JPWO2015056412A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JPWO2015056412A1
JPWO2015056412A1 JP2015542513A JP2015542513A JPWO2015056412A1 JP WO2015056412 A1 JPWO2015056412 A1 JP WO2015056412A1 JP 2015542513 A JP2015542513 A JP 2015542513A JP 2015542513 A JP2015542513 A JP 2015542513A JP WO2015056412 A1 JPWO2015056412 A1 JP WO2015056412A1
Authority
JP
Japan
Prior art keywords
active material
battery
capacity
potential
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015542513A
Other languages
Japanese (ja)
Inventor
晶 小島
晶 小島
淳一 丹羽
淳一 丹羽
下 俊久
俊久 下
勇太 池内
勇太 池内
敏勝 小島
敏勝 小島
境 哲男
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toyota Industries Corp
Publication of JPWO2015056412A1 publication Critical patent/JPWO2015056412A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明のリチウムイオン二次電池の正極活物質は、第1活物質と、前記第1活物質の作動電位よりも低く且つ負極活物質の作動電位よりも高い作動電位をもつ第2活物質とを有する。第1活物質は、LiとNi,CoおよびMnのうち少なくとも一種の遷移金属元素とを含むリチウム遷移金属酸化物からなる。第2活物質は、リチウムと遷移金属元素とを含むポリアニオン系材料からなる。リチウムイオン二次電池は、第1活物質の作動電位で放電が停止されるように構成されている。The positive electrode active material of the lithium ion secondary battery of the present invention includes a first active material, a second active material having an operating potential lower than the operating potential of the first active material and higher than the operating potential of the negative electrode active material, Have The first active material is made of a lithium transition metal oxide containing Li and at least one transition metal element among Ni, Co, and Mn. The second active material is made of a polyanionic material containing lithium and a transition metal element. The lithium ion secondary battery is configured to stop discharging at the operating potential of the first active material.

Description

本発明は、リチウムイオン二次電池に関し、特に正極活物質に関する。   The present invention relates to a lithium ion secondary battery, and more particularly to a positive electrode active material.

リチウムイオン二次電池は、小型でエネルギー密度が高く、ポータブル電子機器の電源として広く用いられている。その正極活物質としては、主としてLiCoOなどの層状化合物が用いられてきた。しかしながら、これらの化合物は満充電状態において、150℃前後で酸素が脱離しやすく、これが非水電解液の酸化発熱反応を引き起こしやすいという欠点がある。Lithium ion secondary batteries are small and have high energy density, and are widely used as power sources for portable electronic devices. As the positive electrode active material, layered compounds such as LiCoO 2 have been mainly used. However, these compounds have a drawback that oxygen is easily desorbed at about 150 ° C. in a fully charged state, and this easily causes an oxidative exothermic reaction of the non-aqueous electrolyte.

また、負極活物質としてSi系などの高容量の材料が検討されている。しかし、これらの材料の不可逆容量が、黒鉛系負極材料のそれよりも大きい。このため、上記層状化合物を正極、Si系材料を負極とする電池では、層状化合物のリチウムが、負極の不可逆容量で消費されて、電池容量が低下してしまう。   Further, a high-capacity material such as Si-based material has been studied as a negative electrode active material. However, the irreversible capacity of these materials is larger than that of graphite-based negative electrode materials. For this reason, in the battery using the layered compound as the positive electrode and the Si-based material as the negative electrode, lithium of the layered compound is consumed by the irreversible capacity of the negative electrode, and the battery capacity is reduced.

近年、資源量、環境負荷の観点から、正極活物質としては、リン酸オリビン系化合物LiMPO(M=Fe、Mnなど)やリチウムシリケート系化合物LiMSiO(M=Fe、Mnなど)が提案されている。特許文献1、2では、これらの材料を上記層状化合物に混ぜることで、負極の不可逆容量の消費に用いることが考えられている。In recent years, from the viewpoint of the amount of resources and environmental load, as the positive electrode active material, olivine phosphate-based compounds LiMPO 4 (M = Fe, Mn and the like) and lithium silicate compounds Li 2 MSiO 4 (M = Fe, Mn and the like) are used. Proposed. In Patent Documents 1 and 2, it is considered that these materials are mixed with the layered compound to be used for irreversible capacity consumption of the negative electrode.

しかしながら、LiMPOやLiMSiOでは、材料自体の特性が大きく異なるため、電池としての利用方法を適切に行わないと、材料の特性を生かすことができない。However, in LiMPO 4 and Li 2 MSiO 4 , the characteristics of the material itself are greatly different. Therefore, unless the usage method as a battery is appropriately performed, the characteristics of the material cannot be utilized.

特開2011−238490号公報JP 2011-238490 A 特開2010−257592号公報JP 2010-257592 A

本発明はかかる事情に鑑みてなされたものであり、負極の不可逆容量を補充することができ、材料の特性を生かしたリチウムイオン二次電池を提供することを課題とする。   This invention is made | formed in view of this situation, and makes it a subject to provide the lithium ion secondary battery which can replenish the irreversible capacity | capacitance of a negative electrode and utilized the characteristic of material.

本発明のリチウムイオン二次電池は、正極活物質を有する正極と、負極活物質を有する負極と、電解液と、を有するリチウムイオン二次電池であって、
前記正極活物質は、第1活物質と、前記第1活物質の作動電位よりも低く且つ前記負極活物質の作動電位よりも高い作動電位をもつ第2活物質とを有し、
前記第1活物質は、LiとNi,CoおよびMnのうち少なくとも一種の遷移金属元素とを含むリチウム遷移金属酸化物からなり、
前記第2活物質は、リチウムと遷移金属元素とを含むポリアニオン系材料からなり、前記第1活物質の作動電位で放電が停止されるように構成されている。
The lithium ion secondary battery of the present invention is a lithium ion secondary battery having a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and an electrolyte solution,
The positive electrode active material includes a first active material, and a second active material having an operating potential lower than the operating potential of the first active material and higher than the operating potential of the negative electrode active material,
The first active material is composed of a lithium transition metal oxide containing Li and at least one transition metal element of Ni, Co, and Mn,
The second active material is made of a polyanionic material containing lithium and a transition metal element, and is configured to stop discharge at the operating potential of the first active material.

本発明によれば、正極活物質として、リチウム遷移金属酸化物からなる第1活物質と、第1活物質よりも作動電位が低いポリアニオン系材料からなる第2活物質とを用いており、第1の正極活物質の作動電位で放電を停止させるように構成されている。このため、負極の不可逆容量を第2活物質で補充でき、且つ第1活物質の特性を生かしたリチウムイオン二次電池を提供することができる。   According to the present invention, as the positive electrode active material, a first active material made of a lithium transition metal oxide and a second active material made of a polyanion material having a lower operating potential than the first active material are used. The discharge is stopped at the operating potential of one positive electrode active material. For this reason, the irreversible capacity | capacitance of a negative electrode can be replenished with a 2nd active material, and the lithium ion secondary battery which utilized the characteristic of the 1st active material can be provided.

本発明のリチウムイオン二次電池の負極の不可逆容量と正極の不可逆容量の考え方を示す説明図である。It is explanatory drawing which shows the idea of the irreversible capacity | capacitance of the negative electrode of the lithium ion secondary battery of this invention, and the irreversible capacity | capacitance of a positive electrode. 電池1の充放電曲線を示す図であって、横軸が容量を示し、縦軸は電位を示している図である。It is a figure which shows the charging / discharging curve of the battery 1, Comprising: A horizontal axis shows a capacity | capacitance and a vertical axis | shaft is a figure which shows the electric potential. 図3の上図は、電池2について3V−4.5Vの間で充放電を行った場合の充放電曲線であって、横軸が容量を示し、縦軸は電位を示す図であり、図3の下図は、電池2について2.5V−4.5Vの間で充放電を行った場合の充放電曲線であって、横軸が容量を示し、縦軸は電位を示す図である。The upper diagram in FIG. 3 is a charge / discharge curve when the battery 2 is charged / discharged between 3 V and 4.5 V, the horizontal axis indicates the capacity, and the vertical axis indicates the potential. 3 is a charge / discharge curve when the battery 2 is charged / discharged between 2.5 V and 4.5 V, and the horizontal axis indicates the capacity and the vertical axis indicates the potential. 電池3の充放電曲線を示す図であって、横軸が容量を示し、縦軸は電位を示している図である。It is a figure which shows the charging / discharging curve of the battery 3, Comprising: A horizontal axis shows a capacity | capacitance and a vertical axis | shaft is a figure which shows the electric potential. 電池1の充放電曲線を示す図であって、横軸が容量比を示し、縦軸は電位を示している図である。It is a figure which shows the charging / discharging curve of the battery 1, Comprising: A horizontal axis shows a capacity | capacitance ratio and a vertical axis | shaft is a figure which shows the electric potential. 電池4の充放電曲線を示す図であって、横軸が容量比を示し、縦軸は電位を示している図である。It is a figure which shows the charging / discharging curve of the battery 4, Comprising: A horizontal axis shows a capacity | capacitance ratio and a vertical axis | shaft is a figure which shows the electric potential. 電池5の充放電曲線を示す図であって、横軸が容量比を示し、縦軸は電位を示している図である。It is a figure which shows the charging / discharging curve of the battery 5, Comprising: A horizontal axis shows capacity | capacitance ratio and a vertical axis | shaft is a figure which shows the electric potential. 電池1,4,5について、負極の不可逆容量が正極活物質(LiNi1/3Co1/3Mn1/3)の充電容量に対して50%であったとした場合に予測される放電曲線を示す。For batteries 1, 4, and 5, the discharge predicted when the irreversible capacity of the negative electrode is 50% of the charge capacity of the positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) The curve is shown. 電池6〜8の放電曲線を示す図である。It is a figure which shows the discharge curve of the batteries 6-8. 電池9の充放電曲線を示す図である。3 is a diagram showing a charge / discharge curve of a battery 9. FIG.

本発明の実施形態に係るリチウムイオン二次電池の詳細について説明する。   The detail of the lithium ion secondary battery which concerns on embodiment of this invention is demonstrated.

図1に示すように、リチウムイオン二次電池の正極活物質は、第1活物質と第2活物質を有する。第1活物質は、可逆用の正極活物質であり、第2活物質は、負極の不可逆容量を補充するためのプレドープ用の正極活物質である。   As shown in FIG. 1, the positive electrode active material of the lithium ion secondary battery includes a first active material and a second active material. The first active material is a reversible positive electrode active material, and the second active material is a pre-doping positive electrode active material for replenishing the irreversible capacity of the negative electrode.

即ち、正極活物質は、第1活物質と、第2活物質とを有する。第2活物質の作動電位は、第1活物質の作動電位よりも低く且つ負極活物質の作動電位よりも高い。第1活物質、第2活物質、負極活物質をそれぞれ対極リチウムで二次電池を組んだときに、充放電を行って充放電曲線を作成すると、一般的には、放電時では、容量変化(ΔC)に対する電位変化(ΔV)の比率(ΔV/ΔC)が小さいプラトー部分を経た後に、当該比率(ΔV/ΔC)がプラトー部分よりも大きくなる傾向にある。   That is, the positive electrode active material has a first active material and a second active material. The operating potential of the second active material is lower than the operating potential of the first active material and higher than the operating potential of the negative electrode active material. When the first active material, the second active material, and the negative electrode active material are each assembled with a secondary battery using lithium as a counter electrode, charge / discharge is performed to create a charge / discharge curve. After passing through a plateau portion where the ratio (ΔV / ΔC) of the potential change (ΔV) to (ΔC) is small, the ratio (ΔV / ΔC) tends to be larger than the plateau portion.

ここで、「作動電位」とは、第1活物質、第2活物質、及び負極活物質のそれぞれを、対極リチウム金属とともに二次電池を組んだときに、二次電池を放電して形成された放電曲線のプラトー部分から、容量変化に対する電位変化の比率が大きい部分に切り替わるときの、Li/Liに対する電位をいう。Here, the “operating potential” is formed by discharging the secondary battery when each of the first active material, the second active material, and the negative electrode active material is assembled with the counter electrode lithium metal. The potential relative to Li / Li + when the plateau portion of the discharge curve is switched to a portion where the ratio of potential change to capacity change is large.

第2活物質の作動電位は、第1活物質の作動電位よりも低い。このため、充電時には、主として、作動電位が低い第2活物質のリチウムイオンが優先的に放出される。第2活物質から放出されたリチウムイオンは、負極活物質に吸蔵される。充電が進むと、次に、第1活物質が、リチウムイオンを放出する。このように、まず、第2活物質から放出されたリチウムイオンが、負極活物質に吸蔵されて、負極活物質の不可逆容量分を補充する。このため、その後に、第1活物質から放出されたリチウムイオンは、負極活物質の可逆容量分に吸蔵される。このため、第1活物質を、充放電の可逆分に用いることができる。   The operating potential of the second active material is lower than the operating potential of the first active material. For this reason, at the time of charge, mainly lithium ions of the second active material having a low operating potential are preferentially released. Lithium ions released from the second active material are occluded by the negative electrode active material. As charging progresses, the first active material then releases lithium ions. Thus, first, lithium ions released from the second active material are occluded in the negative electrode active material to replenish the irreversible capacity of the negative electrode active material. Therefore, after that, lithium ions released from the first active material are occluded in the reversible capacity of the negative electrode active material. For this reason, a 1st active material can be used for the reversible part of charging / discharging.

なお、負極活物質の可逆容量は、負極活物質の初期放電容量に相当し、負極活物質の不可逆容量は、負極活物質の初期充電容量から負極活物質の初期放電容量を差し引いた容量に相当する。   The reversible capacity of the negative electrode active material corresponds to the initial discharge capacity of the negative electrode active material, and the irreversible capacity of the negative electrode active material corresponds to the initial charge capacity of the negative electrode active material minus the initial discharge capacity of the negative electrode active material. To do.

本発明のリチウムイオン二次電池では、第1活物質の作動電位で放電が停止される。第2活物質の作動電位は、第1活物質の作動電位よりも低いため、リチウムイオン二次電池で第1活物質の作動電位で放電を停止すると、主として第1活物質の容量が発現され、第2活物質の容量はほとんど発現されない。第1活物質の特性を生かしたリチウムイオン二次電池を提供することができる。   In the lithium ion secondary battery of the present invention, the discharge is stopped at the operating potential of the first active material. Since the working potential of the second active material is lower than the working potential of the first active material, when the discharge is stopped at the working potential of the first active material in the lithium ion secondary battery, the capacity of the first active material is mainly expressed. The capacity of the second active material is hardly expressed. A lithium ion secondary battery that makes use of the characteristics of the first active material can be provided.

前記第1活物質の作動電位は、第1活物質の放電曲線において、前記第1活物質の容量変化(ΔC)に対する電位変化(ΔV)の比率(ΔV/ΔC)の絶対値が0.05V/mAhg−1以上となる電位であることが好ましい。このような作動電位をもつ第1活物質を、第2活物質とともにリチウムイオン二次電池の正極活物質として用いることにより、電池の放電電圧が、放電開始から第1活物質の放電特性に従って、プラトー部分を経て、作動電位で急激に大きくなる。このため、放電を終止させるべき電位を正確に検知でき、電池の制御をしやすくなる。The operating potential of the first active material is such that the absolute value of the ratio (ΔV / ΔC) of the potential change (ΔV) to the capacity change (ΔC) of the first active material in the discharge curve of the first active material is 0.05V. It is preferable that the potential be at least / mAhg −1 . By using the first active material having such an operating potential as the positive electrode active material of the lithium ion secondary battery together with the second active material, the discharge voltage of the battery is in accordance with the discharge characteristics of the first active material from the start of discharge. Through the plateau portion, it suddenly increases at the operating potential. For this reason, the electric potential which should stop discharge can be detected correctly, and it becomes easy to control a battery.

第1活物質は、LiとNi,CoおよびMnのうち少なくとも一種の遷移金属元素とを含むリチウム遷移金属酸化物からなる。リチウム遷移金属酸化物は、現在の正極活物質の中で最も実用化が近く、放電電圧が高く、抵抗が少ない。リチウム遷移金属酸化物の放電曲線における電位は、容量増加に伴って徐々に低下する。   The first active material is made of a lithium transition metal oxide containing Li and at least one transition metal element among Ni, Co, and Mn. Lithium transition metal oxide is most practically used among current positive electrode active materials, has a high discharge voltage, and has low resistance. The potential in the discharge curve of the lithium transition metal oxide gradually decreases as the capacity increases.

一方、第2活物質は、リチウムと遷移金属を含むポリアニオン系材料からなる。ポリアニオン系材料の多くは、リチウム遷移金属酸化物の作動電位よりも低い作動電位をもつ。しかも、ポリアニオン系材料の多くは、これを正極活物質に含めて電池を構成して、充放電を行うと、ユニークな電池特性を発揮する。   On the other hand, the second active material is made of a polyanionic material containing lithium and a transition metal. Many polyanionic materials have an operating potential lower than that of the lithium transition metal oxide. Moreover, many of the polyanion materials exhibit unique battery characteristics when they are included in the positive electrode active material to form a battery and charge and discharge are performed.

具体的には、ポリアニオン系材料を正極に含むリチウムイオン二次電池を構成し、この電池についてポリアニオン系材料の作動電位を超えて過放電すると、終止電位を境界として、急激に電位が低下する。このため、本発明のリチウムイオン二次電池は、放電を停止するか否かの判断がしやすく、放電終止の判断がしやすい。誤って過放電をすることを防止できる。第1活物質を構成するリチウム遷移金属酸化物の電池制御の方法をそのまま利用することができる。   Specifically, when a lithium ion secondary battery including a polyanion-based material in the positive electrode is formed and the battery is overdischarged exceeding the operating potential of the polyanion-based material, the potential rapidly decreases with the end potential as a boundary. For this reason, in the lithium ion secondary battery of the present invention, it is easy to determine whether or not to stop the discharge, and it is easy to determine the end of the discharge. It can prevent accidental overdischarge. The battery control method of the lithium transition metal oxide constituting the first active material can be used as it is.

第2活物質を構成するポリアニオン系材料は、レアメタルを用いていないため、安価である。また、ポリアニオン系材料は、第1活物質を構成するリチウム遷移金属酸化物に比べて、軽量である。第1活物質のみで正極活物質を構成した場合に比べて、第1活物質及び第2活物質で正極活物質を構成した場合には、安価で軽量な電池を作製できる。   Since the polyanion material constituting the second active material does not use rare metal, it is inexpensive. The polyanion material is lighter than the lithium transition metal oxide constituting the first active material. Compared to the case where the positive electrode active material is composed of only the first active material, when the positive electrode active material is composed of the first active material and the second active material, an inexpensive and lightweight battery can be manufactured.

第1活物質を構成するリチウム遷移金属酸化物の作動電位は、例えば、3V以上であることが多い。また、第2活物質を構成するポリアニオン系材料の作動電位は、3V未満であることが多い。そこで、これらを正極にもつ電池に放電を行ったときには、放電を3V以上3.7V以下の間で停止することがよい。更には、放電は3.2V以上3.5V以下であることが好ましい。この場合には、第2活物質の容量が発現される前に電池の放電が終了する。ゆえに、第1活物質の電池特性を反映した電池を提供することができる。   The operating potential of the lithium transition metal oxide constituting the first active material is often 3 V or more, for example. In addition, the operating potential of the polyanionic material constituting the second active material is often less than 3V. Therefore, when discharge is performed on a battery having these as positive electrodes, the discharge is preferably stopped between 3 V and 3.7 V. Further, the discharge is preferably 3.2 V or more and 3.5 V or less. In this case, the discharge of the battery ends before the capacity of the second active material is developed. Therefore, a battery reflecting the battery characteristics of the first active material can be provided.

リチウムイオン二次電池の放電を、第1活物質の作動電位で停止させる構成は、例えば、電圧検知手段と、遮断器とを備える。電圧検知手段により、正極の電圧変化と容量変化とを検知し、その比率(ΔV/ΔC)が絶対値で所定値以上になったときに遮断器で放電を停止させる。   The configuration for stopping the discharge of the lithium ion secondary battery at the operating potential of the first active material includes, for example, a voltage detection means and a circuit breaker. The voltage detection means detects the voltage change and the capacity change of the positive electrode, and when the ratio (ΔV / ΔC) becomes a predetermined value or more in absolute value, the circuit breaker stops the discharge.

第1活物質の作動電位で放電を停止したときに、第1活物質は、負極活物質の可逆容量分又はそれ以上の初期充電容量をもつことが好ましい。負極活物質の可逆容量分を、第1活物質から放出されたリチウムイオンで補充するためである。このため、第1活物質は、負極活物質の可逆容量に相当する量又はそれ以上の量のリチウムをもつように、正極活物質に含まれるとよい。   When the discharge is stopped at the operating potential of the first active material, the first active material preferably has an initial charge capacity equal to or greater than the reversible capacity of the negative electrode active material. This is because the reversible capacity of the negative electrode active material is supplemented with lithium ions released from the first active material. For this reason, the first active material may be contained in the positive electrode active material so as to have an amount of lithium corresponding to or greater than the reversible capacity of the negative electrode active material.

第1活物質の作動電位で放電を停止したときに、第2活物質は、負極活物質の不可逆容量分又はそれ以上の初期充電容量をもつことが好ましい。負極活物質の不可逆容量分を、第2活物質から放出されたリチウムイオンで補填するためである。このため、第2活物質は、負極活物質の不可逆容量に相当する量又はそれ以上の量のリチウムをもつように、正極活物質に含まれるとよい。   When the discharge is stopped at the operating potential of the first active material, the second active material preferably has an initial charge capacity equal to or greater than the irreversible capacity of the negative electrode active material. This is because the irreversible capacity of the negative electrode active material is compensated with lithium ions released from the second active material. For this reason, the second active material may be included in the positive electrode active material so as to have an amount of lithium corresponding to or greater than the irreversible capacity of the negative electrode active material.

前記第1活物質の作動電位で放電を停止した場合、前記第2活物質の初期充電容量をAとし、前記負極の不可逆容量をBとしたとき、0.9<A/B<1.1の関係をもつことが好ましい。この場合には、負極の不可逆容量にほぼ相当する容量の第2活物質を第1活物質に添加することになり、第1活物質の可逆容量のほとんどを、負極の可逆容量に有効に利用することができる。   When the discharge is stopped at the operating potential of the first active material, 0.9 <A / B <1.1, where A is the initial charge capacity of the second active material and B is the irreversible capacity of the negative electrode. It is preferable to have the following relationship. In this case, the second active material having a capacity substantially corresponding to the irreversible capacity of the negative electrode is added to the first active material, and most of the reversible capacity of the first active material is effectively utilized for the reversible capacity of the negative electrode. can do.

更に、第1活物質の作動電位で放電を停止したときに、第1活物質の初期充電容量と第2活物質の初期充電容量の合計値は、負極活物質の初期充電容量と同程度とすることがよい。   Furthermore, when the discharge is stopped at the operating potential of the first active material, the total value of the initial charge capacity of the first active material and the initial charge capacity of the second active material is about the same as the initial charge capacity of the negative electrode active material. It is good to do.

第1活物質は、LiとNi,CoおよびMnのうち少なくとも一種の遷移金属元素とを含むリチウム遷移金属酸化物からなる。リチウム遷移金属酸化物は、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などのリチウムと遷移金属との金属複合酸化物を用いる。リチウム遷移金属酸化物は、式:LiNi1-x-yCoxMny(0≦x≦1、0≦y≦1、0≦1-x-y )、又は式:LiNi2-x-yCoxMny(0≦x≦2、0≦y≦2、0≦2-x-y )で表されることが好ましい。第1活物質の具体例として、LiCoO、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiMn、LiNi0.5Mn1.5、LiNi1−xCo(0≦x≦1)などが挙げられる。The first active material is made of a lithium transition metal oxide containing Li and at least one transition metal element among Ni, Co, and Mn. As the lithium transition metal oxide, for example, a metal composite oxide of lithium and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide is used. Lithium transition metal oxide of the formula: LiNi 1-xy Co x Mn y O 2 (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ 1-xy), or Formula: LiNi 2-xy Co x Mn y O 4 (0 ≦ x ≦ 2, 0 ≦ y ≦ 2, 0 ≦ 2-xy) is preferable. Specific examples of the first active material include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiMn 2 O 4 , LiNi 0. 5 Mn 1.5 O 4 , LiNi 1-x Co x O 2 (0 ≦ x ≦ 1) and the like.

第2活物質は、リチウム(Li)を含むポリアニオン系材料からなる。ポリアニオン系材料は、LiMPO(ここで、Mは、Ni、Co、Mn及びFeからなる群から選択される1種以上)、LiMSiO(ここで、Mは、Ni、Co、Mn及びFeからなる群から選択される1種以上)、LiMBO(ここで、Mは、Ni、Co、Mn及びFeからなる群から選択される1種以上)、及びLiFePからなる群から選択される少なくとも一種以上からなることが好ましい。この中、LiMSiOがよく、更には、LiFeSiOがよい。LiFeSiOを第2活物質として電池を作製した場合には、放電時に容量の増加にともない電圧が徐々に低下するため、終了電圧の判断がしやすい。The second active material is made of a polyanionic material containing lithium (Li). The polyanionic material is LiMPO 4 (where M is one or more selected from the group consisting of Ni, Co, Mn and Fe), Li 2 MSiO 4 (where M is Ni, Co, Mn and 1 or more selected from the group consisting of Fe), LiMBO 3 (where M is one or more selected from the group consisting of Ni, Co, Mn and Fe), and Li 2 FeP 2 O 7 It is preferable to consist of at least one selected from the group. The inside, Li 2 MSiO 4 C., and further, it is Li 2 FeSiO 4. When a battery is manufactured using Li 2 FeSiO 4 as the second active material, the voltage gradually decreases as the capacity increases during discharge, and therefore the end voltage can be easily determined.

第2活物質は、上記ポリアニオン系材料と導電性材料とを複合化してなることが好ましい。ポリアニオン系材料と導電性材料とが、100nm以下という極めて小さいナノレベルの微粒子状態で互いに混合され接合していることが好ましい。これにより、第2活物質同士の導電パスが増え、第2活物質内部まで反応に関与することができるため、第2活物質の利用率が増加する。充電時に、リチウムイオンを放出しやすくなる。導電性材料としては、例えば、ポリアニオン系材料よりも導電性が高い材料を用いる。導電性材料は、例えば、炭素材料を用いることが好ましい。炭素材料としては、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンブラック、カーボンナノチューブ、グラフェーン、カーボン繊維、黒鉛等を用いることができる。中でも、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンブラックが好ましい。   The second active material is preferably formed by combining the polyanionic material and a conductive material. It is preferable that the polyanion-based material and the conductive material are mixed and bonded to each other in a very small nano-level fine particle state of 100 nm or less. As a result, the conductive paths between the second active materials are increased, and the second active material can be involved in the reaction, so that the utilization rate of the second active material is increased. Lithium ions are easily released during charging. As the conductive material, for example, a material having higher conductivity than the polyanionic material is used. For example, a carbon material is preferably used as the conductive material. As the carbon material, acetylene black (AB), ketjen black (KB), carbon black, carbon nanotube, graphene, carbon fiber, graphite, or the like can be used. Among these, acetylene black (AB), ketjen black (KB), and carbon black are preferable.

第2活物質の中において、ポリアニオン系材料を100質量部としたときの導電性材料の質量比は、2質量部以上60質量部以下であることがよく、更には5質量部以上30質量部以下であることがよい。この場合には、ポリアニオン系材料と導電性材料とが均一に分散して、充電時にリチウムイオンを大きく引き出すことができる。   In the second active material, the mass ratio of the conductive material when the polyanionic material is 100 parts by mass is preferably 2 parts by mass or more and 60 parts by mass or less, and more preferably 5 parts by mass or more and 30 parts by mass. It may be the following. In this case, the polyanion material and the conductive material are uniformly dispersed, and lithium ions can be greatly extracted during charging.

第1活物質となり得る材料の作動電位と第2活物質となりうる材料の作動電位を表1に例示する。なお、第1活物質と第2活物質は、表1にあげるものに限らず、本発明の範囲において適用可能なすべての材料を用いることが可能である。   Table 1 illustrates the operating potential of a material that can be a first active material and the operating potential of a material that can be a second active material. The first active material and the second active material are not limited to those listed in Table 1, and any material that can be applied within the scope of the present invention can be used.

Figure 2015056412
Figure 2015056412

負極は、負極活物質を有する。負極活物質の作動電位は、正極活物質を構成している第1活物質及び第2活物質よりも低い。負極の作動電位は、多くの場合、0.5V(vs Li/Li)以下であることが多い。負極活物質が例えばSiOxからなる場合には、0.4V(vs Li/Li)、負極活物質が炭素からなる場合には、0.2V(vs Li/Li)である。The negative electrode has a negative electrode active material. The operating potential of the negative electrode active material is lower than that of the first active material and the second active material constituting the positive electrode active material. The operating potential of the negative electrode is often 0.5 V (vs Li / Li + ) or less in many cases. For example, when the negative electrode active material is made of SiOx, it is 0.4 V (vs Li / Li + ), and when the negative electrode active material is made of carbon, it is 0.2 V (vs Li / Li + ).

負極活物質は、リチウムと合金化し得る元素、リチウムと合金化可能な元素を有する元素化合物、及び炭素の中から選ばれる1種以上を含むことが好ましい。これらは、不可逆容量が比較的大きい。本発明のように、第2活物質から放出されたリチウムイオンでこれらの不可逆容量分を補充することで、第1活物質から放出されるリチウムイオンを負極活物質の可逆容量分に回せることができる。   The negative electrode active material preferably contains one or more elements selected from an element that can be alloyed with lithium, an elemental compound having an element that can be alloyed with lithium, and carbon. These have a relatively large irreversible capacity. As in the present invention, by replenishing these irreversible capacities with lithium ions released from the second active material, the lithium ions released from the first active material can be turned into the reversible capacity of the negative electrode active material. it can.

リチウムと合金化反応可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、及びBiの群から選ばれる少なくとも1種からなるとよい。中でも、珪素(Si)または錫(Sn)からなるとよい。   Elements capable of alloying with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, It is good to consist of at least 1 sort (s) chosen from the group of Sn, Pb, Sb, and Bi. Among these, silicon (Si) or tin (Sn) is preferable.

リチウムと合金化反応可能な元素を有する元素化合物は、珪素化合物または錫化合物であることがよい。珪素化合物は、SiOx(0.5≦x≦1.5)であることがよい。錫化合物は、例えば、スズ合金(Cu−Sn合金、Co−Sn合金等)、Sn 酸化物などが挙げられる。この中、これらの化合物のうち、SiOxについては、初期充電容量に対する不可逆容量の比率が、40〜50%であり、スズ合金については30〜40%であり、Sn酸化物(SnO)については40〜50%であり、いずれも、不可逆容量が大きい。   The elemental compound having an element capable of alloying with lithium is preferably a silicon compound or a tin compound. The silicon compound is preferably SiOx (0.5 ≦ x ≦ 1.5). Examples of the tin compound include tin alloys (Cu—Sn alloys, Co—Sn alloys, etc.), Sn oxides, and the like. Among these compounds, the ratio of irreversible capacity to the initial charge capacity is 40 to 50% for SiOx, 30 to 40% for tin alloy, and 40 for Sn oxide (SnO). -50%, both of which have a large irreversible capacity.

また、負極活物質としては、金属リチウム、黒鉛などの炭素系材料、チタン酸リチウムなどの酸化物材料を使用してもよい。   Further, as the negative electrode active material, a carbon-based material such as metallic lithium or graphite, or an oxide material such as lithium titanate may be used.

正極は、上記の正極活物質を有する。正極は、多くの場合、正極活物質が集電体表面を被覆してなる。正極は、上記の正極活物質の他は、通常のリチウムイオン二次電池用正極と同様の構造とすることができる。   A positive electrode has said positive electrode active material. In many cases, the positive electrode is formed by coating the surface of the current collector with a positive electrode active material. The positive electrode can have the same structure as a normal positive electrode for a lithium ion secondary battery other than the positive electrode active material.

例えば、上記の正極活物質に、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)等の導電助剤、ポリフッ化ビニリデン(PolyVinylidine DiFluoride:PVdF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)等のバインダー、N-メチル-2-ピロリドン(NMP)等の溶媒を加えてペースト状として、これを集電体に塗布することによって正極を作製することができる。導電助剤の使用量については、特に限定的ではないが、例えば、正極活物質100質量部に対して、5〜20質量部とすることができる。また、バインダーの使用量についても、特に限定的ではないが、例えば、正極活物質100質量部に対して、5〜20質量部とすることができる。また、その他の方法として、正極活物質と、上記の導電助剤およびバインダーを混合したものを、乳鉢やプレス機を用いて混練してフィルム状とし、これを集電体へプレス機で圧着する方法によっても正極を製造することができる。   For example, the positive electrode active material may include a conductive additive such as acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (VGCF), or polyvinylidene fluoride (PVdF). Add a binder such as polytetrafluoroethylene (PTFE) or styrene-butadiene rubber (SBR), or a solvent such as N-methyl-2-pyrrolidone (NMP) to apply as a paste to the current collector Can produce a positive electrode. The amount of the conductive auxiliary agent used is not particularly limited, but for example, it can be 5 to 20 parts by mass with respect to 100 parts by mass of the positive electrode active material. Further, the amount of the binder used is not particularly limited, but may be 5 to 20 parts by mass with respect to 100 parts by mass of the positive electrode active material, for example. Further, as another method, a mixture of the positive electrode active material, the above-described conductive additive and binder is kneaded using a mortar or a press to form a film, and this is crimped to the current collector with a press. The positive electrode can also be manufactured by the method.

負極は、上記の負極活物質を有する。負極は、負極活物質が集電体表面を被覆していることが多い。負極は、上記の正極活物質と同様に、必要に応じて導電助剤、バインダー、及び/又は溶媒とともに、集電体表面に塗布されることがよい。   A negative electrode has said negative electrode active material. In the negative electrode, the negative electrode active material often covers the current collector surface. The negative electrode is preferably applied to the surface of the current collector, together with the conductive auxiliary agent, the binder, and / or the solvent, as necessary, in the same manner as the above positive electrode active material.

正極、負極ともに、集電体としては、特に限定はなく、従来から使用されている材料、例えば、アルミ箔、アルミメッシュ、ステンレスメッシュなどを用いることができる。更に、カーボン不織布、カーボン織布なども集電体として使用できる。   For both the positive electrode and the negative electrode, the current collector is not particularly limited, and conventionally used materials such as aluminum foil, aluminum mesh, and stainless steel mesh can be used. Furthermore, a carbon nonwoven fabric, a carbon woven fabric, etc. can be used as a collector.

正極及び負極は、その形状、厚さなどについては特に限定的ではないが、例えば、正極活物質、負極活物質を充填した後、圧縮することによって、厚さを10〜200μm、より好ましくは20〜100μmとすることが好ましい。   The shape and thickness of the positive electrode and the negative electrode are not particularly limited. For example, the positive electrode and the negative electrode are filled with a positive electrode active material and a negative electrode active material, and then compressed to have a thickness of 10 to 200 μm, more preferably 20 It is preferable to be set to ~ 100 μm.

電解液として、公知のエチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの非水系溶媒に過塩素酸リチウム、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/Lから1.7mol/Lの濃度で溶解させた溶液を使用し、さらにその他の公知の電池構成要素を使用するとよい。As an electrolytic solution, a lithium salt such as lithium perchlorate, LiPF 6 , LiBF 4 , LiCF 3 SO 3 or the like is added to a known non-aqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate to 0.5 mol / L to 1 A solution dissolved at a concentration of 7 mol / L may be used, and other known battery components may be used.

リチウムイオン二次電池は、車両に搭載することができる。車両は、電気車両又はハイブリッド車両などであるとよい。リチウムイオン二次電池は、例えば、車両に搭載された走行用モータに連結されていて、駆動源として用いられているとよい。リチウムイオン二次電池は、パーソナルコンピュータ、携帯通信機器などの電子機器にも搭載することができる。   The lithium ion secondary battery can be mounted on a vehicle. The vehicle may be an electric vehicle or a hybrid vehicle. The lithium ion secondary battery may be connected to, for example, a traveling motor mounted on a vehicle and used as a drive source. Lithium ion secondary batteries can also be installed in electronic devices such as personal computers and portable communication devices.

(電池1)
電池1は、LiNi1/3Co1/3Mn1/3(第1活物質)からなる正極活物質を用いた二次電池である。
(Battery 1)
The battery 1 is a secondary battery using a positive electrode active material made of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (first active material).

第1活物質として、LiNi1/3Co1/3Mn1/3(NCM、宝泉製)を準備した。第1活物質と導電助剤とバインダーとを混合して、スラリーを作製した。導電助剤は、アセチレンブラック(AB)であり、バインダーは、ポリフッ化ビニリデン(PVDF)である。これらの混合質量比は、正極活物質:AB:PVDF=90:2:8(質量%)である。スラリーをアルミ集電体上に塗工し、150℃で一晩真空乾燥した。以上により、正極を得た。As the first active material, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM, manufactured by Hosen) was prepared. A first active material, a conductive additive and a binder were mixed to prepare a slurry. The conductive auxiliary agent is acetylene black (AB), and the binder is polyvinylidene fluoride (PVDF). These mixing mass ratios are positive electrode active material: AB: PVDF = 90: 2: 8 (mass%). The slurry was coated on an aluminum current collector and vacuum dried at 150 ° C. overnight. Thus, a positive electrode was obtained.

負極として金属Liを用いた。電解液は、非水系溶媒に電解質を溶解させて調製した。非水系溶媒は、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)とを、EC:DEC=1:1の体積比で混合してなる。電解質はLiPFからなる。電解液の中のLiPFの濃度は1mol/リットルとした。上記の正極と負極と電解液とを用いてコインセルを作製した。電極、電池の作製は、アルゴン雰囲気下のグローブボックスの中で行った。Metal Li was used as the negative electrode. The electrolytic solution was prepared by dissolving the electrolyte in a non-aqueous solvent. The non-aqueous solvent is obtained by mixing EC (ethylene carbonate) and DEC (diethyl carbonate) at a volume ratio of EC: DEC = 1: 1. The electrolyte consisting of LiPF 6. The concentration of LiPF 6 in the electrolytic solution was 1 mol / liter. A coin cell was manufactured using the positive electrode, the negative electrode, and the electrolytic solution. The electrodes and batteries were produced in a glove box under an argon atmosphere.

作製した電池について充放電試験を行った。充電条件は、4.5V、定電流−定電圧充電方式(CCCV充電方式)、10時間とした。放電条件は、3V、定電流方式(CC放電方式)とした。試験は、30℃の環境下で行った。充放電試験結果を図2に示した。図2は、Li/Liを基準電位として作成した第1活物質(LiNi1/3Co1/3Mn1/3)の充放電曲線を示す。図2の横軸は、電池の容量を示し、縦軸は電池の電位(Li/Li基準)を示す。A charge / discharge test was performed on the manufactured battery. The charging conditions were 4.5 V, constant current-constant voltage charging method (CCCV charging method), and 10 hours. The discharge conditions were 3V, constant current method (CC discharge method). The test was performed in an environment of 30 ° C. The charge / discharge test results are shown in FIG. FIG. 2 shows a charge / discharge curve of a first active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) prepared using Li / Li + as a reference potential. The horizontal axis of FIG. 2 indicates the battery capacity, and the vertical axis indicates the battery potential (Li / Li + reference).

また、後述の実施例1,2と比較するために、図5には、上記図2の充放電曲線を、横軸を容量比(%)に変換した場合の充放電曲線を示した。図5の横軸の容量比(%)は、評価電圧範囲(3−4.5V)における充電容量に対する放電容量の比率をいう。後述の図6及び図7においても同様である。   For comparison with Examples 1 and 2, which will be described later, FIG. 5 shows a charge / discharge curve in FIG. 2 when the horizontal axis is converted into a capacity ratio (%). The capacity ratio (%) on the horizontal axis in FIG. 5 refers to the ratio of the discharge capacity to the charge capacity in the evaluation voltage range (3-4.5 V). The same applies to FIGS. 6 and 7 described later.

図2に示すように、LiNi1/3Co1/3Mn1/3の初期充電容量は205mAh/g、初期放電容量(可逆容量)は185mAh/g、不可逆容量は20mAh/g、作動電位は3.6Vであった。LiNi1/3Co1/3Mn1/3の放電曲線では、放電開始時の容量が0〜180mAh/gの間で電位4.5Vから3.6Vを維持するプラトー部分があり、その終止点以後は、急激な電位降下を示した。プラトー部分の終止点は、プラトー部分の終止点以後では、LiNi1/3Co1/3Mn1/3の容量変化(ΔC)に対する電位変化(ΔV)の比率(ΔV/ΔC)の絶対値が、0.05V/mAhg−1であった。As shown in FIG. 2, LiNi 1/3 Co 1/3 Mn 1/3 O 2 has an initial charge capacity of 205 mAh / g, an initial discharge capacity (reversible capacity) of 185 mAh / g, and an irreversible capacity of 20 mAh / g. The potential was 3.6V. In the discharge curve of LiNi 1/3 Co 1/3 Mn 1/3 O 2 , there is a plateau part that maintains the potential from 4.5 V to 3.6 V when the capacity at the start of discharge is between 0 and 180 mAh / g, After the end point, a rapid potential drop was observed. The end point of the plateau part is the absolute value of the ratio (ΔV / ΔC) of the potential change (ΔV) to the capacity change (ΔC) of LiNi 1/3 Co 1/3 Mn 1/3 O 2 after the end point of the plateau part. The value was 0.05 V / mAhg −1 .

(電池2)
電池2は、LiFeSiO(第2活物質)からなる正極活物質を用いた二次電池である。
(Battery 2)
The battery 2 is a secondary battery using a positive electrode active material made of Li 2 FeSiO 4 (second active material).

LiFeSiOを以下のように作製した。酸化第二鉄Fe(高純度化学株式会社製、純度99.99%)1.0モルと、炭酸リチウムLiCO(キシダ化学株式会社製、純度99.5%)1.1モル、シリカSiO(日本アエロジル株式会社製)1.0モル、デキストリン水和物(和光純薬工業株式会社製)1.2モルからなる混合物をビーズミル(直径100μmのZrOビーズ)により湿式混合を3.5時間行なった。得られた混合溶液を熱噴霧装置によりスプレードライ処理を行なった。処理条件は、入り口温度200℃、排気温度91℃、塔内圧力4kPa、給気風量0.80m/min.、ノズルエア(一次圧力0.7MPaG、流量40NL/min.)、送液速度(流量20mL/min.)であった。得られた粉末を、雰囲気CO:H(70:30cc)、温度700℃、時間2時間の条件で熱処理を行なった。室温まで冷却後、処理品のX線回折(XRD)測定を行なった。その結果、単斜晶、空間群P21/nに属するLiFeSiOがカーボンと複合化された。Li 2 FeSiO 4 was prepared as follows. Ferric oxide Fe 2 O 3 (high purity chemical Co., Ltd., purity 99.99%) 1.0 mol and lithium carbonate Li 2 CO 3 (Kishida Chemical Co., Ltd., purity 99.5%) 1.1 Mole, silica SiO 2 (manufactured by Nippon Aerosil Co., Ltd.) 1.0 mol, dextrin hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 1.2 mol is wet-mixed by a bead mill (100 μm diameter ZrO 2 beads) For 3.5 hours. The obtained mixed solution was spray-dried by a thermal spray apparatus. The treatment conditions were an inlet temperature of 200 ° C., an exhaust temperature of 91 ° C., a tower pressure of 4 kPa, and a supply air volume of 0.80 m 3 / min. Nozzle air (primary pressure 0.7 MPaG, flow rate 40 NL / min.), Liquid feed rate (flow rate 20 mL / min.). The obtained powder was heat-treated under the conditions of atmosphere CO 2 : H 2 (70:30 cc), temperature 700 ° C., and time 2 hours. After cooling to room temperature, X-ray diffraction (XRD) measurement of the treated product was performed. As a result, Li 2 FeSiO 4 belonging to monoclinic crystal and space group P2 1 / n was compounded with carbon.

カーボンと複合化されたLiFeSiOを、第2活物質として用いて、二次電池(電池2)を作製した。二次電池は、LiFeSiOを用いたことを除いて、上記の電池1と同様に作製した。作製した電池2について電池1と同条件で充放電試験を行った。試験結果を図3の上図及び下図に示した。図3の上図及び下図は、Li/Liを基準電位として作成した第2活物質(LiFeSiO)の充放電曲線を示し、上図は3V−4.5Vの充放電曲線を示し、下図は2.5V―4.5Vの充放電曲線を示す。図3の上図及び下図の横軸は、電池の容量を示し、縦軸は電池の電位(Li/Li基準)を示す。A secondary battery (battery 2) was fabricated using Li 2 FeSiO 4 combined with carbon as the second active material. A secondary battery was produced in the same manner as the battery 1 except that Li 2 FeSiO 4 was used. The produced battery 2 was subjected to a charge / discharge test under the same conditions as the battery 1. The test results are shown in the upper and lower views of FIG. The upper and lower diagrams in FIG. 3 show the charge / discharge curves of the second active material (Li 2 FeSiO 4 ) prepared using Li / Li + as the reference potential, and the upper diagram shows the 3V-4.5V charge / discharge curves. The figure below shows a 2.5V-4.5V charge / discharge curve. The horizontal axis in the upper and lower diagrams of FIG. 3 indicates the battery capacity, and the vertical axis indicates the battery potential (Li / Li + reference).

図3の上図では、LiFeSiOの初期充電容量は115mAh/g、初期放電容量は15mAh/g、不可逆容量は100mAh/g。図3の下図では、LiFeSiOの初期充電容量は106mAh/g、初期放電容量は79mAh/g、不可逆容量は27mAh/g、作動電位は2.7Vであった。LiFeSiOは、3V−4.5Vの電位領域では、初回充電容量に比べて、初回放電容量が極めて小さかった。3Vまでは、ほとんど容量を発現しなかった。2.5V−4.5Vの電位領域では、3Vから2.5Vまで放電させると、急激に容量が徐々に発現した。このことから、LiFeSiOは、3Vまでの放電では、Liをほとんど吸蔵しないことがわかった。In the upper diagram of FIG. 3, the initial charge capacity of Li 2 FeSiO 4 is 115 mAh / g, the initial discharge capacity is 15 mAh / g, and the irreversible capacity is 100 mAh / g. In the lower diagram of FIG. 3, the initial charge capacity of Li 2 FeSiO 4 was 106 mAh / g, the initial discharge capacity was 79 mAh / g, the irreversible capacity was 27 mAh / g, and the operating potential was 2.7 V. Li 2 FeSiO 4 had a very small initial discharge capacity in the potential region of 3V to 4.5V compared to the initial charge capacity. Up to 3V, almost no capacity was developed. In the potential region of 2.5V-4.5V, when discharging from 3V to 2.5V, the capacity gradually developed rapidly. From this, it was found that Li 2 FeSiO 4 hardly occludes Li when discharged up to 3V.

(電池3)
電池3は、LiFePO(第2活物質)からなる正極活物質を用いた二次電池である。
(Battery 3)
The battery 3 is a secondary battery using a positive electrode active material made of LiFePO 4 (second active material).

LiFePOは、LiFeSiOと同様にカーボンと複合化した。カーボンと複合化したLiFePOは、第2活物質として用いて、二次電池(電池3)を作製した。電池3は、LiFePOを用いたことを除いて、上記の電池1と同様に作製した。作製した電池3について電池1と同条件で充放電試験を行った。試験結果を図4に示した。図4は、Li/Liを基準電位として作成した第2活物質(LiFePO)の充放電曲線を示す。図4の横軸は、電池の容量を示し、縦軸は電池の電位(Li/Li基準)を示す。LiFePO 4 was compounded with carbon in the same manner as Li 2 FeSiO 4 . LiFePO 4 composited with carbon was used as the second active material to produce a secondary battery (battery 3). Battery 3 was made in the same manner as Battery 1 except that LiFePO 4 was used. The produced battery 3 was subjected to a charge / discharge test under the same conditions as the battery 1. The test results are shown in FIG. FIG. 4 shows a charge / discharge curve of the second active material (LiFePO 4 ) prepared using Li / Li + as a reference potential. The horizontal axis in FIG. 4 indicates the capacity of the battery, and the vertical axis indicates the battery potential (Li / Li + reference).

図4に示すように、LiFePOの初期充電容量は164mAh/g、初期放電容量は159mAh/g、不可逆容量は5mAh/g、作動電位は3.4Vであった。LiFePOの放電曲線では、放電開始後すぐに、電位の変化が殆どないプラトー部分になり、3.4V付近の電位を維持した。プラトー部分の終止点以後は、急激な電位降下を示した。プラトー部分の終止点以後では、LiFePOの容量変化(ΔC)に対する電位変化(ΔV)の比率(ΔV/ΔC)の絶対値が、0.14V/mAhg−1であった。As shown in FIG. 4, LiFePO 4 had an initial charge capacity of 164 mAh / g, an initial discharge capacity of 159 mAh / g, an irreversible capacity of 5 mAh / g, and an operating potential of 3.4V. In the discharge curve of LiFePO 4 , immediately after the start of discharge, a plateau portion with almost no potential change was formed, and the potential in the vicinity of 3.4 V was maintained. After the end point of the plateau part, a rapid potential drop was observed. After the end of the plateau part, the absolute value of the ratio (ΔV / ΔC) of the potential change (ΔV) to the capacitance change (ΔC) of LiFePO 4 was 0.14 V / mAhg −1 .

(電池4)
電池4を作製するために、電池1のLiNi1/3Co1/3Mn1/3(第1活物質)と、電池2のカーボンと複合化されたLiFeSiO(第2活物質)とを、質量比で67%:33%の比率で混合して正極活物質を作製した。この正極活物質を用いて、電池1と同様に二次電池(電池4)を作製した。作製した電池4について電池1と同条件で充放電試験を行った。試験結果を図6に示した。図6は、Li/Liを基準電位として作成した第2活物質(LiFeSiO)の充放電曲線を示す。図5と同様に、図6の横軸は容量比(%)を示し、縦軸は電池の電位(Li/Li基準)を示す。
(Battery 4)
In order to manufacture the battery 4, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (first active material) of the battery 1 and Li 2 FeSiO 4 (second active material) combined with the carbon of the battery 2 are used. Material) was mixed at a mass ratio of 67%: 33% to prepare a positive electrode active material. Using this positive electrode active material, a secondary battery (battery 4) was produced in the same manner as the battery 1. The produced battery 4 was subjected to a charge / discharge test under the same conditions as the battery 1. The test results are shown in FIG. FIG. 6 shows a charge / discharge curve of a second active material (Li 2 FeSiO 4 ) prepared using Li / Li + as a reference potential. Similar to FIG. 5, the horizontal axis of FIG. 6 indicates the capacity ratio (%), and the vertical axis indicates the battery potential (Li / Li + reference).

図6に示すように、LiNi1/3Co1/3Mn1/3(第1活物質)と、カーボンと複合化されたLiFeSiO(第2活物質)とからなる正極活物質を用いた電池4の初期充電容量は238mAh/g、初期放電容量は173mAh/g、不可逆容量は65mAh/g、作動電位は3.6Vであった。電池4の放電曲線では、放電開始時の電位4.5Vから3.6Vの間にプラトー部分があり、その終止点以後は、急激な電位降下を示した。プラトー部分の終止点以後では、電池4の容量変化(ΔC)に対する電位変化(ΔV)の比率(ΔV/ΔC)の絶対値が、0.06V/mAhg−1であった。電池4の充電曲線及び放電曲線は、LiNi1/3Co1/3Mn1/3のみを正極活物質として用いた電池1のそれらとよく似た挙動を示した。ただし、電池4の放電容量は、電池1の放電容量に対して78%に減少した。この減少分は、3.0Vでは殆ど放電容量を発現しないLiFeSiOを正極活物質100%に対して33%添加したためであると考えられる。As shown in FIG. 6, a positive electrode active comprising LiNi 1/3 Co 1/3 Mn 1/3 O 2 (first active material) and Li 2 FeSiO 4 (second active material) complexed with carbon. Battery 4 using the material had an initial charge capacity of 238 mAh / g, an initial discharge capacity of 173 mAh / g, an irreversible capacity of 65 mAh / g, and an operating potential of 3.6V. In the discharge curve of the battery 4, there was a plateau portion between the potential 4.5 V and 3.6 V at the start of discharge, and after that end point, the potential dropped rapidly. After the end point of the plateau portion, the absolute value of the ratio (ΔV / ΔC) of the potential change (ΔV) to the capacity change (ΔC) of the battery 4 was 0.06 V / mAhg −1 . The charge curve and discharge curve of the battery 4 showed a behavior similar to that of the battery 1 using only LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material. However, the discharge capacity of the battery 4 was reduced to 78% with respect to the discharge capacity of the battery 1. This decrease is considered to be due to the addition of 33% of Li 2 FeSiO 4 that exhibits almost no discharge capacity at 3.0 V with respect to 100% of the positive electrode active material.

電池4は、放電曲線のプラトー部分の終止点以後の電位降下が著しかった。このため、放電電圧の終止時を正確に検知することができ、制御しやすい。   In Battery 4, the potential drop after the end point of the plateau portion of the discharge curve was remarkable. For this reason, the end of the discharge voltage can be accurately detected and is easy to control.

(電池5)
電池5を作製するために、電池1のLiNi1/3Co1/3Mn1/3(第1活物質)と、電池2のカーボンと複合化されたLiFePO(第2活物質)とを、質量比で67%:33%の比率で混合して正極活物質を作製した。この正極活物質を用いて、電池1と同様に二次電池(電池5)を作製した。作製した電池5について電池1と同条件で充放電試験を行った。試験結果を図7に示した。図7は、Li/Liを基準電位として作成した第2活物質(LiFePO)の充放電曲線を示す。図5と同様に、図7の横軸は容量比(%)を示し、縦軸は電池の電位(Li/Li基準)を示す。
(Battery 5)
In order to manufacture the battery 5, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (first active material) of the battery 1 and LiFePO 4 (second active material) composited with the carbon of the battery 2. Were mixed at a mass ratio of 67%: 33% to prepare a positive electrode active material. Using this positive electrode active material, a secondary battery (battery 5) was produced in the same manner as the battery 1. The produced battery 5 was subjected to a charge / discharge test under the same conditions as the battery 1. The test results are shown in FIG. FIG. 7 shows a charge / discharge curve of the second active material (LiFePO 4 ) prepared using Li / Li + as a reference potential. Similarly to FIG. 5, the horizontal axis of FIG. 7 indicates the capacity ratio (%), and the vertical axis indicates the battery potential (Li / Li + reference).

図7に示すように、LiNi1/3Co1/3Mn1/3(第1活物質)と、電池2のカーボンと複合化されたLiFePO(第2活物質)とからなる正極活物質を用いた電池5の初期充電容量は236mAh/g、初期放電容量(可逆容量)は223mAh/g、作動電位は3.4Vであった。電池5の放電曲線は、放電開始時の電位4.5vから3.6Vまでゆるやかに電位が降下し、その後に3.6〜3.4Vの間に一旦急激に電位が下がった。しかし、その後3.4Vで容量60〜93%まで維持し、再度93%以上で急激に電位が下がった。このように、電池5では、3.6〜3.4Vの間で2段階の電圧降下があった。このような放電曲線をもつ電池5は、放電の終止電圧を正確に検知しにくく、電圧制御がしにくい。As shown in FIG. 7, a positive electrode comprising LiNi 1/3 Co 1/3 Mn 1/3 O 2 (first active material) and LiFePO 4 (second active material) combined with carbon of battery 2. Battery 5 using the active material had an initial charge capacity of 236 mAh / g, an initial discharge capacity (reversible capacity) of 223 mAh / g, and an operating potential of 3.4 V. In the discharge curve of the battery 5, the potential gradually dropped from the potential 4.5v at the start of discharge to 3.6V, and then the potential once dropped suddenly between 3.6 and 3.4V. However, after that, the capacity was maintained at 3.4 V up to a capacity of 60 to 93%, and the potential dropped rapidly again at 93% or more. Thus, in the battery 5, there was a two-step voltage drop between 3.6 and 3.4V. The battery 5 having such a discharge curve is difficult to accurately detect the end voltage of the discharge and is difficult to control the voltage.

図5〜図7を用いて、電位が3.5V、3.0Vであるときの、電池1,4,5の容量比(%)をもとめた。この結果を表2に示した。   5 to 7, the capacity ratio (%) of the batteries 1, 4, and 5 when the potential was 3.5 V and 3.0 V was obtained. The results are shown in Table 2.

Figure 2015056412
Figure 2015056412

表2に示すように、電池1,4では、電位が3.5Vと3.0Vでは容量比に大差はなかった。一方、電池5の容量比は、電位が3.0Vであるときは3.5Vであるときに比べて大きく増えた。   As shown in Table 2, in the batteries 1 and 4, there was no significant difference in the capacity ratio between the potentials of 3.5V and 3.0V. On the other hand, the capacity ratio of the battery 5 greatly increased when the potential was 3.0V compared to 3.5V.

電池1の正極活物質は、そのすべてがLiNi1/3Co1/3Mn1/3(NCM、第1活物質)からなる。図8には、電池1,4,5に用いた正極活物質について、負極の不可逆容量がLiNi1/3Co1/3Mn1/3の初期充電容量に対して50%であった場合の放電曲線の予想値を示す。この予想放電曲線は、以下のようにしてもとめられた。電池1,4,5の初回放電曲線(図5、図6、図7)を、この電池1の初期充電容量を100%としたときのLiNi1/3Co1/3Mn1/3(第1活物質)1gあたりの容量(mAh)の比率(%)に変換した。All of the positive electrode active materials of the battery 1 are made of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM, first active material). FIG. 8 shows that the irreversible capacity of the negative electrode was 50% of the initial charge capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 for the positive electrode active material used in batteries 1, 4, and 5. The expected value of the discharge curve is shown. This expected discharge curve was determined as follows. LiNi 1/3 Co 1/3 Mn 1/3 O 2 when initial discharge curves of the batteries 1, 4, 5 (FIGS. 5, 6, 7) are taken as 100% of the initial charge capacity of the battery 1. (First active material) It was converted into a ratio (%) of capacity (mAh) per 1 g.

このように初回放電曲線を、LiNi1/3Co1/3Mn1/3(第1活物質)のみの質量に対する容量比と電位との関係で示した線図を図8に示した。FIG. 8 is a diagram showing the initial discharge curve in this way in relation to the capacity ratio with respect to the mass of only LiNi 1/3 Co 1/3 Mn 1/3 O 2 (first active material) and the potential. .

図8に示すように、負極の不可逆容量がLiNi1/3Co1/3Mn1/3の初期充電容量に対して50%であった場合には、電池1(LiNi1/3Co1/3Mn1/3)の容量比は50%まで低減した。これに対して、電池4(LiNi1/3Co1/3Mn1/3とLiFeSiO)の容量比は69%であった。電池5(LiNi1/3Co1/3Mn1/3とLiFePO)の容量比は63%であった。As shown in FIG. 8, when the irreversible capacity of the negative electrode is 50% of the initial charge capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 , the battery 1 (LiNi 1/3 Co The capacity ratio of 1/3 Mn 1/3 O 2 ) was reduced to 50%. On the other hand, the capacity ratio of the battery 4 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 and Li 2 FeSiO 4 ) was 69%. The capacity ratio of the battery 5 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiFePO 4 ) was 63%.

図8に示すように、電池1,4、5の放電曲線は、いずれも、放電初期から始まる比較的平坦なプラトー部分をもち、終止点近傍で急激に電位が低下している。電池4では、プラトー部分を経た後は、急激に電位が低下するため、終止電圧の検知が容易である。プラトー部分を経て急激に電位が低下する変曲点近傍の作動電位を終止電位に設定することで、電池の放電電圧の終止電位を正確に制御することができ、過剰放電を防止できる。一方、電池5では、第1のプラトー部分を経て一旦は急激な電位低下があるが、さらに放電を進めると、第2のプラトー部分が発現される。このため、電池5は、終止電位の感知を精度よく行うことができず、過剰放電を起こすおそれがある。   As shown in FIG. 8, the discharge curves of the batteries 1, 4, and 5 all have a relatively flat plateau portion that starts from the beginning of discharge, and the potential is rapidly decreased near the end point. In the battery 4, after passing through the plateau portion, the potential is rapidly lowered, so that the end voltage can be easily detected. By setting the operating potential in the vicinity of the inflection point where the potential suddenly drops through the plateau portion as the end potential, the end potential of the discharge voltage of the battery can be accurately controlled, and excessive discharge can be prevented. On the other hand, in the battery 5, there is a sudden potential drop once through the first plateau portion, but when the discharge is further advanced, the second plateau portion is developed. For this reason, the battery 5 cannot accurately detect the end potential and may cause excessive discharge.

(電池6)
電池6は、LiMn(第1活物質)からなる正極活物質を用いた二次電池である。その他の構成は、電池1と同様である。電池6について電池1と同様に充放電を行い、その初回の放電曲線を図9に示した。
(Battery 6)
The battery 6 is a secondary battery using a positive electrode active material made of LiMn 2 O 4 (first active material). Other configurations are the same as those of the battery 1. The battery 6 was charged and discharged in the same manner as the battery 1, and the initial discharge curve is shown in FIG.

図9に示すように、LiMnの初期充電容量は120mAh/g、初期放電容量(可逆容量)は110mAh/g、不可逆容量は10mAh/g、作動電位は約2.8Vであった。LiMnの放電曲線では、放電開始後の10〜120mAh/gの間に電位4.15Vから3.9Vのプラトー部分があり、その終止点以後は、120mAh/gで3.9Vから約2.8Vまで急激な電位降下を示した。プラトー部分の終止点以後では、LiMnの容量変化(ΔC)に対する電位変化(ΔV)の比率(ΔV/ΔC)の絶対値が、0.06V/mAhg−1であった。2.8Vまで電位降下すると、120mAh/gから220mAh/gの間で約2.8Vを維持する第2のプラトー部分が発現された。As shown in FIG. 9, LiMn 2 O 4 had an initial charge capacity of 120 mAh / g, an initial discharge capacity (reversible capacity) of 110 mAh / g, an irreversible capacity of 10 mAh / g, and an operating potential of about 2.8V. In the discharge curve of LiMn 2 O 4 , there is a plateau portion of potential 4.15 V to 3.9 V between 10 and 120 mAh / g after the start of discharge, and after that end point, from 3.9 V to about 3.9 V at 120 mAh / g. A rapid potential drop was observed up to 2.8V. After the end point of the plateau portion, the absolute value of the ratio (ΔV / ΔC) of the potential change (ΔV) to the capacity change (ΔC) of LiMn 2 O 4 was 0.06 V / mAhg −1 . When the potential dropped to 2.8 V, a second plateau portion was developed that maintained about 2.8 V between 120 mAh / g and 220 mAh / g.

LiMnを過放電すると、約2.8Vから容量が増加する。これは、LiMnがLiMnに変化したためであると考えられる。LiMnに変化すると、電池のサイクル特性が低下する。When LiMn 2 O 4 is overdischarged, the capacity increases from about 2.8V. This is considered to be because LiMn 2 O 4 was changed to Li 2 Mn 2 O 4 . When it changes to Li 2 Mn 2 O 4 , the cycle characteristics of the battery deteriorate.

LiNi1/3Co1/3Mn1/3(第1活物質)にLiFePOを添加して正極活物質とした場合の放電曲線(図7)から考えると、LiMnにLiFePOを添加した場合には、図9の一点鎖線に示すように、約3.4Vに維持しつつ放電容量が増加する。過放電した場合には急激に2.8Vまで低下してLiMnがLiMnに変化してサイクル劣化が生じると推定される。Considering the discharge curve when LiFePO 4 is added to LiNi 1/3 Co 1/3 Mn 1/3 O 2 (first active material) to form a positive electrode active material (FIG. 7), LiMn 2 O 4 is combined with LiFePO 4 . When 4 is added, as shown by the one-dot chain line in FIG. 9, the discharge capacity increases while maintaining at about 3.4V. In the case of overdischarge, it is presumed that the cycle is deteriorated by suddenly decreasing to 2.8 V and changing LiMn 2 O 4 to Li 2 Mn 2 O 4 .

LiNi1/3Co1/3Mn1/3(第1活物質)にLiFeSiOを添加して正極活物質とした場合の放電曲線(図8)から考えると、LiMnにLiFeSiOを添加した場合には、図9の二点鎖線に示すように、約3.4Vから容量増加が小さく、3V以下になってから容量が増加すると推定される。LiNi1/3Co1/3Mn1/3にLiFeSiOを添加することで、急激に2.8Vまで電位降下することが防止され、LiMnの劣化及びサイクル劣化を抑制できる。Considering from the discharge curve (FIG. 8) when Li 2 FeSiO 4 is added to LiNi 1/3 Co 1/3 Mn 1/3 O 2 (first active material) to form a positive electrode active material, LiMn 2 O 4 In the case of adding Li 2 FeSiO 4 to, as indicated by the two-dot chain line in FIG. 9, it is estimated that the capacity increase is small from about 3.4 V and the capacity increases after 3 V or less. By adding Li 2 FeSiO 4 to LiNi 1/3 Co 1/3 Mn 1/3 O 2 , it is possible to prevent a potential drop to 2.8 V abruptly and to suppress deterioration of LiMn 2 O 4 and cycle deterioration. it can.

(電池7)
電池7は、LiNi0.5Co0.5(第1活物質)からなる正極活物質を用いた二次電池である。その他の構成は、電池1と同様である。電池7について電池1と同様に充放電を行い、その初回の放電曲線を図9に示した。
(Battery 7)
The battery 7 is a secondary battery using a positive electrode active material made of LiNi 0.5 Co 0.5 O 2 (first active material). Other configurations are the same as those of the battery 1. The battery 7 was charged and discharged in the same manner as the battery 1, and the initial discharge curve is shown in FIG.

図9に示すように、LiNi0.5Co0.5(x=0.5)の初期充電容量は180mAh/g、初期放電容量は150mAh/g、不可逆容量は30mAh/g、作動電位は約3.5Vであった。LiNi0.5Co0.5の放電曲線では、放電開始後の0〜140mAh/gの間に電位4.2Vから3.5Vのプラトー部分があり、その終止点以後は、140〜150mAh/gで急激な電位降下を示した。プラトー部分の終止点以後では、LiNi0.5Co0.5の容量変化(ΔC)に対する電位変化(ΔV)の比率(ΔV/ΔC)の絶対値が、0.05V/mAhg−1であった。As shown in FIG. 9, the initial charge capacity of LiNi 0.5 Co 0.5 O 2 (x = 0.5) is 180 mAh / g, the initial discharge capacity is 150 mAh / g, the irreversible capacity is 30 mAh / g, and the operating potential is about It was 3.5V. In the discharge curve of LiNi 0.5 Co 0.5 O 2 , there is a plateau portion of potential 4.2 V to 3.5 V between 0 to 140 mAh / g after the start of discharge, and after that end point, 140 to 150 mAh. / G showed a rapid potential drop. After the end of the plateau part, the absolute value of the ratio (ΔV / ΔC) of the potential change (ΔV) to the capacity change (ΔC) of LiNi 0.5 Co 0.5 O 2 is 0.05 V / mAhg −1 . there were.

LiNi0.5Co0.5にLiFePO又はLiFeSiOを添加した場合にも、LiMnにLiFePO又はLiFeSiOを添加した場合と同様の放電曲線を描くことになると推定される。Even when LiFePO 4 or Li 2 FeSiO 4 is added to LiNi 0.5 Co 0.5 O 2 , the same discharge curve as when LiFePO 4 or Li 2 FeSiO 4 is added to LiMn 2 O 4 is drawn. It is estimated that

(電池8)
電池8は、LiCoO(第1活物質)からなる正極活物質を用いた二次電池である。電池8の他の構成は、電池1と同様である。電池8について電池1と同様に充放電を行い、その初回の放電曲線を図9に示した。
(Battery 8)
The battery 8 is a secondary battery using a positive electrode active material made of LiCoO 2 (first active material). Other configurations of the battery 8 are the same as those of the battery 1. The battery 8 was charged / discharged in the same manner as the battery 1, and the initial discharge curve is shown in FIG.

図9に示すように、LiCoOの初期充電容量は150mAh/g、初期放電容量は140mAh/g、不可逆容量は10mAh/g、作動電位は約3.8Vであった。LiCoOの放電曲線では、放電開始後の0〜130mAh/gの間に電位4.2Vから3.9Vのプラトー部分があり、その終止点以後は、130〜140mAh/gで急激な電位降下を示した。プラトー部分の終止点以後では、LiCoOの容量変化(ΔC)に対する電位変化(ΔV)の比率(ΔV/ΔC)の絶対値が、0.06V/mAhg−1であった。As shown in FIG. 9, the initial charge capacity of LiCoO 2 was 150 mAh / g, the initial discharge capacity was 140 mAh / g, the irreversible capacity was 10 mAh / g, and the operating potential was about 3.8V. In the discharge curve of LiCoO 2 , there is a plateau portion of potential 4.2 V to 3.9 V between 0 and 130 mAh / g after the start of discharge, and after that end point, a rapid potential drop occurs at 130 to 140 mAh / g. Indicated. After the end point of the plateau portion, the absolute value of the ratio (ΔV / ΔC) of the potential change (ΔV) to the capacity change (ΔC) of LiCoO 2 was 0.06 V / mAhg −1 .

LiCoOにLiFePO又はLiFeSiOを添加した場合にも、LiMn2O4にLiFePO又はLiFeSiOを添加した場合と同様の放電曲線を描くことになると推定される。Even when LiFePO 4 or Li 2 FeSiO 4 is added to LiCoO 2 , it is presumed that a discharge curve similar to that when LiFePO 4 or Li 2 FeSiO 4 is added to LiMn 2 O 4 is drawn.

(電池9)
電池9は、LiFeBO(第2活物質)からなる正極活物質を用いた二次電池である。電池9の他の構成は、電池1と同様である。電池9について電池1と同様に充放電を行い、その充放電曲線を図10に示した。
(Battery 9)
The battery 9 is a secondary battery using a positive electrode active material made of LiFeBO 3 (second active material). Other configurations of the battery 9 are the same as those of the battery 1. The battery 9 was charged and discharged in the same manner as the battery 1, and the charge / discharge curve is shown in FIG.

図10に示すように、LiFeBOの初期充電容量は275mAh/g、初期放電容量は215mAh/g、不可逆容量は60mAh/g、作動電位は約2.5Vであった。LiFeBOの放電曲線では、放電開始直後から3Vまでの間では、容量がほとんど伸びなかった。3Vから2.5Vの間に容量40〜100mAh/gが見られた。As shown in FIG. 10, LiFeBO 3 had an initial charge capacity of 275 mAh / g, an initial discharge capacity of 215 mAh / g, an irreversible capacity of 60 mAh / g, and an operating potential of about 2.5V. In the discharge curve of LiFeBO 3 , the capacity hardly increased from immediately after the start of discharge to 3V. A capacity of 40-100 mAh / g was observed between 3V and 2.5V.

LiFeBOを第1活物質に添加した場合には、放電時に電位が3Vまでであれば、放電容量がほとんど伸びない。このため、3V以上の作動電位をもつ第1活物質とともに正極活物質として用いることで、負極の不可逆容量を十分に補充できる。When LiFeBO 3 is added to the first active material, the discharge capacity hardly increases if the potential is up to 3 V during discharge. For this reason, the irreversible capacity | capacitance of a negative electrode can fully be supplemented by using it as a positive electrode active material with the 1st active material which has an operating potential of 3V or more.

(電池10)
電池10は、電池4の正極及び電解液を用い、SiOを含む負極に変えて作製した電池である。負極を作製するために、市販のSiO粉末をボールミルに入れて、Ar雰囲気下で、回転数450rpmで20時間ミリングし、その後、不活性ガス雰囲気中で、900℃の温度下で、2時間加熱処理を行った。これにより、SiO粉末が不均化されて、不均化SiOx粉末が得られた。この不均化SiOx粉末について、CuKαを使用したX線回折(XRD)測定を行ったところ、単体珪素(Si)と二酸化珪素(SiO)とに由来する特有のピークが確認された。このことから、不均化SiOx粉末には、単体珪素と二酸化珪素が生成していることがわかった。この不均化SiOx粉末と、導電助剤と、結着剤としてのポリイミド(PI)とを混合し、溶媒を加えてスラリー状の混合物を得た。導電助剤としてはアセチレンブラック(AB)を用いた。溶剤はNMPであった。不均化SiOx粉末と、導電助剤と、結着剤との質量比は、百分率で、不均化SiOx粉末/導電助剤/結着剤=80/2/18であった。次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔の片面に成膜した。成膜後、所定の圧力でプレスし、加熱(200℃、2時間)し、放冷した。これにより、集電体表面に負極材料(負極活物質層)が固定されてなる負極が作製された。
(Battery 10)
The battery 10 is a battery manufactured by using the positive electrode and the electrolytic solution of the battery 4 and changing to a negative electrode containing SiO. In order to produce a negative electrode, a commercially available SiO powder was put in a ball mill, milled at 450 rpm for 20 hours in an Ar atmosphere, and then heated at 900 ° C. for 2 hours in an inert gas atmosphere. Processed. Thereby, SiO powder was disproportionated and disproportionated SiOx powder was obtained. When this disproportionated SiOx powder was subjected to X-ray diffraction (XRD) measurement using CuKα, a specific peak derived from simple silicon (Si) and silicon dioxide (SiO 2 ) was confirmed. From this, it was found that elemental silicon and silicon dioxide were formed in the disproportionated SiOx powder. This disproportionated SiOx powder, a conductive additive, and polyimide (PI) as a binder were mixed, and a solvent was added to obtain a slurry-like mixture. Acetylene black (AB) was used as the conductive assistant. The solvent was NMP. The mass ratio of the disproportionated SiOx powder, the conductive auxiliary agent, and the binder was in percentage, and the disproportionated SiOx powder / conductive auxiliary agent / binder was 80/2/18. Next, the slurry-like mixture was formed into a film on one side of a copper foil as a current collector using a doctor blade. After film formation, the film was pressed at a predetermined pressure, heated (200 ° C., 2 hours), and allowed to cool. As a result, a negative electrode in which a negative electrode material (negative electrode active material layer) was fixed on the current collector surface was produced.

SiOの可逆容量と不可逆容量とを合わせた合計に対する不可逆容量の比率は43%である。このようにかなりの割合の負極活物質の不可逆容量を補充するために、第2活物質と負極とが、以下の関係をもつように、調整されている。第2活物質(LiFeSiO)の初期充電容量をAとし、負極の不可逆容量をBとしたとき、0.9<A/B<1.1の関係をもつ。この容量は、LiNi1/3Co1/3Mn1/3(第1活物質)の作動電位(3.6V)で電池の放電を停止した場合の値である。正極活物質と負極との容量が上記の関係をもつように、電池10に含まれる正極活物質と負極活物質との質量比は、例えば、負極活物質としてのSiOの質量を100質量部としたときに、正極活物質の第1活物質は810質量部、第2活物質は810質量部である。負極の不可逆容量にほぼ相当する容量の第2活物質を第1活物質に添加することになり、第1活物質の可逆容量のほとんどを、負極の可逆容量に有効に利用することができる。The ratio of the irreversible capacity to the total of the total reversible capacity and irreversible capacity of SiO is 43%. In order to supplement the irreversible capacity of the negative electrode active material in a considerable proportion as described above, the second active material and the negative electrode are adjusted to have the following relationship. When the initial charge capacity of the second active material (Li 2 FeSiO 4 ) is A and the irreversible capacity of the negative electrode is B, the relationship is 0.9 <A / B <1.1. This volume is a value in the case of stopping the discharge of the battery in LiNi 1/3 Co 1/3 Mn 1/3 O 2 operating potential (first active material) (3.6V). The mass ratio of the positive electrode active material to the negative electrode active material included in the battery 10 is, for example, 100 mass parts of SiO as the negative electrode active material so that the capacity of the positive electrode active material and the negative electrode has the above relationship. In this case, the first active material of the positive electrode active material is 810 parts by mass, and the second active material is 810 parts by mass. The second active material having a capacity substantially corresponding to the irreversible capacity of the negative electrode is added to the first active material, and most of the reversible capacity of the first active material can be effectively utilized for the reversible capacity of the negative electrode.

Claims (7)

正極活物質を有する正極と、負極活物質を有する負極と、電解液と、を有するリチウムイオン二次電池であって、
前記正極活物質は、第1活物質と、前記第1活物質の作動電位よりも低く且つ前記負極活物質の作動電位よりも高い作動電位をもつ第2活物質とを有し、
前記第1活物質は、LiとNi,CoおよびMnのうち少なくとも一種の遷移金属元素とを含むリチウム遷移金属酸化物からなり、
前記第2活物質は、リチウムと遷移金属元素とを含むポリアニオン系材料からなり、
前記第1活物質の作動電位で放電が停止されるように構成されていることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery having a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and an electrolyte solution,
The positive electrode active material includes a first active material, and a second active material having an operating potential lower than the operating potential of the first active material and higher than the operating potential of the negative electrode active material,
The first active material is composed of a lithium transition metal oxide containing Li and at least one transition metal element of Ni, Co, and Mn,
The second active material is made of a polyanionic material containing lithium and a transition metal element,
The lithium ion secondary battery is configured to stop discharging at the operating potential of the first active material.
前記第1活物質の作動電位は、第1活物質の放電曲線において、前記第1活物質の容量変化(ΔC)に対する電位変化(ΔV)の比率の絶対値が0.05V/mAhg−1以上となる電位である請求項1記載のリチウムイオン二次電池。The operating potential of the first active material is such that the absolute value of the ratio of the potential change (ΔV) to the capacity change (ΔC) of the first active material is 0.05 V / mAhg −1 or more in the discharge curve of the first active material. The lithium ion secondary battery according to claim 1, wherein the potential is: 前記第1活物質の作動電位で放電を停止した場合、前記第2活物質の初期充電容量をAとし、前記負極の不可逆容量をBとしたとき、0.9<A/B<1.1の関係をもつ請求項1又は2に記載のリチウムイオン二次電池。   When the discharge is stopped at the operating potential of the first active material, 0.9 <A / B <1.1, where A is the initial charge capacity of the second active material and B is the irreversible capacity of the negative electrode. The lithium ion secondary battery of Claim 1 or 2 which has the relationship of these. 前記ポリアニオン系材料は、LiMPO(ここで、Mは、Ni、Co、Mn及びFeからなる群から選択される1種以上)、LiMSiO(ここで、Mは、Ni、Co、Mn及びFeからなる群から選択される1種以上)、LiMBO(ここで、Mは、Ni、Co、Mn及びFeからなる群から選択される1種以上)、及びLiFePからなる群から選択される少なくとも一種以上からなる請求項1〜3のいずれか1項に記載のリチウムイオン二次電池。The polyanionic material is LiMPO 4 (where M is one or more selected from the group consisting of Ni, Co, Mn and Fe), Li 2 MSiO 4 (where M is Ni, Co, Mn). And at least one selected from the group consisting of Fe and Fe), LiMBO 3 (wherein M is at least one selected from the group consisting of Ni, Co, Mn and Fe), and Li 2 FeP 2 O 7 The lithium ion secondary battery according to claim 1, comprising at least one selected from the group consisting of: 前記リチウム遷移金属酸化物は、式:LiNi1-x-yCoxMny(0≦x≦1、0≦y≦1、0≦1-x-y)、又は式:LiNi2-x-yCoxMny(0≦x≦2、0≦y≦2、0≦2-x-y)で表される請求項1〜4のいずれか1項に記載のリチウムイオン二次電池。The lithium transition metal oxide has the formula: LiNi 1-xy Co x Mn y O 2 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ 1-xy), or the formula: LiNi 2-xy Co x Mn y O 4 (0 ≦ x ≦ 2,0 ≦ y ≦ 2,0 ≦ 2-xy) lithium ion secondary battery according to claim 1 which is represented by. 前記負極活物質は、リチウムと合金化し得る元素、リチウムと合金化可能な元素を有する元素化合物、及び炭素の中から選ばれる1種以上を含む請求項1〜5のいずれか1項に記載のリチウムイオン二次電池。   6. The negative electrode active material according to claim 1, wherein the negative electrode active material includes at least one element selected from an element that can be alloyed with lithium, an elemental compound having an element that can be alloyed with lithium, and carbon. Lithium ion secondary battery. 前記リチウムと合金化反応可能な元素を有する元素化合物は、珪素化合物または錫化合物である請求項6記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 6, wherein the elemental compound having an element capable of alloying with lithium is a silicon compound or a tin compound.
JP2015542513A 2013-10-17 2014-09-29 Lithium ion secondary battery Pending JPWO2015056412A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013216082 2013-10-17
JP2013216082 2013-10-17
PCT/JP2014/004971 WO2015056412A1 (en) 2013-10-17 2014-09-29 Lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JPWO2015056412A1 true JPWO2015056412A1 (en) 2017-03-09

Family

ID=52827873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015542513A Pending JPWO2015056412A1 (en) 2013-10-17 2014-09-29 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JPWO2015056412A1 (en)
WO (1) WO2015056412A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788212B2 (en) * 2015-06-12 2020-11-25 株式会社Gsユアサ Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2018029907A1 (en) * 2016-08-08 2018-02-15 株式会社豊田自動織機 Lithium ion secondary cell
JP6959553B2 (en) 2018-02-14 2021-11-02 富士通株式会社 A positive electrode material and a method for manufacturing the same, a battery using the positive electrode material and a method for manufacturing the same, and an electronic device using the battery.
JP6896783B2 (en) * 2019-03-11 2021-06-30 株式会社東芝 Rechargeable battery system, rechargeable battery, and assembled battery system
JP7320418B2 (en) * 2019-09-20 2023-08-03 太平洋セメント株式会社 Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257592A (en) * 2009-04-21 2010-11-11 Nec Energy Devices Ltd Lithium ion secondary battery
JP2011238490A (en) * 2010-05-11 2011-11-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2013089523A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device including the same
JP2013178935A (en) * 2012-02-28 2013-09-09 Tdk Corp Lithium-ion secondary battery, and battery pack and power storage device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257592A (en) * 2009-04-21 2010-11-11 Nec Energy Devices Ltd Lithium ion secondary battery
JP2011238490A (en) * 2010-05-11 2011-11-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2013089523A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device including the same
JP2013178935A (en) * 2012-02-28 2013-09-09 Tdk Corp Lithium-ion secondary battery, and battery pack and power storage device using the same

Also Published As

Publication number Publication date
WO2015056412A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
JP6596405B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP5162825B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6560917B2 (en) Positive electrode material and non-aqueous electrolyte secondary battery using the positive electrode material
JP5984026B2 (en) Bimodal type negative electrode active material composition, and negative electrode active material, negative electrode active material composition, negative electrode, lithium secondary battery, battery module, and battery pack manufacturing method
JP5741908B2 (en) Positive electrode active material for lithium ion secondary battery
JP5871543B2 (en) Modified vanadium phosphate lithium carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP6756279B2 (en) Manufacturing method of positive electrode active material
JP2021514524A (en) Positive electrode active material for secondary batteries, their manufacturing methods, and lithium secondary batteries containing them
JPWO2016147564A1 (en) Nonaqueous electrolyte secondary battery
JP2013149615A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery including the same
JP2009038036A (en) Adjustment method for nonaqueous electrolyte secondary battery
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2009158099A (en) Lithium-ion secondary battery
JP2015130273A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery using the same and lithium ion secondary battery, and production method of positive electrode active material for lithium ion secondary battery
WO2015056412A1 (en) Lithium-ion secondary battery
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2016031852A (en) Nonaqueous electrolyte secondary battery
JPWO2015152115A1 (en) Lithium ion secondary battery
JPWO2015025887A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2019039399A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery containing the same
WO2016067522A1 (en) Nonaqueous electrolyte secondary battery
JP6052168B2 (en) Lithium secondary battery
JP5472952B1 (en) Non-aqueous secondary battery
WO2017145654A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
JP6274192B2 (en) Positive electrode active material, all solid state battery, and method for producing all solid state battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170704