JP2012089402A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2012089402A
JP2012089402A JP2010236353A JP2010236353A JP2012089402A JP 2012089402 A JP2012089402 A JP 2012089402A JP 2010236353 A JP2010236353 A JP 2010236353A JP 2010236353 A JP2010236353 A JP 2010236353A JP 2012089402 A JP2012089402 A JP 2012089402A
Authority
JP
Japan
Prior art keywords
positive electrode
ion secondary
lithium ion
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010236353A
Other languages
Japanese (ja)
Inventor
Yudai Takaichi
裕大 高市
Keisuke Kawabe
啓祐 川邊
Katsuhito Ninomiya
克仁 二宮
Masayuki Yamada
將之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2010236353A priority Critical patent/JP2012089402A/en
Publication of JP2012089402A publication Critical patent/JP2012089402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery that is excellent in safety and high temperature storage characteristics, and is suitable for charging and discharging in a large current.SOLUTION: A lithium ion secondary battery of the present invention includes: a positive electrode 1 containing a manganese-containing lithium composite oxide as a positive electrode active material; a negative electrode 2 containing a substance capable of occluding and discharging lithium as a negative electrode active material; a separator 3; and a nonaqueous electrolyte 4. A BET specific area of the manganese-containing lithium composite oxide is 0.1 to 1.0 m/g, and at least one salt selected from among carboxylate, carbonate and phosphate is contained in at least one battery element selected from among the positive electrode 1, the negative electrode 2, the separator 3 and the nonaqueous electrolyte 4, as an additive.

Description

本発明は、各種の電気機器に用いられるリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery used for various electric devices.

非水電解質電池の一種であるリチウムイオン二次電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。また、環境問題への配慮から、繰り返し充電できる二次電池の重要性が増大しており、携帯機器以外にも、自動車、電動工具、電動椅子や、家庭用、業務用の電力貯蔵システムなどへの適用が検討されている。   A lithium ion secondary battery, which is a type of nonaqueous electrolyte battery, is widely used as a power source for portable devices such as mobile phones and notebook personal computers because of its high energy density. In addition, due to consideration for environmental issues, the importance of rechargeable secondary batteries is increasing. In addition to portable devices, automobiles, electric tools, electric chairs, home and commercial power storage systems, etc. The application of is being considered.

これまで自動車、電動工具、電動椅子や、家庭用、業務用の電力貯蔵システムなどの用途にはニッケル−カドミウム電池、ニッケル−水素電池などが用いられており、現在も上記用途に高い割合で使用されている。   So far, nickel-cadmium batteries, nickel-hydrogen batteries, etc. have been used for applications such as automobiles, electric tools, electric chairs, and household and commercial power storage systems. Has been.

一方、EUをはじめ、有害化学物質に対する規制が世界的に広がりつつある中、有害化学物質であるカドミウムを含むニッケル−カドミウム電池などをリチウムイオン二次電池で置き換えようとする動きが出始めている。   On the other hand, while regulations on hazardous chemical substances including the EU are spreading worldwide, there is a movement to replace nickel-cadmium batteries containing cadmium, which is a harmful chemical substance, with lithium ion secondary batteries.

上記のようにニッケル−カドミウム電池などをリチウムイオン二次電池で置き換えた場合、リチウムイオン二次電池に要求される特性は多岐に渡り、用途別に様々な対応が必要とされているが、電動工具など大電流での使用が前提となる用途では、大電流での使用時の高エネルギー密度化や充電時間の短縮化、即ち、高負荷機器への適応のために入出力特性のさらなる向上が要求されている。   When a nickel-cadmium battery or the like is replaced with a lithium ion secondary battery as described above, the characteristics required for the lithium ion secondary battery are diverse, and various measures are required depending on the application. For applications that require use at large currents, such as high energy density and short charge time when used at large currents, that is, further improvement of input / output characteristics is required for adaptation to high-load devices. Has been.

また、電動工具などの場合は野外での使用と比較的乱暴な作業環境が前提であるため、リチウムイオン二次電池に関してはより高い安全性、信頼性が求められている。この様な状況において、正極活物質に関してリチウムイオン二次電池の安全性を向上させることが検討されており、例えば、熱安定性が高いスピネル構造を有するリチウム−マンガン複合酸化物(LiMn)など、Mnを含有するリチウム複合酸化物を正極活物質として用いることが検討されている(特許文献1)。 Further, since power tools and the like are premised on outdoor use and a relatively rough working environment, higher safety and reliability are required for lithium ion secondary batteries. Under such circumstances, it has been studied to improve the safety of the lithium ion secondary battery with respect to the positive electrode active material. For example, a lithium-manganese composite oxide (LiMn 2 O 4 ) having a spinel structure with high thermal stability. ) And the like, and the use of a lithium composite oxide containing Mn as a positive electrode active material has been studied (Patent Document 1).

しかし、LiMnを正極活物質として用いたリチウムイオン二次電池は、熱安定性などの安全性は向上するものの、高温貯蔵特性及び高温サイクル特性が十分ではなく、高温環境下での使用に対して特性劣化が大きいという問題がある。これは、高温時にLiMnからマンガンイオンが溶出し、その溶出したマンガンイオンが負極表面で還元されて金属マンガンとして析出し、析出した金属マンガンが負極の表面でのリチウムイオンの伝導を阻害するためと考えられる。この問題に対して、LiMnを合成する際に、マグネシウム(Mg)、アルミニウム(Al)などの微量元素の添加による結晶構造の安定性を向上させ、マンガンイオンの溶出を抑制しようとする提案もなされているが(例えば、特許文献2)、高温環境下でのリチウムイオン二次電池の使用に対する性能劣化を抑制するには、十分ではない。 However, a lithium ion secondary battery using LiMn 2 O 4 as a positive electrode active material is improved in safety such as thermal stability, but has insufficient high-temperature storage characteristics and high-temperature cycle characteristics, and is used in a high-temperature environment. However, there is a problem that the characteristic deterioration is large. This is because manganese ions are eluted from LiMn 2 O 4 at high temperatures, the eluted manganese ions are reduced on the negative electrode surface and deposited as metallic manganese, and the precipitated metallic manganese inhibits lithium ion conduction on the negative electrode surface. It is thought to do. To synthesize LiMn 2 O 4 for this problem, the stability of the crystal structure is improved by adding trace elements such as magnesium (Mg) and aluminum (Al), and the elution of manganese ions is suppressed. Proposals have also been made (for example, Patent Document 2), but it is not sufficient to suppress performance deterioration due to the use of a lithium ion secondary battery in a high temperature environment.

一方、過充電時に、高温となる電池内で生じるガスをトラップするために、電解液に弱酸性の有機リチウム塩を含有させることも検討されている(特許文献3)。しかし、リチウム−マンガン複合酸化物からのマンガンイオンの溶出に対しては、弱酸性の有機リチウム塩の全てが有効に作用するわけではない。   On the other hand, in order to trap the gas generated in the battery that becomes high during overcharge, it has been studied to contain a weakly acidic organic lithium salt in the electrolyte (Patent Document 3). However, all of the weakly acidic organic lithium salts do not effectively act on elution of manganese ions from the lithium-manganese composite oxide.

特開2001−118569号公報JP 2001-118569 A 特開2009−123715号公報JP 2009-123715 A 特開2003−187863号公報JP 2003-187863 A

特に電動工具のように、充電及び放電ともに大電流で行われる用途においては、電極での反応が不均一化しやすく、使用を繰り返すうちに、充放電時に生じる大きな発熱により電池内が高温になりやすく、携帯電話のようにさほど大電流を要求されない用途での使用の場合に比較して、LiMnからマンガンイオンが溶出しやすく、高温環境下での特性低下が大きくなることが問題とされている。 Especially in applications where both charging and discharging are performed with a large current, such as power tools, the reaction at the electrodes tends to become non-uniform, and the battery tends to become hot due to large heat generated during charging and discharging over time. Compared to the use in applications where a large current is not required such as a mobile phone, manganese ions are liable to elute from LiMn 2 O 4 and the deterioration of characteristics in a high temperature environment increases. ing.

本発明は、上記問題を解決するためになされたもので、リチウムイオン二次電池の安全性を向上させるとともに、高温貯蔵特性を改善し、電動工具などの大電流で充放電を繰り返す用途に好適なリチウムイオン二次電池を提供するものである。   The present invention has been made to solve the above-described problems, and improves the safety of lithium ion secondary batteries, improves high-temperature storage characteristics, and is suitable for applications that repeatedly charge and discharge with a large current such as an electric tool. A lithium ion secondary battery is provided.

本発明のリチウムイオン二次電池は、マンガン含有リチウム複合酸化物を正極活物質として含む正極と、リチウムを吸蔵・放出可能な物質を負極活物質として含む負極と、セパレータと、非水電解液とを含むリチウムイオン二次電池であって、前記マンガン含有リチウム複合酸化物のBET比面積が、0.1〜1.0m/gであり、前記正極、前記負極、前記セパレータ及び前記非水電解液から選ばれる少なくとも1種の電池要素の中に、カルボン酸塩、炭酸塩及びリン酸塩から選ばれる少なくとも1種の塩を添加剤として含むことを特徴とする。 A lithium ion secondary battery of the present invention includes a positive electrode including a manganese-containing lithium composite oxide as a positive electrode active material, a negative electrode including a material capable of occluding and releasing lithium as a negative electrode active material, a separator, a non-aqueous electrolyte, The manganese-containing lithium composite oxide has a BET specific area of 0.1 to 1.0 m 2 / g, and the positive electrode, the negative electrode, the separator, and the non-aqueous electrolysis It is characterized in that at least one salt selected from carboxylate, carbonate and phosphate is contained as an additive in at least one battery element selected from a liquid.

特に、前記添加剤の含有量が、前記正極に含まれるマンガン元素1モルに対してモル比で0.3×10−3以上であることを特徴とする。 In particular, the content of the additive is 0.3 × 10 −3 or more in terms of molar ratio with respect to 1 mol of manganese element contained in the positive electrode.

本発明により、安全性と高温貯蔵特性とに優れ、大電流での充放電に適するリチウムイオン二次電池を提供することができる。   According to the present invention, it is possible to provide a lithium ion secondary battery that is excellent in safety and high-temperature storage characteristics and suitable for charging and discharging with a large current.

本発明のリチウムイオン二次電池の一例を示す断面図である。It is sectional drawing which shows an example of the lithium ion secondary battery of this invention.

以下、本発明のリチウムイオン二次電池の実施形態を説明する。   Hereinafter, embodiments of the lithium ion secondary battery of the present invention will be described.

本発明のリチウムイオン二次電池は、マンガン含有リチウム複合酸化物を正極活物質として含む正極と、リチウムを吸蔵・放出可能な物質を負極活物質として含む負極と、セパレータと、非水電解液とを備えている。また、本発明のリチウムイオン二次電池は、前記マンガン含有リチウム複合酸化物のBET比面積が、0.1〜1.0m/gである。さらに、本発明のリチウムイオン二次電池は、上記正極、上記負極、上記セパレータ及び上記非水電解液から選ばれる少なくとも1種の電池要素の中に、カルボン酸塩、炭酸塩及びリン酸塩から選ばれる少なくとも1種の塩を添加剤として含んでいる。 A lithium ion secondary battery of the present invention includes a positive electrode including a manganese-containing lithium composite oxide as a positive electrode active material, a negative electrode including a material capable of occluding and releasing lithium as a negative electrode active material, a separator, a non-aqueous electrolyte, It has. In the lithium ion secondary battery of the present invention, the manganese-containing lithium composite oxide has a BET specific area of 0.1 to 1.0 m 2 / g. Furthermore, the lithium ion secondary battery of the present invention includes a carboxylate, a carbonate, and a phosphate in at least one battery element selected from the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte. It contains at least one selected salt as an additive.

本発明において、上記添加剤の含有量は、上記正極に含まれるマンガン元素1モルに対してモル比で0.3×10−3以上である好ましい。 In the present invention, the content of the additive is preferably 0.3 × 10 −3 or more in terms of molar ratio with respect to 1 mol of manganese element contained in the positive electrode.

上記電池要素の中にカルボン酸塩、炭酸塩及びリン酸塩から選ばれる少なくとも1種の塩を添加剤として含有させることにより、正極活物質から溶出したマンガンイオンと上記添加剤のアニオンとが反応し、電池の電解液溶媒に対して難溶性のマンガン錯体を形成し、マンガンイオンの負極表面への移動を遮断し、溶出したマンガンイオンが負極表面で還元されて金属マンガンとして析出することを抑制できる。これにより、リチウムイオン二次電池の高温貯蔵特性を改善することができる。   By containing at least one salt selected from carboxylate, carbonate and phosphate as an additive in the battery element, manganese ions eluted from the positive electrode active material react with the anion of the additive. Forming a manganese complex that is sparingly soluble in the battery's electrolyte solvent, blocking the migration of manganese ions to the negative electrode surface, and preventing the eluted manganese ions from being reduced and deposited as metallic manganese on the negative electrode surface it can. Thereby, the high temperature storage characteristic of a lithium ion secondary battery can be improved.

上記添加剤としては、カルボン酸塩、炭酸塩及びリン酸塩から選ばれる少なくとも1種の塩が用いられる。上記カルボン酸塩、炭酸塩、リン酸塩としては、アルカリ金属塩、アルカリ土類金属塩などを用いることができ、ナトリウム塩、リチウム塩、マグネシウム塩、カルシウム塩などが好ましく用いられる。 上記カルボン酸塩を構成するカルボン酸としては、例えば、酢酸、プロピオン酸、酪酸などのほか、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸などのジカルボン酸;安息香酸、フタル酸、テレフタル酸などの芳香族カルボン酸;乳酸、リンゴ酸、クエン酸などのヒドロキシ酸;などが挙げられる。上記炭酸塩としては、例えば、NaHCO、NaCO、LiCOなどを用いることができる。上記リン酸塩としては、例えば、NaPO、LiPOなどを用いることができる。 As the additive, at least one salt selected from carboxylate, carbonate and phosphate is used. As the carboxylate, carbonate, and phosphate, alkali metal salts, alkaline earth metal salts, and the like can be used, and sodium salts, lithium salts, magnesium salts, calcium salts, and the like are preferably used. Examples of the carboxylic acid constituting the carboxylate include acetic acid, propionic acid, butyric acid, and other dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid; benzoic acid, phthalic acid, terephthalic acid Aromatic carboxylic acids such as acids; hydroxy acids such as lactic acid, malic acid and citric acid; Examples of the carbonates, for example, can be used as NaHCO 3, Na 2 CO 3, Li 2 CO 3. As the phosphates, for example, it can be used as the Na 3 PO 4, Li 3 PO 4.

例えば、上記添加剤が、酢酸ナトリウムの場合、酢酸ナトリウムとマンガンイオンとの反応は、下記式のように進行すると考えられる。
3CHCOONa+Mn3+ → (CHCOO)Mn↓ +3Na
For example, when the additive is sodium acetate, the reaction between sodium acetate and manganese ions is considered to proceed as shown in the following formula.
3CH 3 COONa + Mn 3+ → (CH 3 COO) 3 Mn ↓ + 3Na +

上記添加剤を含有させる位置は、電池の内部であれば特に限定されないが、上記添加剤が非水電解液に溶解可能であれば、非水電解液に溶解させて用いればよい。一方、上記添加剤が、例えば酢酸ナトリウムのように非水電解液への溶解度が低い場合は、正極又は/及び負極の合剤中に含有させるか、又は/及びセパレータの空孔内に保持させればよい。   The position in which the additive is contained is not particularly limited as long as it is inside the battery. However, if the additive can be dissolved in the non-aqueous electrolyte, the additive may be dissolved in the non-aqueous electrolyte. On the other hand, when the additive has a low solubility in a non-aqueous electrolyte solution such as sodium acetate, it is contained in the positive electrode or / and negative electrode mixture or / and held in the pores of the separator. Just do it.

上記添加剤の含有量は、上記正極に含まれるマンガン元素1モルに対して、モル比で0.3×10−3以上であることが好ましく、2.0×10−3以上であることがより好ましく、3.0×10−3以上であることが特に好ましい。一方、15×10−3以下であることが好ましく、7.0×10−3以下であることがより好ましい。上記モル比が0.3×10−3以上の場合、添加剤の効果がより明確になり、一方、15×10−3を超えると電池のインピーダンスが高くなる傾向があるからである。 The content of the additive is preferably 0.3 × 10 −3 or more, and 2.0 × 10 −3 or more in terms of molar ratio with respect to 1 mol of manganese element contained in the positive electrode. More preferably, it is particularly preferably 3.0 × 10 −3 or more. On the other hand, it is preferably 15 × 10 −3 or less, and more preferably 7.0 × 10 −3 or less. This is because when the molar ratio is 0.3 × 10 −3 or more, the effect of the additive becomes clearer, while when it exceeds 15 × 10 −3 , the impedance of the battery tends to increase.

上記正極活物質となるマンガン含有リチウム複合酸化物としては、一般式LiMnに代表されるスピネル構造のリチウム含有複合酸化物(構成元素の一部が、Ni、Co、Al、Mg、Zr、Ti、Bなどの元素で置換された複合酸化物も含む。)、一般式LiMnOに代表される層状構造のリチウム含有複合酸化物(構成元素の一部が、Ni、Co、Al、Mg、Zr、Ti、Bなどの元素で置換された複合酸化物も含む。)、一般式LiMnPOに代表されるオリビン構造のリチウム含有複合酸化物(構成元素の一部が、Ni、Co、Feなどの元素で置換された複合酸化物も含む。)などが例示される。 As the manganese-containing lithium composite oxide serving as the positive electrode active material, a spinel-type lithium-containing composite oxide represented by the general formula LiMn 2 O 4 (some of the constituent elements are Ni, Co, Al, Mg, Zr). In addition, a composite oxide substituted with an element such as Ti, B is also included.), A lithium-containing composite oxide having a layered structure represented by the general formula LiMnO 2 (a part of the constituent elements is Ni, Co, Al, Mg) , Zr, Ti, B, etc.), lithium-containing composite oxides having an olivine structure represented by the general formula LiMnPO 4 (some of the constituent elements are Ni, Co, Fe And a complex oxide substituted with an element such as).

より具体的には、上記スピネル構造のリチウム含有複合酸化物として、Li1+xMn2−x−yAl(−0.05≦x≦0.1、0.01≦y≦0.2)、Li1+xMn1.5Ni0.5(−0.05≦x≦0.1)などの組成が例示され、上記層状構造のリチウム含有複合酸化物として、Li1+xMn1/3Ni1/3Co1/3、Li1+xNi0.6Co0.2Mn0.2、LiNi0.7Co0.1Mn0.1Mg0.05Ti0.05(それぞれ、−0.05≦x≦0.1)などの組成が例示される。 More specifically, as the lithium-containing composite oxide having the above spinel structure, Li 1 + x Mn 2-xy Al y O 4 (−0.05 ≦ x ≦ 0.1, 0.01 ≦ y ≦ 0.2) ), Li 1 + x Mn 1.5 Ni 0.5 O 4 (−0.05 ≦ x ≦ 0.1), and the like. As the lithium-containing composite oxide having the above layered structure, Li 1 + x Mn 1/3 Ni 1/3 Co 1/3 O 2 , Li 1 + x Ni 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.7 Co 0.1 Mn 0.1 Mg 0.05 Ti 0.05 O 2 Examples are compositions such as (each -0.05 ≦ x ≦ 0.1).

上記マンガン含有リチウム複合酸化物は、上記添加剤の効果を高めるため、BET比面積が1.0m/g以下でのものを用いるとよい。一方、充放電での反応性を低下させないために、BET比面積は0.1m/g以上とするのがよい。 In order to enhance the effect of the additive, the manganese-containing lithium composite oxide may have a BET specific area of 1.0 m 2 / g or less. On the other hand, the BET specific area is preferably 0.1 m 2 / g or more so as not to reduce the reactivity in charge / discharge.

上記マンガン含有リチウム複合酸化物は、他の活物質とともに用いることもできる。上記マンガン含有リチウム複合酸化物以外の正極活物質としては、一般式LiCoOに代表されるリチウムコバルト複合酸化物(構成元素の一部が、Ni、Al、Mg、Zr、Ti、Bなどの元素で置換された複合酸化物も含む。)、一般式LiNiO、Li1+xNi0.7Co0.25Al0.05などに代表されるリチウムニッケル複合酸化物(構成元素の一部が、Co、Al、Mg、Zr、Ti、Bなどの元素で置換された複合酸化物も含む。)などの層状構造の複合酸化物;一般式LiTi12に代表されるリチウムチタン複合酸化物(構成元素の一部が、Ni、Co、Al、Mg、Zr、Bなどの元素で置換された複合酸化物も含む。)などのスピネル構造の複合酸化物;一般式LiMPOに代表されるオリビン構造のリチウム複合酸化物(但し、MはNi、Co及びFeより選ばれる少なくとも1種)などが例示される。 The manganese-containing lithium composite oxide can be used together with other active materials. Examples of positive electrode active materials other than the manganese-containing lithium composite oxide include lithium cobalt composite oxides represented by the general formula LiCoO 2 (elements such as Ni, Al, Mg, Zr, Ti, and B are part of the constituent elements) In addition, a lithium-nickel composite oxide represented by a general formula LiNiO 2 , Li 1 + x Ni 0.7 Co 0.25 Al 0.05 O 2, etc. , Including complex oxides substituted with elements such as Co, Al, Mg, Zr, Ti, and B.) complex oxides having a layered structure; lithium-titanium composites represented by the general formula Li 4 Ti 5 O 12 representative general formula LiMPO 4; oxides (. some constituent elements, Ni, Co, Al, Mg , Zr, composite oxide substituted by elements such as B including) composite oxide having a spinel structure, such as Lithium composite oxide having an olivine structure (where, M is Ni, at least one selected from Co and Fe) and the like are exemplified.

上記正極は、アルミニウム箔などの正極集電体上に、上記正極活物質、導電助剤となる導電性粉末及びバインダーを含有する塗料を塗布し、乾燥させることにより正極合剤層を形成し、加圧成形することにより得られる。   The positive electrode is formed on a positive electrode current collector such as an aluminum foil by applying a coating material containing the positive electrode active material, a conductive powder serving as a conductive auxiliary agent, and a binder, and drying to form a positive electrode mixture layer. It can be obtained by pressure molding.

上記正極集電体としては、アルミニウム箔などの金属箔以外にも、パンチングメタル、網、エキスパンドメタルなども用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   As the positive electrode current collector, a punching metal, a net, an expanded metal, or the like can be used in addition to a metal foil such as an aluminum foil. Usually, an aluminum foil having a thickness of 10 to 30 μm is preferably used.

上記導電助剤は、正極合剤層の導電性向上などの目的で必要に応じて添加すればよく、導電助剤となる導電性粉末として、カーボンブラック、ケッチェンブラック、アセチレンブラック、繊維状炭素、黒鉛などの炭素粉末や、ニッケル粉末などの金属粉末を利用することができる。   The conductive auxiliary agent may be added as necessary for the purpose of improving the conductivity of the positive electrode mixture layer. Carbon black, ketjen black, acetylene black, fibrous carbon may be used as the conductive powder as the conductive auxiliary agent. Carbon powder such as graphite and metal powder such as nickel powder can be used.

上記バインダーには、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレンなどが挙げられるが、これらに限定されるものではない。   Examples of the binder include, but are not limited to, polyvinylidene fluoride (PVDF) and polytetrafluoroethylene.

上記負極は、銅箔などの負極集電体上に、負極活物質と、必要に応じて導電助剤となる導電性粉末及びバインダーとを含有する塗料を塗布し、乾燥させることにより負極合剤層を形成し、加圧成形することにより得られる。   The negative electrode is applied to a negative electrode current collector such as a copper foil by applying a coating material containing a negative electrode active material and, if necessary, a conductive powder and a binder as a conductive auxiliary agent, followed by drying. It is obtained by forming a layer and pressing.

上記負極活物質は、従来のリチウムイオン二次電池に用いられている負極活物質であれば特に制限はなく、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などのリチウムを吸蔵・放出可能な炭素系材料の1種又は2種以上の混合物が用いられる。   The negative electrode active material is not particularly limited as long as it is a negative electrode active material used in conventional lithium ion secondary batteries. For example, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compounds 1 type, or a mixture of two or more types of carbon-based materials capable of occluding and releasing lithium, such as fired bodies, mesocarbon microbeads (MCMB), and carbon fibers.

上記負極に用いる導電助剤及びバインダーは、上記正極に用いる導電助剤及びバインダーと同様のもが使用できる。   As the conductive auxiliary agent and binder used for the negative electrode, the same conductive auxiliary agent and binder used for the positive electrode can be used.

上記負極集電体としては、銅箔などの金属箔以外にも、パンチングメタル、網、エキスパンドメタルなども用い得るが、通常、厚みが10〜30μmの銅箔が好適に用いられる。   As the negative electrode current collector, a punching metal, a net, an expanded metal, or the like can be used in addition to a metal foil such as a copper foil. Usually, a copper foil having a thickness of 10 to 30 μm is preferably used.

上記負極と上記正極との間には、融点の異なる熱可塑性樹脂をそれぞれ含有する複数の熱可塑性樹脂膜が積層されて形成された多孔質フィルムをセパレータとして配置することが好ましい。   A porous film formed by laminating a plurality of thermoplastic resin films each containing thermoplastic resins having different melting points is preferably disposed as a separator between the negative electrode and the positive electrode.

一般に、リチウムイオン二次電池に使用されているポリオレフィン製の単一の多孔質フィルムは、ある程度の耐熱性を持たせながら、135℃付近で溶融して多孔質フィルムの細孔が閉塞するシャットダウンを生じるように、シャットダウン温度付近に融点を持つ樹脂が用いられている。しかし、上記フィルムの持つ大きなひずみのため、電動工具などに用いられる場合は、シャットダウンにまで至らないものの、電池の発熱によりフィルムの収縮や目詰まりを生じやすくなり、短絡や特性低下を招く場合がある。また、耐熱性を考慮して樹脂の融点を高くすると、シャットダウンを生じにくくなり、安全性の点で問題を生じる。   In general, a single porous film made of polyolefin used in a lithium ion secondary battery has a certain degree of heat resistance and melts at around 135 ° C. to shut down the pores of the porous film. As occurs, a resin having a melting point near the shutdown temperature is used. However, due to the large strain of the film, when used in power tools, etc., it does not result in shutdown, but the film is likely to shrink or clog due to the heat generated by the battery, resulting in a short circuit or deterioration in characteristics. is there. Further, if the melting point of the resin is increased in consideration of heat resistance, it becomes difficult to cause a shutdown, which causes a problem in terms of safety.

一方、上記セパレータとして用いる積層体が、シャットダウンを生じる融点が120〜140℃の樹脂を含有する多孔質層(低融点樹脂層)のほかに、融点が150℃以上の樹脂を含有する多孔質層(高融点樹脂層)を含んでいれば、電動工具など電池の内部温度が上昇しやすい用途に用いられる場合であっても、セパレータの熱収縮が抑制され、目詰まりが生じにくく、セパレータの特性が安定して維持される。このため、大電流での充放電による特性劣化が少なく、比較的高温の環境下においても信頼性の高い電池とすることができる。上記セパレータは、高融点樹脂層と、低融点樹脂層との二層からなる積層体でもよいが、特に、両表面を高融点樹脂層、内部に低融点樹脂層を配置した三層以上の積層体がより好適に用いられる。   On the other hand, the laminate used as the separator has a porous layer containing a resin having a melting point of 150 ° C. or higher in addition to a porous layer (low melting point resin layer) containing a resin having a melting point of 120 to 140 ° C. If it contains a (high melting point resin layer), even if it is used in applications where the internal temperature of the battery is likely to rise, such as an electric tool, the thermal shrinkage of the separator is suppressed and clogging is unlikely to occur. Is maintained stably. For this reason, there is little characteristic deterioration by charging / discharging by a large current, and it can be set as a reliable battery also in a comparatively high temperature environment. The separator may be a laminate composed of two layers of a high melting point resin layer and a low melting point resin layer, but in particular, a laminate of three or more layers in which both surfaces have a high melting point resin layer and the inside has a low melting point resin layer. The body is more preferably used.

本明細書でいうセパレータの各層に含有される樹脂の融点は、日本工業規格(JIS)K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味している。   The melting point of the resin contained in each layer of the separator referred to in this specification means the melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of Japanese Industrial Standard (JIS) K7121. Yes.

上記低融点樹脂層には、ポリエチレン、ポリブテン、エチレンプロピレン共重合体などの樹脂(融点が120〜140℃の低融点樹脂)で形成された多孔質フィルムが用いられる。低融点樹脂としては、密度が0.94〜0.97g/cmの高密度ポリエチレンが特に好ましい。 For the low melting point resin layer, a porous film made of a resin such as polyethylene, polybutene, or ethylene propylene copolymer (low melting point resin having a melting point of 120 to 140 ° C.) is used. As the low melting point resin, high density polyethylene having a density of 0.94 to 0.97 g / cm 3 is particularly preferable.

また、上記高融点樹脂層には、ポリプロピレン、ポリ4−メチルペンテン−1、ポリ3−メチルブテン−1などの樹脂(融点が150℃以上の高融点樹脂)で形成された多孔質フィルムが用いられる。高融点樹脂としては、ポリプロピレンが特に好ましい。   In addition, a porous film formed of a resin such as polypropylene, poly-4-methylpentene-1 or poly-3-methylbutene-1 (a high melting point resin having a melting point of 150 ° C. or higher) is used for the high melting point resin layer. . Polypropylene is particularly preferable as the high melting point resin.

上記融点の異なる熱可塑性樹脂をそれぞれ含有する複数の熱可塑性樹脂膜が積層されて形成された多孔質フィルムとしては、例えば、延伸法や抽出法などにより形成された融点が120〜140℃の樹脂を含有する多孔質層と、同じく延伸法や抽出法などにより形成された融点が150℃以上の樹脂を含有する多孔質層とを重ね合わせ、延伸、圧着、接着剤などにより貼り合わせて形成する方法、あるいは、融点が120〜140℃の樹脂を含有する層と融点が150℃以上の樹脂を含有する層とを熱圧着し、延伸法などにより多孔化する方法などにより製造された市販の積層フィルムを用いることができる。   As a porous film formed by laminating a plurality of thermoplastic resin films each containing a thermoplastic resin having a different melting point, for example, a resin having a melting point of 120 to 140 ° C. formed by a stretching method or an extraction method And a porous layer containing a resin having a melting point of 150 ° C. or higher, which is also formed by a stretching method or an extraction method, and is laminated by stretching, pressure bonding, or an adhesive. A commercially available laminate manufactured by a method, or a method in which a layer containing a resin having a melting point of 120 to 140 ° C. and a layer containing a resin having a melting point of 150 ° C. or more are thermocompression bonded and made porous by a stretching method or the like A film can be used.

上記非水電解液は、特に限定されるものではなく、有機溶媒などの非水溶媒にリチウム塩などの電解質塩を溶解させた汎用の非水電解液が一般に用いられる。   The non-aqueous electrolyte is not particularly limited, and a general-purpose non-aqueous electrolyte obtained by dissolving an electrolyte salt such as a lithium salt in a non-aqueous solvent such as an organic solvent is generally used.

上記非水溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイト、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどの溶媒を単独あるいは数種類混合した混合溶媒を用いることができる。   Examples of the non-aqueous solvent include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, 1,2-dimethoxyethane, 1, A solvent mixture such as 3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether or the like can be used alone or as a mixed solvent.

上記電解質塩としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(2≦n≦5)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などが挙げられる。電解液中の電解質塩の濃度としては、0.3〜1.7モル/リットル、特に0.5〜1.5モル/リットルが好ましい。 As the electrolyte salt, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ≦ n ≦ 5), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] and the like. The concentration of the electrolyte salt in the electrolytic solution is preferably 0.3 to 1.7 mol / liter, particularly 0.5 to 1.5 mol / liter.

上記非水電解液に、充放電サイクル特性の更なる向上や貯蔵特性の向上のために、ビニレンカーボネート又はその誘導体;シクロヘキシルベンゼンやターシャリーブチルベンゼンなどのアルキルベンゼン類;ビフェニル、プロパンスルトンなどの環状スルトン;ジフェニルジスルフィドなどのスルフィド類などの添加剤を含有させてもよい。上記添加剤の添加量は、非水電解液中で0.1〜10質量%とすればよく、0.5質量%以上がより好ましく、5質量%以下がより好ましい。   In order to further improve the charge / discharge cycle characteristics and storage characteristics of the non-aqueous electrolyte, vinylene carbonate or a derivative thereof; alkylbenzenes such as cyclohexylbenzene and tertiary butylbenzene; cyclic sultone such as biphenyl and propane sultone An additive such as sulfides such as diphenyl disulfide may be contained. The additive amount of the additive may be 0.1 to 10% by mass in the nonaqueous electrolytic solution, more preferably 0.5% by mass or more, and more preferably 5% by mass or less.

次に、本発明のリチウムイオン二次電池の一例を図面に基づき説明する。図1は、本発明のリチウムイオン二次電池の一例を示す断面図である。図1において、リチウムイオン二次電池は、上記で説明した本発明に係る正極活物質を含む正極合剤層を有する正極1と、負極活物質を含む負極合剤層を有する負極2と、セパレータ3と、非水電解液4とを備えている。正極1と負極2とはセパレータ3を介して渦巻状に巻回され、巻回構造の電極体として非水電解液4と共に円筒形の電池缶5内に収容されている。   Next, an example of the lithium ion secondary battery of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the lithium ion secondary battery of the present invention. In FIG. 1, a lithium ion secondary battery includes a positive electrode 1 having a positive electrode mixture layer containing the positive electrode active material according to the present invention described above, a negative electrode 2 having a negative electrode mixture layer containing a negative electrode active material, and a separator. 3 and a non-aqueous electrolyte 4 are provided. The positive electrode 1 and the negative electrode 2 are spirally wound through a separator 3 and are housed in a cylindrical battery can 5 together with a nonaqueous electrolyte solution 4 as an electrode body having a wound structure.

但し、図1においては、煩雑化を避けるため、正極1や負極2の作製にあたり使用した集電体である金属箔などは図示していない。また、セパレータ3は、その切断面を示すが、断面を示すハッチングは付していない。   However, in FIG. 1, in order to avoid complication, the metal foil that is a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated. Moreover, although the separator 3 shows the cut surface, it does not attach | subject the hatching which shows a cross section.

電池缶5は、例えば鉄製で表面にニッケルメッキが施されていて、その底部には上記巻回構造の電極体の挿入に先立って、例えばポリプロピレンからなる絶縁体6が配置されている。封口板7は、例えばアルミニウム製で円板状をしていて、その中央部に薄肉部7aが設けられ、かつ薄肉部7aの周囲に電池内圧を防爆弁9に作用させるための圧力導入口7bとしての孔が設けられている。そして、薄肉部7aの上面に防爆弁9の突出部9aが溶接され、溶接部分11を構成している。封口板7に設けた薄肉部7aや防爆弁9の突出部9aなどは、図面上での理解がしやすいように、切断面のみを図示しており、切断面後方の輪郭線は図示を省略している。また、封口板7の薄肉部7aと防爆弁9の突出部9aとの溶接部分11も、図面上での理解が容易なように、実際よりは誇張した状態に図示している。   The battery can 5 is made of, for example, iron and nickel-plated on the surface, and an insulator 6 made of, for example, polypropylene is disposed at the bottom of the battery can 5 prior to the insertion of the electrode body having the winding structure. The sealing plate 7 is made of, for example, aluminum and has a disk shape. A thin portion 7a is provided at the center of the sealing plate 7, and a pressure introduction port 7b for allowing the battery internal pressure to act on the explosion-proof valve 9 around the thin portion 7a. As a hole. And the protrusion part 9a of the explosion-proof valve 9 is welded to the upper surface of the thin part 7a, and the welding part 11 is comprised. The thin-walled portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are shown only on the cut surface for easy understanding on the drawing, and the contour line behind the cut surface is not shown. is doing. In addition, the welded portion 11 between the thin-walled portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 is also shown in an exaggerated state so as to facilitate understanding on the drawing.

端子板8は、例えば圧延鋼製で表面にニッケルメッキが施され、周縁部が鍔状になった帽子状をしており、端子板8にはガス排出口8aが設けられている。防爆弁9は、例えばアルミニウム製で円板状をしており、その中央部には発電要素側(図1では、下側)に先端部を有する突出部9aが設けられ、かつ薄肉部9bが設けられ、突出部9aの下面が、上記のように、封口板7の薄肉部7aの上面に溶接され、溶接部分11を形成している。絶縁パッキング10は、例えばポリプロピレン製で環状をしており、封口板7の周縁部の上部に配置され、その上部に防爆弁9が配置していて、封口板7と防爆弁9とを絶縁するとともに、両者の間から電解液が漏れないように両者の間隙を封止している。環状ガスケット12は、例えばポリプロピレンで形成されている。リード体13は、例えばアルミニウムで形成され、封口板7と正極1とを接続している。巻回構造の電極体の上部には絶縁体14が配置され、負極2と電池缶5の底部とは、例えばニッケル製のリード体15で接続されている。   The terminal plate 8 is made of, for example, rolled steel, has a nickel-plated surface, and has a hat-like shape with a peripheral edge portion, and the terminal plate 8 is provided with a gas discharge port 8a. The explosion-proof valve 9 is made of, for example, aluminum and has a disk shape. A projecting portion 9a having a tip portion is provided on the power generation element side (lower side in FIG. 1) at the center thereof, and the thin-walled portion 9b is provided. As described above, the lower surface of the protruding portion 9a is welded to the upper surface of the thin-walled portion 7a of the sealing plate 7 to form the welded portion 11. The insulating packing 10 is made of, for example, polypropylene and has an annular shape. The insulating packing 10 is arranged at the upper part of the peripheral edge of the sealing plate 7, and the explosion-proof valve 9 is arranged at the upper part thereof. At the same time, the gap between the two is sealed so that the electrolyte does not leak from between them. The annular gasket 12 is made of, for example, polypropylene. The lead body 13 is made of aluminum, for example, and connects the sealing plate 7 and the positive electrode 1. An insulator 14 is disposed on the upper part of the wound electrode body, and the negative electrode 2 and the bottom of the battery can 5 are connected to each other by a lead body 15 made of nickel, for example.

図1の電池においては、封口板7の薄肉部7aと防爆弁9の突出部9aとが溶接部分11で接触し、防爆弁9の周縁部と端子板8の周縁部とが接触し、正極1と封口板7とは正極側のリード体13で接続されているので、通常の状態では、正極1と端子板8とは、リード体13、封口板7、防爆弁9及びそれらの溶接部分11によって電気的接続が得られ、電路として正常に機能する。   In the battery of FIG. 1, the thin-walled portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are in contact with each other at the welded portion 11, and the peripheral portion of the explosion-proof valve 9 and the peripheral portion of the terminal plate 8 are in contact. 1 and the sealing plate 7 are connected by a lead body 13 on the positive electrode side. Therefore, in a normal state, the positive electrode 1 and the terminal plate 8 are connected to the lead body 13, the sealing plate 7, the explosion-proof valve 9 and their welded parts. The electrical connection is obtained by 11 and functions normally as an electric circuit.

そして、電池が高温に曝されたり、過充電によって発熱するなど、電池に異常事態が起こり、電池内部にガスが発生して電池の内圧が上昇した場合には、その内圧上昇により、防爆弁9の中央部が内圧方向(図1では、上側の方向)に変形する。それに伴って溶接部分11で一体化されてなる封口板7の薄肉部7aに剪断力が働いて該薄肉部7aが破断するか、又は防爆弁9の突出部9aと封口板7の薄肉部7aとの溶接部分11が剥離した後、この防爆弁9に設けられている薄肉部9bが開裂してガスを端子板8のガス排出口8aから電池外部に排出させて電池の破裂を防止することができるように設計されている。   When an abnormal situation occurs in the battery, such as the battery is exposed to high temperature or generates heat due to overcharge, and gas is generated inside the battery and the internal pressure of the battery increases, the explosion-proof valve 9 The center part of the is deformed in the internal pressure direction (the upper direction in FIG. 1). Along with this, a shearing force is applied to the thin portion 7a of the sealing plate 7 integrated at the welded portion 11, and the thin portion 7a is broken, or the protrusion 9a of the explosion-proof valve 9 and the thin portion 7a of the sealing plate 7 are broken. After the welded portion 11 is peeled off, the thin-walled portion 9b provided in the explosion-proof valve 9 is cleaved to discharge the gas from the gas discharge port 8a of the terminal plate 8 to the outside of the battery, thereby preventing the battery from bursting. Designed to be able to.

本発明のリチウムイオン二次電池は、大電流での充放電による特性劣化が少なく、安定した特性を長期にわたり維持でき、また比較的高温の環境下においても高い信頼性を備えている。よって、本発明のリチウムイオン二次電池は、電動工具の電源用途のように、大電流で充放電が繰り返されたり、電池が比較的高温の環境下で使用されるような用途に好適であり、また、従来のリチウムイオン二次電池が適用されている各種用途にも使用できる。   The lithium ion secondary battery of the present invention has little characteristic deterioration due to charging / discharging with a large current, can maintain stable characteristics over a long period of time, and has high reliability even in a relatively high temperature environment. Therefore, the lithium ion secondary battery of the present invention is suitable for applications in which charging / discharging is repeated with a large current or the battery is used in a relatively high temperature environment, such as a power supply application for an electric tool. Moreover, it can be used for various applications to which a conventional lithium ion secondary battery is applied.

以下、実施例に基づいて本発明を詳細に説明する。但し、下記実施例は、本発明を限定するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

(実施例1)
正極活物質として、BET比表面積が0.26m/gのLiMnを94質量部、導電助剤としてケッチェンブラック2.5質量部、及びバインダーとしてポリフッ化ビニリデン3.5質量部を、N−メチル−2−ピロリドンを溶剤として均一になるように混合し、正極合剤含有ペーストを調製した。そのペーストを厚さ15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥して正極合剤層を形成し、ローラーで正極合剤層を厚みが84μmになるまで加圧成形した後、幅55mm及び長さ886mmになるように切断して正極を作製した。
Example 1
As a positive electrode active material, 94 parts by mass of LiMn 2 O 4 having a BET specific surface area of 0.26 m 2 / g, 2.5 parts by mass of ketjen black as a conductive auxiliary agent, and 3.5 parts by mass of polyvinylidene fluoride as a binder , N-methyl-2-pyrrolidone was mixed uniformly as a solvent to prepare a positive electrode mixture-containing paste. After applying the paste on both sides of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, drying to form a positive electrode mixture layer, and pressing the positive electrode mixture layer with a roller until the thickness reaches 84 μm. Then, the positive electrode was manufactured by cutting so as to have a width of 55 mm and a length of 886 mm.

負極活物質としてBET比表面積が2.2m2/gで平均粒径が18μmの黒鉛粉末、及びバインダーとしてカルボキシメチルセルロース(CMC)とスチレン・ブタジエン共重合体ゴム(SBR)を用い、添加剤として酢酸ナトリウム(Na)を用い、溶媒としての水とともに、黒鉛粉末、CMC、SBR及び酢酸Naを、それぞれ質量比で、96:1:1:2の割合で混合し、スラリー状の負極合剤含有ぺーストを調製した。 Graphite powder having a BET specific surface area of 2.2 m 2 / g and an average particle size of 18 μm as the negative electrode active material, carboxymethyl cellulose (CMC) and styrene-butadiene copolymer rubber (SBR) as the binder, and acetic acid as the additive Using sodium (Na), graphite powder, CMC, SBR and Na acetate together with water as a solvent in a mass ratio of 96: 1: 1: 2, respectively, A strike was prepared.

本実施例では、負極に添加した添加剤の含有量は、正極中に存在するマンガン(Mn)元素1モルに対して、モル比で4.4×10−3となった。 In this example, the content of the additive added to the negative electrode was 4.4 × 10 −3 in terms of molar ratio with respect to 1 mol of the manganese (Mn) element present in the positive electrode.

得られた負極合剤含有ぺーストを厚さ10μmの銅箔からなる負極集電体の両面に塗布し、乾燥して負極合剤層を形成し、ローラーで負極合剤層の密度が1.5g/cm3になるまで加圧成形した後、幅57mm及び長さ1025mmになるようにして切断して負極を作製した。 The obtained negative electrode mixture-containing paste was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried to form a negative electrode mixture layer, and the density of the negative electrode mixture layer was 1. After being pressure-molded to 5 g / cm 3 , the negative electrode was fabricated by cutting to a width of 57 mm and a length of 1025 mm.

セパレータとして、厚み約7μmのポリプロピレンフィルム(高融点樹脂層、ポリプロピレンの融点:165℃)と、厚み約7μmのポリエチレンフィルム(低融点樹脂層、ポリエチレンの融点:125℃)と、厚み約7μmのポリプロピレンフィルム(高融点樹脂層、ポリプロピレンの融点:165℃)とをこの順に積層した多孔性積層フィルムを準備した。上記多孔性積層フィルム(セパレータ)の総厚みは約20μm、開口率は46%であった。   As a separator, a polypropylene film having a thickness of about 7 μm (high melting point resin layer, polypropylene melting point: 165 ° C.), a polyethylene film having a thickness of about 7 μm (low melting point resin layer, melting point of polyethylene: 125 ° C.), and a polypropylene having a thickness of about 7 μm. A porous laminated film was prepared by laminating a film (high melting point resin layer, polypropylene melting point: 165 ° C.) in this order. The porous laminated film (separator) had a total thickness of about 20 μm and an aperture ratio of 46%.

次に、上記正極及び上記負極の間に上記セパレータを配置して渦巻状に巻回し、円筒形の外装缶内に挿入した。   Next, the separator was placed between the positive electrode and the negative electrode, wound in a spiral shape, and inserted into a cylindrical outer can.

非水電解液に、エチレンカーボネートとジメチルカーボネートとを体積比1:2で混合した溶媒中に、LiPFを1.2モル/リットルの割合で溶解し、さらに、ビニレンカーボネートを2質量%添加した溶液を用い、これを上記外装缶内に注入した後、封止して、直径18mm、高さ65mmのリチウムイオン二次電池とした。 LiPF 6 was dissolved at a ratio of 1.2 mol / liter in a solvent in which ethylene carbonate and dimethyl carbonate were mixed in a non-aqueous electrolyte at a volume ratio of 1: 2, and 2% by mass of vinylene carbonate was further added. The solution was used and poured into the outer can, and then sealed to obtain a lithium ion secondary battery having a diameter of 18 mm and a height of 65 mm.

(実施例2)
黒鉛粉末と酢酸Naとの質量比を、それぞれ93及び5に変更した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。本実施例では、負極に添加した添加剤の含有量は、正極中に存在するMn元素1モルに対して、モル比で1.1×10−2となった。
(Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the mass ratio of the graphite powder and Na acetate was changed to 93 and 5, respectively. In this example, the content of the additive added to the negative electrode was 1.1 × 10 −2 in terms of a molar ratio with respect to 1 mol of Mn element present in the positive electrode.

(実施例3)
BET比表面積が0.41m/gのLiMnを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 having a BET specific surface area of 0.41 m 2 / g was used.

(実施例4)
BET比表面積が0.41m/gのLiMnを用いた以外は、実施例2と同様にしてリチウムイオン二次電池を作製した。
Example 4
A lithium ion secondary battery was produced in the same manner as in Example 2 except that LiMn 2 O 4 having a BET specific surface area of 0.41 m 2 / g was used.

(実施例5)
BET比表面積が0.63m/gのLiMnを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 5)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 having a BET specific surface area of 0.63 m 2 / g was used.

(実施例6)
BET比表面積が0.63m/gのLiMnを用いた以外は、実施例2と同様にしてリチウムイオン二次電池を作製した。
(Example 6)
A lithium ion secondary battery was produced in the same manner as in Example 2 except that LiMn 2 O 4 having a BET specific surface area of 0.63 m 2 / g was used.

(実施例7)
酢酸Naに代えて、LiPOを添加剤として用いた以外は、実施例5と同様にしてリチウムイオン二次電池を作製した。本実施例では、負極に添加した添加剤の含有量は、正極中に存在するMn元素1モルに対して、モル比で3.4×10−3となった。
(Example 7)
A lithium ion secondary battery was produced in the same manner as in Example 5 except that Li 3 PO 4 was used as an additive instead of Na acetate. In this example, the content of the additive added to the negative electrode was 3.4 × 10 −3 in terms of molar ratio with respect to 1 mol of Mn element present in the positive electrode.

(実施例8)
正極活物質として、BET比表面積が0.63m/gのLiMn47質量部と、BET比表面積が0.24m/gのLiMn1/3Ni1/3Co1/347質量部とを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。本実施例では、負極に添加した添加剤の含有量は、正極中に存在するMn元素1モルに対して、モル比で1.4×10−2となった。
(Example 8)
As the positive electrode active material, LiMn 1/3 Ni of the LiMn 2 O 4 47 parts by weight of the BET specific surface area of 0.63 m 2 / g, a BET specific surface area 0.24m 2 / g 1/3 Co 1/3 O 2 A lithium ion secondary battery was produced in the same manner as in Example 1 except that 47 parts by mass was used. In this example, the content of the additive added to the negative electrode was 1.4 × 10 −2 in terms of molar ratio with respect to 1 mol of Mn element present in the positive electrode.

(比較例1)
酢酸Naを添加せず、黒鉛粉末、CMC及びSBRの質量比を、それぞれ98:1:1とした以外は、実施例5と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 1)
A lithium ion secondary battery was produced in the same manner as in Example 5 except that Na acetate was not added and the mass ratio of graphite powder, CMC and SBR was 98: 1: 1 respectively.

(比較例2)
BET比表面積が1.78m/gのLiMnを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 having a BET specific surface area of 1.78 m 2 / g was used.

(比較例3)
BET比表面積が0.09m/gのLiMnを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 having a BET specific surface area of 0.09 m 2 / g was used.

電池特性の評価
実施例1〜8及び比較例1〜3のリチウムイオン二次電池に対し、室温にて0.5Aの定電流及び電圧4.2Vの定電圧による定電流−定電圧充電(総充電時間:2.5時間)を行った後、1.0Aで定電流放電(放電終止電圧:2.5V)を行い、初期容量を測定した。次に、上記条件で電池を充電した後、60℃の恒温槽で30日間貯蔵を行った。30日経過後、貯蔵した電池を取り出し室温にて1.0Aで定電流放電(放電終止電圧:2.5V)を行い、放電後に、室温にて0.5Aの定電流及び電圧4.2Vの定電圧による定電流−定電圧充電(総充電時間:2.5時間)を行った後、1.0Aで定電流放電(放電終止電圧:2.5V)を行い、貯蔵後の放電容量を測定した。
Evaluation of battery characteristics For the lithium ion secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 3, constant current-constant voltage charging with a constant current of 0.5 A and a constant voltage of 4.2 V at room temperature (total After charging time: 2.5 hours, constant current discharge (discharge end voltage: 2.5 V) was performed at 1.0 A, and the initial capacity was measured. Next, after charging the battery under the above conditions, it was stored in a constant temperature bath at 60 ° C. for 30 days. After 30 days, the stored battery was taken out and subjected to constant current discharge at 1.0 A at room temperature (discharge end voltage: 2.5 V). After discharge, a constant current of 0.5 A and a voltage of 4.2 V were constant at room temperature. After performing constant current-constant voltage charging by voltage (total charge time: 2.5 hours), constant current discharge (discharge end voltage: 2.5 V) was performed at 1.0 A, and the discharge capacity after storage was measured. .

各電池について、測定した上記の初期容量に対する貯蔵後の放電容量の割合から、容量回復率を計算し高温貯蔵特性を評価した。その結果を表1に示す。   For each battery, the capacity recovery rate was calculated from the ratio of the discharge capacity after storage to the measured initial capacity, and the high-temperature storage characteristics were evaluated. The results are shown in Table 1.

容量回復率(%)=(貯蔵後の放電容量/初期容量)×100   Capacity recovery rate (%) = (discharge capacity after storage / initial capacity) × 100

Figure 2012089402
Figure 2012089402

また、実施例1、実施例3、実施例5及び比較例3の電池について、上記試験に用いた電池とは別の電池を用いて、以下の条件で負荷特性の評価を行った。   Moreover, about the battery of Example 1, Example 3, Example 5, and Comparative Example 3, the load characteristic was evaluated on condition of the following using the battery different from the battery used for the said test.

室温にて0.5Aの定電流及び電圧4.2Vの定電圧による定電流−定電圧充電(総充電時間:2.5時間)を行った後、放電条件を1.0A、5A、10A及び20Aの定電流放電(放電終止電圧:2.5V)としたときの放電容量をそれぞれ測定し、1.0A放電での放電容量(これを初期容量とする)に対する、5A放電、10A放電及び20A放電での放電容量の割合(容量比)を求めた。その結果を表2に示す。   After performing constant current-constant voltage charging (total charging time: 2.5 hours) with a constant current of 0.5 A and a constant voltage of 4.2 V at room temperature, the discharge conditions were 1.0 A, 5 A, 10 A and The discharge capacities when 20 A constant current discharge (discharge end voltage: 2.5 V) was measured respectively, and 5 A discharge, 10 A discharge, and 20 A for a discharge capacity at 1.0 A discharge (this is the initial capacity). The ratio (capacity ratio) of the discharge capacity in the discharge was determined. The results are shown in Table 2.

Figure 2012089402
Figure 2012089402

表1から明らかなように、実施例1〜8の電池では、マンガン含有リチウム複合酸化物のBET比面積を0.1〜1.0m/gの範囲とし、電池要素内に特定の添加剤を含有させたことにより、添加剤を含有させなかった比較例1の電池に比べ、高温貯蔵後の容量回復率を高くすることができた。 As is apparent from Table 1, in the batteries of Examples 1 to 8, the BET specific area of the manganese-containing lithium composite oxide was in the range of 0.1 to 1.0 m 2 / g, and a specific additive was added in the battery element. As a result, it was possible to increase the capacity recovery rate after high-temperature storage as compared with the battery of Comparative Example 1 in which no additive was added.

一方、マンガン含有リチウム複合酸化物のBET比面積が1.0m/gより大きい比較例2の電池では、添加剤を含有させたにもかかわらず容量回復率が低くなり、BET比面積が0.1m/gより小さい比較例3の電池では、表2に示すように、大電流放電での容量低下が顕著となった。 On the other hand, in the battery of Comparative Example 2 in which the BET specific area of the manganese-containing lithium composite oxide is larger than 1.0 m 2 / g, the capacity recovery rate is low despite the addition of the additive, and the BET specific area is 0. In the battery of Comparative Example 3 smaller than 0.1 m 2 / g, as shown in Table 2, the capacity drop due to the large current discharge was remarkable.

本発明により、リチウムイオン二次電池の安全性を向上させるとともに、高温貯蔵特性を改善し、電動工具などの大電流で充放電を繰り返す用途に好適なリチウムイオン二次電池を提供できる。   According to the present invention, it is possible to improve the safety of a lithium ion secondary battery, improve high-temperature storage characteristics, and provide a lithium ion secondary battery suitable for applications in which charging and discharging are repeated with a large current such as an electric tool.

1 正極
2 負極
3 セパレータ
4 非水電解液
5 電池缶
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Nonaqueous electrolyte 5 Battery can

Claims (3)

マンガン含有リチウム複合酸化物を正極活物質として含む正極と、リチウムを吸蔵・放出可能な物質を負極活物質として含む負極と、セパレータと、非水電解液とを含むリチウムイオン二次電池であって、
前記マンガン含有リチウム複合酸化物のBET比面積が、0.1〜1.0m/gであり、
前記正極、前記負極、前記セパレータ及び前記非水電解液から選ばれる少なくとも1種の電池要素の中に、カルボン酸塩、炭酸塩及びリン酸塩から選ばれる少なくとも1種の塩を添加剤として含むことを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery including a positive electrode including a manganese-containing lithium composite oxide as a positive electrode active material, a negative electrode including a material capable of occluding and releasing lithium as a negative electrode active material, a separator, and a non-aqueous electrolyte. ,
The manganese-containing lithium composite oxide has a BET specific area of 0.1 to 1.0 m 2 / g,
In at least one battery element selected from the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte, at least one salt selected from carboxylate, carbonate, and phosphate is included as an additive. The lithium ion secondary battery characterized by the above-mentioned.
前記添加剤の含有量が、前記正極に含まれるマンガン元素1モルに対してモル比で0.3×10−3以上である請求項1に記載のリチウムイオン二次電池。 2. The lithium ion secondary battery according to claim 1, wherein the content of the additive is 0.3 × 10 −3 or more in terms of a molar ratio with respect to 1 mol of the manganese element contained in the positive electrode. 前記添加剤の含有量が、前記正極に含まれるマンガン元素1モルに対してモル比で15×10−3以下である請求項1に記載のリチウムイオン二次電池。 2. The lithium ion secondary battery according to claim 1, wherein the content of the additive is 15 × 10 −3 or less in molar ratio with respect to 1 mol of manganese element contained in the positive electrode.
JP2010236353A 2010-10-21 2010-10-21 Lithium ion secondary battery Pending JP2012089402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236353A JP2012089402A (en) 2010-10-21 2010-10-21 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236353A JP2012089402A (en) 2010-10-21 2010-10-21 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2012089402A true JP2012089402A (en) 2012-05-10

Family

ID=46260806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236353A Pending JP2012089402A (en) 2010-10-21 2010-10-21 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2012089402A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150850A1 (en) * 2012-04-02 2013-10-10 日産自動車株式会社 Electrolyte solution for lithium ion secondary batteries, and lithium ion secondary battery
JP2014130774A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method therefor
CN105186032A (en) * 2015-10-19 2015-12-23 东莞市凯欣电池材料有限公司 High-voltage lithium-ion battery electrolyte and lithium-ion battery using high-voltage lithium-ion battery electrolyte
US9660239B2 (en) 2012-11-22 2017-05-23 Samsung Sdi Co., Ltd. Positive active material layer for rechargeable lithium battery, separator for rechargeable lithium battery, and rechargeable lithium battery including at least one of same
JP2019046586A (en) * 2017-08-30 2019-03-22 旭化成株式会社 Additive agent for nonaqueous electrolyte battery, and nonaqueous electrolyte battery arranged by use thereof
JP2019075273A (en) * 2017-10-16 2019-05-16 トヨタ自動車株式会社 Production method of nonaqueous electrolyte secondary battery
CN114566707A (en) * 2022-01-20 2022-05-31 上海兰钧新能源科技有限公司 Lithium ion battery electrolyte, preparation method thereof and lithium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011996A (en) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000067869A (en) * 1998-08-26 2000-03-03 Nec Corp Non-aqueous electrolyte secondary battery
JP2000311689A (en) * 1999-04-26 2000-11-07 Nec Corp Nonaqueous electrolyte secondary battery
JP2006147515A (en) * 2004-11-24 2006-06-08 Kazuo Tagawa Lithium-ion secondary battery
JP2007165296A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2009054475A (en) * 2007-08-28 2009-03-12 Toshiba Corp Nonaqueous electrolyte solution battery and battery pack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011996A (en) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000067869A (en) * 1998-08-26 2000-03-03 Nec Corp Non-aqueous electrolyte secondary battery
JP2000311689A (en) * 1999-04-26 2000-11-07 Nec Corp Nonaqueous electrolyte secondary battery
JP2006147515A (en) * 2004-11-24 2006-06-08 Kazuo Tagawa Lithium-ion secondary battery
JP2007165296A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2009054475A (en) * 2007-08-28 2009-03-12 Toshiba Corp Nonaqueous electrolyte solution battery and battery pack

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150850A1 (en) * 2012-04-02 2013-10-10 日産自動車株式会社 Electrolyte solution for lithium ion secondary batteries, and lithium ion secondary battery
US9825332B2 (en) 2012-04-02 2017-11-21 Nissan Motor Co., Ltd. Electrolytic solution for lithium ion secondary battery, and lithium ion secondary battery
US9660239B2 (en) 2012-11-22 2017-05-23 Samsung Sdi Co., Ltd. Positive active material layer for rechargeable lithium battery, separator for rechargeable lithium battery, and rechargeable lithium battery including at least one of same
US9905882B2 (en) 2012-11-22 2018-02-27 Samsung Sdi Co., Ltd. Positive active material layer for rechargeable lithium battery, separator for rechargeable lithium battery, and rechargeable lithium battery including at least one of same
JP2014130774A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method therefor
CN105186032A (en) * 2015-10-19 2015-12-23 东莞市凯欣电池材料有限公司 High-voltage lithium-ion battery electrolyte and lithium-ion battery using high-voltage lithium-ion battery electrolyte
JP2019046586A (en) * 2017-08-30 2019-03-22 旭化成株式会社 Additive agent for nonaqueous electrolyte battery, and nonaqueous electrolyte battery arranged by use thereof
JP2019075273A (en) * 2017-10-16 2019-05-16 トヨタ自動車株式会社 Production method of nonaqueous electrolyte secondary battery
CN114566707A (en) * 2022-01-20 2022-05-31 上海兰钧新能源科技有限公司 Lithium ion battery electrolyte, preparation method thereof and lithium ion battery

Similar Documents

Publication Publication Date Title
JP6948601B2 (en) Rechargeable battery
JP6139776B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP2006066341A (en) Nonaqueous electrolyte secondary cell
JP7469434B2 (en) Nonaqueous electrolyte battery and method of manufacturing same
JP7142258B2 (en) Positive electrode for secondary battery, and secondary battery
JP2016035901A (en) Nonaqueous electrolyte battery, method of manufacturing nonaqueous electrolyte battery, and battery pack
JP2012089402A (en) Lithium ion secondary battery
JP6165425B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR20080080444A (en) Non-aqueous electrolyte secondary battery
JP2014035925A (en) Nonaqueous electrolyte secondary battery
JP2014035929A (en) Nonaqueous electrolyte secondary battery
JP2002216755A (en) Nonaqueous electrolyte secondary battery
JP6070691B2 (en) Nonaqueous electrolyte secondary battery
JP2013134923A (en) Lithium ion secondary battery
JP5869354B2 (en) Exterior can for prismatic lithium ion secondary battery and prismatic lithium ion secondary battery
JP5583419B2 (en) Lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2014035924A (en) Nonaqueous electrolyte secondary battery
WO2019098056A1 (en) Lithium ion secondary battery
JP2014220140A (en) Nonaqueous secondary battery
JP7350761B2 (en) Nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery system
JP6701510B2 (en) Non-aqueous electrolyte secondary battery
JP2016085884A (en) battery
JP2011086468A (en) Nonaqueous electrolyte battery
WO2023157470A1 (en) Cylindrical nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140418