JP3491529B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3491529B2
JP3491529B2 JP17884198A JP17884198A JP3491529B2 JP 3491529 B2 JP3491529 B2 JP 3491529B2 JP 17884198 A JP17884198 A JP 17884198A JP 17884198 A JP17884198 A JP 17884198A JP 3491529 B2 JP3491529 B2 JP 3491529B2
Authority
JP
Japan
Prior art keywords
lithium
manganese
active material
amount
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17884198A
Other languages
Japanese (ja)
Other versions
JP2000011996A (en
Inventor
智博 井口
賢二 原
克典 鈴木
伸和 田中
晃二 東本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP17884198A priority Critical patent/JP3491529B2/en
Publication of JP2000011996A publication Critical patent/JP2000011996A/en
Application granted granted Critical
Publication of JP3491529B2 publication Critical patent/JP3491529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
の放置特性及び充放電サイクル特性の改善に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of the leaving characteristics and charge / discharge cycle characteristics of non-aqueous electrolyte secondary batteries.

【0002】[0002]

【従来の技術】携帯用電話機、コードレス電話、ビデオ
カメラなどの映像機器、パソコンなどの事務用機器、家
電機器、電気自動車などの主電源あるいはバックアップ
用電源として、長時間使用できるリチウムイオン二次電
池が強く要求されている。なお、これらのリチウムイオ
ン二次電池に使用されている正極活物質としては、リチ
ウムコバルト複合酸化物、リチウムニッケル複合酸化
物、リチウムマンガン複合酸化物などが用いられてお
り、その中でも資源的に豊富で安価なマンガンを主原料
としたリチウムマンガン複合酸化物が注目をされてい
る。
2. Description of the Related Art A lithium-ion secondary battery that can be used for a long time as a main power source or backup power source for portable telephones, cordless telephones, video equipment such as video cameras, office equipment such as personal computers, home appliances, electric vehicles, etc. Is strongly demanded. As the positive electrode active material used in these lithium ion secondary batteries, lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, etc. are used, and among them, it is rich in resources. Attention has been paid to lithium manganese composite oxides, which are inexpensive and mainly made of manganese.

【0003】このリチウムマンガン複合酸化物は、リチ
ウムが出入りしやすいスピネル構造をとっている。そし
て、リチウムマンガン複合酸化物を正極活物質に用いた
場合には、初期のサイクル特性や放置特性はある程度満
足できるものの、充放電サイクルの進行や放置期間の長
期化に伴い、正極活物質中のマンガンがイオンとなって
電解液中に溶出し、溶出したマンガンイオンが負極の活
物質表面で析出して放電容量が劣化することが明らかに
なっている。
This lithium-manganese composite oxide has a spinel structure in which lithium easily enters and leaves. When the lithium manganese composite oxide is used as the positive electrode active material, although the initial cycle characteristics and the leaving characteristics are satisfied to some extent, the progress of the charge / discharge cycle and the extension of the leaving period lead to It has been clarified that manganese becomes ions and is eluted into the electrolytic solution, and the eluted manganese ions are deposited on the surface of the active material of the negative electrode to deteriorate the discharge capacity.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、充放
電サイクルによる容量劣化が少なく、放置後の放電特性
が良好な非水電解液二次電池を提供することを目的する
ものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-aqueous electrolyte secondary battery which has little capacity deterioration due to charge / discharge cycles and has good discharge characteristics after being left standing.

【0005】[0005]

【発明が解決しようとする手段】上記した課題を解決す
るために、第一の発明ではリチウムを吸蔵・放出可能な
スピネル構造を有するリチウムマンガン複合酸化物を主
たる正極活物質とし、炭素材を主たる負極活物質に使用
する非水電解液二次電池において、正極中にマンガンを
捕捉する捕捉剤を含むことを特徴とし、第二の発明では
前記マンガンを捕捉する捕捉剤が燐酸リチウム、タング
ステン酸リチウム、珪酸リチウム、アルミナイト、ホウ
酸リチウム、モリブデン酸リチウム、陽イオン交換樹脂
の群から選ばれる少なくとも一種類以上を含むことを特
徴とし、第三の発明では前記マンガンを捕捉する捕捉剤
の添加量が、正極活物質重量に対して0.1〜10%で
あることを特徴としている。
In order to solve the above problems, in the first invention, a lithium manganese composite oxide having a spinel structure capable of inserting and extracting lithium is used as a main positive electrode active material, and a carbon material is used as a main component. In the non-aqueous electrolyte secondary battery used for the negative electrode active material, the positive electrode contains a scavenger that traps manganese. In the second invention, the scavenger that traps manganese is lithium phosphate or lithium tungstate. , Lithium silicate, aluminite, lithium borate, lithium molybdate, characterized in that it contains at least one or more selected from the group of cation exchange resin, in the third invention the amount of the trapping agent for trapping manganese is added Is 0.1 to 10% with respect to the weight of the positive electrode active material.

【0006】[0006]

【発明の実施の形態】本発明に用いた捕捉剤は、充放電
中あるいは放置中に正極活物質からマンガンイオンが電
解液中に溶出する前に早期に捕捉することにより、充放
電サイクル特性、放置特性に優れた非水電解液二次電池
を提供することを目的とするものである。本発明の正極
活物質としては、スピネル構造を有したリチウムマンガ
ン複合酸化物を用いた。なお、負極活物質としてはリチ
ウム金属、リチウムーアルミニウムなどのリチウム合
金、または、リチウムイオンを吸蔵・放出可能な炭素材
が用いられる。また、非水溶媒としては、エチレンカー
ボネイト、プロピレンカーボネイト、ブチレンカーボネ
イト、ジメチルカーボネイト、γ―ブチロラクトン、ア
セトニトリル、スルホラン、1,2−ヂメトキシエタ
ン、1,3−ジメトキシプロパン、ジメチルエーテル、
テトラヒドロプラン、2−メチルテトラヒドロプラン、
炭酸ジメチル、炭酸ジエチル、及びエチルメチルカーボ
ネイトなどから選ばれた単独もしくは二種類以上の混合
溶媒が使用できると挙げることができる。前記電解質と
しては、たとえば、過塩素酸リチウム(LiClO
4)、六フッ化燐酸リチウム(LiPF6)、ホウフッ
化リチウム(LiBF4)、六フッ化ヒ素リチウム(L
iAsF6)、トリフルオロメタンスルホン酸リチウム
(LiCF3 SO3)などのリチウム塩を挙げること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The scavenger used in the present invention has a charge / discharge cycle characteristic which is obtained by capturing manganese ions from a positive electrode active material early before elution into an electrolytic solution during charge / discharge or during standing. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery having excellent storage characteristics. A lithium manganese composite oxide having a spinel structure was used as the positive electrode active material of the present invention. As the negative electrode active material, lithium metal, a lithium alloy such as lithium-aluminum, or a carbon material capable of inserting and extracting lithium ions is used. As the non-aqueous solvent, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, γ-butyrolactone, acetonitrile, sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether,
Tetrahydroplan, 2-methyltetrahydroplan,
It can be mentioned that a single solvent or a mixed solvent of two or more kinds selected from dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate and the like can be used. Examples of the electrolyte include lithium perchlorate (LiClO 2).
4), lithium hexafluorophosphate (LiPF6), lithium borofluoride (LiBF4), lithium arsenic hexafluoride (L
Examples thereof include lithium salts such as iAsF6) and lithium trifluoromethanesulfonate (LiCF3SO3).

【0007】1.正極 正極活物質としては、平均粒径10μmのリチウムマン
ガン複合酸化物、導電助剤としては平均粒径3μmの炭
素粉末、結着剤としてポリフッ化ビニリデン(以下、P
VdFと略す)とを85:9:6の重量%で混合する。
本発明では、後述するようし、この混合物にマンガンイ
オンを捕捉可能な物質を添加した。そこに、N−メチル
−2−ピロリドンを投入混合して、スラリー状の溶液を
作製する。厚み20μmのアルミニウム箔の両面にこの
スラリーを塗布し、溶剤を乾燥した後、ローラプレス機
にて圧延し、54mm幅で長さが450mmに切断して
短細状の正極を作製した。
1. Positive electrode As a positive electrode active material, a lithium manganese composite oxide having an average particle size of 10 μm, as a conductive additive, carbon powder having an average particle size of 3 μm, and as a binder, polyvinylidene fluoride (hereinafter, P
(Abbreviated as VdF) at a weight ratio of 85: 9: 6.
In the present invention, as described later, a substance capable of capturing manganese ions was added to this mixture. N-methyl-2-pyrrolidone is charged and mixed therein to prepare a slurry-like solution. This slurry was applied to both sides of an aluminum foil having a thickness of 20 μm, the solvent was dried, and the product was rolled by a roller press machine and cut into a short thin positive electrode by cutting it into a width of 54 mm and a length of 450 mm.

【0008】2.負極 負極活物質としては平均粒径20μmの炭素材料とポリ
フッ化ビニリデン(PVdF)の結着剤を92:8の重
量%で混合し、N−メチル−2−ピロリドンを投入混合
して、スラリー状の溶液を作製する。厚み10μmの銅
箔の両面にこのスラリーを塗布し、溶剤を乾燥した後、
ローラプレス機にて圧延して、負極合剤電極を作製し、
その後56mm幅で、長さが490mmに切断して短冊
状の負極を作製した。
2. Negative electrode As a negative electrode active material, a carbon material having an average particle size of 20 μm and a binder of polyvinylidene fluoride (PVdF) are mixed in a weight ratio of 92: 8, and N-methyl-2-pyrrolidone is added and mixed to form a slurry. To prepare a solution. After applying this slurry to both sides of a copper foil with a thickness of 10 μm and drying the solvent,
Roll with a roller press to produce a negative electrode mixture electrode,
Then, a strip-shaped negative electrode was produced by cutting it into a width of 56 mm and a length of 490 mm.

【0009】3.電池 上記した方法で作製した正極と負極とを厚さ40μm、
幅58mmのポリエチレン微多孔膜からなるセパレータ
を介して捲回し、スパイラル状の捲回群を作製する。こ
の捲回群を電池缶に挿入し、予め負極集電体の銅箔に溶
接しておいたニッケルタブ端子を電池缶底に溶接する。
次にエチレンカーボネートとジメチルカーボネートを体
積比で1:2に混合した溶液にLiPF6を1mol/
lの濃度で溶解した電解液を5ml注入した。次に、予
め正極集電体のアルミニウム箔に溶接したアルミニウム
製のタブ端子を蓋に溶接して、蓋を絶縁性のガスケット
を介して電池缶の上部に配置させ、この部分をかしめて
密閉し、直径18mm、高さ65mmの円筒型電池を作
製した。
3. Battery A positive electrode and a negative electrode produced by the above-mentioned method have a thickness of 40 μm,
Winding is performed through a separator made of a polyethylene microporous film having a width of 58 mm to produce a spiral winding group. This winding group is inserted into a battery can, and a nickel tab terminal previously welded to the copper foil of the negative electrode current collector is welded to the bottom of the battery can.
Next, 1 mol / mL of LiPF6 was added to a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2.
5 ml of an electrolytic solution dissolved at a concentration of 1 was injected. Next, an aluminum tab terminal previously welded to the aluminum foil of the positive electrode current collector is welded to the lid, and the lid is placed on the top of the battery can through the insulating gasket, and this portion is caulked and sealed. A cylindrical battery having a diameter of 18 mm and a height of 65 mm was produced.

【0010】4.初期充放電試験 作製した電池を25℃にて24時間放置後、初期の充放
電試験をした。すなわち、充放電条件として、充電電圧
4.2V(ただし、制限電流900mA)で4時間充電
した後、放電電流300mAで放電終止電圧2.7Vの
条件下で10サイクル行った。
4. Initial Charge / Discharge Test After leaving the manufactured battery at 25 ° C. for 24 hours, an initial charge / discharge test was performed. That is, as charging / discharging conditions, after charging for 4 hours at a charging voltage of 4.2 V (however, a limiting current of 900 mA), 10 cycles were performed under a condition of a discharging current of 300 mA and a discharge end voltage of 2.7 V.

【0011】5.サイクル試験 初期充放電試験をした電池の一部は、50℃にて充電電
流900mAで充電終止電圧4.2V、放電電流300
mAにて放電終止電圧2.7Vの条件下で充放電サイク
ル試験を行った。100サイクル充放電後の電池を分解
し、電解液中へのマンガンイオン量及び負極合剤中のマ
ンガン量を測定した。
5. Cycle test Some of the batteries that have been subjected to the initial charge / discharge test have a charge current of 900 mA at 50 ° C, a charge end voltage of 4.2 V, and a discharge current of 300.
A charge / discharge cycle test was performed under the condition of a discharge end voltage of 2.7 V at mA. The battery after 100 cycles of charge and discharge was disassembled and the amount of manganese ions in the electrolytic solution and the amount of manganese in the negative electrode mixture were measured.

【0012】6.放置試験 初期充放電試験をした電池の一部は、充電状態で50
℃、14日間放置し、その後電池を分解し、電解液中へ
のマンガンイオン量、負極合剤中のマンガン量を測定し
た。
6. Leaving test Some of the batteries that have been subjected to the initial charge / discharge test are 50% charged.
After leaving it at 14 ° C. for 14 days, the battery was disassembled, and the amount of manganese ions in the electrolytic solution and the amount of manganese in the negative electrode mixture were measured.

【0013】[0013]

【実施例】本発明を実施例及び比較例により、詳細に説
明する。但し、本発明はこれらに限定されるものではな
い。
EXAMPLES The present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to these.

【0014】(実施例1、2)前記した、正極用スラリ
ー中にマンガンイオンを捕捉可能な物質として燐酸リチ
ウムを正極活物質に対して1%添加た。その他の負極、
電池の製造条件等は前記したものである。
Examples 1 and 2 1% of lithium phosphate as a substance capable of capturing manganese ions was added to the positive electrode active material in the positive electrode slurry. Other negative electrodes,
The battery manufacturing conditions and the like are as described above.

【0015】(比較例1、2)比較例として、燐酸リチ
ウムを添加していない正極に用いた。その他の負極、電
池の製造条件等は前記したものである。
(Comparative Examples 1 and 2) As comparative examples, a positive electrode to which lithium phosphate was not added was used. Other negative electrodes, battery manufacturing conditions and the like are as described above.

【0016】前記した、50℃にて充放電サイクル試験
を行い、容量維持率(初期放電容量に対する100サイ
クル充放電後の放電容量)、電解液中のマンガンイオン
量及び負極合剤中のマンガン量を測定した結果を表1に
示す。表1より本発明を用いると容量維持率が高く、電
解液中のマンガンイオン量や負極合剤中のマンガン量を
抑えることができる。
The above-mentioned charge / discharge cycle test was carried out at 50 ° C., and the capacity retention ratio (discharge capacity after 100 cycles of charge / discharge with respect to the initial discharge capacity), the amount of manganese ions in the electrolytic solution and the amount of manganese in the negative electrode mixture. Table 1 shows the result of measurement. From Table 1, when the present invention is used, the capacity retention rate is high, and the amount of manganese ions in the electrolytic solution and the amount of manganese in the negative electrode mixture can be suppressed.

【0017】[0017]

【表1】 [Table 1]

【0018】前記した、充電状態で50℃、14日間放
置した後に電池を分解し、電解液中のマンガンイオン
量、負極合剤中のマンガン量を測定した結果を表2に示
す。表2より本発明を用いると放置後における電解液中
のマンガンイオン量や負極合剤中のマンガン量を抑える
ことができる。
Table 2 shows the results of measuring the amount of manganese ions in the electrolytic solution and the amount of manganese in the negative electrode mixture after disassembling the battery after leaving it in the charged state at 50 ° C. for 14 days. From Table 2, when the present invention is used, the amount of manganese ions in the electrolytic solution and the amount of manganese in the negative electrode mixture after standing can be suppressed.

【0019】[0019]

【表2】 [Table 2]

【0020】(実施例3〜7)マンガンイオンの補捉剤
として燐酸リチウムを用い、正極活物質量に対して0.
01、0.1、5、10、20%添加した電池を作製し
て試験した。
(Examples 3 to 7) Lithium phosphate was used as a scavenger of manganese ions, and the amount of the positive electrode active material was set to 0.
Batteries with additions of 01, 0.1, 5, 10, 20% were prepared and tested.

【0021】比較例1を100とした場合の初期放電容
量及び50℃にて100サイクルの充放電試験を行い、
電解液中のマンガンイオン量及び負極合剤中のマンガン
量を測定した結果を表3に示す。捕捉剤として用いた燐
酸リチウムの添加量は、活物質重量に対して0.1から
20%で効果が認められるが、添加量が多くなると電池
の容量が減少するため、好ましくは0.1〜10%添加
することが望ましい。
A charge / discharge test was conducted for 100 cycles at an initial discharge capacity and 50 ° C. when Comparative Example 1 was set to 100,
Table 3 shows the measurement results of the amount of manganese ions in the electrolytic solution and the amount of manganese in the negative electrode mixture. The amount of lithium phosphate used as a scavenger is 0.1 to 20% based on the weight of the active material, and the effect is recognized. It is desirable to add 10%.

【0022】[0022]

【表3】 [Table 3]

【0023】(実施例8)補捉剤として、タングステン
酸リチウムの添加量を正極活物質量に対して1%添加し
た。それ以外は実施例1と同様の円筒型電池を作製し
た。
(Example 8) As a scavenger, 1% of lithium tungstate was added to the positive electrode active material. A cylindrical battery was manufactured in the same manner as in Example 1 except for the above.

【0024】 (実施例9) 捕捉剤として、タングステン酸リチウムの添加量を正極
活物質量に対して0.1%添加した。それ以外は実施例
1と同様の円筒型電池を作製した。
Example 9 As a scavenger, the amount of lithium tungstate added was 0.1% with respect to the amount of the positive electrode active material. A cylindrical battery was manufactured in the same manner as in Example 1 except for the above.

【0025】(実施例10)補捉剤として、珪酸リチウ
ムの添加量を正極活物質量に対して1%添加した。それ
以外は実施例1と同様の円筒型電池を作製した。
Example 10 As a trapping agent, the amount of lithium silicate added was 1% with respect to the amount of the positive electrode active material. A cylindrical battery was manufactured in the same manner as in Example 1 except for the above.

【0026】(実施例11)補捉剤として、アルミナイ
トの添加量を正極活物質量に対して1%添加した。それ
以外は実施例1と同様の円筒型電池を作製した。
(Example 11) As a scavenger, 1% of an aluminite was added to the amount of the positive electrode active material. A cylindrical battery was manufactured in the same manner as in Example 1 except for the above.

【0027】(実施例12)補捉剤として、ホウ酸リチ
ウムの添加量を正極活物質量に対して1%添加した。そ
れ以外は実施例1と同様の円筒型電池を作製した。
(Example 12) As a scavenger, 1% of lithium borate was added to the positive electrode active material. A cylindrical battery was manufactured in the same manner as in Example 1 except for the above.

【0028】(実施例13)補捉剤として、モリブデン
酸リチウムの添加量を正極活物質量に対して添加1%に
した。それ以外は実施例1と同様の円筒型電池を作製し
た。
Example 13 As a trapping agent, the amount of lithium molybdate added was 1% with respect to the amount of the positive electrode active material. A cylindrical battery was manufactured in the same manner as in Example 1 except for the above.

【0029】(実施例14)補捉剤として、陽イオン交
換樹脂(R−CH2SO3H型)としての添加量を正極
活物質量に対して1%添加した。それ以外は実施例1と
同様の円筒型電池を作製した。
(Example 14) As a scavenger, 1% of a cation exchange resin (R-CH2SO3H type) was added to the positive electrode active material. A cylindrical battery was manufactured in the same manner as in Example 1 except for the above.

【0030】(実施例15)補捉剤として、陽イオン交
換樹脂(R−SO3H型)の添加量を正極活物質量に対
して1%添加した。それ以外は実施例1と同様の円筒型
電池を作製した。
(Example 15) As a trapping agent, 1% of a cation exchange resin (R-SO3H type) was added to the positive electrode active material. A cylindrical battery was manufactured in the same manner as in Example 1 except for the above.

【0031】以上、(実施例8〜15)について初期充
放電試験をした後、50℃にて100サイクルの充放電
試験を行い、電解液中のマンガンイオン量及び負極合剤
中のマンガン量を測定した結果を表4に示す。(実施例
8〜15)においても、電解液中のマンガンイオン量及
び負極合剤中のマンガン量ともに比較例1より少ないこ
とが確認された。
After carrying out the initial charge / discharge test on (Examples 8 to 15) as described above, a charge / discharge test was conducted at 50 ° C. for 100 cycles to determine the amount of manganese ions in the electrolytic solution and the amount of manganese in the negative electrode mixture. Table 4 shows the measurement results. Also in (Examples 8 to 15), it was confirmed that both the amount of manganese ions in the electrolytic solution and the amount of manganese in the negative electrode mixture were smaller than those in Comparative Example 1.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】上述したように本発明を用いると、電解
液中のマンガンイオン量及び負極中のマンガン量を少な
くでき、充放電サイクル及び放置特性に優れた非水電解
液二次電池を提供することができる。また、本実施例で
は円筒型電池を例に記載しているが、角型、コイン型
等、種々の形状の電池に適用できる。
As described above, by using the present invention, the amount of manganese ions in the electrolytic solution and the amount of manganese in the negative electrode can be reduced, and a non-aqueous electrolytic solution secondary battery excellent in charge / discharge cycle and leaving characteristics is provided. can do. Further, although a cylindrical battery is described as an example in the present embodiment, it can be applied to batteries having various shapes such as a prismatic type and a coin type.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東本 晃二 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 (56)参考文献 特開 平8−213016(JP,A) 特開 平9−259863(JP,A) 特開 平9−265984(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Koji Higashimoto 2-8-7 Nihonbashihonmachi, Chuo-ku, Tokyo Inside Shin-Kobe Electric Machinery Co., Ltd. (56) Reference JP-A-8-213016 (JP, A) JP Hei 9-259863 (JP, A) JP 9-265984 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/00-4/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムを吸蔵・放出可能なスピネル構造
を有するリチウムマンガン複合酸化物を主たる正極活物
質とし、炭素材を主たる負極活物質に使用する非水電解
液二次電池において、正極中にマンガンを捕捉する捕捉
剤を含むことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery in which a lithium manganese composite oxide having a spinel structure capable of inserting and extracting lithium is used as a main positive electrode active material, and a carbon material is used as a main negative electrode active material. A non-aqueous electrolyte secondary battery comprising a scavenger that traps manganese.
【請求項2】前記マンガンを捕捉する捕捉剤が燐酸リチ
ウム、タングステン酸リチウム、珪酸リチウム、アルミ
ナイト、ホウ酸リチウム、モリブデン酸リチウム、陽イ
オン交換樹脂の群から選ばれる少なくとも一種類以上を
含むことを特徴とする請求項1記載の非水電解液二次電
池。
2. The capture agent for capturing manganese contains at least one selected from the group consisting of lithium phosphate, lithium tungstate, lithium silicate, aluminite, lithium borate, lithium molybdate, and cation exchange resin. The non-aqueous electrolyte secondary battery according to claim 1.
【請求項3】前記マンガンを捕捉する捕捉剤の添加量
が、正極活物質重量に対して0.1から10%であるこ
とを特徴とする請求項1記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of the trapping agent that traps manganese is 0.1 to 10% based on the weight of the positive electrode active material.
JP17884198A 1998-06-25 1998-06-25 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3491529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17884198A JP3491529B2 (en) 1998-06-25 1998-06-25 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17884198A JP3491529B2 (en) 1998-06-25 1998-06-25 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000011996A JP2000011996A (en) 2000-01-14
JP3491529B2 true JP3491529B2 (en) 2004-01-26

Family

ID=16055611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17884198A Expired - Fee Related JP3491529B2 (en) 1998-06-25 1998-06-25 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3491529B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342595A (en) * 2003-04-25 2004-12-02 Nec Tokin Corp Electrode for electrochemical cell, and electrochemical cell using it
JP2005071617A (en) * 2003-08-21 2005-03-17 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
KR100705262B1 (en) 2004-12-07 2007-04-09 주식회사 엘지화학 Nonaqueous electrolyte comprising oxyanion and lithium secondary battery using the same
JP5079461B2 (en) 2007-11-14 2012-11-21 ソニー株式会社 Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US20110292568A1 (en) * 2008-11-28 2011-12-01 Sumitomo Chemical Company, Limited Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
JP2011150873A (en) * 2010-01-21 2011-08-04 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5583419B2 (en) * 2010-02-03 2014-09-03 日立マクセル株式会社 Lithium ion secondary battery
JP5549321B2 (en) * 2010-03-31 2014-07-16 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2012089402A (en) * 2010-10-21 2012-05-10 Hitachi Maxell Energy Ltd Lithium ion secondary battery
JP5623241B2 (en) * 2010-10-29 2014-11-12 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5858295B2 (en) * 2013-08-29 2016-02-10 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10454107B2 (en) 2014-03-20 2019-10-22 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6295324B2 (en) * 2014-06-18 2018-03-14 株式会社日立製作所 Lithium ion battery and manufacturing method thereof
KR101655241B1 (en) 2015-02-24 2016-09-08 주식회사 포스코이에스엠 Manufacturing method of lithium manganese complex oxide coated with lithium polysilicate, lithium manganese complex oxide for lithium rechargeable batteries made by the same, and lithium rechargeable batteries comprising the same
KR102614833B1 (en) * 2015-06-04 2023-12-15 도아고세이가부시키가이샤 Ion scavenger for lithium ion secondary cell, liquid electrolyte, separator, and lithium ion secondary cell
JP6390917B2 (en) * 2015-11-05 2018-09-19 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6848199B2 (en) * 2016-04-06 2021-03-24 住友金属鉱山株式会社 A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
KR102435872B1 (en) * 2016-06-15 2022-08-23 이리카 테크놀로지스 리미티드 Lithium borosilicate glass as electrolyte and electrode protective layer
JP2022013953A (en) * 2018-10-26 2022-01-19 株式会社豊田自動織機 Electrode and solid-type lithium ion secondary battery
US11094998B2 (en) * 2019-06-19 2021-08-17 GM Global Technology Operations LLC Ceramic-coated separators for lithium-containing electrochemical cells and methods of making the same
CN115072703B (en) * 2022-08-02 2024-01-30 洛阳月星新能源科技有限公司 Composite anode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2000011996A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP3491529B2 (en) Non-aqueous electrolyte secondary battery
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPH11121012A (en) Nonaqueous electrolytic battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP3580209B2 (en) Lithium ion secondary battery
JPH09147910A (en) Lithium secondary battery
JP4219187B2 (en) Non-aqueous lithium secondary battery
JP4780361B2 (en) Lithium secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP2000012079A (en) Nonaqueous electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2003229179A (en) Nonaqueous electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP2000012026A (en) Nonaqueous electrolyte secondary battery
JP2003168478A (en) Lithium ion non-aqueous electrolyte secondary battery
JPH09171825A (en) Secondary battery having nonaqueous solvent
EP4078711B1 (en) Electrolyte for li secondary batteries
JP2001196073A (en) Nonaqueous electrolyte battery
JP2000021441A (en) Nonaqueous electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JPH06275269A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3331608B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees