JP2871077B2 - Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery - Google Patents

Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery

Info

Publication number
JP2871077B2
JP2871077B2 JP2317347A JP31734790A JP2871077B2 JP 2871077 B2 JP2871077 B2 JP 2871077B2 JP 2317347 A JP2317347 A JP 2317347A JP 31734790 A JP31734790 A JP 31734790A JP 2871077 B2 JP2871077 B2 JP 2871077B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte secondary
lithium
aqueous electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2317347A
Other languages
Japanese (ja)
Other versions
JPH04188560A (en
Inventor
修二 伊藤
正樹 長谷川
祐之 村井
靖彦 美藤
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2317347A priority Critical patent/JP2871077B2/en
Publication of JPH04188560A publication Critical patent/JPH04188560A/en
Application granted granted Critical
Publication of JP2871077B2 publication Critical patent/JP2871077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、最近開発が盛んに行われている非水電解質
二次電池用負極の製造法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a negative electrode for a non-aqueous electrolyte secondary battery, which has been actively developed recently.

従来の技術 リチウムまたはリチウム化合物を負極とする非水電解
質二次電池は、高電圧で高エネルギー密度が期待され、
多くの研究が行われている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have high voltage and high energy density,
Much research has been done.

これまで非水電解質二次電池の正極活物質には、V
2O5、Cr2O5、MnO2、TiS2、MoS2などの遷移金属の酸化物
およびカルコゲン化合物が知られおり、これらは層状も
しくはトンネル構造を有し、リチウムイオンが出入りで
きる結晶構造を持つ。
Until now, the positive electrode active material of non-aqueous electrolyte secondary batteries has been V
Oxides of transition metals such as 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , MoS 2 and chalcogen compounds are known, and these have a layered or tunnel structure, and have a crystal structure through which lithium ions can enter and leave. Have.

一方、負極活物質には、金属リチウム、リチウムを吸
蔵、放出できるリチウム−アルミニウムなどのリチウム
合金などが知られている。しかしながら金属リチウムを
負極活物質に用いた場合、充電時にリチウム表面に樹枝
状にリチウムが析出し、正極と接して短絡を生じる。リ
チウム合金を用いた場合、リチウムの電位よりも貴な電
位における充電ではリチウムの樹枝状成長が抑えられる
ものの、リチウムの電位より卑な電位まで充電すると金
属リチウム同様、リチウムの樹枝状成長が生じる。また
深い充放電を繰り返すと電極の微細化が生じ、サイクル
特性が良くないなどの欠点を有しており、未だ充分な特
性が得られていない。
On the other hand, as the negative electrode active material, lithium metal and lithium alloys such as lithium-aluminum capable of inserting and extracting lithium are known. However, when metallic lithium is used for the negative electrode active material, lithium is deposited in a dendritic manner on the lithium surface during charging, and short-circuits due to contact with the positive electrode. When a lithium alloy is used, the dendritic growth of lithium is suppressed when the battery is charged at a potential higher than the potential of lithium. However, when the battery is charged to a potential lower than the potential of lithium, the dendritic growth of lithium occurs as in the case of metallic lithium. In addition, when the charge and discharge are repeated deeply, the electrode becomes finer, and has disadvantages such as poor cycle characteristics. Sufficient characteristics have not yet been obtained.

発明が解決しようとする課題 このような問題を解決する手段として、リチウムを吸
蔵、放出することできる金属粉末と導電剤の混合物を負
極に用いることで、充放電時の金属の微粉化による脱落
もしくは、それに伴う集電不良を改善する試みがなされ
ている。しかしながら、単に金属粉末と導電剤を混合し
ただけでは、充放電を繰り返すとともに金属粉末と導電
剤の界面接合が不十分となり、容量が低下するという問
題点を有していた。本発明はこのような問題を解決し、
充放電サイクル特性に優れた非水電解質二次電池用負極
の製造法を提供することを目的とする。
Problems to be Solved by the Invention As means for solving such a problem, by using a mixture of a metal powder capable of inserting and extracting lithium and a conductive agent for a negative electrode, the metal is dropped or dropped due to pulverization during charge and discharge. Attempts have been made to improve poor current collection. However, simply mixing the metal powder and the conductive agent has the problem that charging and discharging are repeated and the interfacial bonding between the metal powder and the conductive agent becomes insufficient and the capacity is reduced. The present invention solves such a problem,
An object of the present invention is to provide a method for producing a negative electrode for a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics.

課題を解決するための手段 本発明は、上記課題を解決するために、リチウムを吸
蔵、放出することのできる金属粉末と導電材の混合物か
ら構成される非水電解質二次電池用負極の構成材料であ
る金属粉末をシランカップリング溶液で浸漬処理し、こ
れに導電剤を添加混合し乾燥することを特徴とするもの
である。
Means for Solving the Problems In order to solve the above problems, the present invention provides a material for a negative electrode for a non-aqueous electrolyte secondary battery comprising a mixture of a metal powder capable of inserting and extracting lithium and a conductive material. The metal powder is immersed in a silane coupling solution, a conductive agent is added thereto, mixed and dried.

作用 リチウムを吸蔵、放出することのできる金属粉末と導
電剤の混合物から構成される非水電解質二次電池用負極
の構成材料である金属粉末をシランカップリング溶液で
浸漬処理し、これと導電剤を混合し乾燥することで金属
粉末と導電剤が化学結合を介して結合し、たいへん強固
な界面接合を持つ負極が得られる。その結果、充放電を
繰り返しても、金属粉末と導電剤の界面接合は充分保持
され、比較的少ないサイクル数で充放電容量が低下する
ことがなくなり、安定した電池特性を有する非水電解質
二次電池用負極を構成することが可能となる。
The metal powder, which is a constituent material of a negative electrode for a non-aqueous electrolyte secondary battery composed of a mixture of a metal powder capable of occluding and releasing lithium and a conductive agent, is immersed in a silane coupling solution, and this is immersed in a conductive agent Is mixed and dried, the metal powder and the conductive agent are bonded via a chemical bond, and a negative electrode having very strong interfacial bonding can be obtained. As a result, even if charge / discharge is repeated, the interfacial bonding between the metal powder and the conductive agent is sufficiently maintained, the charge / discharge capacity does not decrease with a relatively small number of cycles, and the non-aqueous electrolyte secondary battery having stable battery characteristics. A negative electrode for a battery can be configured.

金属粉末としては、リチウムを比較的簡単に吸蔵、放
出することができるアルミニウム、錫、鉛、インジウ
ム、ビスマスが好ましく、導電剤には、黒鉛もしくはカ
ーボンブラックが好ましい。
As the metal powder, aluminum, tin, lead, indium, and bismuth capable of inserting and extracting lithium relatively easily are preferable, and graphite or carbon black is preferable as the conductive agent.

実施例 以下実施例にて詳細に説明する。Example Hereinafter, an example will be described in detail.

エタノールと蒸留水1:1溶液にγ−アミノプロピルト
リエトキシシランを1重量パーセント溶解させ、この溶
液50ccに70ミクロン以下のアルミニウム粉末1gを加え、
20分浸漬後、この粉末を取り出し洗浄し、これに導電剤
のアセチレンブラック1gとエタノールと蒸留水1:1溶液
を小量加え乳鉢中で充分湿式混合し、100℃の温風乾燥
機で乾燥させた。これに決着剤のアクリル樹脂粉末のエ
マルジョンをアルミニウムとアセチレンブラックと吸着
剤が重量比で1:1:0.25の割合になるように加え、充分混
合後、100℃の温風乾燥機で10時間乾燥させることで電
極合剤を得た。
1% by weight of γ-aminopropyltriethoxysilane was dissolved in a 1: 1 solution of ethanol and distilled water, and 50 g of this solution was added with 1 g of aluminum powder of 70 μm or less,
After immersion for 20 minutes, take out the powder, wash it, add a small amount of 1 g of acetylene black as a conductive agent, a 1: 1 solution of ethanol and distilled water, wet mix thoroughly in a mortar, and dry with a hot air dryer at 100 ° C. I let it. To this is added an emulsion of acrylic resin powder as a binder so that the weight ratio of aluminum, acetylene black and adsorbent is 1: 1: 0.25, and after mixing well, it is dried with a 100 ° C warm air dryer for 10 hours. By doing so, an electrode mixture was obtained.

この電極合剤0.1gを直径17.5mmに2トン/cm2でプレス
成型して、電極とした。製造した電池の断面図を第4図
に示す。成形した電極1をケース2に置く。電極1の上
にセパレータ3としての多孔性ポリプロピレンフィルム
を置いた。対極として直径17.5mm厚さ0.8mmのリチウム
板4を、ポリプロピレン製ガスケット6を付けた封口板
5に圧着した。非水電解質として、1モル/1の過塩素酸
リチウムを溶解した、体積比で1対1のプロピレンカー
ボネートとジメトキシエタンの混合溶媒を用い、これを
セパレータ上および対極上に加えた。その後電池を封口
した。この電池をAとする。
0.1 g of this electrode mixture was press-formed at a diameter of 17.5 mm at 2 ton / cm 2 to obtain an electrode. FIG. 4 shows a cross-sectional view of the manufactured battery. The molded electrode 1 is placed in the case 2. A porous polypropylene film as a separator 3 was placed on the electrode 1. As a counter electrode, a lithium plate 4 having a diameter of 17.5 mm and a thickness of 0.8 mm was pressure-bonded to a sealing plate 5 having a gasket 6 made of polypropylene. As a non-aqueous electrolyte, a mixed solvent of propylene carbonate and dimethoxyethane at a volume ratio of 1: 1 in which 1 mol / 1 of lithium perchlorate was dissolved was used, and this was added on the separator and the counter electrode. Thereafter, the battery was sealed. This battery is designated as A.

次に比較例として、シランカップリング処理を行わ
ず、アルミニウムとアセチレンブラックと結着剤が重量
比1:1:0.25の割合になるような電極合剤を作製し、この
電極合剤0.1gを直径17.5mmに2トン/cm2でプレス成型し
て、電極とし、上記実施例で使用した構成材料を用いて
同様の方法で電池を構成し、比較電池とした。この電池
をBとする。
Next, as a comparative example, without performing silane coupling treatment, an electrode mixture was prepared such that the weight ratio of aluminum, acetylene black, and binder was 1: 1: 0.25, and 0.1 g of the electrode mixture was prepared. A battery was formed in a similar manner using the constituent materials used in the above example by pressing the electrode at a pressure of 2 ton / cm 2 to a diameter of 17.5 mm to obtain a comparative battery. This battery is designated as B.

以上、2つの電池A、Bを用いて充放電サイクル特性
の比較を行った。充放電条件は、2mAの定電流で8時間
充電、放電を行う容量規制、電圧範囲0〜1.5Vとした電
圧規制を併用した。すなわち8時間毎に充電、放電がき
りかわり、放電時8時間以内に電圧が1.5Vまで上昇した
場合は、放電を停止し、充電に入る、逆に充電時8時間
以内に電圧が0Vまで下降した場合は、充電が停止し、放
電に入るように充放電条件を設定した。電圧範囲を0〜
1.5Vと設定したのは、この電圧範囲を越えた場合の電極
上での溶媒の分解、リチウムの樹枝状成長を防止するた
めである。
As described above, comparison of the charge / discharge cycle characteristics was performed using the two batteries A and B. The charge and discharge conditions used were a capacity regulation for charging and discharging at a constant current of 2 mA for 8 hours and a voltage regulation with a voltage range of 0 to 1.5 V. In other words, charging and discharging are switched every 8 hours, and when the voltage rises to 1.5V within 8 hours of discharging, discharging is stopped and charging starts, and conversely, the voltage drops to 0V within 8 hours of charging In this case, the charging and discharging conditions were set so that charging was stopped and discharging started. The voltage range is 0
The reason for setting the voltage to 1.5 V is to prevent the decomposition of the solvent on the electrode and the dendritic growth of lithium when the voltage is exceeded.

第1図に電池Aの2サイクル目と100サイクル目の充
電曲線を、第2図に電池Bの2サイクル目、40サイクル
目、100サイクル目の充電曲線を示す。また第3図に電
池Aと電池Bのサイクル特性を示す。
FIG. 1 shows the charging curves of the battery A at the second and 100th cycles, and FIG. 2 shows the charging curves of the battery B at the second, 40th and 100th cycles. FIG. 3 shows the cycle characteristics of Battery A and Battery B.

シランカップリング処理した電極を用いた本実施例の
電池Aは、充電電圧がリチウム極に対して210mVであ
り、2サイクル目と100サイクル目の充電曲線にほとん
ど変化がなく、100サイクル目まで電圧規制にかからず
安定したサイクル特性を示すのに対して、シランカップ
リング処理を行っていない電極を用いた比較電池Bは、
2サイクル目の充電電圧が150mVと電池Aと比較した場
合、60mVも低く分極が大きくなっている。また40サイク
ル目から電圧規制により充放電を繰り返すようになり、
100サイクル目までに、初期容量の50%まで容量が低下
し、本実施例の電池Aの方が優れていた。
The battery A of this example using the silane-coupled electrode had a charging voltage of 210 mV with respect to the lithium electrode, and there was almost no change in the charging curves at the second cycle and the 100th cycle. Comparative battery B using an electrode that has not been subjected to silane coupling treatment, while showing stable cycle characteristics regardless of regulations,
When the charging voltage in the second cycle is 150 mV and is compared with that of the battery A, the polarization is large as low as 60 mV. In addition, charge and discharge will be repeated by voltage regulation from the 40th cycle,
By the 100th cycle, the capacity was reduced to 50% of the initial capacity, and the battery A of this example was superior.

以上のように本実施例では、リチウムを吸蔵、放出す
ることのできるアルミニウム粉末と導電剤であるアセチ
レンブラックの混合物から構成される非水電解質二次電
池の負極において、前記負極の構成材料であるアルミニ
ウム粉末をシランカップリング溶液で浸漬処理し、これ
に導電剤であるアセチレンブラックを添加混合し乾燥す
ることで、優れたサイクル特性を有する非水電解質二次
電池用の負極を実現したものである。
As described above, in the present embodiment, in a negative electrode of a nonaqueous electrolyte secondary battery composed of a mixture of aluminum powder capable of inserting and extracting lithium and acetylene black as a conductive agent, the negative electrode is a constituent material of the negative electrode. By immersing the aluminum powder in a silane coupling solution, adding and mixing acetylene black as a conductive agent, and drying it, a negative electrode for a non-aqueous electrolyte secondary battery having excellent cycle characteristics was realized. .

本実施例では、シランカップリング剤にγ−アミノプ
ロピルトリエトキシシランを用いたが、γ−アミノプロ
ピルトリメトキシシラン、γ−グリシドキシプロピルト
リメトキシシラン、γ−グリシドキシプロピルメチルジ
エトキシシラン、N−フェニル−γ−アミノプロピルト
リメトキシシラン等のいずれを用いた場合も、上記とほ
ぼ同様のに、優れたサイクル特性を有する非水電解質二
次電池用の負極が得られることを確認している。
In this example, γ-aminopropyltriethoxysilane was used as the silane coupling agent, but γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane When using any of N-phenyl-γ-aminopropyltrimethoxysilane and the like, it was confirmed that a negative electrode for a non-aqueous electrolyte secondary battery having excellent cycle characteristics was obtained in substantially the same manner as described above. ing.

さらに実施例では、金属粉末としてアルミニウム、導
電剤としてアセチレンブラックの組合せで説明したが、
同様にリチウムを吸蔵、放出しリチウムと合金形成する
ことのできるスズ、鉛、インジウム、ビスマス粉末と導
電剤として黒鉛、カーボンブラックのいずれの組合せに
おいても、ほぼ同様の効果が得られることを確認した。
Further, in the examples, the combination of aluminum as the metal powder and acetylene black as the conductive agent was described.
Similarly, it was confirmed that almost the same effect was obtained with any combination of tin, lead, indium, bismuth powder capable of absorbing and releasing lithium to form an alloy with lithium and graphite and carbon black as a conductive agent. .

発明の効果 以上のように、本発明の製造法により優れた充放電サ
イクル特性を有する非水電解質二次電池用負極を得るこ
とができる。
Effect of the Invention As described above, a negative electrode for a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics can be obtained by the production method of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に成る電極を構成要素とする電
池の充電曲線図、第2図は比較例電池の充電曲線図、第
3図は本実施例電池と比較例電池の充放電サイクル特性
図、第4図は実施例および比較例電池の断面図である。 1……電極、2……ケース、3……セパレータ、4……
リチウム、5……封口板、6……ガスケット。
FIG. 1 is a charge curve diagram of a battery including an electrode according to an embodiment of the present invention as a component, FIG. 2 is a charge curve diagram of a comparative battery, and FIG. 3 is a charge / discharge of the battery of the present embodiment and the comparative battery. FIG. 4 is a cross-sectional view of the batteries of Examples and Comparative Examples. 1 ... electrode 2 ... case 3 ... separator 4 ...
Lithium, 5 ... sealing plate, 6 ... gasket.

フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−167766(JP,A) 特開 平2−75158(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/02,4/04 H01M 4/62 H01M 10/40 Continuing on the front page (72) Inventor Yasuhiko Mito 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-3-167766 (JP, A) JP-A-2-75158 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/02, 4/04 H01M 4/62 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムを吸蔵、放出することのできる金
属粉末と導電剤の混合物から構成される非水電解質二次
電池の負極において、前記金属粉末をシランカップリン
グ溶液で浸漬処理し、これに前記導電剤を添加混合し乾
燥することを特徴とする非水電解質二次電池用負極の製
造法。
In a negative electrode of a non-aqueous electrolyte secondary battery comprising a mixture of a metal powder capable of inserting and extracting lithium and a conductive agent, the metal powder is immersed in a silane coupling solution. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, comprising adding, mixing and drying the conductive agent.
【請求項2】リチウムを吸蔵、放出することができる金
属粉末がアルミニウム、錫、鉛、インジウム、ビスマス
であり、このうち少なくとも1種から選ばれる請求項1
記載の非水電解質二次電池用負極の製造法。
2. The metal powder capable of inserting and extracting lithium is aluminum, tin, lead, indium or bismuth, and is selected from at least one of them.
A method for producing a negative electrode for a nonaqueous electrolyte secondary battery according to the above.
JP2317347A 1990-11-20 1990-11-20 Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery Expired - Fee Related JP2871077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2317347A JP2871077B2 (en) 1990-11-20 1990-11-20 Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2317347A JP2871077B2 (en) 1990-11-20 1990-11-20 Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04188560A JPH04188560A (en) 1992-07-07
JP2871077B2 true JP2871077B2 (en) 1999-03-17

Family

ID=18087213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2317347A Expired - Fee Related JP2871077B2 (en) 1990-11-20 1990-11-20 Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2871077B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571638A (en) * 1993-09-30 1996-11-05 Sumitomo Chemical Company Limited Lithium secondary battery
EP0789412B1 (en) * 1994-10-27 2000-01-19 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
JPH11354104A (en) * 1998-04-09 1999-12-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacture for electrode
US7341804B2 (en) 2002-09-20 2008-03-11 3M Innovative Properties Company Anode compositions having an elastomeric binder and an adhesion promoter
JP4025995B2 (en) * 2002-11-26 2007-12-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode material, method for producing the same, and lithium ion secondary battery
WO2013164914A1 (en) * 2012-05-02 2013-11-07 Showa Denko K.K. Negative electrode material for lithium ion battery and use thereof

Also Published As

Publication number Publication date
JPH04188560A (en) 1992-07-07

Similar Documents

Publication Publication Date Title
JP3019326B2 (en) Lithium secondary battery
JPS63114064A (en) Nonaqueous secondary battery
JPH11121012A (en) Nonaqueous electrolytic battery
US4091191A (en) Battery having an electrode comprising mixtures of Al and TiS2
JPH0346772A (en) Nonaduedus alkalline battery
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JPS63121258A (en) Nonaqueous secondary battery
JP3403858B2 (en) Organic electrolyte battery
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP3078960B2 (en) Electrode manufacturing method
JPH0353743B2 (en)
JP2701586B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2819201B2 (en) Lithium secondary battery
JPH02239572A (en) Polyaniline battery
JP2898056B2 (en) Rechargeable battery
JPH0447431B2 (en)
JPH01260767A (en) Secondary battery
JP2698180B2 (en) Non-aqueous secondary battery
JP3409093B2 (en) Electrode for secondary battery and battery using the same
JPH0773050B2 (en) Organic electrolyte secondary battery
JPH07122301A (en) Nonaqueous electrolyte secondary battery
JP3168615B2 (en) Non-aqueous electrolyte secondary battery
JPH0350385B2 (en)
JPS62150657A (en) Secondary cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees