JPH11121012A - Nonaqueous electrolytic battery - Google Patents

Nonaqueous electrolytic battery

Info

Publication number
JPH11121012A
JPH11121012A JP9277666A JP27766697A JPH11121012A JP H11121012 A JPH11121012 A JP H11121012A JP 9277666 A JP9277666 A JP 9277666A JP 27766697 A JP27766697 A JP 27766697A JP H11121012 A JPH11121012 A JP H11121012A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrolyte battery
chelate
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9277666A
Other languages
Japanese (ja)
Inventor
Tokuo Inamasu
徳雄 稲益
Tadashi Shioda
匡史 塩田
Hiroyoshi Yoshihisa
洋悦 吉久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP9277666A priority Critical patent/JPH11121012A/en
Publication of JPH11121012A publication Critical patent/JPH11121012A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve charge/discharge cycle life characteristics and a shelf life by including chelate polymer in at least one of a positive electrode, a negative electrode and an isolation body. SOLUTION: A positive electrode 10 is formed by covering positive electrode mix 1 on a positive electrode collecting body 6. The positive mix 1 contains LiCoO2 as a positive electrode active material, graphite powder as conductive agent, iminodiacetic acid chelate resin as a chelate polymer, and polyvinylidene fluoride as a binding agent, respectively. This positive mix 1 is mixed with an electrolyte formed by dissolving hexafluorolithium phosphate as a solute to a mixed solvent composed of propylene carbonate, etc., to term a slurry and applied to the positive electrode collecting body 6 composed of Al. An iminopropyonic acid chelate resin can be used as the chelate polymer besides the above. It is preferable that the content in the positive mix 1 is 1-10 wt.% Ti and stainless steel can be used for the positive electrode collecting body 6 besides Al.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池に関
するもので、さらに詳しく言えば、充放電サイクル寿命
特性、保存性能を改良した非水電解質電池に関するもの
である。
The present invention relates to a non-aqueous electrolyte battery, and more particularly, to a non-aqueous electrolyte battery having improved charge / discharge cycle life characteristics and storage performance.

【0002】[0002]

【従来の技術】近年、電子機器の高性能化、小型化に伴
って、その電源として使用される電池にも小型化、軽量
化、高容量化の要求が高まり、それに対応できる非水電
解質電池、特にリチウムイオン電池が急速に普及してい
る。
2. Description of the Related Art In recent years, as the performance and size of electronic devices have been improved, the demand for smaller, lighter, and higher capacity batteries has been increasing. In particular, lithium ion batteries are rapidly spreading.

【0003】リチウムイオン電池は、リチウムを吸蔵、
放出可能な活物質を主体として構成された正極と負極と
が隔離体を介して配されてなり、前記正極は、正極活物
質としてのLiCoO2 ,LiNiO2 ,LiMn2
4 等に導電剤としてのカーボンブラックや黒鉛、バイン
ダーとしてのポリフッ化ビニリデンを混合した正極合剤
がアルミニウムなどからなる正極集電体上に被着されて
なり、負極は、負極活物質としてのコークスや黒鉛等に
バインダーとしてのポリフッ化ビニリデンを混合した負
極合剤が銅などからなる負極集電体上に被着されてな
り、隔離体は多孔性ポリエチレンフィルムのようなセパ
レータからなる。そして、前記正極、負極、隔離体には
ヘキサフルオロリン酸リチウムのようなリチウム塩をプ
ロピレンカーボネート、エチレンカーボネートのような
非プロトン性溶媒やポリエチレンオキシドのようなポリ
マーに溶解させた電解液が含浸されてなる。
[0003] Lithium-ion batteries occlude lithium,
A positive electrode mainly composed of a releasable active material and a negative electrode are arranged via an isolator, and the positive electrode comprises LiCoO 2 , LiNiO 2 , and LiMn 2 O as positive electrode active materials.
A positive electrode mixture obtained by mixing carbon black or graphite as a conductive agent and polyvinylidene fluoride as a binder on 4 or the like is deposited on a positive electrode current collector made of aluminum or the like, and the negative electrode is coke as a negative electrode active material. A negative electrode mixture obtained by mixing polyvinylidene fluoride as a binder with graphite or graphite is applied on a negative electrode current collector made of copper or the like, and the separator is made of a separator such as a porous polyethylene film. Then, the positive electrode, the negative electrode, and the separator are impregnated with an electrolyte obtained by dissolving a lithium salt such as lithium hexafluorophosphate in an aprotic solvent such as propylene carbonate or ethylene carbonate or a polymer such as polyethylene oxide. It becomes.

【0004】上記したリチウムイオン電池では、充放電
を反復させると、内部インピーダンスが増大して放電容
量が減少するという問題があり、この問題を解決するた
めの種々の提案がなされている。
[0004] In the above-mentioned lithium ion battery, there is a problem that, when charging and discharging are repeated, the internal impedance increases and the discharge capacity decreases, and various proposals for solving this problem have been made.

【0005】たとえば、内部インピーダンスが増大する
のは合剤と集電体との結着性が低下するのが原因である
とし、これを改良するものとして、特開平7−1830
27号公報に記載されたような、正極合剤、負極合剤中
のバインダーとしてのポリフッ化ビニリデンに架橋を施
すという提案、特開平9−129240号に記載された
ような、前記バインダー中にイミド化合物を添加すると
いう提案、特開平9−139199号公報に記載された
ような、バインダーにポリフッ化エチレンを使用すると
いう提案がある。
[0005] For example, it is assumed that the increase in internal impedance is due to a decrease in the binding property between the mixture and the current collector.
No. 27, a proposal to crosslink polyvinylidene fluoride as a binder in a positive electrode mixture and a negative electrode mixture, and an imide in the binder as described in JP-A-9-129240. There is a proposal to add a compound, and a proposal to use polyfluoroethylene as a binder as described in JP-A-9-139199.

【0006】また、上記した以外の原因としては、正極
活物質としてLiMn2 4 を使用したものが顕著であ
ることから、放電の過程で溶出したマンガンイオンが内
部インピーダンスの増大に寄与するのではないかという
推察や、電解液中に不純物として微量に水分が存在する
ことから、ヘキサフルオロリン酸リチウムのようなリチ
ウム塩が前記水分によって分解され、それによって生成
するフッ素が溶媒であるプロピレンカーボネート、エチ
レンカーボネートを分解するのではないかという推察が
ある。
As a cause other than the above, the one using LiMn 2 O 4 as the positive electrode active material is conspicuous, so that manganese ions eluted during the discharge process contribute to an increase in internal impedance. Presumption that there is not, because there is a trace amount of water as impurities in the electrolyte solution, lithium salt such as lithium hexafluorophosphate is decomposed by the water, the resulting fluorine is a solvent propylene carbonate, There is speculation that ethylene carbonate may be decomposed.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記した合
剤と集電体との結着性の改良によっても内部インピーダ
ンスの増大を抑制するには至らず、マンガンイオンの存
在や溶媒の分解が内部インピーダンスの増大に寄与する
と仮定してもそれを抑制する有効な手段は見出せていな
いのが現状であった。
However, even with the improvement of the binding property between the mixture and the current collector, the increase in the internal impedance has not been suppressed, and the presence of manganese ions and the decomposition of the solvent have not been improved. At present, no effective means has been found to suppress the impedance even if it is assumed to contribute to an increase in impedance.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、正極と負極とが隔離体を介
して配されてなる非水電解質電池において、正極、負
極、隔離体の少なくとも一つがキレート高分子を含有す
ることを特徴とするものであり、これにより、合剤と集
電体とをキレートによって強固に被着させ、溶出した金
属イオンや生成したフッ素をキレートによって吸着させ
ることができる。
In order to solve the above-mentioned problems, the invention according to claim 1 is directed to a non-aqueous electrolyte battery in which a positive electrode and a negative electrode are arranged via an isolator. Characterized in that at least one of them contains a chelate polymer, whereby the mixture and the current collector are firmly adhered by the chelate, and the eluted metal ions and generated fluorine are absorbed by the chelate. Can be done.

【0009】また、請求項2記載の発明は、請求項1記
載の非水電解質電池において、正極はアルミニウム、チ
タンまたはステンレスからなる正極集電体上に、該正極
集電体を構成する金属のイオンの選択吸着性が高いキレ
ート高分子を含有する正極活物質を主体とする合剤が被
着されていることを特徴とするものであり、これによ
り、前記金属イオンとの間でキレートを形成させること
ができる。
According to a second aspect of the present invention, in the nonaqueous electrolyte battery according to the first aspect, the positive electrode is formed on a positive electrode current collector made of aluminum, titanium, or stainless steel, and the metal constituting the positive electrode current collector is formed on the positive electrode current collector. It is characterized in that a mixture mainly composed of a positive electrode active material containing a chelate polymer having high selective adsorption of ions is applied, thereby forming a chelate with the metal ions. Can be done.

【0010】また、請求項3記載の発明は、請求項2記
載の非水電解質電池において、キレート高分子はイミノ
二酢酸形、イミノプロピオン酸形のキレート樹脂である
ことを特徴とするものであり、これにより、正極集電体
を構成する金属のイオンとの間でキレートを形成させる
ことができる。
According to a third aspect of the present invention, in the nonaqueous electrolyte battery according to the second aspect, the chelate polymer is an iminodiacetic acid type or iminopropionic acid type chelate resin. Thus, a chelate can be formed between the positive electrode current collector and metal ions constituting the positive electrode current collector.

【0011】また、請求項4記載の発明は、請求項1記
載の非水電解質電池において、負極はニッケル、鉄、銅
またはステンレスからなる負極集電体上に、該負極集電
体を構成する金属のイオンの選択吸着性が高いキレート
高分子を含有することを特徴とするものであり、これに
より、前記金属イオンとの間でキレートを形成させるこ
とができる。
According to a fourth aspect of the present invention, in the nonaqueous electrolyte battery according to the first aspect, the negative electrode is formed on a negative electrode current collector made of nickel, iron, copper, or stainless steel. It is characterized by containing a chelate polymer having a high selective adsorption of metal ions, whereby a chelate can be formed with the metal ions.

【0012】また、請求項5記載の発明は、請求項4記
載の非水電解質電池において、キレート高分子はイミノ
二酢酸形、イミノプロピオン酸形、アミノリン酸形、ア
ミドキシム形、ピコリルアミン形またはポリアミン形の
キレート樹脂であることを特徴とするものであり、これ
により、負極集電体を構成する金属のイオンとの間でキ
レートを形成させることができる。
According to a fifth aspect of the present invention, in the non-aqueous electrolyte battery according to the fourth aspect, the chelating polymer is an iminodiacetic acid type, an iminopropionic acid type, an aminophosphoric acid type, an amidoxime type, a picolylamine type or a polyamine. It is characterized in that it is a chelate resin of a shape, and thereby, it is possible to form a chelate with a metal ion constituting the negative electrode current collector.

【0013】また、請求項6記載の発明は、請求項1記
載の非水電解質電池において、隔離体は正極活物質を構
成する金属のイオンの選択吸着性が高いキレート高分子
を含有することを特徴とするものであり、これにより、
放電の過程で溶出した正極活物質を構成する金属イオン
をキレートによって吸着させることができる。
According to a sixth aspect of the present invention, in the nonaqueous electrolyte battery according to the first aspect, the separator contains a chelate polymer having high selective adsorption of metal ions constituting the positive electrode active material. It is characterized by this,
Metal ions constituting the positive electrode active material eluted in the process of discharging can be adsorbed by the chelate.

【0014】また、請求項7記載の発明は、請求項6記
載の非水電解質電池において、正極活物質を構成する金
属はマンガンを含むものであることを特徴とするもので
あり、これにより、マンガンイオンをキレートによって
吸着させることができる。
According to a seventh aspect of the present invention, in the non-aqueous electrolyte battery according to the sixth aspect, the metal constituting the positive electrode active material contains manganese, whereby the manganese ion Can be adsorbed by chelating.

【0015】また、請求項8記載の発明は、請求項6ま
たは7記載の非水電解質電池において、隔離体はイミノ
二酢酸形またはアミノリン酸形のキレート樹脂を含有し
たものであることを特徴とするものであり、これによ
り、放電の過程で溶出した正極活物質を構成する金属イ
オンをキレートによって吸着させることができる。
The invention according to claim 8 is the non-aqueous electrolyte battery according to claim 6 or 7, wherein the separator contains an iminodiacetic acid type or aminophosphate type chelate resin. Thereby, the metal ions constituting the positive electrode active material eluted in the process of discharging can be adsorbed by the chelate.

【0016】[0016]

【発明の実施の形態】以下、本発明をその実施の形態に
基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on its embodiments.

【0017】図1は本発明の実施の形態に係る非水電解
質電池の断面図である。
FIG. 1 is a sectional view of a nonaqueous electrolyte battery according to an embodiment of the present invention.

【0018】図1において、正極10は、正極合剤1を
正極集電体6上に被着してなるもので、前記正極合剤1
は、正極活物質としての平均粒径が10μmのLiCo
2(83重量部)、導電剤としての黒鉛粉末(10重
量部)、キレート高分子としてのイミノ二酢酸形のキレ
ート樹脂(4重量部)、バインダーとしてのポリフッ化
ビニリデン(3重量部)からなり、この正極合剤1を、
プロピレンカーボネートとジエチルカーボネートとの混
合溶媒に溶質としてのヘキサフルオロリン酸リチウムを
溶解させた電解液に混合してスラリー状にし、厚さが約
20μmのアルミニウムからなる正極集電体6上に塗布
して約100μmの厚さにする。
In FIG. 1, a positive electrode 10 is obtained by applying a positive electrode mixture 1 on a positive electrode current collector 6.
Is LiCo having an average particle size of 10 μm as a positive electrode active material.
O 2 (83 parts by weight), graphite powder (10 parts by weight) as a conductive agent, iminodiacetic acid type chelate resin (4 parts by weight) as a chelating polymer, and polyvinylidene fluoride (3 parts by weight) as a binder This positive electrode mixture 1
It is mixed with an electrolyte solution in which lithium hexafluorophosphate as a solute is dissolved in a mixed solvent of propylene carbonate and diethyl carbonate to form a slurry, and is coated on a positive electrode current collector 6 made of aluminum having a thickness of about 20 μm. To a thickness of about 100 μm.

【0019】前記正極10の、正極合剤1は正極活物質
としてのLiCoO2 以外に、LiNiO2 ,LiMn
2 4 ,LiMnO2 などのリチウム遷移金属酸化物、
25 ,MnO2 ,MoO3 などの遷移金属酸化物、
TiS2 ,MoS2 ,NbSe3 などのカルコゲン化合
物やこれらを併用したものが使用でき、キレート高分子
としてのイミノ二酢酸形のキレート樹脂以外に、イミノ
プロピオン酸形のキレート樹脂が使用でき、正極集電体
6はアルミニウム以外に、チタン、ステンレスが使用で
きる。
The positive electrode mixture 1 of the positive electrode 10 includes LiNiO 2 , LiMn, in addition to LiCoO 2 as a positive electrode active material.
Lithium transition metal oxides such as 2 O 4 and LiMnO 2 ,
Transition metal oxides such as V 2 O 5 , MnO 2 and MoO 3 ;
Chalcogen compounds such as TiS 2 , MoS 2 , NbSe 3 and the like can be used, and in addition to an iminodiacetate type chelate resin as a chelate polymer, an iminopropionic acid type chelate resin can be used. As the electric body 6, titanium or stainless steel can be used in addition to aluminum.

【0020】すなわち、前記キレート高分子は正極集電
体6を構成する金属のイオンの選択吸着性が高いもので
あればよく、その正極合剤1中の含有率は1〜10重量
%が好ましい。なお、含有率が1重量%以下であると、
正極合剤1と正極集電体6とが強固に接着されなくな
り、含有率が10重量%以上であると、正極合剤1の電
気抵抗が増大して実用に適さなくなる。
In other words, the chelate polymer only needs to have a high selective adsorption of metal ions constituting the positive electrode current collector 6, and its content in the positive electrode mixture 1 is preferably 1 to 10% by weight. . When the content is 1% by weight or less,
When the positive electrode mixture 1 and the positive electrode current collector 6 are not firmly adhered to each other, and when the content is 10% by weight or more, the electric resistance of the positive electrode mixture 1 increases, which is not suitable for practical use.

【0021】なお、正極合剤1と正極集電体6との間に
プライマー層を介在させた場合には、このプライマー層
にキレート高分子を含有させてもよい。
When a primer layer is interposed between the positive electrode mixture 1 and the positive electrode current collector 6, the primer layer may contain a chelate polymer.

【0022】次に、負極20は、負極合剤2を負極集電
体7上に被着してなるもので、前記負極合剤2は、負極
活物質としての平均粒径が10μmの黒鉛(93重量
部)、キレート高分子としてのイミノ二酢酸形のキレー
ト樹脂(4重量部)、バインダーとしてのポリフッ化ビ
ニリデン(3重量部)からなり、この負極合剤2を、プ
ロピレンカーボネートとジエチルカーボネートとの混合
溶媒に溶質としてのヘキサフルオロリン酸リチウムを溶
解させた電解液に混合してスラリー状にし、厚さが約2
0μmの銅からなる負極集電体7上に塗布して約100
μmの厚さにする。
Next, the negative electrode 20 is obtained by depositing the negative electrode mixture 2 on the negative electrode current collector 7. The negative electrode mixture 2 is made of graphite having an average particle diameter of 10 μm as a negative electrode active material. 93 parts by weight), an iminodiacetic acid-type chelate resin (4 parts by weight) as a chelate polymer, and polyvinylidene fluoride (3 parts by weight) as a binder. This negative electrode mixture 2 was prepared by mixing propylene carbonate and diethyl carbonate. And mixed with an electrolyte in which lithium hexafluorophosphate as a solute is dissolved in a mixed solvent of
About 100 μm on a negative electrode current collector 7 made of copper
Make a thickness of μm.

【0023】前記負極20の、負極合剤2は負極活物質
としての黒鉛以外に、リチウム−アルミニウム合金、リ
チウム−珪素合金、リチウム−インジウム合金などのリ
チウム合金、コークス、有機物焼成体などの炭素材料や
これらを併用したものが使用でき、キレート高分子とし
てのイミノ二酢酸形のキレート樹脂以外に、イミノプロ
ピオン酸形、アミノリン酸形、アミドキシム形、ピコリ
ルアミン形、ポリアミン形のキレート樹脂が使用でき、
負極集電体7は銅以外に、ニッケル、鉄、ステンレスが
使用できる。
The negative electrode mixture 2 of the negative electrode 20 is made of a carbon material such as a lithium-aluminum alloy, a lithium-silicon alloy, a lithium-indium alloy or the like, a coke, or a fired organic material in addition to graphite as a negative electrode active material. And a combination thereof can be used.In addition to an iminodiacetic acid type chelating resin as a chelating polymer, an iminopropionic acid type, an aminophosphoric acid type, an amidoxime type, a picolylamine type, and a polyamine type chelating resin can be used.
Nickel, iron, and stainless steel can be used for the negative electrode current collector 7 in addition to copper.

【0024】すなわち、前記キレート高分子は負極集電
体7を構成する金属のイオンの選択吸着性が高いもので
あればよく、その負極合剤2中の含有率は1〜10重量
%が好ましい。なお、含有率が1重量%以下であると、
負極合剤2と負極集電体7とが強固に接着されなくな
り、含有率が10重量%以上であると、負極合剤2の電
気抵抗が増大して実用に適さなくなる。
In other words, the chelate polymer only needs to have high selective adsorption of ions of the metal constituting the negative electrode current collector 7, and its content in the negative electrode mixture 2 is preferably 1 to 10% by weight. . When the content is 1% by weight or less,
When the negative electrode mixture 2 and the negative electrode current collector 7 are not firmly bonded to each other, and the content is 10% by weight or more, the electric resistance of the negative electrode mixture 2 increases, and the negative electrode mixture 2 becomes unsuitable for practical use.

【0025】なお、負極合剤2と負極集電体7との間に
プライマー層を介在させた場合には、このプライマー層
にキレート高分子を含有させてもよい。
When a primer layer is interposed between the negative electrode mixture 2 and the negative electrode current collector 7, the primer layer may contain a chelate polymer.

【0026】次に、前記正極10または負極20にキレ
ート高分子を含有させた場合は、キレート高分子を含有
しないポリエチレン、ポリプロピレンなどの微多孔性フ
ィルムからなるセパレータを隔離体3として使用しても
よいが、正極10または負極20にキレート高分子を含
有させた場合であっても、前述した正極活物質を構成す
る金属のイオンの選択吸着性が高いキレート高分子を含
有したものを隔離体3として使用してもよい。
Next, when the positive electrode 10 or the negative electrode 20 contains a chelate polymer, a separator made of a microporous film such as polyethylene or polypropylene containing no chelate polymer can be used as the separator 3. However, even if the positive electrode 10 or the negative electrode 20 contains a chelate polymer, the separator 3 containing the chelate polymer having high selective adsorption of metal ions constituting the positive electrode active material is used. You may use as.

【0027】すなわち、隔離体3自体を、適度に架橋さ
れた微多孔性のキレート樹脂としたり、隔離体3を、セ
パレータとしてのポリエチレン、ポリプロピレンなどの
微多孔性フィルムをキレート高分子としてのキレート樹
脂フィルムの少なくとも一方の面に配した積層体とした
り、隔離体3を、ヘキサフルオロリン酸リチウムのよう
なリチウム塩を架橋性のポリエチレンオキシドなどのポ
リマーに溶解した高分子固体電解質中またはヘキサフル
オロリン酸リチウムをプロピレンカーボネート、エチレ
ンカーボネート、エチルメチルカーボネートまたはジエ
チルカーボネートなどの溶媒とポリアクリロニトリルま
たはポリメチルメタアクリレートなどの高分子ゲルとの
混合物に溶解した高分子ゲル電解質中に、キレート高分
子としてのキレート樹脂を分散させたものとすることが
できる。
That is, the separator 3 itself may be a moderately crosslinked microporous chelate resin, or the separator 3 may be a microporous film such as polyethylene or polypropylene as a separator and a chelate resin as a chelate polymer. A laminate may be formed on at least one surface of the film, or the separator 3 may be formed in a polymer solid electrolyte in which a lithium salt such as lithium hexafluorophosphate is dissolved in a polymer such as crosslinkable polyethylene oxide or hexafluorophosphate. Chelate as a chelate polymer in a polymer gel electrolyte in which lithium oxide is dissolved in a mixture of a solvent such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate or diethyl carbonate and a polymer gel such as polyacrylonitrile or polymethyl methacrylate It can be assumed that the resin is dispersed.

【0028】前述したポリエチレン、ポリプロピレンな
どの微多孔性フィルムを、キレート樹脂フィルムの少な
くとも一方の面に配した積層体とすることにより、キレ
ート樹脂フィルムが正極10、負極20に直接接触する
のを防止することができ、キレート樹脂フィルムが酸
化、還元されて劣化するのを防止することができる。
By forming the above-mentioned microporous film of polyethylene, polypropylene or the like on a laminate in which at least one surface of the chelate resin film is disposed, it is possible to prevent the chelate resin film from directly contacting the positive electrode 10 and the negative electrode 20. It is possible to prevent the chelate resin film from being oxidized and reduced and deteriorated.

【0029】上記したキレート高分子を含有した隔離体
は、正極活物質を構成する金属のイオンがマンガンイオ
ンである場合に特に有効である。
The separator containing the above chelate polymer is particularly effective when the metal ion constituting the positive electrode active material is manganese ion.

【0030】すなわち、正極活物質がLiMn2 4
LiMnO2 のようなマンガンの酸化物の場合には、電
解液中に溶出したマンガンイオンが隔離体3に含有され
るキレート高分子によって捕捉されるため、保存中に自
己放電が抑制できる効果もある。
That is, when the positive electrode active material is LiMn 2 O 4 ,
In the case of a manganese oxide such as LiMnO 2 , since manganese ions eluted in the electrolytic solution are captured by the chelate polymer contained in the separator 3, there is also an effect that self-discharge can be suppressed during storage. .

【0031】上記した正極10、負極20、隔離体3に
含有させるキレート高分子としては水素やナトリウムが
リチウムと置換されたリチウム置換形のものがよい。
As the chelate polymer contained in the positive electrode 10, the negative electrode 20, and the separator 3, a lithium-substituted type in which hydrogen or sodium is substituted with lithium is preferable.

【0032】なお、図1において、4は正極端子を兼ね
る正極容器、5は負極端子を兼ねる負極容器、8は正極
容器4と負極容器5との間を絶縁するガスケットであ
る。
In FIG. 1, reference numeral 4 denotes a positive electrode container also serving as a positive electrode terminal, 5 denotes a negative electrode container also serving as a negative electrode terminal, and 8 denotes a gasket for insulating between the positive electrode container 4 and the negative electrode container 5.

【0033】[0033]

【実施例】【Example】

(実施例1) (評価試験1)83重量%のLiCoO2 を正極活物質
として用い、3重量%のポリスチレンをベースとするリ
チウム置換形のイミノ二酢酸形のキレート樹脂をキレー
ト高分子として用いた正極合剤1を、アルミニウムから
なる正極集電体6に被着した正極10と、93重量%の
人造黒鉛を負極活物質として用い、3重量%のポリスチ
レンをベースとするリチウム置換形のアミノリン酸形の
キレート樹脂をキレート高分子として用いた負極合剤2
を、銅からなる負極集電体7に被着した負極20と、隔
離体3としての厚さが25μmのポリエチレンの微多孔
性フィルムからなるセパレータとを用いて作製した本発
明に係る非水電解質電池(イ)、および正極合剤1およ
び負極合剤2中にキレート高分子を含有させない従来の
非水電解質電池(ロ)について、充電電流を0.5Cの
定電流、充電終止電圧を4.2Vとし、放電電流を0.
5Cの定電流、放電終止電圧を4.2Vとして充放電サ
イクル寿命試験を行い、結果を図2に示す。
Example 1 (Evaluation Test 1) 83% by weight of LiCoO 2 was used as a positive electrode active material, and 3% by weight of a polystyrene-based lithium-substituted iminodiacetic acid-type chelate resin was used as a chelate polymer. The positive electrode mixture 1 is coated on a positive electrode current collector 6 made of aluminum, and a lithium-substituted aminophosphoric acid based on 3% by weight of polystyrene based on 93% by weight of artificial graphite as a negative electrode active material. Negative electrode mixture using a chelating resin in the form of a solid as a chelating polymer 2
Non-aqueous electrolyte according to the present invention prepared using a negative electrode 20 adhered to a negative electrode current collector 7 made of copper and a separator made of a microporous polyethylene film having a thickness of 25 μm as a separator 3 Regarding the battery (a) and the conventional nonaqueous electrolyte battery (b) in which the chelate polymer is not contained in the positive electrode mixture 1 and the negative electrode mixture 2, the charging current is 0.5 C and the charging end voltage is 4. 2V, and the discharge current was set at 0.
A charge / discharge cycle life test was performed at a constant current of 5 C and a discharge end voltage of 4.2 V, and the results are shown in FIG.

【0034】図2から、本発明に係る非水電解質電池
(イ)は従来の非水電解質電池(ロ)より充放電サイク
ル寿命が良好であることがわかる。これは、本発明に係
る非水電解質電池(イ)では正極合剤1と正極集電体6
および負極合剤2と負極集電体7とが強固に接着できた
ためであると考えられる。
FIG. 2 shows that the nonaqueous electrolyte battery (a) according to the present invention has a better charge / discharge cycle life than the conventional nonaqueous electrolyte battery (b). This is because in the nonaqueous electrolyte battery (a) according to the present invention, the positive electrode mixture 1 and the positive electrode current collector 6
This is considered to be because the negative electrode mixture 2 and the negative electrode current collector 7 could be firmly bonded.

【0035】(評価試験2)上記した本発明に係る非水
電解質電池(イ)と従来の非水電解質電池(ロ)とを常
温下で1か月間放置し、その後の容量の低下率を調査し
たところ、本発明に係る非水電解質電池(イ)では4%
であったのに対し、従来の非水電解質電池(ロ)では1
3%であった。これは、本発明に係る非水電解質電池
(イ)では正極合剤1と正極集電体6との接着および負
極合剤2と負極集電体7との接着がほとんど変化しなか
ったためであると考えられる。
(Evaluation Test 2) The above-described nonaqueous electrolyte battery (a) according to the present invention and the conventional nonaqueous electrolyte battery (b) were allowed to stand at room temperature for one month, and the rate of decrease in capacity thereafter was investigated. As a result, in the nonaqueous electrolyte battery (a) according to the present invention, 4%
In contrast, the conventional nonaqueous electrolyte battery (b)
3%. This is because in the nonaqueous electrolyte battery (a) according to the present invention, the adhesion between the positive electrode mixture 1 and the positive electrode current collector 6 and the adhesion between the negative electrode mixture 2 and the negative electrode current collector 7 hardly changed. it is conceivable that.

【0036】(実施例2) (評価試験1)83重量%のLiMn2 4 を正極活物
質として用い、3重量%のポリスチレンをベースとする
リチウム置換形のイミノ二酢酸形のキレート樹脂をキレ
ート高分子として用いた正極合剤1を、アルミニウムか
らなる正極集電体6に被着した正極10と、93重量%
の人造黒鉛を負極活物質として用い、3重量%のポリス
チレンをベースとするリチウム置換形のイミノ二酢酸形
のキレート樹脂をキレート高分子として用いた負極合剤
2を、銅からなる負極集電体7に被着した負極20と、
隔離体3としての、厚さが50μmのポリスチレンをベ
ースとするリチウム置換形のアミノリン酸形のキレート
樹脂フィルムの両面に厚さが25μmのポリエチレンの
微多孔性フィルムからなるセパレータを配したものと用
いて作製した本発明に係る非水電解質電池(ハ)、およ
び正極合剤1および負極合剤2中にのみキレート高分子
を含有させ、隔離体3にキレート高分子を含有させない
本発明に係る非水電解質電池(ニ)、正極合剤1、負極
合剤2、隔離体3のいずれにもキレート高分子を含有さ
せない従来の非水電解質電池(ホ)について、充電電流
を0.5Cの定電流、充電終止電圧を4.2Vとし、放
電電流を0.5Cの定電流、放電終止電圧を4.2Vと
して充放電サイクル寿命試験を行い、結果を図3に示
す。
Example 2 (Evaluation Test 1) A lithium-substituted iminodiacetate type chelate resin based on 3% by weight of polystyrene was chelated using 83% by weight of LiMn 2 O 4 as a positive electrode active material. The positive electrode mixture 1 used as a polymer was mixed with a positive electrode 10 coated on a positive electrode current collector 6 made of aluminum and 93% by weight.
A negative electrode current collector made of copper, using an artificial graphite as a negative electrode active material and a negative electrode mixture 2 using a lithium-substituted iminodiacetic acid type chelate resin based on 3% by weight of polystyrene as a chelate polymer. 7, a negative electrode 20 attached to
The separator 3 is a 50 μm thick polystyrene-based chelating resin film of a lithium-substituted aminophosphoric acid type based on polystyrene and a separator made of a 25 μm thick polyethylene microporous film on both sides. And the nonaqueous electrolyte battery (c) according to the present invention, and the nonaqueous electrolyte battery according to the present invention in which the chelate polymer is contained only in the positive electrode mixture 1 and the negative electrode mixture 2 and the separator 3 does not contain the chelate polymer. A non-aqueous electrolyte battery (e) in which the chelating polymer is not contained in any of the water electrolyte battery (d), the positive electrode mixture 1, the negative electrode mixture 2, and the separator 3 has a charging current of 0.5 C. A charge-discharge cycle life test was performed with the charge end voltage set to 4.2 V, the discharge current set to a constant current of 0.5 C, and the discharge end voltage set to 4.2 V. The results are shown in FIG.

【0037】図3から、本発明に係る非水電解質電池
(ハ),(ニ)は従来の非水電解質電池(ホ)より充放
電サイクル寿命が良好であることがわかる。これは、本
発明に係る非水電解質電池(ハ),(ニ)では正極合剤
1と正極集電体6および負極合剤2と負極集電体7とが
強固に接着できたためであると考えられる。
FIG. 3 shows that the nonaqueous electrolyte batteries (c) and (d) according to the present invention have better charge / discharge cycle life than the conventional nonaqueous electrolyte battery (e). This is because in the nonaqueous electrolyte batteries (c) and (d) according to the present invention, the positive electrode mixture 1 and the positive electrode current collector 6 and the negative electrode mixture 2 and the negative electrode current collector 7 could be firmly bonded. Conceivable.

【0038】(評価試験2)上記した本発明に係る非水
電解質電池(ハ),(ニ)と従来の非水電解質電池
(ホ)とを常温下で1か月間放置し、その後の容量の低
下率を調査したところ、本発明に係る非水電解質電池
(ハ)では6%、本発明に係る非水電解質電池(ニ)で
は11%であったのに対し、従来の非水電解質電池
(ホ)では18%であった。これは、本発明に係る非水
電解質電池(ハ)では正極合剤1と正極集電体6との接
着および負極合剤2と負極集電体7との接着がほとんど
変化しなかっただけでなく、本発明に係る非水電解質電
池(ニ)に対して溶出したマンガンイオンが隔離体3に
よって捕捉できたためであるとと考えられる。
(Evaluation Test 2) The non-aqueous electrolyte batteries (c) and (d) according to the present invention and the conventional non-aqueous electrolyte battery (e) were allowed to stand at room temperature for one month, and the remaining capacity was reduced. When the rate of decrease was investigated, it was 6% for the nonaqueous electrolyte battery (c) according to the present invention and 11% for the nonaqueous electrolyte battery (d) according to the present invention. E) was 18%. This is because in the nonaqueous electrolyte battery (C) according to the present invention, the adhesion between the positive electrode mixture 1 and the positive electrode current collector 6 and the adhesion between the negative electrode mixture 2 and the negative electrode current collector 7 hardly changed. It is considered that manganese ions eluted with respect to the nonaqueous electrolyte battery (d) according to the present invention could be captured by the separator 3.

【0039】[0039]

【発明の効果】上記した如く、各請求項記載の発明は、
正極、負極、隔離体の少なくとも一つにキレート高分子
を含有させたことによって充放電サイクル寿命特性、保
存性能を改良することができ、非水電解質電池の高性能
化に寄与するところが大であり、特に正極活物質がLi
Mn2 4 のようなマンガン酸化物である場合には、そ
の保存性能の向上に寄与するところが大である。
As described above, the invention described in each claim is
By including a chelate polymer in at least one of the positive electrode, the negative electrode, and the separator, the charge-discharge cycle life characteristics and storage performance can be improved, which greatly contributes to the high performance of nonaqueous electrolyte batteries. Especially when the positive electrode active material is Li
When it is a manganese oxide such as Mn 2 O 4 , it greatly contributes to the improvement of its storage performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る非水電解質電池の断
面図である。
FIG. 1 is a cross-sectional view of a nonaqueous electrolyte battery according to an embodiment of the present invention.

【図2】本発明の実施例1に対する評価試験1の結果を
示した図である。
FIG. 2 is a diagram showing the results of evaluation test 1 for Example 1 of the present invention.

【図3】本発明の実施例2に対する評価試験1の結果を
示した図である。
FIG. 3 is a diagram showing the results of an evaluation test 1 for Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 負極合剤 3 隔離体 6 正極集電体 7 負極集電体 10 正極 20 負極 DESCRIPTION OF SYMBOLS 1 Positive electrode mixture 2 Negative electrode mixture 3 Separator 6 Positive electrode collector 7 Negative electrode collector 10 Positive electrode 20 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/50 H01M 4/50 10/40 10/40 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 4/50 H01M 4/50 10/40 10/40 B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極とが隔離体を介して配されて
なる非水電解質電池において、正極、負極、隔離体の少
なくとも一つがキレート高分子を含有することを特徴と
する非水電解質電池。
1. A non-aqueous electrolyte battery in which a positive electrode and a negative electrode are arranged via an isolator, wherein at least one of the positive electrode, the negative electrode, and the isolator contains a chelate polymer. .
【請求項2】 請求項1記載の非水電解質電池におい
て、正極はアルミニウム、チタンまたはステンレスから
なる正極集電体上に、該正極集電体を構成する金属のイ
オンの選択吸着性が高いキレート高分子を含有する正極
活物質を主体とする合剤が被着されていることを特徴と
する電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode is a chelate having high selective adsorption of ions of a metal constituting the positive electrode current collector on a positive electrode current collector made of aluminum, titanium or stainless steel. A battery comprising a mixture mainly composed of a positive electrode active material containing a polymer.
【請求項3】 請求項2記載の非水電解質電池におい
て、キレート高分子はイミノ二酢酸形、イミノプロピオ
ン酸形のキレート樹脂であることを特徴とする非水電解
質電池。
3. The non-aqueous electrolyte battery according to claim 2, wherein the chelating polymer is an iminodiacetic acid-type or iminopropionic acid-type chelating resin.
【請求項4】 請求項1記載の非水電解質電池におい
て、負極はニッケル、鉄、銅またはステンレスからなる
負極集電体上に、該負極集電体を構成する金属のイオン
の選択吸着性が高いキレート高分子を含有することを特
徴とする非水電解質電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the negative electrode has a selective adsorption property of ions of a metal constituting the negative electrode current collector on a negative electrode current collector made of nickel, iron, copper, or stainless steel. A non-aqueous electrolyte battery comprising a high chelate polymer.
【請求項5】 請求項4記載の非水電解質電池におい
て、キレート高分子はイミノ二酢酸形、イミノプロピオ
ン酸形、アミノリン酸形、アミドキシム形、ピコリルア
ミン形またはポリアミン形のキレート樹脂であることを
特徴とする非水電解質電池。
5. The non-aqueous electrolyte battery according to claim 4, wherein the chelating polymer is a chelating resin in the form of iminodiacetic acid, iminopropionic acid, aminophosphoric acid, amidoxime, picolylamine or polyamine. Characteristic non-aqueous electrolyte battery.
【請求項6】 請求項1記載の非水電解質電池におい
て、隔離体は正極活物質を構成する金属のイオンの選択
吸着性が高いキレート高分子を含有することを特徴とす
る非水電解質電池。
6. The non-aqueous electrolyte battery according to claim 1, wherein the separator contains a chelate polymer having high selective adsorption of metal ions constituting the positive electrode active material.
【請求項7】 請求項6記載の非水電解質電池におい
て、正極活物質を構成する金属はマンガンを含むもので
あることを特徴とする非水電解質電池。
7. The non-aqueous electrolyte battery according to claim 6, wherein the metal constituting the positive electrode active material contains manganese.
【請求項8】 請求項6または7記載の非水電解質電池
において、隔離体はイミノ二酢酸形またはアミノリン酸
形のキレート樹脂を含有したものであることを特徴とす
る非水電解質電池。
8. The non-aqueous electrolyte battery according to claim 6, wherein the separator contains a chelating resin of an iminodiacetic acid type or an aminophosphoric acid type.
JP9277666A 1997-10-09 1997-10-09 Nonaqueous electrolytic battery Pending JPH11121012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9277666A JPH11121012A (en) 1997-10-09 1997-10-09 Nonaqueous electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9277666A JPH11121012A (en) 1997-10-09 1997-10-09 Nonaqueous electrolytic battery

Publications (1)

Publication Number Publication Date
JPH11121012A true JPH11121012A (en) 1999-04-30

Family

ID=17586614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9277666A Pending JPH11121012A (en) 1997-10-09 1997-10-09 Nonaqueous electrolytic battery

Country Status (1)

Country Link
JP (1) JPH11121012A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195553A (en) * 1998-10-19 2000-07-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2001243978A (en) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2007207690A (en) * 2006-02-06 2007-08-16 Asahi Kasei Chemicals Corp Lithium-ion secondary battery
WO2009035132A1 (en) 2007-09-13 2009-03-19 Nitto Denko Corporation Battery separator and nonaqueous lithium ion secondary battery having the same
JP2009123687A (en) * 2007-10-26 2009-06-04 Nitto Denko Corp Separator for battery, and nonaqueous lithium-ion secondary battery
WO2012011555A1 (en) * 2010-07-23 2012-01-26 日本ゼオン株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
CN102422466A (en) * 2009-05-11 2012-04-18 奈克松有限公司 Binder for lithium ion rechargeable battery cells
JP2012089411A (en) * 2010-10-21 2012-05-10 Nippon Zeon Co Ltd Cathode composition for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2012095805A1 (en) * 2011-01-11 2012-07-19 Etv Energy Ltd. Membranes suitable for use as separators and electrochemical cells including such separators
CN102668171A (en) * 2009-11-19 2012-09-12 吉列公司 Alkaline battery separators with ion-trapping molecules
US20130149588A1 (en) * 2011-12-07 2013-06-13 Arnd Garsuch Electrochemical cells comprising chelate ligands
JP2015002167A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery
JP2015524601A (en) * 2013-01-28 2015-08-24 エルジー・ケム・リミテッド Lithium secondary battery
CN105474339A (en) * 2013-08-22 2016-04-06 康宁股份有限公司 Separator based on fibrous ceramic material for ultracapacitors, EDLC, hybrid capacitor, fuel cell and battery
US9882239B2 (en) 2013-01-28 2018-01-30 Lg Chem, Ltd. Composition for gel polymer electrolyte and lithium secondary battery including the same
US10297860B2 (en) 2013-01-28 2019-05-21 Lg Chem, Ltd. Lithium secondary battery
CN110050365A (en) * 2016-12-13 2019-07-23 汉高股份有限及两合公司 Improved secondary lithium battery and lithium electrode for capacitors composition

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195553A (en) * 1998-10-19 2000-07-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2001243978A (en) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2007207690A (en) * 2006-02-06 2007-08-16 Asahi Kasei Chemicals Corp Lithium-ion secondary battery
WO2009035132A1 (en) 2007-09-13 2009-03-19 Nitto Denko Corporation Battery separator and nonaqueous lithium ion secondary battery having the same
JP2009087929A (en) * 2007-09-13 2009-04-23 Nitto Denko Corp Battery separator and nonaqueous lithium-ion secondary battery using the same
US8349031B2 (en) 2007-09-13 2013-01-08 Nitto Denko Corporation Battery separator and nonaqueous lithium ion secondary battery having the same
JP2009123687A (en) * 2007-10-26 2009-06-04 Nitto Denko Corp Separator for battery, and nonaqueous lithium-ion secondary battery
CN102422466A (en) * 2009-05-11 2012-04-18 奈克松有限公司 Binder for lithium ion rechargeable battery cells
JP2012527069A (en) * 2009-05-11 2012-11-01 ネグゼオン・リミテッド Lithium ion rechargeable battery cell
CN102668171A (en) * 2009-11-19 2012-09-12 吉列公司 Alkaline battery separators with ion-trapping molecules
WO2012011555A1 (en) * 2010-07-23 2012-01-26 日本ゼオン株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
JPWO2012011555A1 (en) * 2010-07-23 2013-09-09 日本ゼオン株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
CN103119755A (en) * 2010-07-23 2013-05-22 日本瑞翁株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
CN103119755B (en) * 2010-07-23 2015-07-15 日本瑞翁株式会社 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
JP2012089411A (en) * 2010-10-21 2012-05-10 Nippon Zeon Co Ltd Cathode composition for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US9172076B2 (en) 2011-01-11 2015-10-27 Etv Energy Ltd. Membranes suitable for use as separators and electrochemical cells including such separators
WO2012095805A1 (en) * 2011-01-11 2012-07-19 Etv Energy Ltd. Membranes suitable for use as separators and electrochemical cells including such separators
US20130149588A1 (en) * 2011-12-07 2013-06-13 Arnd Garsuch Electrochemical cells comprising chelate ligands
JP2015524601A (en) * 2013-01-28 2015-08-24 エルジー・ケム・リミテッド Lithium secondary battery
US9882239B2 (en) 2013-01-28 2018-01-30 Lg Chem, Ltd. Composition for gel polymer electrolyte and lithium secondary battery including the same
US10297860B2 (en) 2013-01-28 2019-05-21 Lg Chem, Ltd. Lithium secondary battery
JP2015002167A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery
CN105474339A (en) * 2013-08-22 2016-04-06 康宁股份有限公司 Separator based on fibrous ceramic material for ultracapacitors, EDLC, hybrid capacitor, fuel cell and battery
CN110050365A (en) * 2016-12-13 2019-07-23 汉高股份有限及两合公司 Improved secondary lithium battery and lithium electrode for capacitors composition
JP2020513678A (en) * 2016-12-13 2020-05-14 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Improved lithium ion secondary battery and lithium capacitor electrode composition
CN110050365B (en) * 2016-12-13 2023-04-28 汉高股份有限及两合公司 Improved secondary lithium ion battery and lithium capacitor electrode compositions
US11791468B2 (en) * 2016-12-13 2023-10-17 Henkel Ag & Co. Kgaa Secondary Li ion battery and Li capacitor electrode compositions

Similar Documents

Publication Publication Date Title
JP3491529B2 (en) Non-aqueous electrolyte secondary battery
JPH11121012A (en) Nonaqueous electrolytic battery
JP4380201B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP2000090982A (en) Nonaqueous electrolyte secondary battery
JPH08102333A (en) Nonaqueous electrolytic secondary battery
JPH06196169A (en) Nonaqueous electrolyte secondary battery
JP4780361B2 (en) Lithium secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JP2000228199A (en) Nonaqueous electrolyte solution secondary battery
JPH11126600A (en) Lithium ion secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JPH1154120A (en) Lithium ion secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH0982313A (en) Nonaqueous electrolyte secondary battery
JP2003263979A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JPH113698A (en) Lithium ion secondary battery
JP2000133263A (en) Lithium secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP2001223031A (en) Lithium secondary battery
JP2000012026A (en) Nonaqueous electrolyte secondary battery
JP2000323126A (en) Nonaqueous electrolyte secondary battery and its charging method