JP5549321B2 - Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5549321B2
JP5549321B2 JP2010080629A JP2010080629A JP5549321B2 JP 5549321 B2 JP5549321 B2 JP 5549321B2 JP 2010080629 A JP2010080629 A JP 2010080629A JP 2010080629 A JP2010080629 A JP 2010080629A JP 5549321 B2 JP5549321 B2 JP 5549321B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010080629A
Other languages
Japanese (ja)
Other versions
JP2011216214A (en
Inventor
務 徳永
和徳 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2010080629A priority Critical patent/JP5549321B2/en
Publication of JP2011216214A publication Critical patent/JP2011216214A/en
Application granted granted Critical
Publication of JP5549321B2 publication Critical patent/JP5549321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池等の非水電解質二次電池用正極活物質及び非水電解質二次電池に関する。特に、高温保存特性が向上し、電池抵抗が低減されるスピネル構造のマンガン酸リチウムからなる非水電解質二次電池用正極活物質及び非水電解質二次電池に関する。 The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery and a non-aqueous electrolyte secondary battery. In particular, the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery made of lithium manganate having a spinel structure with improved high-temperature storage characteristics and reduced battery resistance.

近年、VTR、携帯電話、ノートパソコン等の携帯機器の普及及び小型化が進み、その電源用にリチウムイオン二次電池等の非水電解質二次電池が用いられるようになってきている。更に、最近の環境問題への対応から、電気自動車等の動力用電池としても注目されている。 In recent years, portable devices such as VTRs, mobile phones, and notebook personal computers have been widely used and miniaturized, and non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been used for power supplies. Furthermore, it has been attracting attention as a power battery for electric vehicles and the like due to recent environmental problems.

リチウム二次電池用正極活物質としてはLiCoO(コバルト酸リチウム)が4V級の二次電池を構成できるものとして一般的に広く採用されている。 As a positive electrode active material for a lithium secondary battery, LiCoO 2 (lithium cobaltate) is generally widely adopted as being capable of constituting a 4V class secondary battery.

しかしながら、コバルト酸リチウムはその原材料にコバルトを含む。コバルトは希少資源であり、コストがかかる。そのため、比較的豊富な資源であるマンガンを原材料としたLiMn等のマンガン酸リチウムが検討されている。 However, lithium cobaltate contains cobalt in its raw material. Cobalt is a scarce resource and is expensive. Therefore, lithium manganate such as LiMn 2 O 4 using manganese, which is a relatively abundant resource, as a raw material has been studied.

マンガン酸リチウムはコバルト酸リチウムと同様に4V級の二次電池を構成できるが、導電性が低いため電池の内部抵抗が増大して電池特性が低下するという問題がある。その対策として、カーボンブラック等の導電材を添加して電池の内部抵抗を低減する手法や、マンガン酸リチウムの表面を導電性の高い酸化タングステン等で被覆して正極活物質自体の特性を改善する手法(特許文献1)が用いられている。 Lithium manganate, like lithium cobaltate, can constitute a secondary battery of 4V class, but has a problem that the internal resistance of the battery increases and the battery characteristics deteriorate because of its low conductivity. As countermeasures, a method of reducing the internal resistance of the battery by adding a conductive material such as carbon black, or improving the characteristics of the positive electrode active material itself by covering the surface of lithium manganate with highly conductive tungsten oxide or the like. A technique (Patent Document 1) is used.

また、マンガン酸リチウムは充放電時あるいは高温保存時(特に85℃以上)にMnが電解液に溶出し、結果としてサイクル特性の低下を招く。その対策として、マンガン酸リチウムにCr等のLi、Mn以外の多種元素を含有させてMn溶出を少なくする手法(特許文献2)が用いられている。 In addition, lithium manganate elutes into the electrolyte during charge / discharge or high temperature storage (especially 85 ° C. or more), resulting in deterioration of cycle characteristics. As a countermeasure, a technique (Patent Document 2) is used in which lithium manganate contains various elements other than Li and Mn, such as Cr, to reduce elution of Mn.

特開2005−320184号公報Japanese Patent Laying-Open No. 2005-320184

特開平11−071115号公報JP-A-11-071115

しかしながら、従来のこれらの手法では、リチウム二次電池の内部抵抗の低減と高温保存特性の向上を共に満足する効果が得られず、出力特性やサイクル特性が十分でないことから更なる改良が必要であった。本発明は上述の事情に鑑みなされたものであって、本発明の目的は原料コストが安く、電池抵抗が低減され、高温保存特性が向上した非水電解質二次電池用正極活物質及び非水電解質二次電池を提供することである。 However, these conventional methods cannot achieve the effect of satisfying both the reduction of the internal resistance and the improvement of the high temperature storage characteristics of the lithium secondary battery, and the output characteristics and the cycle characteristics are not sufficient, so further improvement is necessary. there were. The present invention has been made in view of the above circumstances, and the object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte with low raw material costs, reduced battery resistance, and improved high-temperature storage characteristics. An electrolyte secondary battery is provided.

上記目的を達成するために本発明者らは鋭意検討を重ね、本発明を完成するに至った。本発明者らはスピネル構造のマンガン酸リチウムにリチウムホウ素複合酸化物及びリチウムタングステン複合酸化物を存在させることで、電池抵抗が低減され、高温保存特性が向上することを見出した。本発明の特徴は以下の通りである。なお、本発明において、マンガン酸リチウム中のマンガンの一部を他元素で置換したものもまとめてマンガン酸リチウムと呼ぶこととする。 In order to achieve the above object, the present inventors have conducted intensive studies and have completed the present invention. The present inventors have found that the presence of a lithium boron composite oxide and a lithium tungsten composite oxide in spinel lithium manganate reduces battery resistance and improves high-temperature storage characteristics. The features of the present invention are as follows. In the present invention, those obtained by substituting a part of manganese in lithium manganate with other elements are collectively referred to as lithium manganate.

(1)本発明の非水電解質二次電池用正極活物質は、スピネル構造のマンガン酸リチウムからなる非水電解質二次電池用正極活物質において、前記マンガン酸リチウムはリチウムホウ素複合酸化物及びリチウムタングステン複合酸化物を有することを特徴とする。 (1) The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery made of spinel lithium manganate, wherein the lithium manganate includes a lithium boron composite oxide and lithium It has a tungsten composite oxide.

(2)本発明の非水電解質二次電池用正極活物質は、(1)に記載の非水電解質二次電池用正極活物質であって、前記マンガン酸リチウムは少なくとも粒子の表面にリチウムホウ素複合酸化物及びリチウムタングステン複合酸化物が存在することを特徴とする。 (2) The positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention is the positive electrode active material for a nonaqueous electrolyte secondary battery according to (1), wherein the lithium manganate has lithium boron at least on the surface of the particles. A composite oxide and a lithium tungsten composite oxide are present.

(3)本発明の非水電解質二次電池用正極活物質は、(1)又は(2)に記載の非水電解質二次電池用正極活物質であって、前記マンガン酸リチウムは二次粒子を有し、該二次粒子の表面及び内部にリチウムホウ素複合酸化物及びリチウムタングステン複合酸化物が存在することを特徴とする。 (3) The positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention is the positive electrode active material for a nonaqueous electrolyte secondary battery according to (1) or (2), wherein the lithium manganate is a secondary particle. And a lithium boron composite oxide and a lithium tungsten composite oxide are present on the surface and inside of the secondary particles.

(4)本発明の非水電解質二次電池用正極活物質は、(1)乃至(3)に記載の非水電解質二次電池用正極活物質であって、前記リチウムホウ素複合酸化物はホウ酸リチウムであり、前記リチウムタングステン複合酸化物はタングステン酸リチウムであることを特徴とする。 (4) The positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention is the positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of (1) to (3), wherein the lithium boron composite oxide is boron. The lithium tungsten composite oxide is lithium tungstate.

(5)本発明の非水電解質二次電池用正極活物質は、(4)に記載の非水電解質二次電池用正極活物質であって、前記ホウ酸リチウムはLiであり、前記タングステン酸リチウムはLiWOであることを特徴とする。 (5) The positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention is the positive electrode active material for a nonaqueous electrolyte secondary battery according to (4), wherein the lithium borate is Li 2 B 4 O 7 . The lithium tungstate is Li 2 WO 4 .

(6)本発明の非水電解質二次電池用正極活物質は、(1)乃至(5)に記載の非水電解質二次電池用正極活物質であって、前記マンガン酸リチウムのマンガンは、マグネシウム及びアルミニウムからなる群より選ばれる少なくとも一種の元素で置換されてなることを特徴とする。 (6) The positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention is the positive electrode active material for a nonaqueous electrolyte secondary battery according to (1) to (5), wherein the manganese of the lithium manganate is It is substituted with at least one element selected from the group consisting of magnesium and aluminum.

(7)本発明の非水電解質二次電池用正極活物質は、(1)乃至(6)に記載の非水電解質二次電池用正極活物質であって、前記マンガン酸リチウムの組成は一般式
Li1+xMn2−x−y・aLi・bLiWO
(但し、MはMg、Alからなる群より選ばれる少なくとも一種の元素、0≦x≦0.20、0≦y≦0.5、0.0001≦a≦0.005、0.005≦b≦0.1)
で表されることを特徴とする。
(7) The positive electrode active material for a nonaqueous electrolyte secondary battery according to the present invention is the positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of (1) to (6), and the composition of the lithium manganate is generally formula Li 1 + x M y Mn 2 -x-y O 4 · aLi 2 B 4 O 7 · bLi 2 WO 4
(However, M is at least one element selected from the group consisting of Mg and Al, 0 ≦ x ≦ 0.20, 0 ≦ y ≦ 0.5, 0.0001 ≦ a ≦ 0.005, 0.005 ≦ b. ≦ 0.1)
It is represented by.

(8)本発明の非水電解質二次電池は、(1)乃至(7)に記載の非水電解質二次電池用正極活物質を用いた正極活物質層を、帯状正極集電体の少なくとも片面に形成させることにより構成した帯状正極と、
金属リチウム、リチウム合金、リチウムイオンを吸蔵放出可能な炭素材料またはリチウムイオンを吸蔵放出可能な化合物を負極活物質として用いた負極活物質層を、帯状負極集電体の少なくとも片面に形成させることにより構成した帯状負極と、
帯状セパレータとを具備し、
前記帯状正極と前記帯状負極とを前記帯状セパレータを介して積層した状態で複数回巻回させて、前記帯状正極と前記帯状負極との間に前記帯状セパレータが介在している渦巻型の巻回体を構成してなることを特徴とする。
(8) The nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode active material layer using the positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of (1) to (7). A belt-like positive electrode formed by forming on one side;
By forming a negative electrode active material layer using a metallic lithium, a lithium alloy, a carbon material capable of occluding and releasing lithium ions, or a compound capable of occluding and releasing lithium ions as a negative electrode active material on at least one side of a strip-shaped negative electrode current collector A configured negative electrode,
A strip separator,
A spiral-type winding in which the strip-shaped positive electrode and the strip-shaped negative electrode are wound a plurality of times in a state of being laminated via the strip-shaped separator, and the strip-shaped separator is interposed between the strip-shaped positive electrode and the strip-shaped negative electrode It is characterized by comprising a body.

本発明の非水電解質二次電池用正極活物質は上記の特徴を備えているため、高温保存時のマンガン溶出を抑制し、電池抵抗を低減することができる。また、本発明の正極活物質を用いることにより、電池の内部抵抗の低減と高温保存特性の向上を共に満足するリチウム二次電池を得ることができる。さらに、本発明によってコストの安い正極活物質が得られることから、苛酷な環境で使用することが可能で且つ安価な非水電解質二次電池を得ることができる。 Since the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has the above-described characteristics, it can suppress elution of manganese during high-temperature storage and reduce battery resistance. In addition, by using the positive electrode active material of the present invention, it is possible to obtain a lithium secondary battery that satisfies both the reduction of the internal resistance of the battery and the improvement of the high temperature storage characteristics. Furthermore, since a positive electrode active material with a low cost can be obtained by the present invention, a nonaqueous electrolyte secondary battery that can be used in a harsh environment and is inexpensive can be obtained.

図1は実施例3及び比較例7のX線回折図である。FIG. 1 is an X-ray diffraction diagram of Example 3 and Comparative Example 7. 図2は本発明において求めた内部抵抗の概念図である。FIG. 2 is a conceptual diagram of the internal resistance obtained in the present invention. 図3は実施例1の走査型電子顕微鏡(SEM)写真である。FIG. 3 is a scanning electron microscope (SEM) photograph of Example 1. 図4は電子線マイクロアナライザ(EPMA)のマップ図である。FIG. 4 is a map of an electron beam microanalyzer (EPMA). 図5は電池抵抗と正極活物質のb値との関係を示す図である。FIG. 5 is a graph showing the relationship between the battery resistance and the b value of the positive electrode active material. 図6はMn溶出量と正極活物質のb値との関係を示す図である。FIG. 6 is a graph showing the relationship between the Mn elution amount and the b value of the positive electrode active material.

以下、本発明の正極活物質について、実施の形態及び実施例を用いて詳細に説明する。但し、本発明はこれら実施の形態及び実施例に限定されるものではない。 Hereinafter, the positive electrode active material of the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to these embodiments and examples.

本発明の正極活物質は、リチウムホウ素複合酸化物及びリチウムタングステン複合酸化物を有するスピネル構造のマンガン酸リチウムからなる正極活物質である。前記マンガン酸リチウムは、少なくとも粒子の表面にリチウムホウ素複合酸化物及びリチウムタングステン複合酸化物が存在することが好ましく、二次粒子を有し、該二次粒子の表面及び内部にリチウムホウ素複合酸化物及びリチウムタングステン複合酸化物が存在することがより好ましい。前記リチウムホウ素複合酸化物はホウ酸リチウムであることが好ましく、ホウ酸リチウムとしてはメタホウ酸リチウム、四ホウ酸リチウム、五ホウ酸リチウムが好ましく、Liで表される四ホウ酸リチウムがより好ましい。また、前記リチウムタングステン複合酸化物はタングステン酸リチウムであることが好ましく、LiWOであることがより好ましい。リチウムとマンガンとタングステンを含む原料中にホウ素を含有させた原料混合物を焼成することにより、リチウムホウ素複合酸化物及びリチウムタングステン複合酸化物が形成され、電池抵抗を低減することができ、高温保存時のマンガン溶出を抑制することができる。これに対し、原料中にホウ素を含有させずに原料混合物を焼成すると、マンガンタングステン複合酸化物が形成されるため、電池抵抗を低減する効果や高温保存時のマンガン溶出を抑制する効果は非常に小さくなってしまう。なお、原料中のリチウム、マンガン、タングステン及びホウ素の添加量は、目的のリチウムホウ素複合酸化物及びリチウムタングステン複合酸化物が形成されるように調整する。 The positive electrode active material of the present invention is a positive electrode active material composed of lithium manganate having a spinel structure having a lithium boron composite oxide and a lithium tungsten composite oxide. The lithium manganate preferably includes at least a lithium boron composite oxide and a lithium tungsten composite oxide on the surface of the particles, and has secondary particles, and the lithium boron composite oxide on the surfaces and inside of the secondary particles. More preferably, a lithium tungsten composite oxide is present. The lithium boron complex oxide is preferably lithium borate, and lithium borate is preferably lithium metaborate, lithium tetraborate, or lithium pentaborate, and tetraborate represented by Li 2 B 4 O 7 Lithium is more preferred. The lithium tungsten composite oxide is preferably lithium tungstate, and more preferably Li 2 WO 4 . By firing a raw material mixture containing boron in a raw material containing lithium, manganese and tungsten, a lithium boron composite oxide and a lithium tungsten composite oxide are formed, battery resistance can be reduced, and storage at high temperatures Of manganese can be suppressed. On the other hand, when the raw material mixture is baked without containing boron in the raw material, a manganese tungsten composite oxide is formed. Therefore, the effect of reducing battery resistance and the effect of suppressing manganese elution during high temperature storage are very high. It gets smaller. In addition, the addition amount of lithium, manganese, tungsten, and boron in a raw material is adjusted so that the target lithium boron complex oxide and lithium tungsten complex oxide may be formed.

前記マンガン酸リチウムは、一次粒子及び/又は一次粒子の凝集体である二次粒子を有する。一次粒子径は0.1〜5μmの範囲が好ましく、X線回折装置を用いてラインブロードニング法により結晶子サイズとして求められる。二次粒子径は6〜30μmの範囲が好ましく、レーザー回折装置を用いてレーザー回折散乱法により、体積分布での粒径分布において50%累積径として求められる。このような粒径範囲において本発明の好ましい効果が得られる。 The lithium manganate has secondary particles that are primary particles and / or aggregates of primary particles. The primary particle diameter is preferably in the range of 0.1 to 5 μm, and is determined as the crystallite size by a line broadening method using an X-ray diffractometer. The secondary particle diameter is preferably in the range of 6 to 30 μm, and is determined as a 50% cumulative diameter in the particle size distribution in the volume distribution by a laser diffraction scattering method using a laser diffractometer. A preferable effect of the present invention is obtained in such a particle size range.

本発明の正極活物質は、前記マンガン酸リチウムのマンガンの一部が他の金属元素、例えば、Mg、Al、Cr、Fe、Zr、Co、Niなどの金属元素で置換されていても良く、合計でマンガンの25mol%まで置換可能である。置換量が25mol%を超えるとマンガン酸リチウムのスピネル構造の歪みが大きくなってしまうので好ましくない。特に好ましい置換元素はMgとAlであり、これらの元素で置換することによりサイクル特性や負荷特性の向上が可能である。 In the positive electrode active material of the present invention, a part of the manganese of the lithium manganate may be replaced with another metal element, for example, a metal element such as Mg, Al, Cr, Fe, Zr, Co, Ni, A total of 25 mol% of manganese can be substituted. If the substitution amount exceeds 25 mol%, the distortion of the spinel structure of lithium manganate becomes large, which is not preferable. Particularly preferred substitution elements are Mg and Al. By substitution with these elements, cycle characteristics and load characteristics can be improved.

本発明の正極活物質は、前記マンガン酸リチウムの組成は一般式
Li1+xMn2−x−y・aLi・bLiWO
(但し、MはMg、Alからなる群より選ばれる少なくとも一種の元素、0≦x≦0.20、0≦y≦0.5、0.0001≦a≦0.005、0.001≦b≦0.1)で表されることが特に好ましい。このような組成を有するマンガン酸リチウムは、電池抵抗を低減する効果や高温保存時のマンガン溶出を抑制する効果がさらに向上する。x値は0≦x≦0.15の範囲がより好ましく、y値は0≦y≦0.3の範囲がより好ましく、0≦y≦0.2の範囲がさらに好ましい。この範囲においてさらに効果が大きくなる。a値は一次粒子径の大きさにも関係するため、0.0003≦a≦0.003の範囲がより好ましい。また、b値は0.005≦b≦0.05の範囲がより好ましい。
The positive electrode active material of the present invention, the composition of the lithium manganate general formula Li 1 + x M y Mn 2 -x-y O 4 · aLi 2 B 4 O 7 · bLi 2 WO 4
(However, M is at least one element selected from the group consisting of Mg and Al, 0 ≦ x ≦ 0.20, 0 ≦ y ≦ 0.5, 0.0001 ≦ a ≦ 0.005, 0.001 ≦ b. ≦ 0.1) is particularly preferable. The lithium manganate having such a composition further improves the effect of reducing battery resistance and the effect of suppressing elution of manganese during high temperature storage. The x value is more preferably in the range of 0 ≦ x ≦ 0.15, the y value is more preferably in the range of 0 ≦ y ≦ 0.3, and further preferably in the range of 0 ≦ y ≦ 0.2. In this range, the effect is further increased. Since the value a is also related to the size of the primary particle diameter, the range of 0.0003 ≦ a ≦ 0.003 is more preferable. The b value is more preferably in the range of 0.005 ≦ b ≦ 0.05.

[正極活物質の製造]
本発明の正極活物質は、例えば次のようにして製造することができる。
[Production of positive electrode active material]
The positive electrode active material of the present invention can be produced, for example, as follows.

リチウム化合物、マンガン化合物、タングステン化合物、ホウ素化合物、必要に応じて置換金属元素の化合物を目的の組成となるように秤量し、混合する。 A lithium compound, a manganese compound, a tungsten compound, a boron compound, and if necessary, a compound of a substituted metal element are weighed and mixed so as to have a target composition.

リチウム化合物は酸化物や、水酸化物、炭酸塩、硝酸塩等の加熱分解して酸化物となる物質が使用できる。例えば、Li2O、LiOH、Li2CO3、LiNO3などが使用できる。 As the lithium compound, oxides, hydroxides, carbonates, nitrates, and the like can be used which are decomposed by heating to become oxides. For example, Li 2 O, LiOH, Li 2 CO 3 , LiNO 3 and the like can be used.

マンガン化合物は酸化物や、水酸化物、炭酸塩、硝酸塩等の加熱分解して酸化物となる物質が使用できる。例えば、MnO2、Mn23、Mn34、Mn(OH)2、MnCO3などが使用できる。 As the manganese compound, oxides, hydroxides, carbonates, nitrates, and the like can be used which are decomposed by heating to become oxides. For example, such MnO 2, Mn 2 O 3, Mn 3 O 4, Mn (OH) 2, MnCO 3 can be used.

マンガンの一部を他の金属元素で置換する場合も、同様に、酸化物や、水酸化物、炭酸塩、硝酸塩等の加熱分解して酸化物となる物質が使用できる。例えば、置換元素がマグネシウムの場合はMgO、Mg(OH)2、MgCO3、Mg(NO32などが使用でき、アルミニウムの場合はAl23、Al(OH)、Al(NO3などが使用できる。また、マンガンと置換金属元素を同時に溶解して水溶液とし、水酸化物や炭酸塩などで共沈させた後、沈殿物を加熱分解して得られる共沈酸化物を使用するのが好ましい。 Similarly, when a part of manganese is substituted with another metal element, oxides, hydroxides, carbonates, nitrates, and other substances that are decomposed by heating can be used. For example, when the substitution element is magnesium, MgO, Mg (OH) 2 , MgCO 3 , Mg (NO 3 ) 2, etc. can be used, and when aluminum is used, Al 2 O 3 , Al (OH) 3 , Al (NO 3). 3 etc. can be used. Further, it is preferable to use a coprecipitated oxide obtained by dissolving manganese and a substituted metal element at the same time to form an aqueous solution, coprecipitating with a hydroxide or carbonate, and then thermally decomposing the precipitate.

タングステン化合物は、酸化物、タングステン酸、タングステン酸塩等、例えば、WO3、H2WO、LiWOなどが使用できる。 As the tungsten compound, oxide, tungstic acid, tungstate, etc., for example, WO 3 , H 2 WO 4 , Li 2 WO 4 and the like can be used.

ホウ素化合物としては、酸化物、ホウ酸、ホウ酸塩等、例えば、B23、HBO3、Liなどが使用できる。ホウ素化合物はフラックスとしても機能し、添加量が多いと一次粒子径が大きくなってしまうため、ホウ素換算で正極活物質に対して0.04mol%〜2mol%、より好ましくは0.12mol%〜1.2mol%添加する。 As the boron compound, oxides, boric acid, borates and the like, for example, B 2 O 3 , H 3 BO 3 , Li 2 B 4 O 7 and the like can be used. The boron compound also functions as a flux, and when the addition amount is large, the primary particle size becomes large. Therefore, the boron compound is 0.04 mol% to 2 mol%, more preferably 0.12 mol% to 1 based on the positive electrode active material in terms of boron. Add 2 mol%.

次に、原料混合物を焼成する。焼成温度、時間、雰囲気等は特に限定されず、目的に応じて適宜決定することができる。焼成温度は650℃以上であるのが好ましく、700℃以上であるのがより好ましい。焼成温度が低すぎると、未反応の原料が正極活物質に残留し、正極活物質の本来の特徴を生かせない場合がある。また、焼成温度は、1100℃以下であるのが好ましく、950℃以下であるのがより好ましい。焼成温度が高すぎると、正極活物質の粒径が大きくなりすぎて、充放電特性が低下する場合がある。また、LiMnO、LiMnO等の副生成物が生成しやすくなり、単位重量あたりの放電容量の低下、サイクル特性の低下、動作電圧の低下を招く場合がある。焼成時間は1〜48時間であるのが好ましく、6〜30時間がより好ましい。焼成時間が短すぎると、原料粒子間の拡散反応が進行しない。焼成時間が長すぎるのはエネルギーの無駄になるし、また、焼結による粗大粒子が形成されてしまう場合がある。 Next, the raw material mixture is fired. The firing temperature, time, atmosphere, etc. are not particularly limited, and can be appropriately determined according to the purpose. The firing temperature is preferably 650 ° C. or higher, and more preferably 700 ° C. or higher. If the firing temperature is too low, unreacted raw materials may remain in the positive electrode active material, and the original characteristics of the positive electrode active material may not be utilized. The firing temperature is preferably 1100 ° C. or lower, and more preferably 950 ° C. or lower. If the firing temperature is too high, the particle size of the positive electrode active material may become too large, and the charge / discharge characteristics may deteriorate. In addition, by-products such as Li 2 MnO 3 and LiMnO 2 are likely to be generated, which may lead to a decrease in discharge capacity per unit weight, a decrease in cycle characteristics, and a decrease in operating voltage. The firing time is preferably 1 to 48 hours, and more preferably 6 to 30 hours. When the firing time is too short, the diffusion reaction between the raw material particles does not proceed. If the firing time is too long, energy is wasted and coarse particles may be formed by sintering.

以下に実施例を示して本発明を具体的に説明するが、本発明はこれらに限られるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[正極活物質の作製] [Preparation of positive electrode active material]

純水中に硫酸アルミニウム、硫酸マンガンをAl:Mn=0.5:9.5となるよう溶解し、12.5体積%のアンモニア水を滴下してpH8以上に調整する。次に炭酸ガスを吹き込み、アルミニウムとマンガンの共沈炭酸塩を得る。得られた共沈炭酸塩を分離、乾燥し、560℃で約3時間熱処理し、アルミニウム−マンガン共沈酸化物を得る。得られたアルミニウム−マンガン共沈酸化物(0.095Al23・1.805Mn23)1.900mol、炭酸リチウム(Li2CO3)1.122mol、酸化タングステン(WO3)0.020mol、及びホウ酸(HBO3)0.008molを混合し、原料混合物を得る。得られた原料混合物を大気雰囲気中800℃で24時間焼成する。焼成後に粉砕して一般式がLi1.100Al0.095Mn1.805・0.001Li・0.01LiWOで表される正極活物質を得る。なお、正極活物質の組成については、正極活物質を酸で溶解した溶液をICP発光分光分析して求める。 Aluminum sulfate and manganese sulfate are dissolved in pure water so that Al: Mn = 0.5: 9.5, and 12.5% by volume of ammonia water is added dropwise to adjust the pH to 8 or more. Next, carbon dioxide gas is blown to obtain a coprecipitated carbonate of aluminum and manganese. The obtained coprecipitated carbonate is separated, dried, and heat-treated at 560 ° C. for about 3 hours to obtain an aluminum-manganese coprecipitated oxide. Obtained aluminum-manganese coprecipitated oxide (0.095Al 2 O 3 .805Mn 2 O 3 ) 1.900 mol, lithium carbonate (Li 2 CO 3 ) 1.122 mol, tungsten oxide (WO 3 ) 0.020 mol , And boric acid (H 3 BO 3 ) 0.008 mol are mixed to obtain a raw material mixture. The obtained raw material mixture is baked at 800 ° C. for 24 hours in an air atmosphere. Obtaining a positive electrode active material formula by grinding after firing is represented by Li 1.100 Al 0.095 Mn 1.805 O 4 · 0.001Li 2 B 4 O 7 · 0.01Li 2 WO 4. The composition of the positive electrode active material is determined by ICP emission spectroscopic analysis of a solution in which the positive electrode active material is dissolved with an acid.

純水中に硫酸マグネシウム、硫酸マンガンをMg:Mn=0.25:9.75となるよう溶解し、12.5体積%のアンモニア水を滴下してpH8以上に調整する。次に炭酸ガスを吹き込み、マグネシウムとマンガンの共沈炭酸塩を得る。得られた共沈炭酸塩を分離、乾燥し、560℃で約3時間熱処理し、マグネシウム−マンガン共沈酸化物を得る。得られたマグネシウム−マンガン共沈酸化物(0.095MgO・1.8525Mn23)1.9475mol、炭酸リチウム(Li2CO3)1.122mol、酸化タングステン(WO3)0.020mol、及びホウ酸(HBO3)0.008molを混合し、原料混合物を得る。得られた原料混合物を大気雰囲気中800℃で24時間焼成する。焼成後に粉砕して一般式がLi1.100Mg0.0475Mn1.8525・0.001Li・0.01LiWOで表される正極活物質を得る。 Magnesium sulfate and manganese sulfate are dissolved in pure water so that Mg: Mn = 0.25: 9.75, and 12.5 vol% ammonia water is added dropwise to adjust the pH to 8 or more. Next, carbon dioxide gas is blown to obtain a coprecipitated carbonate of magnesium and manganese. The obtained coprecipitated carbonate is separated, dried, and heat-treated at 560 ° C. for about 3 hours to obtain a magnesium-manganese coprecipitated oxide. Magnesium-manganese coprecipitated oxide (0.095MgO · 1.8525Mn 2 O 3 ) 1.9475 mol, lithium carbonate (Li 2 CO 3 ) 1.122 mol, tungsten oxide (WO 3 ) 0.020 mol, and boron 0.008 mol of acid (H 3 BO 3 ) is mixed to obtain a raw material mixture. The obtained raw material mixture is baked at 800 ° C. for 24 hours in an air atmosphere. Obtaining a positive electrode active material formula by grinding after firing is represented by Li 1.100 Mg 0.0475 Mn 1.8525 O 4 · 0.001Li 2 B 4 O 7 · 0.01Li 2 WO 4.

純水中に硫酸マンガンを溶解し、12.5体積%のアンモニア水を滴下してpH8以上に調整する。次に炭酸ガスを吹き込み、マンガンの炭酸塩を得る。得られた炭酸塩を分離、乾燥し、560℃で約3時間熱処理し、マンガン酸化物を得る。得られたマンガン酸化物(Mn23)1.900mol、炭酸リチウム(Li2CO3)1.122mol、酸化タングステン(WO3)0.020mol、及びホウ酸(HBO3)0.008molを混合し、原料混合物を得る。得られた原料混合物を大気雰囲気中800℃で24時間焼成する。焼成後に粉砕して一般式がLi1.100Mn1.900・0.001Li・0.01LiWOで表される正極活物質を得る。 Manganese sulfate is dissolved in pure water, and 12.5% by volume of ammonia water is added dropwise to adjust the pH to 8 or more. Next, carbon dioxide gas is blown to obtain manganese carbonate. The obtained carbonate is separated, dried, and heat-treated at 560 ° C. for about 3 hours to obtain manganese oxide. Obtained manganese oxide (Mn 2 O 3 ) 1.900 mol, lithium carbonate (Li 2 CO 3 ) 1.122 mol, tungsten oxide (WO 3 ) 0.020 mol, and boric acid (H 3 BO 3 ) 0.008 mol Are mixed to obtain a raw material mixture. The obtained raw material mixture is baked at 800 ° C. for 24 hours in an air atmosphere. A positive electrode active material represented by the general formula Li 1.100 Mn 1.900 O 4 .0.001Li 2 B 4 O 7 .0.01Li 2 WO 4 is obtained by pulverization after firing.

マンガン酸化物の代わりに電解酸化マンガン(MnO2)を3.800mol用いることを除いて実施例3と同様の操作を行い、一般式がLi1.100Mn1.900・0.001Li・0.01LiWOで表される正極活物質を得る。 The same operation as in Example 3 was performed except that 3.800 mol of electrolytic manganese oxide (MnO 2 ) was used instead of manganese oxide, and the general formula was Li 1.100 Mn 1.900 O 4 .0.001Li 2. A positive electrode active material represented by B 4 O 7 · 0.01Li 2 WO 4 is obtained.

マンガン酸化物の代わりに水酸化マンガン(Mn(OH)2)を3.800mol用いることを除いて実施例3と同様の操作を行い、一般式がLi1.100Mn1.900・0.001Li・0.01LiWOで表される正極活物質を得る。 The same operation as in Example 3 was performed except that 3.800 mol of manganese hydroxide (Mn (OH) 2 ) was used instead of manganese oxide, and the general formula was Li 1.100 Mn 1.900 O 4 .0. A positive electrode active material represented by .001Li 2 B 4 O 7 · 0.01Li 2 WO 4 is obtained.

[比較例1]
炭酸リチウム(Li2CO3)1.100mol及び電解酸化マンガン(MnO2)3.800molを混合し、原料混合物を得る。得られた原料混合物を大気雰囲気中800℃で24時間焼成する。焼成後に粉砕して一般式がLi1.100Mn1.900で表される正極活物質を得る。
[Comparative Example 1]
Lithium carbonate (Li 2 CO 3 ) 1.100 mol and electrolytic manganese oxide (MnO 2 ) 3.800 mol are mixed to obtain a raw material mixture. The obtained raw material mixture is baked at 800 ° C. for 24 hours in an air atmosphere. A positive electrode active material having a general formula of Li 1.100 Mn 1.900 O 4 is obtained by pulverization after firing.

[比較例2]
炭酸リチウム(Li2CO3)1.120mol、電解酸化マンガン(MnO2)を3.800mol、及び酸化タングステン(WO3)0.020molを混合し、原料混合物を得る。得られた原料混合物を大気雰囲気中800℃で24時間焼成する。焼成後に粉砕して一般式がLi1.100Mn1.900・0.01MnWOで表される正極活物質を得る。
[Comparative Example 2]
Lithium carbonate (Li 2 CO 3 ) 1.120 mol, electrolytic manganese oxide (MnO 2 ) 3.800 mol, and tungsten oxide (WO 3 ) 0.020 mol are mixed to obtain a raw material mixture. The obtained raw material mixture is baked at 800 ° C. for 24 hours in an air atmosphere. A positive electrode active material having a general formula represented by Li 1.100 Mn 1.900 O 4 .0.01MnWO 4 is obtained by pulverizing after firing.

[比較例3]
実施例1と同様の操作を行い、アルミニウム−マンガン共沈酸化物を得る。得られたアルミニウム−マンガン共沈酸化物(0.095Al23・1.805Mn23)1.900mol、炭酸リチウム(Li2CO3)1.102mol及びホウ酸(HBO3)0.008molを混合し、原料混合物を得る。得られた原料混合物を大気雰囲気中800℃で24時間焼成する。焼成後に粉砕して一般式がLi1.100Al0.095Mn1.805・0.001Liで表される正極活物質を得る。
[Comparative Example 3]
The same operation as in Example 1 is performed to obtain an aluminum-manganese coprecipitated oxide. The obtained aluminum-manganese coprecipitated oxide (0.095Al 2 O 3 .805Mn 2 O 3 ) 1.900 mol, lithium carbonate (Li 2 CO 3 ) 1.102 mol and boric acid (H 3 BO 3 ) 0 0.008 mol is mixed to obtain a raw material mixture. The obtained raw material mixture is baked at 800 ° C. for 24 hours in an air atmosphere. A positive electrode active material having a general formula of Li 1.100 Al 0.095 Mn 1.805 O 4 .0.001Li 2 B 4 O 7 is obtained by pulverization after firing.

[比較例4]
実施例2と同様の操作を行い、マグネシウム−マンガン共沈酸化物を得る。得られたマグネシウム−マンガン共沈酸化物(0.095MgO・1.8525Mn23)1.9475mol、炭酸リチウム(Li2CO3)1.102mol及びホウ酸(HBO3)0.008molを混合し、原料混合物を得る。得られた原料混合物を大気雰囲気中800℃で24時間焼成する。焼成後に粉砕して一般式がLi1.100Mg0.0475Mn1.8525・0.001Liで表される正極活物質を得る。
[Comparative Example 4]
The same operation as in Example 2 is performed to obtain a magnesium-manganese coprecipitated oxide. Magnesium-manganese coprecipitated oxide (0.095MgO · 1.8525Mn 2 O 3 ) 1.9475 mol, lithium carbonate (Li 2 CO 3 ) 1.102 mol and boric acid (H 3 BO 3 ) 0.008 mol were obtained. Mix to obtain a raw material mixture. The obtained raw material mixture is baked at 800 ° C. for 24 hours in an air atmosphere. Formula by grinding after firing to obtain a positive electrode active material represented by Li 1.100 Mg 0.0475 Mn 1.8525 O 4 · 0.001Li 2 B 4 O 7.

[比較例5]
実施例3と同様の操作を行い、マンガン酸化物を得る。得られたマンガン酸化物(Mn23)1.900mol、炭酸リチウム(Li2CO3)1.102mol及びホウ酸(HBO3)0.008molを混合し、原料混合物を得る。得られた原料混合物を大気雰囲気中800℃で24時間焼成する。焼成後に粉砕して一般式がLi1.100Mn1.900・0.001Liで表される正極活物質を得る。
[Comparative Example 5]
The same operation as in Example 3 is performed to obtain a manganese oxide. 1.900 mol of the obtained manganese oxide (Mn 2 O 3 ), 1.102 mol of lithium carbonate (Li 2 CO 3 ) and 0.008 mol of boric acid (H 3 BO 3 ) are mixed to obtain a raw material mixture. The obtained raw material mixture is baked at 800 ° C. for 24 hours in an air atmosphere. The positive electrode active material represented by the general formula Li 1.100 Mn 1.900 O 4 .0.001Li 2 B 4 O 7 is obtained by grinding after firing.

[比較例6]
実施例3と同様の操作を行い、マンガン酸化物を得る。得られたマンガン酸化物(Mn23)1.900mol、炭酸リチウム(Li2CO3)1.120mol、酸化タングステン(WO3)0.020molを混合し、原料混合物を得る。得られた原料混合物を大気雰囲気中800℃で24時間焼成する。焼成後に粉砕して一般式がLi1.100Mn1.900・0.01MnWOで表される正極活物質を得る。
[Comparative Example 6]
The same operation as in Example 3 is performed to obtain a manganese oxide. The resulting manganese oxide (Mn 2 O 3 ) 1.900 mol, lithium carbonate (Li 2 CO 3 ) 1.120 mol, and tungsten oxide (WO 3 ) 0.020 mol are mixed to obtain a raw material mixture. The obtained raw material mixture is baked at 800 ° C. for 24 hours in an air atmosphere. A positive electrode active material having a general formula represented by Li 1.100 Mn 1.900 O 4 .0.01MnWO 4 is obtained by pulverizing after firing.

[比較例7]
マンガン酸化物の代わりに水酸化マンガン(Mn(OH)2)を3.800mol用いることを除いて比較例6と同様の操作を行い、一般式がLi1.100Mn1.900・0.01MnWOで表される正極活物質を得る。
[Comparative Example 7]
The same operation as in Comparative Example 6 was performed except that 3.800 mol of manganese hydroxide (Mn (OH) 2 ) was used instead of manganese oxide, and the general formula was Li 1.100 Mn 1.900 O 4 .0. A positive electrode active material represented by .01MnWO 4 is obtained.

[正極活物質の粉末X線回折測定]
実施例3及び比較例7で得られる正極活物質について、理学電気製のX線回折装置(RINT2500V)を使用し、X線源にCuKα線を用いて粉末X線回折(XRD)を測定する。X線回折図を図1に示す。この図から、実施例3及び比較例7で得られる正極活物質はスピネル構造のマンガン酸リチウムからなる正極活物質であることがわかる。また、実施例3で得られる正極活物質にはLiWOが存在し、比較例7で得られる正極活物質にはMnWOが存在することが確認される。なお、LiWOの存在は実施例3だけでなく他の実施例で得られる正極活物質においても確認することができる。
[Powder X-ray diffraction measurement of positive electrode active material]
The positive electrode active material obtained in Example 3 and Comparative Example 7 is measured for powder X-ray diffraction (XRD) using an X-ray diffractometer (RINT 2500V) manufactured by Rigaku Denki and using CuKα rays as an X-ray source. An X-ray diffraction diagram is shown in FIG. This figure shows that the positive electrode active material obtained in Example 3 and Comparative Example 7 is a positive electrode active material made of lithium manganate having a spinel structure. Further, it is confirmed that Li 2 WO 4 is present in the positive electrode active material obtained in Example 3, and that MnWO 4 is present in the positive electrode active material obtained in Comparative Example 7. The presence of Li 2 WO 4 can be confirmed not only in Example 3 but also in the positive electrode active material obtained in other examples.

[正極活物質のSEM写真]
実施例1で得られる正極活物質の走査型電子顕微鏡(SEM)写真を図3に示す。この図から、本発明の正極活物質は一次粒子の凝集体である二次粒子を有することがわかる。
[SEM photograph of positive electrode active material]
A scanning electron microscope (SEM) photograph of the positive electrode active material obtained in Example 1 is shown in FIG. From this figure, it can be seen that the positive electrode active material of the present invention has secondary particles that are aggregates of primary particles.

[正極活物質のEPMA分析]
実施例1で得られる正極活物質について、日本電子製の波長分散型X線分光装置を(WDX)を装備した電子線マイクロアナライザ(EPMA)により、正極活物質の二次粒子の断面を測定し、マップ図を図4に示す。この図から正極活物質の二次粒子の表面及び一次粒子の界面にW元素が存在することが確認される。従って、上記粉末X線回折測定結果よりLiWOの存在が確認されることから、二次粒子の表面及び内部にLiWOが存在することがわかる。
[EPMA analysis of positive electrode active material]
About the positive electrode active material obtained in Example 1, the cross section of the secondary particle of a positive electrode active material was measured with the electron beam microanalyzer (EPMA) equipped with the wavelength dispersion type | mold X-ray-spectrometer made from JEOL (WDX). A map is shown in FIG. From this figure, it is confirmed that W element exists on the surface of the secondary particle of the positive electrode active material and the interface of the primary particle. Therefore, since the presence of Li 2 WO 4 from the powder X-ray diffraction measurement result is confirmed, it can be seen that Li 2 WO 4 is present on the surface and inside of the secondary particles.

[正極活物質の溶出試験]
実施例3で得られる正極活物質について、次の様に溶出試験を行う。純水200gに正極活物質50gを添加し、8時間撹拌した後、スラリーを固液分離し、溶出液をICP分光分析する。また、純水200gに正極活物質50gとジルコニアボール500gを添加し、8時間ボールミル粉砕した後、スラリーを固液分離し、溶出液をICP発光分光分析する。溶出液の分析値とLi及びLiWOの溶出量を表1に示す。ここで、Li及びLiWOの溶出量(%)は、実施例3で得られる正極活物質中のLi量及びLiWO量をそれぞれ100%としたときの溶出割合である。
[Elution test of positive electrode active material]
The positive electrode active material obtained in Example 3 is subjected to a dissolution test as follows. After adding 50 g of the positive electrode active material to 200 g of pure water and stirring for 8 hours, the slurry is subjected to solid-liquid separation, and the eluate is subjected to ICP spectroscopic analysis. Further, after adding 50 g of a positive electrode active material and 500 g of zirconia balls to 200 g of pure water and ball milling for 8 hours, the slurry is subjected to solid-liquid separation, and the eluate is subjected to ICP emission spectral analysis. Table 1 shows analysis values of the eluate and elution amounts of Li 2 B 4 O 7 and Li 2 WO 4 . Here, the elution amount of Li 2 B 4 O 7 and Li 2 WO 4 (%) is, Li 2 B in the positive electrode active material obtained in Example 3 4 O 7 weight and Li 2 WO 4 weight respectively 100% This is the elution ratio.

表1から、ボールミル粉砕した場合、撹拌のみの場合よりもLi及びLiWOの溶出量が多いことがわかる。すなわち、撹拌のみの場合は、主に正極活物質の二次粒子の表面からLi及びLiWOが溶出するが、ボールミル粉砕することによって、正極活物質の二次粒子の表面だけでなく、二次粒子の内部からもLi及びLiWOが溶出していることがわかる。 From Table 1, it can be seen that the amount of Li 2 B 4 O 7 and Li 2 WO 4 eluted is greater when ball milled than when only stirred. That is, in the case of only stirring, Li 2 B 4 O 7 and Li 2 WO 4 are eluted mainly from the surface of the secondary particles of the positive electrode active material, but by ball milling, the secondary particles of the positive electrode active material It can be seen that Li 2 B 4 O 7 and Li 2 WO 4 are eluted not only from the surface but also from the inside of the secondary particles.

従って、上述した測定結果から、本発明の正極活物質は、二次粒子を有し、二次粒子の表面及び内部にLi及びLiWOが存在するスピネル構造のマンガン酸リチウムからなる正極活物質であることがわかる。 Therefore, from the above measurement results, the positive electrode active material of the present invention has secondary particles, and spinel structure manganic acid in which Li 2 B 4 O 7 and Li 2 WO 4 are present on the surface and inside of the secondary particles. It turns out that it is a positive electrode active material which consists of lithium.

[リチウムイオン二次電池の作製]
上記実施例1〜5及び比較例1〜7で得られる正極活物質を用いて、次のようにリチウムイオン二次電池を作製し、各種評価に用いる。
[Production of lithium ion secondary battery]
Using the positive electrode active materials obtained in Examples 1 to 5 and Comparative Examples 1 to 7, lithium ion secondary batteries are prepared as follows and used for various evaluations.

正極活物質の粉末90重量%と、導電剤となる炭素粉末5重量%と、ポリフッ化ビニリデンのノルマルメチルピロリドン溶液(ポリフッ化ビニリデン量として5重量%)とを混練してペーストを調整し、これを正極集電体に塗布し乾燥させて正極板とする。   A paste is prepared by kneading 90% by weight of the positive electrode active material powder, 5% by weight of carbon powder as a conductive agent, and a normal methylpyrrolidone solution of polyvinylidene fluoride (5% by weight as the amount of polyvinylidene fluoride). Is applied to a positive electrode current collector and dried to obtain a positive electrode plate.

負極活物質として炭素材料を用い、正極板の場合と同様の方法で負極板を作製する。   A carbon material is used as the negative electrode active material, and a negative electrode plate is produced in the same manner as in the case of the positive electrode plate.

セパレータとして多孔性プロピレンフィルムを用い、正極板、負極板、及びセパレータを薄いシート状に成形し、これを巻回させて金属円筒状の電池ケースに収納する。電池ケース内に、エチレンカーボネート/メチルエチルカーボネート=3/7(体積比)の混合溶媒にLiPFを1mol/Lの濃度で溶解させてなる非水電解液を注入し、円筒形のリチウムイオン二次電池を得る。 A porous propylene film is used as a separator, and a positive electrode plate, a negative electrode plate, and a separator are formed into a thin sheet shape, which is wound and accommodated in a metal cylindrical battery case. Into the battery case, a nonaqueous electrolytic solution prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate / methyl ethyl carbonate = 3/7 (volume ratio) was injected to form a cylindrical lithium ion solution. Get the next battery.

[電池抵抗(DC−IR)の評価]
以下の要領で電流と電位を測定し、電池抵抗を求める。
[Evaluation of battery resistance (DC-IR)]
Measure current and potential as follows to determine battery resistance.

測定温度25℃において、4.2Vで充電深度50%まで定電圧充電し、パルス放電を行う。パルス時間は10秒、パルス間隔を3分とする。パルス放電時の電流0.04A、0.08A、0.12A、0.16A及び0.20Aについて、充電後の電位とパルス放電時の電位との差(電位差)をパルス放電時の電流で除して測定時のパルス放電時の電流における電池抵抗とする。各パルス放電時の電流における電池抵抗を平均し、最終的な電池抵抗(DC−IR)として評価する(図2参照)。   At a measurement temperature of 25 ° C., constant voltage charging is performed at 4.2 V up to a charging depth of 50%, and pulse discharge is performed. The pulse time is 10 seconds and the pulse interval is 3 minutes. For currents 0.04A, 0.08A, 0.12A, 0.16A, and 0.20A during pulse discharge, the difference between the potential after charging and the potential during pulse discharge (potential difference) is divided by the current during pulse discharge. The battery resistance is the current at the time of pulse discharge during measurement. The battery resistance at the current during each pulse discharge is averaged and evaluated as the final battery resistance (DC-IR) (see FIG. 2).

[高温保存特性の評価]
以下の要領で正極からのマンガン溶出量を測定し、高温保存特性の評価とする。
[Evaluation of high-temperature storage characteristics]
The manganese elution amount from the positive electrode is measured in the following manner to evaluate the high temperature storage characteristics.

レート0.2Cで、4.2Vまで定電流−定電圧充電を行った後2.75Vまで定電流放電を行い、初期放電容量を測定する。その後4.2Vで充電深度40%まで定電圧充電し、80℃の恒温槽で3日間保管する。保管後、恒温槽から取り出し、レート0.2Cで2.75Vまで放電、4.2Vまで充電、2.75Vまで放電を行う。最後の放電終了後、二次電池から負極を取り出し、HCl溶液で負極に含まれるマンガンを抽出する。その溶液を濾過したあと、ICP発光分光分析によって溶出したマンガン量を分析する。   After performing constant current-constant voltage charging to 4.2 V at a rate of 0.2 C, constant current discharging is performed to 2.75 V, and the initial discharge capacity is measured. Thereafter, the battery is charged at a constant voltage of 4.2 V to a charging depth of 40% and stored in a thermostatic bath at 80 ° C. for 3 days. After storage, the battery is taken out from the thermostatic chamber, discharged at a rate of 0.2 C to 2.75 V, charged to 4.2 V, and discharged to 2.75 V. After the final discharge, the negative electrode is taken out from the secondary battery, and manganese contained in the negative electrode is extracted with an HCl solution. After filtering the solution, the amount of manganese eluted by ICP emission spectrometry is analyzed.

実施例1〜5及び比較例1〜7で得られる正極活物質の組成とリチウムイオン二次電池の電池抵抗(DC−IR)及び高温保存特性の評価結果を表2に示す。 Table 2 shows the compositions of the positive electrode active materials obtained in Examples 1 to 5 and Comparative Examples 1 to 7, and the evaluation results of the battery resistance (DC-IR) and high-temperature storage characteristics of the lithium ion secondary batteries.

表2より、本発明の実施例1〜5の正極活物質はLi及びLiWOを含有していることから、LiとLiWOのいずれも含有していない比較例1や、Li又はMnWOを含有している比較例2〜7の正極活物質に比べて、電池抵抗を低減することができ、高温保存時のマンガン溶出を抑制することができることがわかる。 From Table 2, the positive active materials of Examples 1 to 5 of the present invention because they contain Li 2 B 4 O 7 and Li 2 WO 4, none of Li 2 B 4 O 7 and Li 2 WO 4 and Comparative example 1 not containing, in comparison with the positive electrode active material of Comparative example 2-7 containing a Li 2 B 4 O 7 or MnWO 4, it is possible to reduce the battery resistance, manganese during high-temperature storage It can be seen that elution can be suppressed.

次に、実施例1において原料のW量を変化させて得られる正極活物質について、それぞれリチウムイオン二次電池を作製し、電池抵抗(DC−IR)及び高温保存特性を評価する。図5に、電池抵抗と正極活物質のb値(LiWO量)との関係を示す。この図から、正極活物質のb値が0.001≦b≦0.1の範囲で電池抵抗が低減され、0.005≦b≦0.05範囲においてより低減されることがわかる。また、図6に、Mn溶出量と正極活物質のb値(LiWO量)との関係を示す。この図から、正極活物質のb値が0.005≦b≦0.1の範囲でMn溶出量が少ないことがわかる。従って、リチウムイオン二次電池の内部抵抗の低減と高温保存特性の向上を共に満足するためには、正極活物質のb値は0.001≦b≦0.1の範囲が好ましく、0.005≦b≦0.05範囲がより好ましいことがわかる。 Next, a lithium ion secondary battery is produced for each positive electrode active material obtained by changing the W amount of the raw material in Example 1, and battery resistance (DC-IR) and high-temperature storage characteristics are evaluated. Figure 5 shows the relationship between b value of the battery resistance and the positive electrode active material (Li 2 WO 4 volume). From this figure, it can be seen that the battery resistance is reduced when the b value of the positive electrode active material is in the range of 0.001 ≦ b ≦ 0.1, and is further reduced in the range of 0.005 ≦ b ≦ 0.05. FIG. 6 shows the relationship between the elution amount of Mn and the b value (Li 2 WO 4 amount) of the positive electrode active material. From this figure, it can be seen that the elution amount of Mn is small when the b value of the positive electrode active material is in the range of 0.005 ≦ b ≦ 0.1. Therefore, in order to satisfy both the reduction of the internal resistance and the improvement of the high temperature storage characteristics of the lithium ion secondary battery, the b value of the positive electrode active material is preferably in the range of 0.001 ≦ b ≦ 0.1, 0.005 It can be seen that the range of ≦ b ≦ 0.05 is more preferable.

また、正極活物質のa値(Li量)については、電池抵抗(DC−IR)や高温保存特性だけでなく、一次粒子径の大きさにも関係するため、0.0001≦a≦0.005の範囲が好ましく、0.0003≦a≦0.003の範囲がより好ましい。 Further, the a value (Li 2 B 4 O 7 amount) of the positive electrode active material is related not only to battery resistance (DC-IR) and high-temperature storage characteristics but also to the size of the primary particle diameter. The range of ≦ a ≦ 0.005 is preferable, and the range of 0.0003 ≦ a ≦ 0.003 is more preferable.

このように、本発明の正極活物質は、リチウムホウ素複合酸化物及びリチウムタングステン複合酸化物を有するスピネル構造のマンガン酸リチウムからなる正極活物質であって、本発明の正極活物質を用いることにより、電池の内部抵抗の低減と高温保存特性の向上を共に満足するリチウム二次電池を得ることができる。また、本発明の正極活物質は、電池抵抗を低減できることから出力特性の向上が期待でき、マンガン溶出を抑制できることからサイクル特性の向上が期待できる。 Thus, the positive electrode active material of the present invention is a positive electrode active material composed of lithium manganate having a spinel structure having a lithium boron composite oxide and a lithium tungsten composite oxide, and by using the positive electrode active material of the present invention. Thus, it is possible to obtain a lithium secondary battery that satisfies both the reduction of the internal resistance of the battery and the improvement of the high-temperature storage characteristics. In addition, the positive electrode active material of the present invention can be expected to improve output characteristics because it can reduce battery resistance, and can be expected to improve cycle characteristics because it can suppress elution of manganese.

本発明の正極活物質を用いることで、過酷な環境でも長期的に使用可能な非水電解質二次電池が実現できる。こうして実現される非水電解質二次電池は、VTR、携帯電話、ノートパソコン等の携帯機器に好適に利用可能である。さらに、電池抵抗が低いので、電動工具、電動アシスト自転車などの中型機器、更には電気自動車、ハイブリッド電気自動車等の大型機器といった高出力の用途に好適に利用可能である。   By using the positive electrode active material of the present invention, a non-aqueous electrolyte secondary battery that can be used for a long time even in a harsh environment can be realized. The nonaqueous electrolyte secondary battery thus realized can be suitably used for portable devices such as VTRs, mobile phones, and notebook personal computers. Furthermore, since the battery resistance is low, it can be suitably used for high-power applications such as medium-sized devices such as electric tools and electric assist bicycles, and large devices such as electric vehicles and hybrid electric vehicles.

Claims (4)

スピネル構造のマンガン酸リチウムからなる非水電解質二次電池用正極活物質において、前記マンガン酸リチウムは
一般式
Li 1+x Mn 2−x−y ・aLi ・bLi WO
(但し、MはMg、Alからなる群より選ばれる少なくとも一種の元素、0≦x≦0.20、0≦y≦0.5、0.0001≦a≦0.005、0.005≦b≦0.1)
で表され、二次粒子を有し、該二次粒子の表面及び内部にリチウムホウ素複合酸化物及びリチウムタングステン複合酸化物を有することを特徴とする非水電解質二次電池用正極活物質。
In the positive electrode active material for a non-aqueous electrolyte secondary battery made of spinel lithium manganate, the lithium manganate is
General formula
Li 1 + x M y Mn 2 -x-y O 4 · aLi 2 B 4 O 7 · bLi 2 WO 4
(However, M is at least one element selected from the group consisting of Mg and Al, 0 ≦ x ≦ 0.20, 0 ≦ y ≦ 0.5, 0.0001 ≦ a ≦ 0.005, 0.005 ≦ b. ≦ 0.1)
A positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that it has secondary particles and has a lithium boron composite oxide and a lithium tungsten composite oxide on the surface and inside of the secondary particles .
前記リチウムホウ素複合酸化物はホウ酸リチウムであり、前記リチウムタングステン複合酸化物はタングステン酸リチウムであることを特徴とする請求項1に記載の非水電解質二次電池用正極活物質。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium boron composite oxide is lithium borate, and the lithium tungsten composite oxide is lithium tungstate. 前記ホウ酸リチウムはLiであり、前記タングステン酸リチウムはLiWOであることを特徴とする請求項に記載の非水電解質二次電池用正極活物質。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2 , wherein the lithium borate is Li 2 B 4 O 7 and the lithium tungstate is Li 2 WO 4 . 請求項1乃至に記載の非水電解質二次電池用正極活物質を用いた正極活物質層を、帯状正極集電体の少なくとも片面に形成させることにより構成した帯状正極と、
金属リチウム、リチウム合金、リチウムイオンを吸蔵放出可能な炭素材料またはリチウムイオンを吸蔵放出可能な化合物を負極活物質として用いた負極活物質層を、帯状負極集電体の少なくとも片面に形成させることにより構成した帯状負極と、
帯状セパレータとを具備し、
前記帯状正極と前記帯状負極とを前記帯状セパレータを介して積層した状態で複数回巻回させて、前記帯状正極と前記帯状負極との間に前記帯状セパレータが介在している渦巻型の巻回体を構成してなることを特徴とする非水電解質二次電池。
A positive electrode strip configured by a positive electrode active material layer using the positive electrode active material for non-aqueous electrolyte secondary battery according to claims 1 to 3, is formed on at least one surface of the strip-shaped cathode current collector,
By forming a negative electrode active material layer using a metallic lithium, a lithium alloy, a carbon material capable of occluding and releasing lithium ions, or a compound capable of occluding and releasing lithium ions as a negative electrode active material on at least one side of a strip-shaped negative electrode current collector A configured negative electrode,
A strip separator,
A spiral-type winding in which the strip-shaped positive electrode and the strip-shaped negative electrode are wound a plurality of times in a state of being laminated via the strip-shaped separator, and the strip-shaped separator is interposed between the strip-shaped positive electrode and the strip-shaped negative electrode A non-aqueous electrolyte secondary battery comprising a body.
JP2010080629A 2010-03-31 2010-03-31 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Active JP5549321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080629A JP5549321B2 (en) 2010-03-31 2010-03-31 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080629A JP5549321B2 (en) 2010-03-31 2010-03-31 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2011216214A JP2011216214A (en) 2011-10-27
JP5549321B2 true JP5549321B2 (en) 2014-07-16

Family

ID=44945773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080629A Active JP5549321B2 (en) 2010-03-31 2010-03-31 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5549321B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370515B2 (en) 2012-02-22 2013-12-18 住友金属鉱山株式会社 Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode material
CN102701285B (en) 2012-06-26 2014-08-27 贵州红星发展股份有限公司 Methods for preparing low specific surface area (BET) manganous manganic oxide and controlling granularity and manganous manganic oxide
JP6385110B2 (en) * 2013-04-08 2018-09-05 一般財団法人電力中央研究所 Method for analyzing fluorine elution from gypsum
JP6176152B2 (en) * 2013-04-10 2017-08-09 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
EP2918545B1 (en) * 2013-07-26 2016-11-23 LG Chem, Ltd. Polycrystalline lithium manganese oxide particles, method for preparing same, and anode active material containing polycrystalline lithium manganese oxide particles
US9905851B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
US9905850B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
JP6572882B2 (en) * 2014-03-20 2019-09-11 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2016171081A1 (en) * 2015-04-24 2016-10-27 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery using said positive electrode active material
JP6978182B2 (en) 2015-04-24 2021-12-08 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the positive electrode active material
EP3683873B1 (en) * 2017-11-06 2023-04-12 LG Energy Solution, Ltd. Lithium secondary battery
JP7308462B2 (en) * 2018-12-28 2023-07-14 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR102266000B1 (en) 2019-06-17 2021-06-17 주식회사 엘 앤 에프 Cathode Active Material for Lithium Secondary Battery
JP7275092B2 (en) * 2020-12-01 2023-05-17 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery comprising said positive electrode active material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491529B2 (en) * 1998-06-25 2004-01-26 新神戸電機株式会社 Non-aqueous electrolyte secondary battery
JP3430058B2 (en) * 1999-02-09 2003-07-28 株式会社デンソー Cathode active material and non-aqueous electrolyte secondary battery
JP2001180938A (en) * 1999-12-28 2001-07-03 Mitsui Mining & Smelting Co Ltd Lithium manganese compound oxide and manufacturing method
JP2005314147A (en) * 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd Lithium-manganese composite oxide
JP4798962B2 (en) * 2004-05-06 2011-10-19 日本電工株式会社 Lithium manganese composite oxide and method for producing the same
WO2008078695A1 (en) * 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same

Also Published As

Publication number Publication date
JP2011216214A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5549321B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP2741353B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries including the same
JP6524651B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
CN102763247B (en) Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
EP2544274B1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
TWI423507B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
WO2011108389A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US20110031437A1 (en) Positive Electrode Active Material for Lithium Ion Battery, Positive Electrode for Secondary Battery, and Lithium Ion Battery
EP2544272A1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JP5973167B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery using the same
JP2018526807A (en) High lithium concentration nickel manganese cobalt cathode powder for lithium ion battery
JP6178037B1 (en) Spinel-type lithium nickel manganese-containing composite oxide
TWI574451B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP2005320184A (en) Lithium-manganese multiple oxide and its producing method
JPWO2018168470A1 (en) Spinel-type lithium nickel manganese-containing composite oxide
JP6743920B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
US10573889B2 (en) Layered-spinel electrodes for lithium batteries
JP4676691B2 (en) Positive electrode material for Li-ion secondary battery
JP5019763B2 (en) Nonaqueous electrolyte secondary battery
JP7191072B2 (en) Positive electrode active material and secondary battery comprising the positive electrode active material
JP7275092B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery comprising said positive electrode active material
JP2014120202A (en) Cathode active material for nonaqueous electrolyte secondary battery
CN115020692B (en) Positive electrode active material and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R150 Certificate of patent or registration of utility model

Ref document number: 5549321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250