JPH1012279A - Metal lithium secondary battery - Google Patents
Metal lithium secondary batteryInfo
- Publication number
- JPH1012279A JPH1012279A JP8138851A JP13885196A JPH1012279A JP H1012279 A JPH1012279 A JP H1012279A JP 8138851 A JP8138851 A JP 8138851A JP 13885196 A JP13885196 A JP 13885196A JP H1012279 A JPH1012279 A JP H1012279A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- separator
- lithium
- electrode
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウムまたはリ
チウム合金を負極活物質とする負極と、充放電可能な物
質からなる正極とがセパレータを介して対向配置された
構造を有する金属リチウム2次電池に関する。The present invention relates to a metal lithium secondary battery having a structure in which a negative electrode using lithium or a lithium alloy as a negative electrode active material and a positive electrode made of a chargeable / dischargeable material are opposed to each other with a separator interposed therebetween. About.
【0002】[0002]
【従来の技術およびその問題点】近年、携帯電話や携帯
ビデオカメラ、ノートパソコン等の携帯用電気機器の普
及に伴い、電源となる電池の大容量化、高エネルギ密度
化のニーズが急速に高まっている。そのような中で鉛や
ニッカドに代る新しい2次電池として、金属リチウム2
次電池が注目を集めている。これは、約3Vという高い
起電力と、活物質にかさ密度の小さい金属リチウムを採
用することにより、同容量の鉛電池やニッカド電池に比
べ3〜4倍の高い重量エネルギ密度を持つため、先述し
た高エネルギ密度化のニーズに最適である。2. Description of the Related Art In recent years, with the spread of portable electric devices such as portable telephones, portable video cameras, and notebook computers, the need for a large capacity battery and a high energy density has rapidly increased. ing. Under such circumstances, as a new secondary battery replacing lead and nickel cadmium, metal lithium 2
Next battery is attracting attention. This is because, by adopting a high electromotive force of about 3 V and employing lithium metal having a low bulk density as an active material, the weight energy density is three to four times higher than that of a lead battery or NiCd battery having the same capacity. It is most suitable for the needs of high energy density.
【0003】しかしながら、この電池は充放電を繰り返
していくうちに微小な内部短絡を起こすことによって容
量が減少し、その結果サイクル寿命が短いという問題が
ある。特に、携帯用電機機器のニーズに応えるべく電極
を長尺巻取り構造にして大容量化を図ると、この現象は
いっそう顕著になり、最悪数サイクルで短絡に至ってし
まう。このような問題が解決されてないため、金属リチ
ウムの大容量電池はいまだ実用に至っていないというの
が現状である。However, this battery has a problem that the capacity is reduced due to the occurrence of a minute internal short circuit during repeated charging / discharging, resulting in a short cycle life. In particular, if the capacity is increased by adopting a long winding structure to meet the needs of portable electric equipment, this phenomenon becomes even more remarkable, and a short circuit occurs in the worst several cycles. At present, large-capacity lithium metal batteries have not yet been put to practical use because such problems have not been solved.
【0004】内部短絡の原因は、一般にデンドライトと
よばれる針状の析出リチウムが、充電にともない負極表
面から成長してセパレータを貫通し、正極に達すること
によるものと考えられている。しかし、どのようにして
リチウムが針状に析出するのか等、詳細なメカニズムに
ついて材料や構造の両面から様々な研究が行われている
ものの、いまだ決定的な解決方法は出されていない。It is considered that the cause of the internal short circuit is that needle-shaped precipitated lithium generally called dendrite grows from the surface of the negative electrode upon charging, penetrates through the separator, and reaches the positive electrode. However, although various studies have been conducted on the detailed mechanism, such as how lithium precipitates in a needle shape, in terms of both material and structure, no definitive solution has been found yet.
【0005】そこで、例えば特開平4−104478号
公報や特開平4−104479号公報には、大面積の電
極をいくつかの小区画に分割し、内部短絡が生じた区画
を大電流により焼損する部材(ヒューズ等)で切り離す
ことにより、内部短絡による悪影響を最小限に抑えよう
という発明が開示されている。しかし、この発明は内部
短絡そのものを抑制しているものではないし、内部短絡
を起こし切り離された小区画の分だけ電極面積が失わ
れ、その結果電池容量はどんどん減少していくので、結
局サイクル寿命向上にはならないという点で問題があ
る。Therefore, for example, Japanese Patent Application Laid-Open Nos. 4-104478 and 4-104479 disclose that a large-area electrode is divided into several small sections, and a section in which an internal short circuit occurs is burned out by a large current. There is disclosed an invention in which an adverse effect due to an internal short circuit is minimized by separating with a member (such as a fuse). However, the present invention does not suppress the internal short circuit itself, and causes an internal short circuit, and the electrode area is lost by the amount of the separated small section. As a result, the battery capacity decreases steadily. There is a problem in that it does not improve.
【0006】一方、内部短絡は負極リチウムが充放電の
繰り返しで微粒化することによる著しい体積膨張が原因
であるとする考えがある。すなわち、負極側に析出する
リチウムの体積膨張によりセパレータが圧縮されて薄く
なりひどい場合には損傷したり、あるいはリチウムが析
出するスペースを求めてセパレータの微細孔の中にまで
異常析出しそれが正極まで達したりして、負極と正極が
電気的に接触し短絡に至るものと考えられている。On the other hand, it is considered that the internal short-circuit is caused by remarkable volume expansion due to atomization of the negative electrode lithium by repeated charge and discharge. In other words, if the separator is compressed and becomes thin due to the volume expansion of the lithium deposited on the negative electrode side, the separator may be damaged in severe cases, or may be damaged, or may be abnormally deposited into the micropores of the separator in search of a space where lithium is deposited, and this may be the positive electrode. It is considered that the negative electrode and the positive electrode come into electrical contact with each other, resulting in a short circuit.
【0007】そこで、体積膨張を抑制することによって
内部短絡を防ごうという提案もなされている。例えば、
特開昭52−5423号公報には負極材料としてリチウ
ムーアルミニウム合金を採用するという技術が開示され
ているが、いまだ実用には至っていない。また、特開昭
64−76668号公報にはコイン型電池の正極の背面
側に活性炭繊維層を配設することにより、体積膨張を緩
衝しようという技術が開示されている。しかし、この発
明はコイン型電池のような一層構造の電池にしか採用で
きず、巻取りや積層構造のような多重構造には採用でき
ないという点で問題がある。Therefore, a proposal has been made to prevent internal short circuit by suppressing volume expansion. For example,
Japanese Patent Application Laid-Open No. 52-5423 discloses a technique of employing a lithium-aluminum alloy as a negative electrode material, but has not yet been put to practical use. Japanese Patent Application Laid-Open No. 64-76668 discloses a technique of buffering the volume expansion by disposing an activated carbon fiber layer on the back side of the positive electrode of a coin-type battery. However, the present invention has a problem in that it can be used only for a battery having a single-layer structure such as a coin-type battery, and cannot be used for a multiplex structure such as a winding or a laminated structure.
【0008】[0008]
【発明が解決しようとする課題】本発明は、上記内部短
絡問題が負極側に析出するリチウムの体積膨張によりセ
パレータの微細孔内を異常析出して正極に達することが
原因であることに着目し、正極、セパレータ、負極の積
層電極構造を有する金属リチウム2次電池において、セ
パレータの損傷やリチウムの異常析出を防いで内部短絡
を抑制し、同電池の長寿命化を図ることを解決すべき課
題とするものである。The present invention focuses on the fact that the above-mentioned internal short-circuit problem is caused by abnormal deposition in the micropores of the separator due to the volume expansion of lithium deposited on the negative electrode side and reaching the positive electrode. The problem to be solved is to prevent internal damage to the separator and abnormal deposition of lithium in a lithium metal secondary battery having a laminated electrode structure consisting of a positive electrode, a separator, and a negative electrode, to suppress an internal short circuit, and to prolong the life of the battery. It is assumed that.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に採用した請求項1記載の手段によれば、負極表面上に
析出したリチウムが負極または正極とセパレータとの間
に形成された緩衝空隙に収納されるため、セパレータの
損傷やリチウムの異常析出を防いで内部短絡を抑制し、
電池の長寿命化を図ることができる。According to the first aspect of the present invention, there is provided a buffer gap formed between a negative electrode or a positive electrode and a separator by depositing lithium on a negative electrode surface. To prevent separator damage and abnormal deposition of lithium to prevent internal short circuits,
The life of the battery can be extended.
【0010】好適な態様である請求項2に記載した手段
によれば、負極表面上に析出するリチウムを収納するた
めの緩衝空隙が絶縁構造部材によって確実に形成され保
持される。なお、絶縁構造部材が正極とセパレータとの
間に配置されて緩衝空隙が正極とセパレータとの間に形
成される場合には、負極表面上にリチウムが析出すると
その析出リチウムがセパレータを押して緩衝空隙が正極
側から負極側に移るので、負極表面上に析出したリチウ
ムは負極とセパレータとの間に形成される緩衝空隙に収
納される。このように絶縁構造部材を配置する構成は、
酸化してしまうことから空気中では取り扱うことができ
ない金属リチウムからなる負極ではなく、空気中での取
り扱いが可能なリチウムマンガン酸化物等からなる正極
に対して絶縁構造部材を配置すればよいため、絶縁構造
部材を負極とセパレータとの間に配置する場合に比べ
て、製作が格段に容易となる。[0010] According to the means described in claim 2, which is a preferred embodiment, the buffer space for accommodating lithium precipitated on the surface of the negative electrode is reliably formed and held by the insulating structural member. In the case where the insulating structural member is disposed between the positive electrode and the separator and a buffer gap is formed between the positive electrode and the separator, when lithium is deposited on the negative electrode surface, the deposited lithium pushes the separator to press the buffer gap. Moves from the positive electrode side to the negative electrode side, and lithium deposited on the negative electrode surface is stored in a buffer space formed between the negative electrode and the separator. The configuration of arranging the insulating structural members in this way is
Since it is sufficient to arrange the insulating structure member not on the negative electrode made of metal lithium that cannot be handled in the air because it is oxidized, but on the positive electrode made of lithium manganese oxide that can be handled in the air, The production is much easier than in the case where the insulating structural member is arranged between the negative electrode and the separator.
【0011】好適な態様である請求項3に記載した手段
によれば、負極表面上に析出するリチウムは絶縁構造部
材の孔や空隙に析出して収納される。この絶縁構造部材
は厚さ管理が容易であり、その製作も比較的容易であ
る。好適な態様である請求項4に記載した手段によれ
ば、負極表面上に析出するリチウムを収納する緩衝空隙
がセパレータの凹凸構造により形成され保持されるの
で、構成部品数の増大を回避することができ、製作も容
易に行うことができる。According to a preferred aspect of the present invention, lithium deposited on the surface of the negative electrode is deposited and stored in holes or voids of the insulating structure member. The thickness of this insulating structural member is easy to control, and its manufacture is relatively easy. According to the means described in claim 4, which is a preferred embodiment, the buffer space for accommodating lithium deposited on the negative electrode surface is formed and held by the concave-convex structure of the separator, thereby avoiding an increase in the number of components. Can be easily manufactured.
【0012】好適な態様である請求項5に記載した手段
によれば、負極表面上に析出するリチウムを収納する緩
衝空隙が負極の両面側に絶縁構造部材により確実に形成
され保持される。このように絶縁構造部材を配置する構
成は、二つのセパレータに対して絶縁構造部材を配置す
ればよいため、製作が比較的容易となる。請求項6記載
の手段によれば、負極表面上に析出したリチウムがセパ
レータの多孔質層の空孔部分に収納されるため、内部短
絡を抑制し、電池の長寿命化を図ることができるととも
に、正極、セパレータおよび負極からなる従来の電極構
成に対して新たな構成部材を追加する必要がないため、
従来の電極と同等に容易に作製することができる。According to the means described in claim 5, which is a preferred embodiment, buffer voids for accommodating lithium precipitated on the surface of the negative electrode are securely formed and held on both sides of the negative electrode by the insulating structural members. In the configuration in which the insulating structural members are arranged as described above, since the insulating structural members may be arranged for the two separators, the manufacturing is relatively easy. According to the means of claim 6, lithium precipitated on the surface of the negative electrode is stored in the pores of the porous layer of the separator, so that an internal short circuit can be suppressed and the life of the battery can be extended. Since there is no need to add new components to the conventional electrode configuration including the positive electrode, the separator, and the negative electrode,
It can be manufactured as easily as a conventional electrode.
【0013】好適な態様である請求項7記載の手段によ
れば、セパレータの製作に容易な作製方法を採用するこ
とができる。好適な態様である請求項8および請求項9
に記載した手段によれば、電池の大容量化を図ることが
できるとともに、セパレータの損傷やリチウムの異常析
出を防いで内部短絡を抑制し、電池の長寿命化を図るこ
とができる。According to the means described in claim 7, which is a preferred embodiment, an easy manufacturing method can be adopted for manufacturing the separator. Claims 8 and 9, which are preferred embodiments
According to the means described in (1), the capacity of the battery can be increased, and the internal short circuit can be suppressed by preventing the damage of the separator and abnormal deposition of lithium, and the life of the battery can be extended.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施形態を図面に
基づき説明する。 〔実施例1〕図1は本実施例に係る金属リチウム2次電
池の巻取り電極の斜視図であり、図2はその巻取り電極
の幅方向における断面図である。Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 is a perspective view of a winding electrode of a metal lithium secondary battery according to this embodiment, and FIG. 2 is a cross-sectional view of the winding electrode in a width direction.
【0015】図1および図2において、1はアルミニウ
ムの箔から成る集電体の両面にリチウムマンガン酸化物
等の正極活物質を塗布または蒸着等により結着した正
極、2はポリエチレンまたはポリプロピレンから成るセ
パレータ、3は銅の箔から成る集電体の両面に金属リチ
ウムまたはその合金を圧着した負極、4はセパレータ2
と負極3の間に緩衝空隙4aを付与するために挿入され
た絶縁材料からなるスペーサ(絶縁構造部材)、5は正
極1から電流を取り出す正極リード、6は負極3から電
流を取り出す負極リードである。また、図2において、
7は負極3の表面に析出した金属リチウムを表す。1 and 2, reference numeral 1 denotes a positive electrode in which a positive electrode active material such as lithium manganese oxide is applied to both surfaces of a current collector made of aluminum foil by application or vapor deposition, and 2 denotes polyethylene or polypropylene. The separator 3 is a negative electrode having metallic lithium or an alloy thereof pressed on both sides of a current collector made of copper foil, and the separator 4 is a separator 2.
A spacer (insulating structure member) made of an insulating material inserted to provide a buffer space 4a between the anode and the negative electrode 3, 5 is a positive electrode lead for extracting current from the positive electrode 1, and 6 is a negative electrode lead for extracting current from the negative electrode 3. is there. Also, in FIG.
Reference numeral 7 denotes metallic lithium deposited on the surface of the negative electrode 3.
【0016】この金属リチウム2次電池の巻取り電極
は、セパレータ2、正極1、セパレータ2、スペーサ
4、負極3、スペーサ4の各部材を順に積層して構成さ
れた1組の電極構成単位を長尺にして巻取った、いわゆ
るスパイラルまたは巻取り電極構造のものである。スペ
ーサ4はセパレータ2および負極3の軸方向の両端に位
置し、セパレータ2および負極3の長手方向に沿って帯
状に配置されている。このため、正極1、セパレータ
2、負極3、セパレータ2の4つの部材を1単位として
巻取った場合においてもセパレータ2と負極3との間に
ほぼ一定の距離の緩衝空隙4aが形成される。The winding electrode of this metal lithium secondary battery is composed of a set of electrode constituent units formed by sequentially laminating respective members of a separator 2, a positive electrode 1, a separator 2, a spacer 4, a negative electrode 3, and a spacer 4. It has a so-called spiral or wound electrode structure wound up in a long length. The spacers 4 are located at both axial ends of the separator 2 and the negative electrode 3, and are arranged in a strip shape along the longitudinal direction of the separator 2 and the negative electrode 3. Therefore, even when the four members of the positive electrode 1, the separator 2, the negative electrode 3, and the separator 2 are wound as one unit, a buffer space 4 a having a substantially constant distance is formed between the separator 2 and the negative electrode 3.
【0017】その結果、負極リチウムが充放電の繰り返
しで微粒化して体積が膨張したとしても、この緩衝空隙
4aが膨張した析出リチウムに満たされるまでは析出リ
チウムがセパレータ2を圧迫したりセパレータ2の微細
孔の中に異常析出してそれが正極1にまで達したりする
ことがない。この結果、内部短絡を抑制することができ
サイクル寿命を向上することができる。As a result, even if the negative electrode lithium is atomized by repeated charge and discharge and the volume is expanded, the deposited lithium presses the separator 2 or the separator 2 is not filled until the buffer space 4a is filled with the expanded precipitated lithium. Abnormal precipitation in the micropores does not reach the positive electrode 1. As a result, an internal short circuit can be suppressed, and the cycle life can be improved.
【0018】実際この構成で円筒型巻取り構造電極の金
属リチウム2次電池を試作し、従来構造(緩衝空隙な
し)とサイクル寿命を比較した結果を図9および図10
に示す。試作した電池の電極の大きさは幅50mm×長
さ約1200mm、巻取ったときの外径は約32mmで
ある。正極活物質にリチウムマンガン酸化物、負極活物
質に金属リチウム、セパレータには厚さ30μmのポリ
エチレン製を使用した。また、スペーサ4には厚さ約4
0μmのポリプロピレン製のテープを使用した。Actually, a trial production of a metallic lithium secondary battery having a cylindrical wound structure electrode with this configuration was performed, and the results of comparing the cycle life with a conventional structure (without a buffer gap) were shown in FIGS. 9 and 10.
Shown in The size of the electrode of the prototype battery is 50 mm wide × about 1200 mm long, and the outer diameter when wound is about 32 mm. Lithium manganese oxide was used as the positive electrode active material, metallic lithium was used as the negative electrode active material, and 30 μm thick polyethylene was used as the separator. The spacer 4 has a thickness of about 4
A 0 μm polypropylene tape was used.
【0019】図9は電池容量のサイクル特性試験の結果
を設計容量との比で示したものである。試験は、1サイ
クルめに使用電圧範囲を全て使って取り出せる全容量を
測定した後、2サイクルめ以降は設計容量の80%で充
放電を繰り返すという条件で行った。図10は充放電効
率すなわち各サイクルにおける放電容量と充電容量との
比を示したもので、短絡した場合は充電容量と放電容量
との差が大きくなるので充放電効率は低下する。FIG. 9 shows the results of the cycle characteristic test of the battery capacity in comparison with the design capacity. The test was performed under the conditions that the total capacity that can be taken out using the entire operating voltage range in the first cycle was measured, and then charging and discharging were repeated at 80% of the designed capacity in the second cycle and thereafter. FIG. 10 shows the charge / discharge efficiency, that is, the ratio between the discharge capacity and the charge capacity in each cycle. When a short circuit occurs, the difference between the charge capacity and the discharge capacity increases, so that the charge / discharge efficiency decreases.
【0020】図9および図10を見ると、従来構造すな
わち緩衝空隙なし電極電池(a)は5サイクルめから内
部短絡で充放電効率が急激に低下し、8サイクルめには
容量も急激に低下してしまった。これに対し、セパレー
タ/負極間スペーサ挿入電池(b)の容量および充放電
効率の低下は少なくとも22サイクル以降であり、明ら
かに寿命向上の効果が認められた。9 and 10, the charge / discharge efficiency of the conventional structure, that is, the electrode battery without buffer voids (a), suddenly decreases due to an internal short circuit from the fifth cycle, and the capacity also sharply decreases in the eighth cycle. have done. On the other hand, the capacity and charge / discharge efficiency of the separator / negative-spacer-inserted battery (b) were reduced at least after 22 cycles, and the effect of improving the life was clearly observed.
【0021】〔実施例2〕図3は本実施例に係る金属リ
チウム2次電池の巻取り電極の斜視図であり、図4はそ
の巻取り電極の幅方向における断面図である。本実施例
の金属リチウム2次電池の巻取り電極は、上記実施例1
のものと同じ構成部材1〜6で構成されているが、緩衝
空隙4aを形成するためのスペーサ(絶縁構造部材)4
をセパレータ2と負極3との間ではなく、正極1とセパ
レータ2との間に挿入した点で異なるものである。な
お、図4において、7は図2と同様に負極3の表面に析
出した金属リチウムを表す。Embodiment 2 FIG. 3 is a perspective view of a winding electrode of a lithium metal secondary battery according to this embodiment, and FIG. 4 is a cross-sectional view of the winding electrode in a width direction. The winding electrode of the metal lithium secondary battery of this embodiment is the same as that of the first embodiment.
(Insulating structural member) 4 for forming the buffer space 4a.
Is inserted not between the separator 2 and the negative electrode 3 but between the positive electrode 1 and the separator 2. In FIG. 4, 7 denotes metallic lithium deposited on the surface of the negative electrode 3 as in FIG.
【0022】この実施例の構成では、組み付け当初は正
極1とセパレータ2との間に空隙ができるが、図4に示
すようにセパレータ2が正極1側にたわんで空隙が負極
3側に移ることによりセパレータ2と負極3との間に膨
張したリチウムを収納することができ、結局、実施例1
のようなセパレータ/負極間スペーサ挿入構造と同様の
効果を得ることができる。In the structure of this embodiment, a gap is formed between the positive electrode 1 and the separator 2 at the beginning of assembly, but the separator 2 is bent toward the positive electrode 1 as shown in FIG. Thus, the expanded lithium can be stored between the separator 2 and the negative electrode 3.
The same effect as the separator / negative electrode spacer insertion structure as described above can be obtained.
【0023】この構造の特徴は、実施例1のものに比べ
製作が容易であることである。すなわち、実施例1のも
のでは空気中で酸化してしまう理由からアルゴン等の不
活性ガス下でしか取り扱うことができない金属リチウム
の負極3の上にスペーサ4を配置しなければならないた
め、製作は極めて困難である。しかし、本実施例のもの
は空気中で取り扱えるリチウムマンガン酸化物等の正極
1の上にスペーサ4を配置すればよいため、製作は格段
に容易である。The feature of this structure is that it is easier to manufacture than that of the first embodiment. That is, in the case of the first embodiment, the spacers 4 must be arranged on the negative electrode 3 of metallic lithium which can be handled only under an inert gas such as argon because it is oxidized in the air. Extremely difficult. However, in the case of this embodiment, since the spacers 4 may be arranged on the positive electrode 1 made of lithium manganese oxide or the like that can be handled in the air, the manufacture is much easier.
【0024】この構成においても、実際に巻取り構造電
極の金属リチウム2次電池を試作し、サイクル寿命を評
価を行った。その結果を図9および図10の(c)に示
す。図9および図10を見てわかるように、この構成で
は41サイクルでも容量や充放電効率の大きな低下が見
られず、実施例1の構造を上回る寿命向上の効果が確認
された。Also in this configuration, a metallic lithium secondary battery having a wound structure electrode was actually manufactured as a trial, and the cycle life was evaluated. The results are shown in FIGS. 9 and 10 (c). As can be seen from FIGS. 9 and 10, in this configuration, no significant reduction in the capacity and charge / discharge efficiency was observed even at 41 cycles, and the effect of improving the life over the structure of Example 1 was confirmed.
【0025】なお、上記実施例1および実施例2では、
セパレータ2と負極3または正極1の間にスペーサ4を
挿入する方法を示してきた。これらの方法において、実
際にスペーサ4として使用するものは厚さ数十μmの絶
縁性のテープであるが、この他にも、図5に示すように
セパレータ2の端を折り返して融着等することにより、
セパレータ2の両端にセパレータ2面より突出したスペ
ーサ4を一体的に形成することができる。この場合、セ
パレータ2の端の折り返しを2回以上行うことによって
スペーサ4の厚さ寸法を適宜変更することができる。In the first embodiment and the second embodiment,
The method of inserting the spacer 4 between the separator 2 and the negative electrode 3 or the positive electrode 1 has been described. In these methods, what is actually used as the spacer 4 is an insulating tape having a thickness of several tens of μm. In addition to this, as shown in FIG. By doing
Spacers 4 protruding from the surface of the separator 2 can be integrally formed at both ends of the separator 2. In this case, the thickness dimension of the spacer 4 can be appropriately changed by folding the end of the separator 2 twice or more.
【0026】また、このようにスペーサ4を形成するこ
とにより一面側に凹凸構造を有するセパレータ2は、図
5においてはスペーサ4がセパレータ2と負極3の間に
位置するように配置されているが、これとは反対にスペ
ーサ4がセパレータ2と正極1の間に位置するように配
置してもよい。また、本発明のねらいとするリチウム析
出時の体積膨張によって必要となる緩衝空隙を確保する
方法としては、さらに以下のような方法がある。Further, the separator 2 having the uneven structure on one surface side by forming the spacer 4 in this manner is arranged such that the spacer 4 is located between the separator 2 and the negative electrode 3 in FIG. On the contrary, the spacer 4 may be arranged so as to be located between the separator 2 and the positive electrode 1. Further, as a method of securing a necessary buffer space by volume expansion at the time of depositing lithium as the aim of the present invention, the following method is further provided.
【0027】〔実施例3〕図6は本実施例に係る金属リ
チウム2次電池の巻取り電極の斜視図であり、図7はそ
の巻取り電極の幅方向における断面図である。本実施例
の金属リチウム2次電池の巻取り電極は、セパレータ
2、正極1、セパレータ2、絶縁構造部材8、負極3、
絶縁構造部材8の各部材を順に積層して構成された1組
の電極構成単位を長尺にして巻取った構造のものであ
る。すなわち、セパレータ2と負極3との間に不織布の
ような多孔質の絶縁構造部材8を挿入する構成である。Embodiment 3 FIG. 6 is a perspective view of a winding electrode of a metal lithium secondary battery according to this embodiment, and FIG. 7 is a cross-sectional view of the winding electrode in a width direction. The winding electrodes of the metal lithium secondary battery of the present embodiment include a separator 2, a positive electrode 1, a separator 2, an insulating structural member 8, a negative electrode 3,
It has a structure in which a set of electrode constituent units formed by sequentially laminating the respective members of the insulating structural member 8 is elongated and wound. That is, a porous insulating structure member 8 such as a nonwoven fabric is inserted between the separator 2 and the negative electrode 3.
【0028】この構成では、負極3の表面上に析出する
リチウムを絶縁構造部材8の中にある無数の空隙に収納
することができる。この構成の特徴は、上記実施例1お
よび実施例2のようなスペーサ4を挿入する構成に比べ
製作が容易で、厚さが管理しやすいという点である。こ
の構成においても実際に電池を試作し、サイクル寿命の
評価を行った。多孔質の絶縁構造部材8には厚さ約24
0μmの不織布を使用した。その結果を図9および図1
0の(d)に示す。この構成では容量に多少の低下が見
られるものの、少なくとも41サイクルまで充放電効率
の低下はほとんど見られず、短絡抑制および寿命向上の
効果が確認できたといえる。According to this configuration, lithium deposited on the surface of the negative electrode 3 can be stored in the innumerable voids in the insulating structural member 8. The feature of this configuration is that it is easier to manufacture and the thickness is easier to manage than the configuration in which the spacer 4 is inserted as in the first and second embodiments. Also in this configuration, a battery was actually manufactured and the cycle life was evaluated. The porous insulating structural member 8 has a thickness of about 24
A nonwoven fabric of 0 μm was used. The results are shown in FIG. 9 and FIG.
0 (d). In this configuration, although the capacity is slightly reduced, the charge / discharge efficiency is hardly reduced until at least 41 cycles, and it can be said that the effects of short-circuit suppression and life improvement can be confirmed.
【0029】〔実施例4〕図8は本実施例に係る金属リ
チウム2次電池の巻取り電極の幅方向における断面図で
ある。図8において、4は負極3をはさむセパレータ2
同志の間に挿入され、負極3よりも厚い絶縁材料からな
るスペーサである。本実施例の巻取り電極は、負極3の
幅を正極1よりも狭くし、負極3の上下両側にある二つ
のセパレータ2の間に、負極3の厚さと負極3の上下の
セパレータ2との間に付与する緩衝空隙4aの距離を足
した分の厚さを有するスペーサ4を負極3の両外側に挿
入する構成である。すなわち、この巻取り電極では、一
対の正極1の間にそれぞれセパレータ2を介して配置さ
れた負極3の両面側に、負極3表面上に析出する金属リ
チウム7を収納するための緩衝空隙4aが形成されてい
る。Embodiment 4 FIG. 8 is a cross-sectional view in the width direction of a winding electrode of a lithium metal secondary battery according to this embodiment. In FIG. 8, reference numeral 4 denotes a separator 2 sandwiching the negative electrode 3.
It is a spacer that is inserted between the competitors and made of an insulating material thicker than the negative electrode 3. In the winding electrode of the present embodiment, the width of the negative electrode 3 is made smaller than that of the positive electrode 1, and the thickness of the negative electrode 3 and the separator 2 above and below the negative electrode 3 are interposed between the two separators 2 on the upper and lower sides of the negative electrode 3. In this configuration, spacers 4 having a thickness equal to the sum of the distances of the buffer voids 4 a provided therebetween are inserted on both outer sides of the negative electrode 3. That is, in this wound electrode, buffer voids 4a for accommodating metal lithium 7 deposited on the surface of the negative electrode 3 are provided on both sides of the negative electrode 3 disposed between the pair of positive electrodes 1 with the separator 2 interposed therebetween. Is formed.
【0030】本実施例の巻取り電極は、負極3の表面上
にリチウムが析出すると、二つのセパレータ2の間の空
隙に、膨張して厚味を増したリチウム負極3ごと収納さ
れた状態となる。よって、セパレータ2の損傷やリチウ
ムの異常析出を防いで内部短絡を抑制し、電池の長寿命
化を図ることができる。また、本実施例の巻取り電極
は、二つのセパレータ2に対してスペーサ4を配置すれ
ばよいため、製作が比較的容易となる。When the lithium is deposited on the surface of the negative electrode 3, the wound electrode according to the present embodiment is in a state in which the lithium negative electrode 3, which has been expanded and thickened, is accommodated in a space between the two separators 2. Become. Therefore, the internal short circuit can be suppressed by preventing the separator 2 from being damaged and the lithium from being abnormally precipitated, and the life of the battery can be prolonged. In addition, the winding electrode of the present embodiment can be relatively easily manufactured because the spacers 4 may be disposed for the two separators 2.
【0031】〔実施例5〕図11は本実施例に係る金属
リチウム2次電池の巻取り電極の斜視図であり、図12
はその巻取り電極の幅方向における断面図である。本実
施例の金属リチウム2次電池の巻取り電極は、セパレー
タ2、正極1、セパレータ2、負極3の各部材を順に積
層して構成された1組の電極構成単位を長尺にして巻取
った構造のものである。すなわち、析出リチウムを収納
する緩衝空隙をもつセパレータ2を正極1および負極3
の間に挿入する構成であり、セパレータ2以外は従来の
巻取り電極と同じ構造である。Embodiment 5 FIG. 11 is a perspective view of a winding electrode of a lithium metal secondary battery according to this embodiment, and FIG.
FIG. 3 is a cross-sectional view in the width direction of the winding electrode. The winding electrode of the metal lithium secondary battery according to the present embodiment is formed by winding a set of electrode constituent units formed by laminating the respective members of the separator 2, the positive electrode 1, the separator 2, and the negative electrode 3 in order. It is of a structure. That is, the separator 2 having a buffer space for accommodating the deposited lithium is connected to the positive electrode 1 and the negative electrode 3.
The structure is the same as that of the conventional wound electrode except for the separator 2.
【0032】図13はセパレータ2の幅方向における断
面図と、セパレータ2の最大の特徴である空孔率の分布
を示したものである。このセパレータ2は、正極1側に
は通常のリチウム2次電池に使用されるセパレータと同
等の低い空孔率(例えば30〜40%程度)をもつ基部
層2aを有し、負極3側には実施例3の不織布と同等の
高い空孔率(80%程度)をもつ多孔質層2bを有す
る。なお、多孔質層2bの基部層2aに近い部分は、基
部層2aに近づくつれて空孔率が徐々に小さくなるよう
にして基部層2aに連続している。FIG. 13 shows a cross-sectional view of the separator 2 in the width direction and a distribution of the porosity which is the largest feature of the separator 2. The separator 2 has a base layer 2a having a low porosity (for example, about 30 to 40%) equivalent to that of a separator used in a normal lithium secondary battery on the positive electrode 1 side, and has a base layer 2a on the negative electrode 3 side. It has a porous layer 2b having a high porosity (about 80%) equivalent to that of the nonwoven fabric of Example 3. The portion of the porous layer 2b close to the base layer 2a is continuous with the base layer 2a such that the porosity gradually decreases as approaching the base layer 2a.
【0033】これにより、正極1側の基部層2aは通常
のセパレータとして機能し、負極3側の多孔質層2b内
の空孔部分は実施例3の不織布と同様に負極3表面上に
析出するリチウムを収納する緩衝空隙として機能する。
よって、このようなセパレータ2を用いれば、従来の正
極、セパレータおよび負極からなる電極構成に新たに構
成部材を追加することがないため、製作は従来の電極と
同等に容易で、かつ短絡抑制および寿命向上を図ること
ができる。Thus, the base layer 2a on the positive electrode 1 side functions as a normal separator, and the pores in the porous layer 2b on the negative electrode 3 side precipitate on the surface of the negative electrode 3 as in the nonwoven fabric of Example 3. Functions as a buffer space for storing lithium.
Therefore, if such a separator 2 is used, no new component is added to the conventional electrode configuration including the positive electrode, the separator, and the negative electrode. The life can be improved.
【0034】なお、本実施例のセパレータ2の製作方法
としては、ポリエチレンまたはポリプロピレンのシート
状母材を厚さ方向に温度勾配をかけて延伸して形成した
り、空孔率の分布に合わせて不織布等に用いる繊維の径
や繊維の隙間を徐々に変化させながら積み上げ圧縮して
形成する等の方法を採用することができ、セパレータ2
を容易に製作することができる。As a method of manufacturing the separator 2 of this embodiment, a polyethylene or polypropylene sheet-like base material is formed by stretching a temperature gradient in the thickness direction, or in accordance with the porosity distribution. It is possible to adopt a method such as forming by stacking and forming while gradually changing the diameter of the fiber or the gap of the fiber used for the nonwoven fabric or the like.
Can be easily manufactured.
【0035】また、多孔質層2bの空孔率の分布は必ず
しも本実施例のように無段階的に連続している必要はな
く、次の実施例6のように段階的に変化するようにして
もよい。 〔実施例6〕図14は本実施例に係るセパレータ2の幅
方向における断面図と、本セパレータ2″の最大の特徴
である空孔率の分布を示したものである。Further, the distribution of the porosity of the porous layer 2b does not necessarily have to be continuously continuous in a stepwise manner as in this embodiment, but may be changed stepwise as in the sixth embodiment. You may. [Embodiment 6] FIG. 14 is a cross-sectional view in the width direction of a separator 2 according to the present embodiment, and shows a distribution of porosity which is the greatest feature of the present separator 2 ".
【0036】本実施例のセパレータ2は、正極側から負
極側に向かって空孔率が大きくなるように異なる空孔率
の不織布を積層して一体化したものである。すなわち、
正極側には通常のリチウム2次電池に使用されるセパレ
ータと同等の低い空孔率(例えば30〜40%程度)を
もつ基部層2aを有し、負極側には基部層2aよりも高
い空孔率をもつ多孔質層2bを有する。多孔質層2b
は、1種類または数種類の異なる空孔率(例えば50
%、70%、80%)をもつ不織布を正極側から負極側
に向かって空孔率が段階的に大きくなるように配置して
形成されている。The separator 2 of this embodiment is formed by laminating and integrating nonwoven fabrics having different porosity so that the porosity increases from the positive electrode side to the negative electrode side. That is,
On the positive electrode side, there is a base layer 2a having a low porosity (for example, about 30 to 40%) equivalent to that of a separator used in a normal lithium secondary battery, and on the negative electrode side, a void higher than the base layer 2a is provided. It has a porous layer 2b having a porosity. Porous layer 2b
Is one or several different porosity (e.g. 50
%, 70%, 80%) are arranged so that the porosity gradually increases from the positive electrode side to the negative electrode side.
【0037】これにより、本実施例のセパレータ2は、
正極側の基部層2aが通常のセパレータとして機能し、
負極側の多孔質層2bが負極表面上に析出するリチウム
を収納する緩衝空隙として機能する。よって、このよう
なセパレータ2を用いた場合でも、実施例5と同様に、
従来の正極、セパレータ、負極からなる電極構成に新た
に構成部材を追加することがないため、製作は従来の電
極と同等に容易で、かつ短絡抑制および寿命向上を図る
ことができる。Thus, the separator 2 of this embodiment is
The base layer 2a on the positive electrode side functions as a normal separator,
The porous layer 2b on the negative electrode side functions as a buffer space for accommodating lithium precipitated on the negative electrode surface. Therefore, even when such a separator 2 is used, similar to the fifth embodiment,
Since no new component is added to the conventional electrode configuration including the positive electrode, the separator, and the negative electrode, the fabrication is as easy as the conventional electrode, and the short circuit can be suppressed and the life can be improved.
【0038】なお、本実施例のセパレータ2の製作方法
としては、積層配置した異なる空孔率の不織布の境界面
を熱で融着させたり、接着剤で一体化させる等の方法を
採用することができ、セパレータ2を容易に製作するこ
とができる。以上、本発明について巻取り電極電池の実
施例を示したが、本発明の適用範囲はそれに限定される
ものではなく、積層構造電池や一層構造のコイン型電池
またはシ−ト型電池においても基本的な断面構造は同じ
であるため、これらにも適用すれば全く同様の効果が得
られる。As a method of manufacturing the separator 2 of the present embodiment, a method of fusing the boundary surfaces of the laminated non-woven fabrics having different porosity with heat or integrating them with an adhesive is adopted. Thus, the separator 2 can be easily manufactured. Although the embodiments of the wound electrode battery according to the present invention have been described above, the scope of the present invention is not limited thereto, and the present invention is basically applied to a laminated structure battery, a single-layer coin type battery or a sheet type battery. Since the basic cross-sectional structures are the same, the same effects can be obtained by applying them to them.
【図1】本発明の実施例1に係る金属リチウム2次電池
の巻取り電極の斜視図である。FIG. 1 is a perspective view of a winding electrode of a metal lithium secondary battery according to Embodiment 1 of the present invention.
【図2】本発明の実施例1に係る金属リチウム2次電池
の巻取り電極の幅方向における断面図である。FIG. 2 is a cross-sectional view in the width direction of a winding electrode of the metal lithium secondary battery according to Embodiment 1 of the present invention.
【図3】本発明の実施例2に係る金属リチウム2次電池
の巻取り電極の斜視図である。FIG. 3 is a perspective view of a winding electrode of the metal lithium secondary battery according to Embodiment 2 of the present invention.
【図4】本発明の実施例2に係る金属リチウム2次電池
の巻取り電極の幅方向における断面図である。FIG. 4 is a cross-sectional view in the width direction of a winding electrode of the lithium metal secondary battery according to Embodiment 2 of the present invention.
【図5】本発明に係るスペーサの製作方法の一実施例を
示す説明図である。FIG. 5 is an explanatory view showing one embodiment of a method of manufacturing a spacer according to the present invention.
【図6】本発明の実施例3に係る金属リチウム2次電池
の巻取り電極の斜視図である。FIG. 6 is a perspective view of a wound electrode of a lithium metal secondary battery according to Embodiment 3 of the present invention.
【図7】本発明の実施例3に係る金属リチウム2次電池
の巻取り電極の幅方向における断面図である。FIG. 7 is a cross-sectional view in the width direction of a winding electrode of a lithium metal secondary battery according to Embodiment 3 of the present invention.
【図8】本発明の実施例4に係る金属リチウム2次電池
の巻取り電極の幅方向における断面図である。FIG. 8 is a cross-sectional view in the width direction of a winding electrode of a metal lithium secondary battery according to Example 4 of the present invention.
【図9】試験における巻取り型金属リチウム2次電池の
容量のサイクル特性測定結果を示すグラフであり、
(a)は従来電極電池(空隙なし)、(b)はセパレー
タ/負極間スペーサ挿入電池、(c)はセパレータ/正
極間スペーサ挿入電池、(d)はセパレータ/負極間不
織布挿入電池の実測結果を示す。FIG. 9 is a graph showing the results of measuring the cycle characteristics of the capacity of the rechargeable metal lithium secondary battery in the test;
(A) is a conventional electrode battery (no void), (b) is a battery with a separator / negative electrode spacer inserted, (c) is a battery with a separator / positive electrode spacer inserted, and (d) is a measured result of a battery with a separator / negative electrode nonwoven fabric inserted. Is shown.
【図10】試験における巻取り型金属リチウム2次電池
の充放電効率のサイクル特性測定結果を示すグラフであ
り、(a)、(b)、(c)、(d)は図9と同じであ
る。10 is a graph showing measurement results of cycle characteristics of charge and discharge efficiency of a roll-up type metal lithium secondary battery in a test, wherein (a), (b), (c), and (d) are the same as FIG. is there.
【図11】本発明の実施例5に係る金属リチウム2次電
池の巻取り電極の斜視図である。FIG. 11 is a perspective view of a wound electrode of a lithium metal secondary battery according to Embodiment 5 of the present invention.
【図12】本発明の実施例5に係る金属リチウム2次電
池の巻取り電極の幅方向における断面図である。FIG. 12 is a cross-sectional view in the width direction of a wound electrode of a lithium metal secondary battery according to Example 5 of the present invention.
【図13】本発明の実施例5に係るセパレータの幅方向
における断面の拡大図および空孔率の分布図である。FIG. 13 is an enlarged view of a cross section in a width direction of a separator according to Embodiment 5 of the present invention and a distribution diagram of porosity.
【図14】本発明の実施例6に係るセパレータの幅方向
における断面の拡大図および空孔率の分布図である。FIG. 14 is an enlarged view of a cross section in a width direction of a separator according to Example 6 of the present invention and a distribution diagram of porosity.
1…正極 2…セパレータ 2a…基部層 2b
…多孔質層 3…負極 4…スペーサ(絶縁構造部材) 4a…
緩衝空隙 5…正極リード 6…負極リード 7…金属リチウ
ム 8…絶縁構造部材DESCRIPTION OF SYMBOLS 1 ... Positive electrode 2 ... Separator 2a ... Base layer 2b
... porous layer 3 ... negative electrode 4 ... spacer (insulating structural member) 4a ...
Buffer void 5 ... Positive electrode lead 6 ... Negative electrode lead 7 ... Metal lithium 8 ... Insulation structural member
Claims (9)
質とする負極と、充放電可能な物質からなる正極とがセ
パレータを介して対向配置された金属リチウム2次電池
において、 前記負極または前記正極と前記セパレータとの間に前記
負極表面上に析出したリチウムを収納するための緩衝空
隙を有することを特徴とする金属リチウム2次電池。1. A metal lithium secondary battery in which a negative electrode using lithium or a lithium alloy as a negative electrode active material and a positive electrode made of a chargeable / dischargeable substance are arranged to face each other with a separator interposed therebetween, wherein: A rechargeable lithium metal battery having a buffer space for accommodating lithium deposited on the surface of the negative electrode between the separator and a separator.
タとの間に前記緩衝空隙を形成して保持するための絶縁
構造部材が配置されている請求項1記載の金属リチウム
2次電池。2. The rechargeable lithium metal battery according to claim 1, wherein an insulating structural member for forming and holding the buffer gap is provided between the negative electrode or the positive electrode and the separator.
連通した孔や空隙を有するものである請求項2記載の金
属リチウム2次電池。3. The rechargeable lithium metal battery according to claim 2, wherein the insulating structural member has many communicating holes and voids therein.
記正極側の少なくともいずれか一方に前記緩衝空隙を形
成して保持するための凹凸構造を少なくとも部分的に有
する請求項1記載の金属リチウム2次電池。4. The metallic lithium secondary battery according to claim 1, wherein said separator has at least partially an uneven structure for forming and holding said buffer space on at least one of said negative electrode side and said positive electrode side. battery.
は前記負極よりも広い幅を有し、前記負極の両外側かつ
前記セパレータの両端の間に前記負極よりも厚い絶縁構
造部材を挿入した構造を有する請求項1記載の金属リチ
ウム2次電池。5. A structure in which two separators sandwiching the negative electrode have a wider width than the negative electrode, and an insulating structural member thicker than the negative electrode is inserted between both outer sides of the negative electrode and both ends of the separator. The metal lithium secondary battery according to claim 1, comprising:
質とする負極と、充放電可能な物質からなる正極とがセ
パレータを介して対向配置された金属リチウム2次電池
において、 前記セパレータは、前記負極と対向する面に前記負極表
面上に析出したリチウムを収納するための空孔率の高い
多孔質層を具備していることを特徴とする金属リチウム
2次電池。6. A metal lithium secondary battery in which a negative electrode using lithium or a lithium alloy as a negative electrode active material and a positive electrode made of a chargeable / dischargeable material are arranged to face each other with a separator interposed therebetween. A metal lithium secondary battery, comprising a porous layer having a high porosity for storing lithium deposited on the surface of the negative electrode on a surface facing the negative electrode.
極側に向かって空孔率が徐々に大きくなるように形成さ
れている請求項6記載の金属リチウム2次電池。7. The rechargeable lithium metal battery according to claim 6, wherein the porous layer is formed such that the porosity gradually increases from the positive electrode side to the negative electrode side.
極は積層されて巻取られたスパイラル構造である請求項
1〜請求項7記載の金属リチウム2次電池。8. The rechargeable lithium metal battery according to claim 1, wherein the negative electrode, the separator, and the positive electrode have a spiral structure in which the negative electrode, the separator, and the positive electrode are stacked and wound.
極は単数または複数積層した構造である請求項1〜請求
項7記載の金属リチウム2次電池。9. The metal lithium secondary battery according to claim 1, wherein the negative electrode, the separator, and the positive electrode have a structure in which one or more layers are stacked.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8138851A JPH1012279A (en) | 1996-04-26 | 1996-05-31 | Metal lithium secondary battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10723196 | 1996-04-26 | ||
JP8-107231 | 1996-04-26 | ||
JP8138851A JPH1012279A (en) | 1996-04-26 | 1996-05-31 | Metal lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1012279A true JPH1012279A (en) | 1998-01-16 |
Family
ID=26447268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8138851A Pending JPH1012279A (en) | 1996-04-26 | 1996-05-31 | Metal lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1012279A (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005098996A1 (en) * | 2004-03-30 | 2005-10-20 | Matsushita Electric Industrial Co., Ltd. | Lithium ion secondary battery and charge/discharge controlling system thereof |
JP2007220454A (en) * | 2006-02-16 | 2007-08-30 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2007242262A (en) * | 2006-03-06 | 2007-09-20 | Matsushita Electric Ind Co Ltd | Lithium secondary battery |
JP2008016210A (en) * | 2006-07-03 | 2008-01-24 | Sony Corp | Secondary battery and its manufacturing method |
JP2008270160A (en) * | 2007-03-28 | 2008-11-06 | Sanyo Electric Co Ltd | Non-aqueous electrolyte battery |
JP2009021055A (en) * | 2007-07-10 | 2009-01-29 | Mitsui Mining & Smelting Co Ltd | Manufacturing method of nonaqueous electrolyte secondary battery |
JP2009081105A (en) * | 2007-09-27 | 2009-04-16 | Sanyo Electric Co Ltd | Lithium secondary battery and its manufacturing method |
JP2009211949A (en) * | 2008-03-04 | 2009-09-17 | Nissan Motor Co Ltd | Nonaqueous electrolyte secondary battery |
DE112007002732T5 (en) | 2006-11-15 | 2009-09-24 | Toyota Jidosha Kabushiki Kaisha, Toyota-shi | Process for producing a lithium battery and lithium battery |
JP2013054966A (en) * | 2011-09-05 | 2013-03-21 | Nissan Motor Co Ltd | Separator with heat resistant insulation layer |
JP2013054972A (en) * | 2011-09-05 | 2013-03-21 | Sony Corp | Separator, nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system |
KR101315672B1 (en) * | 2012-07-06 | 2013-10-08 | (주)오렌지파워 | Electrode assembly, battery having the same and method of fabricating battery |
WO2016049213A1 (en) * | 2014-09-23 | 2016-03-31 | Applied Materials, Inc. | Electrochemical cell with protected negative electrode |
JP2016066629A (en) * | 2016-01-27 | 2016-04-28 | ソニー株式会社 | Separator, nonaqueous electrolyte battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system |
JP2016149202A (en) * | 2015-02-10 | 2016-08-18 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
WO2016152037A1 (en) * | 2015-03-24 | 2016-09-29 | 株式会社デンソー | Secondary battery |
KR20170127723A (en) * | 2016-05-12 | 2017-11-22 | 삼성에스디아이 주식회사 | Lithium metal battery |
WO2018123089A1 (en) * | 2016-12-28 | 2018-07-05 | マクセルホールディングス株式会社 | Wound battery |
WO2018123088A1 (en) * | 2016-12-28 | 2018-07-05 | マクセルホールディングス株式会社 | Wound-type battery |
JP2018195572A (en) * | 2017-05-18 | 2018-12-06 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
CN110247103A (en) * | 2018-03-09 | 2019-09-17 | 松下知识产权经营株式会社 | Lithium secondary battery |
JP2019160776A (en) * | 2018-03-09 | 2019-09-19 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
JP2019160618A (en) * | 2018-03-14 | 2019-09-19 | セイコーインスツル株式会社 | Nonaqueous electrolyte secondary battery |
JP2019212602A (en) * | 2018-05-31 | 2019-12-12 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
JP2019212601A (en) * | 2018-05-31 | 2019-12-12 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
WO2020066254A1 (en) | 2018-09-28 | 2020-04-02 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
JPWO2020054648A1 (en) * | 2018-09-14 | 2021-08-30 | マクセルホールディングス株式会社 | Non-aqueous electrolyte secondary battery, its manufacturing method and non-aqueous electrolyte secondary battery system |
WO2022045127A1 (en) * | 2020-08-31 | 2022-03-03 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
JP2022105193A (en) * | 2014-03-24 | 2022-07-12 | 株式会社半導体エネルギー研究所 | Lithium ion secondary battery |
WO2023153447A1 (en) * | 2022-02-09 | 2023-08-17 | パナソニックIpマネジメント株式会社 | Secondary battery and method for producing secondary battery |
WO2023190872A1 (en) * | 2022-03-31 | 2023-10-05 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
WO2024181086A1 (en) * | 2023-02-28 | 2024-09-06 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
WO2024181085A1 (en) * | 2023-02-28 | 2024-09-06 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
US12095040B2 (en) | 2017-11-15 | 2024-09-17 | Enovix Corporation | Constrained electrode assembly |
-
1996
- 1996-05-31 JP JP8138851A patent/JPH1012279A/en active Pending
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005098996A1 (en) * | 2004-03-30 | 2005-10-20 | Matsushita Electric Industrial Co., Ltd. | Lithium ion secondary battery and charge/discharge controlling system thereof |
JPWO2005098996A1 (en) * | 2004-03-30 | 2007-08-16 | 松下電器産業株式会社 | Lithium ion secondary battery and its charge / discharge control system |
US7682751B2 (en) | 2004-03-30 | 2010-03-23 | Panasonic Corporation | Lithium ion secondary battery and charging method therefor, and charge or charge/discharge control system for lithium ion secondary battery |
JP4667373B2 (en) * | 2004-03-30 | 2011-04-13 | パナソニック株式会社 | Lithium ion secondary battery and its charge / discharge control system |
US8227115B2 (en) | 2004-03-30 | 2012-07-24 | Panasonic Corporation | Lithium ion secondary battery and charging method therefor, and charge or charge/discharge control system for lithium ion secondary battery |
JP2007220454A (en) * | 2006-02-16 | 2007-08-30 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2007242262A (en) * | 2006-03-06 | 2007-09-20 | Matsushita Electric Ind Co Ltd | Lithium secondary battery |
JP2008016210A (en) * | 2006-07-03 | 2008-01-24 | Sony Corp | Secondary battery and its manufacturing method |
DE112007002732T5 (en) | 2006-11-15 | 2009-09-24 | Toyota Jidosha Kabushiki Kaisha, Toyota-shi | Process for producing a lithium battery and lithium battery |
US8404386B2 (en) | 2006-11-15 | 2013-03-26 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing lithium secondary battery and lithium secondary battery |
JP2008270160A (en) * | 2007-03-28 | 2008-11-06 | Sanyo Electric Co Ltd | Non-aqueous electrolyte battery |
JP2009021055A (en) * | 2007-07-10 | 2009-01-29 | Mitsui Mining & Smelting Co Ltd | Manufacturing method of nonaqueous electrolyte secondary battery |
JP2009081105A (en) * | 2007-09-27 | 2009-04-16 | Sanyo Electric Co Ltd | Lithium secondary battery and its manufacturing method |
JP2009211949A (en) * | 2008-03-04 | 2009-09-17 | Nissan Motor Co Ltd | Nonaqueous electrolyte secondary battery |
JP2013054966A (en) * | 2011-09-05 | 2013-03-21 | Nissan Motor Co Ltd | Separator with heat resistant insulation layer |
JP2013054972A (en) * | 2011-09-05 | 2013-03-21 | Sony Corp | Separator, nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system |
KR101315672B1 (en) * | 2012-07-06 | 2013-10-08 | (주)오렌지파워 | Electrode assembly, battery having the same and method of fabricating battery |
JP2022105193A (en) * | 2014-03-24 | 2022-07-12 | 株式会社半導体エネルギー研究所 | Lithium ion secondary battery |
WO2016049213A1 (en) * | 2014-09-23 | 2016-03-31 | Applied Materials, Inc. | Electrochemical cell with protected negative electrode |
US10511013B2 (en) | 2014-09-23 | 2019-12-17 | Applied Materials, Inc. | Electrochemical cell with protected negative electrode |
JP2016149202A (en) * | 2015-02-10 | 2016-08-18 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
JP2016181418A (en) * | 2015-03-24 | 2016-10-13 | 株式会社デンソー | Secondary battery |
WO2016152037A1 (en) * | 2015-03-24 | 2016-09-29 | 株式会社デンソー | Secondary battery |
JP2016066629A (en) * | 2016-01-27 | 2016-04-28 | ソニー株式会社 | Separator, nonaqueous electrolyte battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system |
KR20170127723A (en) * | 2016-05-12 | 2017-11-22 | 삼성에스디아이 주식회사 | Lithium metal battery |
WO2018123089A1 (en) * | 2016-12-28 | 2018-07-05 | マクセルホールディングス株式会社 | Wound battery |
WO2018123088A1 (en) * | 2016-12-28 | 2018-07-05 | マクセルホールディングス株式会社 | Wound-type battery |
CN108963321A (en) * | 2017-05-18 | 2018-12-07 | 松下知识产权经营株式会社 | Lithium secondary battery |
JP2018195572A (en) * | 2017-05-18 | 2018-12-06 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
CN108963321B (en) * | 2017-05-18 | 2023-03-31 | 松下知识产权经营株式会社 | Lithium secondary battery |
US12095040B2 (en) | 2017-11-15 | 2024-09-17 | Enovix Corporation | Constrained electrode assembly |
CN110247103A (en) * | 2018-03-09 | 2019-09-17 | 松下知识产权经营株式会社 | Lithium secondary battery |
JP2019160777A (en) * | 2018-03-09 | 2019-09-19 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
JP2019160776A (en) * | 2018-03-09 | 2019-09-19 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
CN110247103B (en) * | 2018-03-09 | 2024-06-07 | 松下知识产权经营株式会社 | Lithium secondary battery |
CN110277591A (en) * | 2018-03-14 | 2019-09-24 | 精工电子有限公司 | Non-aqueous electrolyte secondary battery |
CN110277591B (en) * | 2018-03-14 | 2024-05-14 | 精工电子有限公司 | Nonaqueous electrolyte secondary battery |
KR20190108478A (en) * | 2018-03-14 | 2019-09-24 | 세이코 인스트루 가부시키가이샤 | Nonaqueous electrolyte secondary battery |
TWI778151B (en) * | 2018-03-14 | 2022-09-21 | 日商精工電子有限公司 | Nonaqueous electrolyte secondary battery |
JP2019160618A (en) * | 2018-03-14 | 2019-09-19 | セイコーインスツル株式会社 | Nonaqueous electrolyte secondary battery |
JP2019212601A (en) * | 2018-05-31 | 2019-12-12 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
JP2019212602A (en) * | 2018-05-31 | 2019-12-12 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
JPWO2020054648A1 (en) * | 2018-09-14 | 2021-08-30 | マクセルホールディングス株式会社 | Non-aqueous electrolyte secondary battery, its manufacturing method and non-aqueous electrolyte secondary battery system |
EP3859856A4 (en) * | 2018-09-28 | 2021-11-10 | Panasonic Intellectual Property Management Co., Ltd. | Lithium secondary battery |
CN112673504B (en) * | 2018-09-28 | 2024-03-01 | 松下知识产权经营株式会社 | Lithium secondary battery |
JPWO2020066254A1 (en) * | 2018-09-28 | 2021-08-30 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
CN112673504A (en) * | 2018-09-28 | 2021-04-16 | 松下知识产权经营株式会社 | Lithium secondary battery |
WO2020066254A1 (en) | 2018-09-28 | 2020-04-02 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
WO2022045127A1 (en) * | 2020-08-31 | 2022-03-03 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
EP4207413A4 (en) * | 2020-08-31 | 2024-10-02 | Panasonic Ip Man Co Ltd | Lithium secondary battery |
WO2023153447A1 (en) * | 2022-02-09 | 2023-08-17 | パナソニックIpマネジメント株式会社 | Secondary battery and method for producing secondary battery |
WO2023190872A1 (en) * | 2022-03-31 | 2023-10-05 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
WO2024181086A1 (en) * | 2023-02-28 | 2024-09-06 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
WO2024181085A1 (en) * | 2023-02-28 | 2024-09-06 | パナソニックIpマネジメント株式会社 | Lithium secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1012279A (en) | Metal lithium secondary battery | |
KR100309604B1 (en) | Lithium secondary battery | |
KR100686804B1 (en) | Electrod Assemblay with Supercapacitor and Li Secondary Battery comprising the same | |
US7585589B2 (en) | Pouch-type lithium secondary battery | |
US8263248B2 (en) | Cell structure for electrochemical devices and method of making same | |
KR101407772B1 (en) | Electorde assembly and secondary battery using the same | |
CN113039681A (en) | Battery with electrode without pole ear | |
US20040048152A1 (en) | Non-aqueous secondary battery and its control method | |
US20030013007A1 (en) | Cell structure for electrochemical devices and method of making same | |
KR20070114412A (en) | Electrode assembly with excellent structural stability and wetting properties to electrolyte and secondary battery having the same | |
US20240055741A1 (en) | Electrode assembly and secondary battery comprising the same | |
CN103109408A (en) | Stacked secondary battery | |
KR100882489B1 (en) | Stack and Folding-typed Electrode Assembly Capable of Preventing Internal Short to be Caused by Thermal Shrinkage and Electrochemical Cell Containing the Same | |
KR102405345B1 (en) | Unit cell and manufacturing method thereof | |
JPH10241725A (en) | Alkali secondary battery | |
US11322799B2 (en) | Electrode including single-sided electrode with inorganic coating layer attached to slurry on collector and electrode assembly including the same | |
KR101010368B1 (en) | Process for Preparation of Jelly-roll Type Electrode Assembly | |
JPH0574496A (en) | Secondary battery | |
CN110534799B (en) | Battery and battery cover plate assembly | |
KR20180036858A (en) | Electrode Assembly and Secondary Battery Using the Same, and Method for Manufacturing the Electrode | |
JPH10284138A (en) | Electric charge storing part compounded battery | |
KR100635760B1 (en) | Jelly-roll type electrode assembly and Secondary battery with the same | |
KR20240056427A (en) | Elctrode assembly and electrochemical device comprising the same | |
JP3534723B2 (en) | Sodium sulfur secondary battery | |
JP2009009871A (en) | Battery and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040302 |