5 mm × 10 mm with a lead portion), and then the negative electrode The positive electrode mixture was peeled off with a width of 10 mm so as to face the active material layer 22, and the positive electrode active material layer 12 having a thickness of 75 μm and a size of 30 mm × 30 mm was produced.
. As a result, a positive electrode 1 including a positive electrode current collector 11 and a positive electrode active material layer 12 carried on the current collector was obtained.

上記正極を露点−60℃以下のドライ雰囲気において室温で保管し、下記のように電池を構成する直前に80℃真空乾燥を行うことによって電極中の水分を脱水した。   The positive electrode was stored at room temperature in a dry atmosphere with a dew point of −60 ° C. or lower, and the moisture in the electrode was dehydrated by vacuum drying at 80 ° C. immediately before the battery was constructed as described below.

(3)アルミラミネート型リチウム二次電池の作製
つぎに上記のように作製したサンプル1〜4および比較サンプル1を用いた電池におけるサイクル特性を評価するために、図1に示すアルミラミネート型リチウム二次電池を作製した。
(3) Production of Aluminum Laminate Type Lithium Secondary Battery Next, in order to evaluate the cycle characteristics in the batteries using Samples 1-4 and Comparative Sample 1 produced as described above, the aluminum laminate type lithium secondary battery shown in FIG. A secondary battery was produced.

正極1と負極2とを通常市販されている空孔率約40%、厚さ20μmのポリエチレン製微多孔膜のセパレータ3で絶縁し、正極1と負極2が位置ずれしないようにアルミラミネートケース4に挿入し、リード部を取り出し注液口を残しすべて封口した。挿入する際セパレータ3が弛まないように粘着テープで両端を負極集電体21に固定した。電解質4にはエチレンカーボネートと炭酸エチルメチルを体積比1:1で混合し、これにLiPFを1.0mol/L溶解して調製した溶液を注液口から注液した。その後、真空減圧しながら注液口を封口し、アルミラミネート型リチウム二次電池を作製した。 The positive electrode 1 and the negative electrode 2 are insulated by a commercially available separator 3 of a polyethylene microporous film having a porosity of about 40% and a thickness of 20 μm, so that the positive electrode 1 and the negative electrode 2 are not misaligned. Then, the lead part was taken out and sealed all except the liquid injection port. Both ends were fixed to the negative electrode current collector 21 with an adhesive tape so that the separator 3 did not loosen during insertion. In the electrolyte 4, ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1, and a solution prepared by dissolving 1.0 mol / L of LiPF 6 in the mixture was injected from the injection port. Thereafter, the liquid inlet was sealed while reducing the vacuum, and an aluminum laminated lithium secondary battery was produced.

(4)充放電サイクル試験評価
つぎに上記各電池を温度20℃の恒温槽に収納し、充放電サイクル試験を行った。その際、設計容量を1時間で放電しきる電流値、すなわち1時間率で電池電圧が4.2Vに達するまで定電流充電したのち、4.2Vの定電圧充電に切換え、電流値が定電流充電値の5%に低下するまで充電した。また放電時には、定電流充電時と同じ電流値で、また20サイクルごとに5時間率の電流値で電池電圧が2.5Vになるまで再定電流放電を行ない、その容量を測定した。このようにして初回の放電容量に対するサイクル中の放電容量の比率、すなわち容量維持率の変化を調べ、100サイクル経過後の5時間率の定電流放電の容量維持率を各サンプル間で比較した。()内の値は1時間率の定電流放電の容量維持率である。
(4) Charging / discharging cycle test evaluation Next, each said battery was accommodated in the thermostat of 20 degreeC, and the charging / discharging cycle test was done. At that time, the current value that discharges the design capacity in 1 hour, that is, the constant current charge until the battery voltage reaches 4.2V at an hour rate, then switches to the constant voltage charge of 4.2V, the current value is constant current charge The battery was charged until it dropped to 5% of the value. Further, at the time of discharging, re-constant current discharging was performed until the battery voltage reached 2.5 V at the same current value as that during constant current charging and at a current value of 5 hours every 20 cycles, and the capacity was measured. In this way, the ratio of the discharge capacity during the cycle to the initial discharge capacity, that is, the change in the capacity maintenance rate, was examined, and the capacity maintenance rate of the constant current discharge at the 5-hour rate after 100 cycles was compared between the samples. The value in parentheses is the capacity maintenance rate of constant current discharge at 1 hour rate.

サンプル1の電池と比較サンプル1の電池との容量維持率とサイクル数の関係(サイクル特性)を図4に示した。図4から明らかなように、空間保持部材23が存在しない比較サンプル1では、早期に容量維持率が低下した。これに対して空間保持部材23形成したサンプル1の電池では、比較サンプル1に対して顕著にサイクル特性が改善された。   FIG. 4 shows the relationship between the capacity retention ratio and the number of cycles (cycle characteristics) between the battery of sample 1 and the battery of comparative sample 1. As is clear from FIG. 4, in the comparative sample 1 in which the space holding member 23 does not exist, the capacity maintenance rate was lowered early. On the other hand, in the battery of sample 1 in which the space holding member 23 is formed, the cycle characteristics are remarkably improved as compared with the comparative sample 1.

表2には100サイクル経過後の容量維持率および皺の有無の結果を示した。ここでいう皺は電池のX線CT断面像より観察を行い、負極2の最大凹凸部の高さが0.1mm以上の場合、皺ありと判断した。空間保持部材23がない比較サンプル1では5時間率での容量維持率が60%程度で皺が発生していた。これに対して空間保持部材23を形成したサンプル1〜4の電池は、100サイクル経過後でも皺が見られず、おおむね80%以上の5時間率での容量維持率を維持し、優れたサイクル特性を示した。   Table 2 shows the capacity retention rate after 100 cycles and the presence or absence of wrinkles. The wrinkles here were observed from an X-ray CT cross-sectional image of the battery, and when the maximum unevenness of the negative electrode 2 was 0.1 mm or more, it was determined that there were wrinkles. In Comparative Sample 1 without the space holding member 23, wrinkles were generated when the capacity retention rate at a 5-hour rate was about 60%. On the other hand, the batteries of Samples 1 to 4 in which the space holding member 23 was formed did not show wrinkles even after 100 cycles, and maintained a capacity maintenance rate at a 5-hour rate of approximately 80% or more, and an excellent cycle. The characteristics are shown.

このような容量維持率の向上は、空間保持部材23を有したことによりサイクル特性が向上した。今回は粘着テープを用いたが、Cu箔などの金属箔やAlなどなどの多孔質膜を用いても構わない。 Such an improvement in the capacity retention rate has improved cycle characteristics by having the space holding member 23. Although the adhesive tape is used this time, a metal foil such as Cu foil or a porous film such as Al 2 O 3 may be used.

(実施例2)
次に、正極1に空間保持対向部材13を形成した場合の結果を示す。ここでは一例として負極活物質層22にSiO0.3を適用した場合について説明する(サンプル5)。
(Example 2)
Next, the result when the space holding counter member 13 is formed on the positive electrode 1 is shown. Here, a case where SiO 0.3 is applied to the negative electrode active material layer 22 will be described as an example (Sample 5).

正極集電体11上に厚さ75μm、長さ40mm、幅7mmの粘着テープ(基材:ポリプロピレン、アクリル系粘着剤、幅方向の中心部分に幅3mm、深さ30μmの矩形型切れ目)を正極活物質層12を囲むように貼付け、空間保持対向部材13を形成した。空間保持部材13は幅方向の中心部分が空間保持部材10のそれと一致するように対向配置した。他の条件はサンプル2に準じた。   Adhesive tape (base material: polypropylene, acrylic adhesive, rectangular cut with a width of 3 mm and a depth of 30 μm at the center in the width direction) is formed on the positive electrode current collector 11 with a thickness of 75 μm, a length of 40 mm, and a width of 7 mm. A space holding counter member 13 was formed by pasting the active material layer 12 so as to surround it. The space holding member 13 is disposed so as to face the center portion in the width direction so as to match that of the space holding member 10. Other conditions were in accordance with Sample 2.

これらのサンプルを用い、サンプル2と同様にして電池を作製し、評価した。表3には100サイクル経過後の5時間率の定電流放電の容量維持率および皺の有無の結果を示した。()内の値は1時間率の定電流放電の容量維持率である。   Using these samples, batteries were prepared and evaluated in the same manner as Sample 2. Table 3 shows the capacity retention rate of constant current discharge at 5 hours after 100 cycles and the presence or absence of soot. The value in parentheses is the capacity maintenance rate of constant current discharge at 1 hour rate.

表3より空間保持部材23と空間保持対向部材13を形成したサンプル5は、100サイクル経過後でも皺が見られず、おおむね80%以上の5時間率での容量維持率と80%程度の1時間率での容量維持率を維持し、優れたサイクル特性を示した。   As shown in Table 3, the sample 5 in which the space holding member 23 and the space holding counter member 13 are formed does not show wrinkles even after 100 cycles, and the capacity maintenance rate at a 5-hour rate of about 80% or more and 1 of about 80%. The capacity retention rate at the time rate was maintained, and excellent cycle characteristics were exhibited.

このような容量維持率の向上は、空間保持部材23および空間保持対向部材13を有したことによりサイクル特性が向上した。   Such an improvement in the capacity retention rate has improved the cycle characteristics by having the space holding member 23 and the space holding facing member 13.

今回はSiの単体および酸化物を用いて実施したが、Siの合金、Snの単体、酸化物あるいは合金を用いても構わない。   In this example, Si was used as a simple substance and an oxide, but an Si alloy, a Sn simple substance, an oxide, or an alloy may be used.

本発明に係るリチウム二次電池は、負極集電体とセパレータの間に空間保持部材が形成され、空間保持部材が前記正極の正極集電体と対向配置されている。このリチウム二次電池では、リチウムを吸蔵・放出するSiもしくはSnの単体、酸化物あるいは合金のように膨張が大きな負極においてサイクル特性を大幅に改善することができる。   In the lithium secondary battery according to the present invention, a space holding member is formed between the negative electrode current collector and the separator, and the space holding member is disposed to face the positive electrode current collector of the positive electrode. In this lithium secondary battery, cycle characteristics can be greatly improved in a negative electrode having a large expansion, such as a simple substance, oxide or alloy of Si or Sn that occludes and releases lithium.

本発明の実施の形態1におけるリチウム二次電池の構成を示す概略断面図Schematic sectional view showing the configuration of the lithium secondary battery according to Embodiment 1 of the present invention. 本発明の実施の形態2におけるリチウム二次電池の構成を示す概略断面図Schematic sectional view showing the configuration of the lithium secondary battery according to Embodiment 2 of the present invention. 本発明の実施例における負極活物質層作製に用いた蒸着装置を示す概略図Schematic which shows the vapor deposition apparatus used for preparation of the negative electrode active material layer in the Example of this invention 本発明の実施の形態におけるリチウム二次電池の容量維持率を示す図The figure which shows the capacity | capacitance maintenance factor of the lithium secondary battery in embodiment of this invention

符号の説明Explanation of symbols

1 正極
2 負極
3 電解質
4 ケース
10、20 リチウム二次電池
21 負極集電体
22 負極活物質層
23 空間保持部材
11 正極集電体
12 正極活物質層
13 空間保持対向部材
30 蒸着装置
31 チャンバー
32 ノズル
33 配管
34 固定台
35 ターゲット
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Electrolyte 4 Case 10, 20 Lithium secondary battery 21 Negative electrode collector 22 Negative electrode active material layer 23 Space holding member 11 Positive electrode current collector 12 Positive electrode active material layer 13 Space holding opposing member 30 Vapor deposition apparatus 31 Chamber 32 Nozzle 33 Piping 34 Fixed base 35 Target

Claims (7)

負極集電体と、前記負極集電体の表面の一部分に形成されたリチウムイオンを吸蔵・放出するSi単体、Sn単体、Si酸化物、Sn酸化物、Si合金およびSn合金からなる群より選ばれたを少なくとも一種類以上含む負極活物質層と、を有する負極と、
正極集電体と、前記正極集電体の表面の一部分に形成されたリチウムイオンを吸蔵・放出可能な正極活物質材料を含む正極活物質層と、を有する正極と、
前記負極と前記正極との間に配置されたセパレータと、
を有するリチウム二次電池において、
前記負極集電体の露出部分とセパレータとの間に空間保持部材が形成され、
前記空間保持部材が前記正極集電体の露出部分と対向配置されていること、
を特徴とするリチウム二次電池。
Selected from the group consisting of a negative electrode current collector and Si simple substance, Sn simple substance, Si oxide, Sn oxide, Si alloy and Sn alloy that occlude / release lithium ions formed on a part of the surface of the negative electrode current collector A negative electrode active material layer containing at least one kind of
A positive electrode having a positive electrode current collector, and a positive electrode active material layer containing a positive electrode active material capable of inserting and extracting lithium ions formed on a portion of the surface of the positive electrode current collector;
A separator disposed between the negative electrode and the positive electrode;
In a lithium secondary battery having
A space holding member is formed between the exposed portion of the negative electrode current collector and the separator,
The space holding member is disposed opposite to the exposed portion of the positive electrode current collector;
Rechargeable lithium battery.
前記空間保持部材の幅が10μm以上1cm以下であること、を特徴とする請求項1記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein a width of the space holding member is 10 μm or more and 1 cm or less. 前記正極集電体の露出部分とセパレータとの間に空間保持対向部材が形成されていること、を特徴とする請求項1または2に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein a space holding facing member is formed between the exposed portion of the positive electrode current collector and the separator. 前記空間保持部材が凹構造または凸構造を有し、
前記空間保持対向部材が凸構造または凹構造を有し、
前記空間保持部材と前記空間保持対向部材とがセパレータを介して嵌め合せるように形成されていること、
を特徴とする請求項3記載のリチウム二次電池。
The space holding member has a concave structure or a convex structure;
The space holding facing member has a convex structure or a concave structure;
The space holding member and the space holding facing member are formed so as to be fitted via a separator,
The lithium secondary battery according to claim 3.
前記空間保持対向部材の幅が10μm以上1cm以下であること、を特徴とする請求項3または4に記載のリチウム二次電池。   5. The lithium secondary battery according to claim 3, wherein a width of the space holding facing member is 10 μm or more and 1 cm or less. 前記空間保持部材と前記空間保持対向部材との少なくともいずれかは、多孔質体であること、を特徴とする請求項1から5のいずれかに記載のリチウム二次電池。   6. The lithium secondary battery according to claim 1, wherein at least one of the space holding member and the space holding facing member is a porous body. 前記空間保持部材と前記空間保持対向部材との少なくともいずれかは、貫通孔を有すること、を特徴とする請求項1から5のいずれかに記載のリチウム二次電池。   6. The lithium secondary battery according to claim 1, wherein at least one of the space holding member and the space holding facing member has a through hole.
JP2006059124A 2006-03-06 2006-03-06 Lithium secondary battery Expired - Fee Related JP4929763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059124A JP4929763B2 (en) 2006-03-06 2006-03-06 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059124A JP4929763B2 (en) 2006-03-06 2006-03-06 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2007242262A JP2007242262A (en) 2007-09-20
JP4929763B2 true JP4929763B2 (en) 2012-05-09

Family

ID=38587606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059124A Expired - Fee Related JP4929763B2 (en) 2006-03-06 2006-03-06 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4929763B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201340888Y (en) * 2009-01-08 2009-11-04 东莞新能源科技有限公司 Lithium ion battery
EP3275027B1 (en) 2015-03-25 2020-09-09 Johnson IP Holding, LLC Reinforced battery package with sealed anode chamber
JP6998551B2 (en) * 2017-05-18 2022-02-10 パナソニックIpマネジメント株式会社 Lithium secondary battery
JP7113226B2 (en) * 2018-03-09 2022-08-05 パナソニックIpマネジメント株式会社 lithium secondary battery
JP7113227B2 (en) * 2018-03-09 2022-08-05 パナソニックIpマネジメント株式会社 lithium secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144424A (en) * 1991-11-25 1993-06-11 Honda Motor Co Ltd Lithium battery
JPH09204921A (en) * 1996-01-25 1997-08-05 Sony Corp Organic electrolyte battery
JPH09213349A (en) * 1996-02-01 1997-08-15 Sony Corp Organic electrolyte battery
JPH1012279A (en) * 1996-04-26 1998-01-16 Denso Corp Metal lithium secondary battery
JP3732455B2 (en) * 2001-04-11 2006-01-05 日立マクセル株式会社 Flat non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2007242262A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
US10476070B2 (en) Anode and battery
US9379387B2 (en) Cathode current collector coated with primer and magnesium secondary battery comprising the same
US8888870B2 (en) Lithium secondary battery
US9039788B2 (en) Methods for making anodes for lithium ion batteries
KR101128632B1 (en) Lithium secondary battery
JP4367311B2 (en) battery
US8318359B2 (en) Electrode for lithium secondary battery, lithium secondary battery and method for producing the same
US8389156B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
EP3879599A1 (en) Negative pole piece, battery cell, lithium ion battery and preparation method therefor, and device containing lithium ion battery
TWI527295B (en) Thermoelectric generator
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
EP3033794A1 (en) Li/metal battery with composite solid electrolyte
EP2983230A1 (en) Cathode active material for lithium battery, lithium battery, and method for producing cathode active material for lithium battery
US20110250505A1 (en) Non-aqueous electrolyte secondary battery
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP5181585B2 (en) Method for producing negative electrode for lithium secondary battery
JP2006185830A (en) Lithium secondary battery
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
JP4929763B2 (en) Lithium secondary battery
CN100466340C (en) Non-aqueous electrolyte rechargeable battery
US10424779B1 (en) Lithium-ion cells and methods of manufacture
JP5095132B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP2007227219A (en) Negative electrode plate for nonaqueous secondary battery, and its manufacturing method
KR102544496B1 (en) Negative electrode for lithium secondary battery and manufacturing method thereof
JP2011187395A (en) Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees