JP4798962B2 - Lithium manganese composite oxide and method for producing the same - Google Patents
Lithium manganese composite oxide and method for producing the same Download PDFInfo
- Publication number
- JP4798962B2 JP4798962B2 JP2004137453A JP2004137453A JP4798962B2 JP 4798962 B2 JP4798962 B2 JP 4798962B2 JP 2004137453 A JP2004137453 A JP 2004137453A JP 2004137453 A JP2004137453 A JP 2004137453A JP 4798962 B2 JP4798962 B2 JP 4798962B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium manganese
- oxide
- tungsten oxide
- manganese composite
- composite oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
この発明は二次電池用正極材料及びその製造方法に係り、特に大電流放電特性に優れた二次電池用リチウムマンガン複合酸化物及びその製造方法に関する。 The present invention relates to a positive electrode material for a secondary battery and a method for producing the same, and more particularly to a lithium manganese composite oxide for a secondary battery having excellent large current discharge characteristics and a method for producing the same.
リチウム二次電池は起電力やエネルギー密度の点で優れており、小型ビデオカメラ、携帯電話、ノートパソコンなどの携帯機器用の電源として広く使用されている。近年では携帯用の電子機器のみならず自転車や電動バイク、電気自動車などの移動体向け電源としてもますます注目されてきており、この分野に向けたリチウム二次電池の開発も活発に行われている。その際、携帯用電子機器などの電源では機器の電源を入れてから使用可能となるまでの時間の短縮が求められており、また移動体用電源についても移動体の急激な加減速に対応するため瞬間的に大電流を通電できることが求められている。これらの要求に応えるため大電流放電特性に優れた電池が必要とされている。 Lithium secondary batteries are excellent in terms of electromotive force and energy density, and are widely used as power sources for portable devices such as small video cameras, mobile phones, and notebook computers. In recent years, it has been attracting more and more attention as a power source not only for portable electronic devices but also for mobile objects such as bicycles, electric bikes, and electric vehicles. Lithium secondary batteries for this field are also being actively developed. Yes. At that time, power supplies for portable electronic devices and the like are required to shorten the time from when the device is turned on until it can be used, and the power supply for mobile objects also supports rapid acceleration / deceleration of mobile objects. Therefore, it is required that a large current can be passed through instantaneously. In order to meet these requirements, a battery having excellent large current discharge characteristics is required.
リチウム二次電池用の正極材としてはコバルト酸リチウム(LiCoO2)やリチウムマンガン酸化物などが利用されている。コバルト酸リチウムは主原料であるコバルトがレアメタルであるため政治・経済上の要因によりコストが変動しやすいという問題がある。これに対して、リチウムマンガン酸化物はその主原料となるマンガンの資源量が豊富であり、上記のような問題がないためその利用拡大が図られている。 As a positive electrode material for a lithium secondary battery, lithium cobaltate (LiCoO 2 ), lithium manganese oxide, or the like is used. Lithium cobaltate has a problem that its cost is likely to fluctuate due to political and economic factors because cobalt, which is the main raw material, is a rare metal. On the other hand, lithium manganese oxide has abundant resources of manganese as its main raw material, and since there are no problems as described above, its use is being expanded.
ところで、正極の原料であるコバルト酸リチウムやマンガン酸リチウムは酸化物であるため、イオン拡散能はあるものの一般に導電性は低く、活物質とカーボンブラックやケッチェンブラック等の導電材と共に混合しこれを結着材で結着して使用するという方法でイオン拡散能と導電性を確保している。そのため大電流放電時にはイオン拡散や電子拡散の遅れ等により放電可能な容量が低下してしまうという問題がある。この問題に対処するため、リチウム二次電池用正極について以下のような改善の試みがなされている。 By the way, since lithium cobaltate and lithium manganate, which are raw materials for the positive electrode, are oxides, they have ion diffusibility, but generally have low conductivity, and are mixed with an active material and a conductive material such as carbon black or ketjen black. The ion diffusivity and conductivity are ensured by the method of binding and using a binder. For this reason, there is a problem in that the dischargeable capacity is reduced due to delays in ion diffusion and electron diffusion during large current discharge. In order to cope with this problem, attempts have been made to improve the positive electrode for lithium secondary batteries as follows.
たとえば、特許文献1には結着材として融点の低いポリフッ化ビニリデンを用いることにより大電流時の容量低下が軽減されるという提案が開示されている。また、特許文献2には、セパレーターと電極界面に潤滑剤層を介在させることによって大電流時の放電容量低下を低減しようとする提案が行なわれている。 For example, Patent Document 1 discloses a proposal that a decrease in capacity at a large current is reduced by using polyvinylidene fluoride having a low melting point as a binder. Patent Document 2 proposes to reduce a decrease in discharge capacity at a large current by interposing a lubricant layer at the separator / electrode interface.
上記特許文献1及び2記載の提案はいずれも活物質自体の改善以外の手段によりリチウム二次電池の大電流放電特性を改良しようという試みであり、活物質自体の特性を改善するものではない。しかしながら、活物質自体での特性を改良し、それにより二次電池の大電流放電特性の向上を図ることが望まれていることも事実である。本発明は、活物質自体での特性を改良し、大電流放電容量が大きい二次電池を製造することのできる電極活物質の製造方法を提供することを目的とする。 The proposals described in Patent Documents 1 and 2 above are attempts to improve the large current discharge characteristics of the lithium secondary battery by means other than improvement of the active material itself, and do not improve the characteristics of the active material itself. However, it is also a fact that it is desired to improve the characteristics of the active material itself, thereby improving the large current discharge characteristics of the secondary battery. An object of this invention is to provide the manufacturing method of the electrode active material which can improve the characteristic in active material itself and can manufacture a secondary battery with a large large current discharge capacity.
本発明のリチウムマンガン複合酸化物の製造方法は、一般式としてLi(1+x)Mn(2−x)O(4+∂)(0≦x≦0.33)で示されるスピネル型リチウムマンガン複合酸化物に、粒子径が100%粒子径(D100)で5μm以下、50%粒子径(D50)で3μm以下を有している粉末状の酸化タングステン(WO 3 )を0.5〜3.0mol%の割合で混合し、さらに400〜700℃で熱処理して前記スピネル型リチウムマンガン複合酸化物の表面に酸化タングステン(WO 3 )を固定・修飾することからなる。 The method for producing a lithium manganese composite oxide of the present invention comprises a spinel type lithium manganese composite oxide represented by the general formula: Li (1 + x) Mn (2-x) 2 O (4 + ∂) (0 ≦ x ≦ 0.33) 0.5 to 3.0 mol of powdered tungsten oxide (WO 3 ) having a particle size of 5 μm or less at a 100% particle size (D 100 ) and 3 μm or less at a 50% particle size (D 50 ). %, And further heat-treated at 400 to 700 ° C. to fix and modify tungsten oxide (WO 3 ) on the surface of the spinel type lithium manganese composite oxide.
本発明により、リチウムマンガン酸化物の大電流放電容量を飛躍的に上げることができ、それにより大電流放電特性に優れた二次電池を提供することができるようになる。特に、本発明のリチウムマンガン酸化物はMnを主たる鉱物資源とするので経済的に安定しており、携帯用電子機器などの電源、あるいは移動体用電源を安定して提供することが可能になる。 According to the present invention, it is possible to dramatically increase the large current discharge capacity of lithium manganese oxide, thereby providing a secondary battery having excellent large current discharge characteristics. In particular, the lithium manganese oxide of the present invention is economically stable because Mn is the main mineral resource, and it becomes possible to stably provide a power source for portable electronic devices or a mobile power source. .
本発明に係るリチウムマンガン複合酸化物は一般式Li(1+x)Mn(2−x)O(4+∂)(0≦x≦0.33)で示されるスピネル型リチウムマンガン複合酸化物の表面に酸化タングステン(WO 3 )を修飾してなる。このスピネル型リチウムマンガン複合酸化物は一般的な方法で作成可能なものであれば特に限定されるものではなく一般式がLi(1+x)Mn(2−x)O(4+∂)(0≦x≦0.33)として示されるスピネル型リチウムマンガン酸化物を用いることができるほか、Mnの一部他の元素たとえばLi,Ni,Al,Mg,Cr,Feで置換した元素置換して得られる一般式Li(1+x)MyMn(2−x)O(4+∂)(0≦x≦0.3)で示されるものを用いることができる。 Lithium-manganese composite oxide according to the present invention have the general formula Li (1 + x) Mn ( 2-x) O (4 + ∂) oxide on the surface of (0 ≦ x ≦ 0.33) spinel-type lithium manganese complex oxide represented by Tungsten (WO 3 ) is modified. The spinel type lithium manganese composite oxide is not particularly limited as long as it can be produced by a general method, and the general formula is Li (1 + x) Mn (2-x) O (4 + ∂) (0 ≦ x ≦ 0.33) In addition to spinel-type lithium manganese oxide, it can be obtained by substituting some elements of Mn with other elements such as Li, Ni, Al, Mg, Cr, and Fe. can be used those represented by the formula Li (1 + x) M y Mn (2-x) O (4 + ∂) (0 ≦ x ≦ 0.3).
前述のリチウムマンガン酸化物粒子に対して酸化タングステン(WO 3 )の修飾が行われる。この修飾のために用いられる酸化タングステンの量は、リチウムマンガン複合酸化物の0.5〜3.0mol%の範囲とする必要がある。 The above-described lithium manganese oxide particles are modified with tungsten oxide (WO 3 ) . The amount of tungsten oxide used for this modification needs to be in the range of 0.5 to 3.0 mol% of the lithium manganese composite oxide.
図1は、化学式Li1.1Mn1.9O4を持つスピネル型リチウムマンガン複合酸化物に酸化タングステン(化学式WO3)をスピネル型リチウムマンガン複合酸化物に対して10mol%までの範囲で修飾したときの酸化タングステンの修飾量と0.2C及び2.0Cの条件での放電容量との関係を示すグラフである。このグラフでは基準物質を無添加品、すなわち酸化タングステンによって修飾されていない化学式LiMn2O4を持つスピネル型リチウムマンガン複合酸化物とし、その0.2C放電時の容量を基準値100としている。 FIG. 1 shows a modification of tungsten oxide (chemical formula WO 3 ) in a spinel type lithium manganese composite oxide having the chemical formula Li 1.1 Mn 1.9 O 4 in a range of up to 10 mol% with respect to the spinel type lithium manganese composite oxide. It is a graph which shows the relationship between the modification amount of tungsten oxide at the time and the discharge capacity on condition of 0.2C and 2.0C. In this graph, the reference material is an additive-free product, that is, a spinel-type lithium manganese composite oxide having the chemical formula LiMn 2 O 4 that is not modified with tungsten oxide, and the capacity at the time of 0.2 C discharge is a reference value 100.
図から明らかなように、リチウムマンガン複合酸化物粒子を修飾する酸化タングステンの量が増加するにつれて2.0C条件での放電容量が増加している。しかし、添加量が3mol%を超えると、放電容量が未添加のものに比べ小さくなるだけでなく、添加量が増えるにつれ酸化タングステンを修飾したリチウムマンガン複合酸化物の放電容量が急激に低下していることが分る。 As is apparent from the figure, the discharge capacity under the 2.0C condition increases as the amount of tungsten oxide for modifying the lithium manganese composite oxide particles increases. However, when the addition amount exceeds 3 mol%, not only the discharge capacity becomes smaller than that without addition, but also the discharge capacity of the lithium manganese composite oxide modified with tungsten oxide decreases rapidly as the addition amount increases. You can see that
この原因について詳細は不明であるが酸化タングステンがリチウムマンガン酸化物表面を厚く覆い、リチウムマンガン酸化物と電解液間のリチウムイオンの輸送が阻害される事などが考えられる。一方、タングステン酸化物の量が0.5mol%未満であると、マンガン酸化物の表面を覆いきれず十分な効果が発現しない。したがって、リチウムマンガン酸化物粒子を修飾する酸化タングステンの量は0.5mol%以上3.0mol%以下とする必要があり、これによって放電容量の減少を抑え、2.0Cの条件でも高い放電容量を得ることができる。 Although the details of this cause are unknown, it is conceivable that tungsten oxide covers the surface of the lithium manganese oxide thickly and inhibits transport of lithium ions between the lithium manganese oxide and the electrolyte. On the other hand, if the amount of tungsten oxide is less than 0.5 mol%, the surface of the manganese oxide cannot be covered and sufficient effects are not exhibited. Therefore, the amount of tungsten oxide that modifies the lithium manganese oxide particles needs to be 0.5 mol% or more and 3.0 mol% or less, thereby suppressing a decrease in discharge capacity, and a high discharge capacity even under the condition of 2.0 C. Obtainable.
この酸化タングステンによる修飾は、修飾した酸化タングステンがリチウムマンガン酸化物表面上に固定される程度に、すなわち電極作成時にリチウムマンガン酸化物粒子表面から修飾した酸化タングステンが剥離しない程度に、焼結その他の方法により固定化されていることが望ましい。しかし、修飾した酸化タングステンがリチウムマンガン酸化物の内部に拡散することは避けなければならない。その理由は酸化タングステンがスピネル内部に拡散した場合、スピネル表面に導電性の高い酸化タングステンの修飾、被覆が形成されないからである。 Modification by the tungsten oxide to the extent that modified tungsten oxide is immobilized on the surface of lithium manganese oxide, i.e. to the extent that tungsten oxide modified lithium manganese oxide particles surface during production of an electrode is not peeled, sintered Other It is desirable to be fixed by a method. However, it must be avoided that the modified tungsten oxide diffuses into the lithium manganese oxide. The reason is that when tungsten oxide diffuses into the spinel, a highly conductive tungsten oxide modification or coating is not formed on the spinel surface.
上記の酸化タングステンにより修飾されたリチウムマンガン複合酸化物を製造するには以下の工程を採るのが望ましい。まず、任意の手段により、リチウムマンガン酸化物を製造する。その手段は特に限定されず、所定比で十分混合した水酸化リチウムと電解二酸化マンガン(EMD)を大気中において800℃で20h焼成するなど、公知の手段を広く利用できる。 In order to produce the lithium manganese composite oxide modified with the above tungsten oxide, it is desirable to take the following steps. First, lithium manganese oxide is produced by any means. The means is not particularly limited, and known means such as lithium hydroxide and electrolytic manganese dioxide (EMD) sufficiently mixed at a predetermined ratio can be widely used such as firing at 800 ° C. for 20 hours in the air.
上記のようにして組成等が調整されたリチウムマンガン複合酸化物に対し、酸化タングステンを配合し、加熱処理して本発明のタングステン酸化物で修飾されたリチウムマンガン複合酸化物とする。 The lithium manganese composite oxide whose composition and the like are adjusted as described above is mixed with tungsten oxide and heat-treated to obtain a lithium manganese composite oxide modified with the tungsten oxide of the present invention.
また、酸化タングステン等粉末状の物質を用いて修飾する場合には、その粒径を、100%粒子径(D100)で5μm以下、50%粒子径(D50)で3μm以下となるように調整したものを用いる必要がある。粒子径がこれより大きい場合は酸化タングステンがリチウムマンガン複合酸化物粒子の表面を均一に修飾することが困難になり十分な効果が得られなくなる場合があるからである。一層好ましくは100%粒子径(D100)で3μm以下、50%粒子径(D50)で1μm以下となるように調整したものを利用するのがよい。なお、上記粒子径はレーザー回折式の粒度分布測定器によって測定したものである。酸化タングステンの粉砕方法は上記の粒径の物が得られるのであれば特に限定されない。例えば酸化タングステンをエタノールに分散させ、湿式ボールミルにて粉砕、乾燥機で乾燥する。あるいはジェットミルで粉砕するなどの方法がある。 When the modification is performed using a powdery substance such as tungsten oxide, the particle size is 5 μm or less at a 100% particle size (D 100 ) and 3 μm or less at a 50% particle size (D 50 ). It is necessary to use an adjusted one. If the particle diameter is larger than this, it is difficult for tungsten oxide to uniformly modify the surface of the lithium manganese composite oxide particles, and a sufficient effect may not be obtained. More preferably, it is preferable to use one adjusted to have a 100% particle diameter (D 100 ) of 3 μm or less and a 50% particle diameter (D 50 ) of 1 μm or less. The particle diameter is measured with a laser diffraction type particle size distribution analyzer. The method for pulverizing tungsten oxide is not particularly limited as long as a product having the above particle diameter can be obtained. For example, tungsten oxide is dispersed in ethanol, pulverized with a wet ball mill, and dried with a dryer. Alternatively, there is a method of pulverizing with a jet mill.
上記のようにして準備したリチウムマンガン酸化物と酸化タングステンを、精密混合機を用いて混合し、電気炉等を用いて加熱処理する。加熱処理するときの雰囲気は大気雰囲気でよく、純酸素雰囲気とすることもできる。加熱処理温度は400〜700℃とするのがよい。加熱処理温度が700℃より高いと修飾に用いた酸化タングステンがリチウムマンガン酸化物内部に拡散、吸収されてしまうために添加した酸化タングステンがリチウムマンガン複合酸化物表面に固定化されず効果が発現されない。一方、加熱処理温度が400℃未満であると、修飾に用いた酸化タングステンがリチウムマンガン複合酸化物表面上に十分に固定されず、電極作成時に粒子表面から剥離するなど、修飾効果が発揮されない結果を招く。したがって、加熱処理温度は、修飾に用いた酸化タングステンがリチウムマンガン酸化物に十分固定(焼結)されるがその内部に拡散しない温度である400〜700℃の範囲とする。 The lithium manganese oxide and tungsten oxide prepared as described above are mixed using a precision mixer and heat-treated using an electric furnace or the like. The atmosphere for the heat treatment may be an air atmosphere or a pure oxygen atmosphere. The heat treatment temperature is preferably 400 to 700 ° C. If the heat treatment temperature is higher than 700 ° C., the tungsten oxide used for modification is diffused and absorbed inside the lithium manganese oxide, so that the added tungsten oxide is not immobilized on the surface of the lithium manganese composite oxide and the effect is not exhibited. . On the other hand, when the heat treatment temperature is less than 400 ° C., the tungsten oxide used for the modification is not sufficiently fixed on the surface of the lithium manganese composite oxide, and the modification effect is not exhibited such as peeling from the particle surface during electrode preparation. Invite. Therefore, the heat treatment temperature is set to a range of 400 to 700 ° C., which is a temperature at which tungsten oxide used for modification is sufficiently fixed (sintered) to lithium manganese oxide but does not diffuse into the inside.
このようにして得られた酸化タングステンにより修飾されたリチウムマンガン複合酸化物を正極材料として使用することにより、大電流放電特性に優れた二次電池とすることができる。その際、負極活物質には炭素材料、リチウム吸蔵合金等のリチウム吸蔵放出可能な物質を用い、電解液としてはリチウム塩を非水系電解液または樹脂に溶解した非水系電解液を用いる。電解液例としてはリチウム塩電解質として6フツ化リン酸リチウム(LiPF6)を含む、エチレンカーボネートとジエチルカーボネートの混合溶液などが挙げられる。 By using the lithium manganese composite oxide modified with tungsten oxide thus obtained as a positive electrode material, a secondary battery having excellent large current discharge characteristics can be obtained. At that time, a material capable of occluding and releasing lithium, such as a carbon material and a lithium occluding alloy, is used as the negative electrode active material, and a nonaqueous electrolytic solution in which a lithium salt is dissolved in a resin is used as the electrolytic solution. Examples of the electrolytic solution include a mixed solution of ethylene carbonate and diethyl carbonate containing lithium hexafluorophosphate (LiPF 6 ) as a lithium salt electrolyte.
所定比に配合・混合した水酸化リチウムと電解二酸化マンガン(EMD)を大気中800℃で20h焼成してリチウムマンガン酸化物を得た。一方、酸化タングステンをエタノールに分散させ、湿式ボールミルにて粉砕を行い、その後乾燥機で充分乾燥させて粉砕酸化タングステンを得た。得られた粉砕酸化タングステンは50%粒径約0.4μm、100%粒径1.6μmであった。 Lithium hydroxide and electrolytic manganese dioxide (EMD) blended and mixed at a predetermined ratio were calcined at 800 ° C. for 20 hours in the air to obtain lithium manganese oxide. On the other hand, tungsten oxide was dispersed in ethanol, pulverized with a wet ball mill, and then sufficiently dried with a drier to obtain pulverized tungsten oxide. Resulting ground tungsten oxide was 50% particle diameter of about 0.4 .mu.m, 100% particle diameter 1.6 [mu] m.
前記リチウムマンガン酸化物に対して0〜10.0mol%の粉砕酸化タングステンおよび17mol%の水酸化リチウムを添加、十分混合し、得られた混合物を600℃で5h熱処理し、粉砕酸化タングステンをリチウムマンガン複合酸化物表面に修飾・固定して製品とした。得られた製品についてEPMAによって粒子表面分析を行ったところ粒子表面上に一様にタングステンが存在するのが確認され、修飾した酸化タングステンはリチウムマンガン複合酸化物表面を均質に被覆していることが分かった。 0 to 10.0 mol% of pulverized tungsten oxide and 17 mol% of lithium hydroxide were added to the lithium manganese oxide and mixed well, and the resulting mixture was heat-treated at 600 ° C. for 5 hours. The product was modified and fixed on the surface of the composite oxide. When the surface of the obtained product was subjected to particle analysis by EPMA, it was confirmed that tungsten was uniformly present on the particle surface, and the modified tungsten oxide uniformly coated the surface of the lithium manganese composite oxide. I understood.
得られたリチウムマンガン複合酸化物を正極活物質として用い、3極式の開放型試験セルを組み立てて電気化学的測定を行った。測定は、対極及び参照極として金属Liを用い4.4V−3.0Vの電位範囲で充放電させ、1hでセル全体が放電し切る電流密度を1Cとして、0.2Cおよび2.0Cの条件で放電容量を測定した。結果を表1に示す。表1に示す各放電容量は、リチウムマンガン酸化物に対する粉砕酸化タングステンの修飾量が0molのときの0.2Cの放電容量を100%としたときを基準とした相対放電容量を意味するものである。 Using the obtained lithium-manganese composite oxide as a positive electrode active material, a three-pole open test cell was assembled and subjected to electrochemical measurements. The measurement was performed under the conditions of 0.2C and 2.0C, using Li as a counter electrode and a reference electrode, charging / discharging in a potential range of 4.4V-3.0V, and the current density at which the entire cell was discharged in 1h as 1C. The discharge capacity was measured. The results are shown in Table 1. Each discharge capacity shown in Table 1 means a relative discharge capacity based on a discharge capacity of 0.2 C when the amount of modification of ground tungsten oxide with respect to lithium manganese oxide is 0 mol and 100%. .
表1から明らかなように、酸化タングステンの添加量(修飾量)が0.5〜3.0mol%に範囲において0.2C放電容量の低下が比較的小さく、かつ2.0C放電容量が基準物質(酸化タングステンによる修飾を行わないもの)に比べて同等かあるいは向上している。これに対して、酸化タングステンの修飾量が5.0mol%(参考例)、7.0mol%、10.0mol%と過大である場合には0.2C放電容量および2.0C放電容量が基準物質に比べてきわめて小さくなっている。 As is apparent from Table 1, when the addition amount (modification amount) of tungsten oxide is in the range of 0.5 to 3.0 mol%, the decrease in the 0.2 C discharge capacity is relatively small, and the 2.0 C discharge capacity is the reference material. Equivalent or improved compared to (no modification with tungsten oxide). On the other hand, when the modification amount of tungsten oxide is excessively 5.0 mol% (reference example), 7.0 mol%, 10.0 mol%, 0.2 C discharge capacity and 2.0 C discharge capacity are the reference materials. It is very small compared to
(参考例)
粉砕酸化タングステンを50%粒径約10μm、100%粒径62μmとしたほかは実施例1と同様に処理した。結果は表2に示す。
(Reference example)
Grinding tungsten oxide 50% particle diameter of about 10 [mu] m, in addition to the 100% particle size 62μm it was treated in the same manner as in Example 1. The results are shown in Table 2.
上記参考例の場合は、酸化タングステンの粒径がやや大きいため、修飾量3.0mol%までの範囲においては0.2C放電容量、2.0C放電容量とも実施例1と同様の傾向を示したが、実施例1に比べてその効果が劣った。このことから修飾に用いる酸化タングステン粉末は粒度が細かいものを採用すべきことが明らかである。 In the case of the above reference example, since the particle size of tungsten oxide is slightly large, both the 0.2 C discharge capacity and the 2.0 C discharge capacity showed the same tendency as in Example 1 in the range up to the modification amount of 3.0 mol%. However, compared with Example 1, the effect was inferior. From this, it is clear that the tungsten oxide powder used for the modification should adopt a fine particle size.
以上の実施例及び参考例から本発明にしたがい酸化タングステンによりリチウムマンガン複合酸化物表面を修飾したリチウムマンガン複合酸化物を正極活物質として用いた場合、二次電池の2.0C以上の大放電容量が酸化タングステンの修飾量に応じて改善され、特に修飾量が0.5〜3.0mol%の範囲で優れた大電流放電特性を示すことが分かる。特に、修飾に用いる酸化タングステンの粒度が100%粒子径(D100)で5μm以下、50%粒子径(D50)で3μm以下であるとき、きわめて優れた大電流放電特性を示すことが分かる。 When the lithium manganese composite oxide in which the surface of the lithium manganese composite oxide is modified with tungsten oxide according to the present invention from the above examples and reference examples is used as the positive electrode active material, the secondary battery has a large discharge capacity of 2.0 C or more. Is improved according to the modification amount of tungsten oxide, and it can be seen that excellent high-current discharge characteristics are exhibited particularly when the modification amount is in the range of 0.5 to 3.0 mol%. In particular, when the particle size of tungsten oxide used for modification is 5 μm or less at 100% particle diameter (D 100 ) and 3 μm or less at 50% particle diameter (D 50 ), it can be seen that extremely excellent large current discharge characteristics are exhibited.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004137453A JP4798962B2 (en) | 2004-05-06 | 2004-05-06 | Lithium manganese composite oxide and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004137453A JP4798962B2 (en) | 2004-05-06 | 2004-05-06 | Lithium manganese composite oxide and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005320184A JP2005320184A (en) | 2005-11-17 |
JP4798962B2 true JP4798962B2 (en) | 2011-10-19 |
Family
ID=35467726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004137453A Expired - Fee Related JP4798962B2 (en) | 2004-05-06 | 2004-05-06 | Lithium manganese composite oxide and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4798962B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008078695A1 (en) | 2006-12-26 | 2008-07-03 | Mitsubishi Chemical Corporation | Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same |
US8643930B2 (en) | 2007-08-31 | 2014-02-04 | Alliance For Sustainable Energy, Llc | Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials |
JP5549321B2 (en) * | 2010-03-31 | 2014-07-16 | 日亜化学工業株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP5532330B2 (en) * | 2010-09-21 | 2014-06-25 | トヨタ自動車株式会社 | Method for producing positive electrode active material for lithium ion secondary battery |
WO2012105048A1 (en) * | 2011-02-04 | 2012-08-09 | トヨタ自動車株式会社 | Coated active material, battery, and method for producing coated active material |
JP5880996B2 (en) * | 2011-05-13 | 2016-03-09 | 株式会社豊田自動織機 | Lithium manganese silicate composite, positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP5822708B2 (en) * | 2011-12-16 | 2015-11-24 | 住友金属鉱山株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material |
JP5370515B2 (en) | 2012-02-22 | 2013-12-18 | 住友金属鉱山株式会社 | Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode material |
CN104254937B (en) * | 2012-03-30 | 2016-07-20 | 三洋电机株式会社 | Positive electrode for nonaqueous electrolyte secondary battery and rechargeable nonaqueous electrolytic battery |
KR101775548B1 (en) | 2012-08-01 | 2017-09-06 | 삼성에스디아이 주식회사 | Positive active material composition for lithium secondary battery and lithium secondary battery |
KR102152370B1 (en) * | 2013-12-31 | 2020-09-07 | 삼성에스디아이 주식회사 | Cathode active material and lithium secondary batteries comprising the same |
CA2947003A1 (en) * | 2014-06-26 | 2015-12-30 | Toda Kogyo Corp. | Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery |
US10601029B2 (en) * | 2014-09-30 | 2020-03-24 | Sanyo Electric Co., Ltd. | Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same |
JP7125238B2 (en) * | 2019-07-18 | 2022-08-24 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
JP7275092B2 (en) * | 2020-12-01 | 2023-05-17 | プライムプラネットエナジー&ソリューションズ株式会社 | Positive electrode active material and non-aqueous electrolyte secondary battery comprising said positive electrode active material |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3536944B2 (en) * | 1995-02-14 | 2004-06-14 | 株式会社ユアサコーポレーション | Non-aqueous electrolyte battery |
JPH1116566A (en) * | 1997-06-20 | 1999-01-22 | Hitachi Ltd | Battery |
JPH11185758A (en) * | 1997-12-24 | 1999-07-09 | Aichi Steel Works Ltd | Positive electrode material for nonaqueous secondary battery |
JP2000090915A (en) * | 1998-09-16 | 2000-03-31 | Shin Kobe Electric Mach Co Ltd | Lithium manganate and organic electrolyte secondary battery using the same |
JP2000149948A (en) * | 1998-11-12 | 2000-05-30 | Toshiba Corp | Positive active material, lithium ion secondary battery and manufacture of its positive active material |
JP3430058B2 (en) * | 1999-02-09 | 2003-07-28 | 株式会社デンソー | Cathode active material and non-aqueous electrolyte secondary battery |
DE19922522A1 (en) * | 1999-05-15 | 2000-11-16 | Merck Patent Gmbh | Lithium based composite oxide particles for battery cathode, which are coated with one or more metal oxides |
-
2004
- 2004-05-06 JP JP2004137453A patent/JP4798962B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005320184A (en) | 2005-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5035712B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP5822708B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material | |
EP3226330B1 (en) | Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell in which said positive electrode active material is used | |
EP2264815A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery | |
EP3267517A1 (en) | Positive electrode active substance for non-aqueous electrolyte secondary battery, and method for producing same | |
EP3326226B1 (en) | Cathode material for rechargeable solid state lithium ion battery | |
JP4798962B2 (en) | Lithium manganese composite oxide and method for producing the same | |
JP2005251716A (en) | Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP5606654B2 (en) | Lithium metal composite oxide | |
JP2004253174A (en) | Positive pole active material for nonaqueous electrolytic secondary battery | |
US11677065B2 (en) | Cathode active material of lithium secondary battery | |
JP2004103566A (en) | Positive active substance for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP4673287B2 (en) | Spinel type lithium manganese oxide and method for producing the same | |
CN105938901B (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP5674056B2 (en) | Positive electrode active material, method for producing the same, and lithium secondary battery using the same | |
JP2023015188A (en) | Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery | |
US20170352914A1 (en) | Lithium-cobalt-based composite oxide and method for manufacturing the same, electrochemical device and lithium ion secondary battery | |
JPH11283623A (en) | Lithium ion battery and its manufacture | |
JP6848199B2 (en) | A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery. | |
JP2001143708A (en) | Non-aqueous electrolyte secondary battery | |
JP2018195419A (en) | Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery | |
JP2002042811A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP2005346956A (en) | Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material | |
JP2004179008A (en) | Positive electrode material for lithium secondary battery and its manufacturing method | |
KR101275260B1 (en) | Cathode material for secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100805 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110726 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |