JP2006147515A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2006147515A
JP2006147515A JP2004372298A JP2004372298A JP2006147515A JP 2006147515 A JP2006147515 A JP 2006147515A JP 2004372298 A JP2004372298 A JP 2004372298A JP 2004372298 A JP2004372298 A JP 2004372298A JP 2006147515 A JP2006147515 A JP 2006147515A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
ion secondary
lithium manganate
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004372298A
Other languages
Japanese (ja)
Inventor
Kazuo Tagawa
和男 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004372298A priority Critical patent/JP2006147515A/en
Publication of JP2006147515A publication Critical patent/JP2006147515A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress deterioration of a battery in order to put in practical use a lithium ion secondary battery having a high capacity using lithium manganate for a positive electrode. <P>SOLUTION: A substance obtained by mixing lithium manganate and sodium phosphate is used for a positive electrode, thereby dissolution of Mn from the positive electrode is decreased and deterioration of a negative electrode is suppressed, thus a sharp deterioration of the lithium ion secondary battery is suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

この発明はマンガン酸リチウムを正極に用いるリチウムイオン二次電池の劣化の抑制に関するものである。  The present invention relates to suppression of deterioration of a lithium ion secondary battery using lithium manganate as a positive electrode.

従来の技術とその課題Conventional technology and its problems

マンガン酸リチウムは、豊富な資源量、高い安全性、安い価格、低い環境負荷の点から、大型リチウムイオン二次電池の正極として期待されている。しかし、これを正極に用いたリチウムイオン二次電池を高温で保存すると容量が激しく劣化する。このようなことからマンガン酸リチウムを正極に用いた高い容量をもつリチウムイオン二次電池の実用化が難しかった。高温状態で電池が激しく劣化する原因は、正極に用いたマンガン酸リチウムからマンガンイオンが溶け出して負極に付着して負極を激しく劣化するためである。  Lithium manganate is expected as a positive electrode for large-sized lithium ion secondary batteries because of its abundant resources, high safety, low price, and low environmental load. However, when a lithium ion secondary battery using this as a positive electrode is stored at a high temperature, the capacity is severely deteriorated. For these reasons, it has been difficult to put into practical use a lithium ion secondary battery having a high capacity using lithium manganate as the positive electrode. The reason why the battery deteriorates violently at a high temperature is that manganese ions are dissolved from the lithium manganate used for the positive electrode, adhere to the negative electrode, and the negative electrode is severely deteriorated.

発明が解決しようとする課題Problems to be solved by the invention

マンガン酸リチウムを正極に用いた高い容量をもつリチウムイオン二次電池を実用化するためには、正極に用いたマンガン酸リチウムから溶解するマンガンイオンを抑制することが必要である。  In order to put into practical use a lithium ion secondary battery having a high capacity using lithium manganate as the positive electrode, it is necessary to suppress manganese ions dissolved from the lithium manganate used in the positive electrode.

課題を解決するための手段Means for solving the problem

本発明は、マンガン酸リチウムを正極に用いたリチウムイオン二次電池の容量の劣化問題を解決するために、マンガン酸リチウムとリン酸ナトリウムを混合して得た物質を正極に用いてリチウムイオン二次電池の激しい劣化を抑制するものである。  In order to solve the capacity deterioration problem of a lithium ion secondary battery using lithium manganate as a positive electrode, the present invention uses a substance obtained by mixing lithium manganate and sodium phosphate as a positive electrode and uses a lithium ion secondary battery. This suppresses severe deterioration of the secondary battery.

この発明において、マンガン酸リチウム粒子にリン酸ナトリウムを付着させて、これを正極に用いて劣化の少ないリチウムイオン二次電池を得ようとするものである。  In this invention, sodium phosphate is adhered to lithium manganate particles, and this is used for a positive electrode to obtain a lithium ion secondary battery with little deterioration.

発明の実施形態Embodiments of the Invention

マンガン酸リチウムはLiMnの組成に限定されるものではなく、Mnの一部をLi、Na、Mg、Ca、Al、Cr、Fe、Co、Niなどの異種金属イオンで置換したものでも構わない。Lithium manganate is not limited to the composition of LiMn 2 O 4 , even if a part of Mn is replaced with different metal ions such as Li, Na, Mg, Ca, Al, Cr, Fe, Co, Ni I do not care.

さらに、アルカリリン酸塩であれば、リン酸ナトリウムとほぼ同様な効果を発揮する。  Furthermore, if it is an alkali phosphate, the effect similar to sodium phosphate is exhibited.

リン酸ナトリウムとマンガン酸リチウムを混合した物質を調整する際に、マンガン酸リチウム粒子に均等にリン酸ナトリウムが付着することが望ましく、粉体による混合やリン酸ナトリウム水溶液のマンガン酸リチウムへの含浸などが考えられるが、これに限定されるものではない。  When preparing a mixture of sodium phosphate and lithium manganate, it is desirable that sodium phosphate adhere evenly to the lithium manganate particles. Mixing with powder or impregnation of sodium phosphate aqueous solution into lithium manganate However, it is not limited to this.

マンガン酸リチウムに対してリン酸ナトリウムの重量比は2%から20%が適量であるが、これ以外の重量比であっても効果が見られる。  The appropriate weight ratio of sodium phosphate to lithium manganate is 2% to 20%, but the effect is seen even with other weight ratios.

このように混合したマンガン酸リチウムを通常においては乾燥して正極として用いる。  The lithium manganate thus mixed is usually dried and used as the positive electrode.

発明の効果The invention's effect

この発明の効果は、リン酸ナトリウムとマンガン酸リチウムの混合物を正極に用いると劣化の少ないリチウムイオン二次電池を作製することができる。添加したリン酸ナトリウムがマンガン酸リチウムからのMn溶解を抑制する。  The effect of this invention is that a lithium ion secondary battery with little deterioration can be produced when a mixture of sodium phosphate and lithium manganate is used for the positive electrode. The added sodium phosphate suppresses dissolution of Mn from lithium manganate.

次に実施例によってこの発明をさらに具体的に説明する。  Next, the present invention will be described more specifically with reference to examples.

実施例1
日本重化学工業製のスピネル型マンガン酸リチウム(Li/Mn=0.51、単位格子長0.8241nm)1gと50mgのリン酸ナトリウムを混ぜ、メノウ乳鉢でよく混合して得た物質を常法に従い正極ペレットとした。負極に金属Liを用いてコイン型リチウムイオン二次電池を作製した。次に、コイン二次電池の容量を測定した後に、10%の充電状態に設定して、55度で1週間貯蔵した。貯蔵後、室温に戻して、容量を再度測定して、容量劣化量を調べた。さらに、コイン二次電池を解体して負極Liに付着したMn量を測定し、正極から溶け出したMn量を測定した。
Example 1
A substance obtained by mixing 1 g of spinel type lithium manganate (Li / Mn = 0.51, unit cell length 0.8241 nm) manufactured by Nippon Heavy Chemical Industry and 50 mg of sodium phosphate and mixing well in an agate mortar according to a conventional method A positive electrode pellet was obtained. A coin-type lithium ion secondary battery was produced using metal Li for the negative electrode. Next, after measuring the capacity | capacitance of the coin secondary battery, it set to the charge condition of 10%, and stored for 1 week at 55 degree | times. After storage, the temperature was returned to room temperature, the capacity was measured again, and the amount of capacity deterioration was examined. Further, the coin secondary battery was disassembled, the amount of Mn adhering to the negative electrode Li was measured, and the amount of Mn dissolved from the positive electrode was measured.

実施例2
日本重化学工業製のスピネル型マンガン酸リチウム(Li/Mn=0.51、単位格子長0.8241nm)1gをバイアルビンに取り、それに重量比でリン酸ナトリウムが10%になるように調整したリン酸ナトリウム水溶液25mlを加えた後にゆっくり撹拌した。次に、50度から60度でゆっくり乾燥させたのちに、メノウ乳鉢でゆっくりと均一に混合して得た物質を常法に従い正極ペレットとした。負極にグラファイトを用いてコイン型リチウムイオン二次電池を作製した。次に、コイン二次電池の容量を測定した後に、30%充電状態に設定して、55度で1週間貯蔵した。貯蔵後、室温に戻して、容量を再度測定して、容量劣化量を調べた。さらに、コイン二次電池を解体して負極に付着したMn量を測定し、正極から溶け出したMn量を測定した。
Example 2
1 g of spinel-type lithium manganate (Li / Mn = 0.51, unit cell length 0.8241 nm) manufactured by Nippon Heavy Industries, Ltd. was placed in a vial and adjusted so that sodium phosphate was 10% by weight. After adding 25 ml of an aqueous sodium acid solution, the mixture was slowly stirred. Next, after slowly drying at 50 to 60 degrees, a substance obtained by slowly and uniformly mixing in an agate mortar was used as a positive electrode pellet according to a conventional method. A coin-type lithium ion secondary battery was fabricated using graphite as the negative electrode. Next, after measuring the capacity of the coin secondary battery, it was set to a 30% charged state and stored at 55 degrees for one week. After storage, the temperature was returned to room temperature, the capacity was measured again, and the amount of capacity deterioration was examined. Further, the coin secondary battery was disassembled, the amount of Mn adhering to the negative electrode was measured, and the amount of Mn dissolved from the positive electrode was measured.

実施例に従い、劣化率と溶解Mn量の結果を図1と図2に示す。リン酸ナトリウムがMn溶解を抑制し、電池の劣化を抑制していることがわかる。また、各充電状態で電池を保存した場合の結果を図3に示す。充電状態を40%以上に保つことによって劣化が抑制された二次電池となる。  The results of deterioration rate and dissolved Mn amount are shown in FIGS. 1 and 2 according to the examples. It can be seen that sodium phosphate suppresses dissolution of Mn and suppresses deterioration of the battery. Moreover, the result at the time of preserve | saving a battery in each charge state is shown in FIG. By maintaining the charged state at 40% or more, the secondary battery can be prevented from being deteriorated.

負極に金属リチウムを使用した場合のリン酸ナトリウムの添加量と容量保持率及び溶解Mn率  Amount of sodium phosphate added, capacity retention and dissolved Mn ratio when metallic lithium is used for the negative electrode 負極にグラファイトを使用した場合のリン酸ナトリウムの添加量と劣化率及び溶解Mn率  Addition amount and deterioration rate of sodium phosphate and dissolved Mn rate when graphite is used for the negative electrode 負極に金属リチウムを使用した場合の各充電状態における容量保持率及び溶解Mn率  Capacity retention and dissolved Mn ratio in each charged state when metallic lithium is used for the negative electrode

Claims (5)

マンガン酸リチウムとアルカリリン酸塩を混合して得た物質を正極に用いることを特徴とするリチウムイオン二次電池。  A lithium ion secondary battery characterized in that a substance obtained by mixing lithium manganate and alkali phosphate is used for a positive electrode. マンガン酸リチウムとリン酸ナトリウムを混合して得た物質を正極に用いることを特徴とするリチウムイオン二次電池。  A lithium ion secondary battery using a material obtained by mixing lithium manganate and sodium phosphate for a positive electrode. スピネル型マンガン酸リチウムとリン酸ナトリウムを混合して得た物質を正極に用いることを特徴とするリチウムイオン二次電池。  A lithium ion secondary battery using, as a positive electrode, a material obtained by mixing spinel type lithium manganate and sodium phosphate. スピネル型マンガン酸リチウムとそれに対して重量比で2%から20%のリン酸ナトリウムを混合して得た物質を正極に用いることを特徴とするリチウムイオン二次電池。  A lithium ion secondary battery using, as a positive electrode, a material obtained by mixing spinel type lithium manganate and 2 to 20% sodium phosphate by weight with respect to the spinel type lithium manganate. スピネル型マンガン酸リチウムとそれに対して重量比で2%から20%のリン酸ナトリウムを混合して得た物質を正極に用い、充電状態が40%以上を保つことを特徴とするリチウムイオン二次電池。  Lithium ion secondary characterized in that a substance obtained by mixing spinel type lithium manganate and sodium phosphate of 2% to 20% by weight with respect to it is used for the positive electrode, and the charged state is kept at 40% or more. battery.
JP2004372298A 2004-11-24 2004-11-24 Lithium-ion secondary battery Pending JP2006147515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372298A JP2006147515A (en) 2004-11-24 2004-11-24 Lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372298A JP2006147515A (en) 2004-11-24 2004-11-24 Lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2006147515A true JP2006147515A (en) 2006-06-08

Family

ID=36626940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372298A Pending JP2006147515A (en) 2004-11-24 2004-11-24 Lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2006147515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089402A (en) * 2010-10-21 2012-05-10 Hitachi Maxell Energy Ltd Lithium ion secondary battery
CN113871697A (en) * 2021-09-28 2021-12-31 深圳市超壹新能源科技有限公司 Sodium-lithium battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089402A (en) * 2010-10-21 2012-05-10 Hitachi Maxell Energy Ltd Lithium ion secondary battery
CN113871697A (en) * 2021-09-28 2021-12-31 深圳市超壹新能源科技有限公司 Sodium-lithium battery

Similar Documents

Publication Publication Date Title
US9263732B2 (en) Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
CN109616664B (en) Nickel-cobalt-manganese precursor, preparation method of nickel-cobalt-manganese ternary material and lithium ion battery
US20100136427A1 (en) Water based lithium secondary battery
EP3930052A1 (en) Low gas-producing high capacity ternary positive electrode material
US11876209B2 (en) Pre-lithiated lithium ion positive electrode material, and preparation method therefor and use thereof
CN110085814B (en) Positive electrode material for lithium battery and preparation method and application thereof
CN104934597A (en) Method for manufacturing anode materials for sodium ion batteries and application of anode materials
CN104393285A (en) Nickel-cobalt-aluminum ternary positive electrode material and its preparation method
JP2011113825A5 (en)
CN109755553A (en) A kind of magnesium lithium Dual-ion cell composite positive pole and its preparation method and application, battery system
CN110176641A (en) A kind of nanometer of LiF/Fe/ graphite anode mends the preparation method and applications of lithium slurry
JP7034275B2 (en) Lithium-cobalt metal oxide powder, its preparation method, and method for determining the content of cobalt (II, III).
Zeng et al. Nano‐Sized AlPO4 Coating Layer on Graphite Powder to Improve the Electrochemical Properties of High‐Voltage Graphite/LiNi0. 5Mn1. 5O4 Li‐Ion Cells
CN111600014B (en) Modified high-specific-capacity high-nickel ternary cathode material and preparation method thereof
Aravindan et al. Electrochemical Activity of Hematite Phase in Full‐Cell Li‐ion Assemblies
WO2016155504A1 (en) Nickel-based rechargeable battery and manufacturing method therefor
Guan et al. Enhancing cyclic and in-air stability of Ni-Rich cathodes through perovskite oxide surface coating
CN114436344A (en) Preparation method and application of positive electrode material precursor with large channel
CN102437337A (en) Lithium ion battery anode material LiCoPO4/Al2O3 and preparation method thereof
CN113851626A (en) Element-doped and graphene-coated layered manganese-based sodium-ion battery positive electrode material and preparation method thereof
CN105514364A (en) Modified lithium ion battery cathode material capable of improving cycle performance and preparation method thereof
JP2006147515A (en) Lithium-ion secondary battery
CN115411258A (en) Sodium-ion battery positive electrode material and preparation method and application thereof
JP2006156317A (en) Lithium-ion secondary battery
CN110137437B (en) Lithium cobaltate positive electrode material of lithium ion battery and coating method thereof