JPH07122301A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH07122301A
JPH07122301A JP5268789A JP26878993A JPH07122301A JP H07122301 A JPH07122301 A JP H07122301A JP 5268789 A JP5268789 A JP 5268789A JP 26878993 A JP26878993 A JP 26878993A JP H07122301 A JPH07122301 A JP H07122301A
Authority
JP
Japan
Prior art keywords
electrode
battery
heat
electrode plate
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5268789A
Other languages
Japanese (ja)
Other versions
JP3276741B2 (en
Inventor
Sukeyuki Murai
祐之 村井
Masaki Hasegawa
正樹 長谷川
Shuji Ito
修二 伊藤
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26878993A priority Critical patent/JP3276741B2/en
Publication of JPH07122301A publication Critical patent/JPH07122301A/en
Application granted granted Critical
Publication of JP3276741B2 publication Critical patent/JP3276741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance charge/discharge cycle performance by covering part of the surface of an electrode plate group comprising a positive plate, a negative plate, and a separator with a heat-shrinkable resin film. CONSTITUTION:A negative electrode 2 and a positive electrode 1 are arranged through a separator so that the negative electrode locates outside. A heat- shrinkable tube 9 is put on the electrode group, then heat-shrunken to physically compress the electrode group, and the electrode group is put into a case 4. An electrolyte is poured into the case 4, and a sealing plate 8 is bonded to the case 4 to form a battery. Since the electrode group is physically compressed from the outside, the looseness of the electrode plates attendant on charge/ discharge cycles is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高エネルギー密度を有
する非水電解質二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a high energy density.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、盛んに研究がなされている。これまでに、
非水電解質二次電池の正極活物質としてV25、Cr2
5、MnO2、TiS2などが知られている。近年、よ
り高エネルギー密度を有する4ボルト級の非水電解質二
次電池の正極活物質としてLiMn24、LiCo
2、LiNiO2、LiFeO2などが注目されてい
る。特に、LiMn24、LiNiO2やLiFeO2
低コストであることや、原料供給が安定しており、大容
量の非水電解質二次電池の活物質として活発な研究が行
われている。一方、負極活物質としては、安全性やレー
ト特性などの点から金属リチウムに代わり、炭素材料が
注目を集めている。特に、黒鉛化度の進んだ黒鉛粉末
は、高容量で、放電電位が金属リチウムに比べ約0.1
V貴であり、電池電圧の低下が少ないという特徴を有し
ており、盛んに研究がなされている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries having lithium or a lithium compound as a negative electrode are expected to have a high voltage and a high energy density, and have been actively studied. So far,
V 2 O 5 , Cr 2 as a positive electrode active material of a non-aqueous electrolyte secondary battery
O 5 , MnO 2 , TiS 2 and the like are known. In recent years, LiMn 2 O 4 and LiCo have been used as positive electrode active materials for 4-volt class non-aqueous electrolyte secondary batteries having higher energy density.
O 2, such as LiNiO 2, LiFeO 2 has been attracting attention. In particular, LiMn 2 O 4 , LiNiO 2 and LiFeO 2 are low in cost and the supply of raw materials is stable, and active research is being carried out as an active material for a large capacity non-aqueous electrolyte secondary battery. On the other hand, as the negative electrode active material, a carbon material has attracted attention in place of metallic lithium in terms of safety and rate characteristics. In particular, graphite powder with a high degree of graphitization has a high capacity and a discharge potential of about 0.1 compared to metallic lithium.
It is V-noble and has a characteristic that the battery voltage does not drop so much that it has been actively researched.

【0003】[0003]

【発明が解決しようとする課題】ところが、負極に黒鉛
粉末などのリチウムイオンをインターカーレートする物
質を用いた場合、電池の充放電時にリチウムの吸蔵・放
出を伴い、極板の膨張・収縮を繰り返されることによ
り、極板が緩み、負極活物質(炭素材料)間の接触が悪
くなる。その結果、極板の集電能力が低下し、電池の充
放電サイクルに伴う容量低下が生じるという問題点があ
った。この対応策として、負極に繊維状の黒鉛などを添
加し、極板の集電のネットワークを形成し、極板の集電
能力を向上させることも行われているが、かさ高い繊維
状の黒鉛を添加する場合、極板の強度を高めるため、結
着剤の増量が必要となり、電池の絶対容量の低下を招く
などの問題が残されている。さらに、繊維状の黒鉛など
を添加しても、負極板の膨張・収縮を抑えることにはな
らず、長期の充放電サイクルには、いまだ問題が残され
ている。従って、本発明は、負極に炭素材料を用いる非
水電解質二次電池の充放電サイクル特性を向上すること
を目的としている。
However, when a material that intercalates lithium ions, such as graphite powder, is used for the negative electrode, the expansion and contraction of the electrode plate is accompanied by the absorption and desorption of lithium during charge and discharge of the battery. By repeating the process, the electrode plate becomes loose, and the contact between the negative electrode active materials (carbon materials) deteriorates. As a result, there has been a problem that the current collecting ability of the electrode plate is lowered and the capacity is lowered with charge / discharge cycles of the battery. As a countermeasure to this problem, fibrous graphite or the like is added to the negative electrode to form a current collecting network of the electrode plate to improve the current collecting ability of the electrode plate. In the case of adding, the amount of the binder needs to be increased in order to increase the strength of the electrode plate, and there remains a problem that the absolute capacity of the battery is lowered. Furthermore, addition of fibrous graphite or the like does not suppress expansion and contraction of the negative electrode plate, and a problem still remains in a long-term charge / discharge cycle. Therefore, an object of the present invention is to improve charge / discharge cycle characteristics of a non-aqueous electrolyte secondary battery using a carbon material for a negative electrode.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、正極板と負極板とセパレータとからなる
極板群の表面の一部を熱収縮性樹脂フィルムで覆うもの
である。熱収縮性樹脂としては、ポリプロピレン、ポリ
エチレン、架橋ポリオレフィン、ポリ塩化ビニルあるい
はポリエチレンテレフタレートなどを利用することがで
きる。使用する樹脂フィルムとしては、厚みが20〜4
5μm、縦方向の収縮率が5〜15%、横方向の収縮率
が40〜60%のものが適している。
In order to solve the above-mentioned problems, the present invention covers a part of the surface of an electrode plate group consisting of a positive electrode plate, a negative electrode plate and a separator with a heat-shrinkable resin film. . As the heat-shrinkable resin, polypropylene, polyethylene, crosslinked polyolefin, polyvinyl chloride, polyethylene terephthalate or the like can be used. The thickness of the resin film used is 20 to 4
It is suitable that the shrinkage in the vertical direction is 5 μm, the shrinkage in the vertical direction is 5 to 15%, and the shrinkage in the horizontal direction is 40 to 60%.

【0005】[0005]

【作用】本発明によれば、正極板と負極板とセパレータ
とから成る極板群の表面の一部を熱収縮性樹脂フィルム
で覆い、フィルムを熱収縮させることにより極板群を外
部から物理的に圧迫することができる。従って、電池の
充放電に伴う膨張・収縮による極板の緩みを抑えること
ができ、充放電サイクルに伴う容量低下を抑制すること
ができる。また、前記熱収縮性樹脂フィルムを界面活性
剤で親水処理することにより、電池容量のバラツキを少
なくすることができる。この界面活性剤としては、オレ
イン酸アミド、オレイン酸アミドエチレンオキサイド付
加物、オレイン酸ジエタノールアミドおよびオレイン酸
ジエタノールアミンなどが用いられる。さらに、極板群
がフィルムで覆われていることから、この極板群を電槽
に挿入する際の作業性を向上することができる。
According to the present invention, a part of the surface of an electrode plate group consisting of a positive electrode plate, a negative electrode plate and a separator is covered with a heat-shrinkable resin film, and the film is heat-shrinked so that the electrode plate group is physically exposed from the outside. Can be oppressed. Therefore, it is possible to prevent the electrode plate from loosening due to expansion / contraction of the battery during charging / discharging, and to suppress a decrease in capacity due to charging / discharging cycles. Further, by subjecting the heat-shrinkable resin film to hydrophilic treatment with a surfactant, variations in battery capacity can be reduced. As this surfactant, oleic acid amide, oleic acid amide ethylene oxide adduct, oleic acid diethanolamide, oleic acid diethanolamine and the like are used. Further, since the electrode plate group is covered with the film, workability when inserting the electrode plate group into the battery case can be improved.

【0006】[0006]

【実施例】以下、本発明の実施例を説明する。 [実施例1]電池を以下の手順により作製した。正極活
物質であるLiMn1.8Co0.24は、Li2CO3とM
34とCoCO3とを5:6:2のモル比で混合し、
900℃で加熱することによって合成した。さらに、こ
れを100メッシュ以下に分級したものを正極活物質と
した。正極活物質100gに対して導電剤の炭素粉末を
10g、結着剤のポリ4フッ化エチレンの水性ディスパ
ージョンを樹脂分で20g加え、混練して、ペースト状
にし、チタンの芯材に塗布、乾燥し、圧延して正極とす
る。負極は、負極活物質である黒鉛粉末100gに対し
て20gのポリフッ化ビニリデンを加え、さらにジメチ
ルホルムアミドを溶媒として加え、混練して、ペースト
状にし、ニッケルの芯材に塗布、乾燥し圧延して作製す
る。
EXAMPLES Examples of the present invention will be described below. [Example 1] A battery was manufactured by the following procedure. LiMn 1.8 Co 0.2 O 4 , which is the positive electrode active material, contains Li 2 CO 3 and M
n 3 O 4 and CoCO 3 are mixed in a molar ratio of 5: 6: 2,
It was synthesized by heating at 900 ° C. Further, this was classified into 100 mesh or less to obtain a positive electrode active material. To 100 g of the positive electrode active material, 10 g of carbon powder as a conductive agent and 20 g of an aqueous dispersion of polytetrafluoroethylene as a binder in a resin component were added, kneaded to form a paste, and applied to a titanium core material, It is dried and rolled into a positive electrode. The negative electrode was prepared by adding 20 g of polyvinylidene fluoride to 100 g of graphite powder as a negative electrode active material, further adding dimethylformamide as a solvent, kneading to form a paste, coating on a nickel core material, drying and rolling. Create.

【0007】本実施例で使用した角型電池の縦断面図を
図1に示す。この電池の組み立ては、まず図1のように
多孔性ポリプロピレン製セパレータ3を介して、負極2
と正極1とを外側に負極がくるように配置する。この極
板群に厚さ20μmのポリ塩化ビニル樹脂製の熱収縮チ
ューブ9をかぶせたのち、熱収縮させ、物理的に圧迫さ
せた極板群を作製する。次に、正極の集電板6に接続し
たリードを正極端子に、負極の集電板7に接続したリー
ドを負極端子5にスポット溶接する。これら極板群を縦
110mm、横70mm,幅25mmのケース4に入れ
る。次に、プロピレンカーボネートとエチレンカーボネ
ートとを体積比1:1の割合で混合した溶媒に1モル/
lの過塩素酸リチウムを溶解した電解液を注入し、封口
板8をケースに接着して電池とする。
FIG. 1 is a vertical sectional view of the prismatic battery used in this example. To assemble this battery, first of all, as shown in FIG.
And the positive electrode 1 are arranged so that the negative electrode is outside. A 20 μm-thick polyvinyl chloride resin heat-shrinkable tube 9 is covered on the electrode plate group, and then the electrode plate group is thermally shrunk and physically pressed to produce an electrode plate group. Next, the lead connected to the positive collector plate 6 is spot-welded to the positive terminal, and the lead connected to the negative collector plate 7 is spot-welded to the negative terminal 5. These electrode plate groups are put in a case 4 having a length of 110 mm, a width of 70 mm and a width of 25 mm. Next, 1 mol / min was added to a solvent in which propylene carbonate and ethylene carbonate were mixed at a volume ratio of 1: 1.
An electrolyte solution in which 1 of lithium perchlorate is dissolved is injected, and the sealing plate 8 is adhered to the case to form a battery.

【0008】[比較例1]実施例1の電池製造工程で、
熱収縮樹脂製チューブをかぶせる工程を除き、その他は
実施例1と同様の方法で電池を作製する。
[Comparative Example 1] In the battery manufacturing process of Example 1,
A battery is manufactured in the same manner as in Example 1 except for the step of covering with a heat-shrinkable resin tube.

【0009】これら、作製した電池について、充放電電
流2A、充放電電圧範囲4.3V〜3.0Vで充放電サ
イクル試験を行った。その結果を表1に示す。ここで、
容量維持率を次のように定義する。1サイクル目の放電
容量をC0、nサイクル目の放電容量をCnとすると、容
量維持率(%)=(C0−Cn)/C0×100 比較例の電池は、充放電サイクルによる容量低下が激し
く、100サイクルにおける容量維持率は30%であ
る。これに対して、本実施例の電池は、比較例の電池に
くらべ、サイクル性は非常に良好で、100サイクルに
おける容量維持率は95%である。
A charging / discharging cycle test was conducted on these manufactured batteries at a charging / discharging current of 2 A and a charging / discharging voltage range of 4.3V to 3.0V. The results are shown in Table 1. here,
The capacity retention rate is defined as follows. Assuming that the discharge capacity at the first cycle is C0 and the discharge capacity at the nth cycle is Cn, the capacity retention rate (%) = (C0-Cn) / C0 × 100 In the battery of the comparative example, the capacity decrease due to the charge / discharge cycle is severe. The capacity retention rate in 100 cycles is 30%. On the other hand, the battery of this example has much better cycleability than the battery of the comparative example, and the capacity retention rate at 100 cycles is 95%.

【0010】[0010]

【表1】 [Table 1]

【0011】[実施例2]つぎに、実施例1で使用した
ものと同種の熱収縮性フィルムを親水処理したものを用
いた場合について検討した。まず、ポリ塩化ビニル樹脂
製の熱収縮性チューブを界面活性剤であるオレイン酸ア
ミドの3重量%エチルアルコール溶液に浸漬し、引き上
げた後、真空乾燥してエチルアルコールを除去する。こ
のように界面活性剤で処理した熱収縮チューブを用い、
実施例1と同様の方法で電池を100個作製する。
[Example 2] Next, a case was investigated in which a heat-shrinkable film of the same kind as that used in Example 1 was subjected to hydrophilic treatment. First, a heat-shrinkable tube made of polyvinyl chloride resin is dipped in a 3 wt% ethyl alcohol solution of oleic acid amide as a surfactant, pulled up, and then vacuum dried to remove ethyl alcohol. Using a heat-shrinkable tube treated with a surfactant like this,
100 batteries are prepared in the same manner as in Example 1.

【0012】[比較例2]実施例1で示した方法で10
0個の電池を作製する。
[Comparative Example 2] [Comparative Example 2]
Make 0 batteries.

【0013】これらの電池を充放電電流2A、充放電電
圧範囲4.3V〜3.0Vの条件で充放電行い、初期容
量のばらつきを確認した。その結果を表2に示す。極板
群を覆う樹脂フィルムに親水処理が施されていない場
合、電池の初期容量は表2の様に±15%もばらつきが
生じる。ところが、フィルムに親水処理を施すと、電池
容量のばらつきは低下し、5%となる。これは、電池に
注液する際、親水処理を行っていないフィルムを用いた
場合、電極群への電解液の浸透がうまくいかないためと
考えられる。
These batteries were charged / discharged under the conditions of a charging / discharging current of 2 A and a charging / discharging voltage range of 4.3 V to 3.0 V, and the variation of the initial capacity was confirmed. The results are shown in Table 2. When the resin film covering the electrode plate group is not subjected to the hydrophilic treatment, the initial capacity of the battery varies by ± 15% as shown in Table 2. However, when the film is subjected to the hydrophilic treatment, the variation in battery capacity is reduced to 5%. It is considered that this is because the electrolyte solution does not penetrate well into the electrode group when a film that has not been subjected to the hydrophilic treatment is used when injecting the solution into the battery.

【0014】[0014]

【表2】 [Table 2]

【0015】以上の実施例では、非水電解液としてプロ
ピレンカーボネートとエチレンカーボネートの等体積混
合溶媒に1モル/lの過塩素酸リチウムを溶解した系を
用いた場合について説明したが、溶媒としてはこの他
に、プロピレンカーボネート、エチレンカーボネート、
ジエトキシカーボネートなどのカーボネート類、ガンマ
ーブチロラクトン、酢酸メチルなどのエステル類を単独
あるいは1つ以上を混合して用い、溶質として過塩素酸
リチウム、ホウフッ化リチウム、六フッ化りん酸リチウ
ムを用いた場合でも、同様の結果を得られる。また、実
施例では正極活物質としてLiMn1.8Co0.24を用
いて説明したが、正極活物質としてはこの他に、V
25、Cr25、MnO2、TiS2、LiMn24、L
iCoO2、LiNiO2、LiFeO2などを用いても
同様の結果が得られることはいうまでもない。さらに、
実施例では、角型電池を用いて説明したが、角型電池に
限らず、円筒型電池においても、極板群を熱収縮性樹脂
フィルムで圧迫することにより、サイクル特性が向上す
る。
In the above examples, the case where a system in which 1 mol / l of lithium perchlorate was dissolved in an equal volume mixed solvent of propylene carbonate and ethylene carbonate was used as the non-aqueous electrolytic solution was used. Besides this, propylene carbonate, ethylene carbonate,
When carbonates such as diethoxy carbonate, gamma-butyrolactone, esters such as methyl acetate are used alone or as a mixture of one or more, and lithium perchlorate, lithium borofluoride or lithium hexafluorophosphate is used as a solute. However, the same result can be obtained. Although in the embodiment described with reference to LiMn 1.8 Co 0.2 O 4 as a cathode active material, In addition as a positive electrode active material, V
2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , LiMn 2 O 4 , L
iCoO 2, LiNiO 2, LiFeO is of course obtained similar results using 2 or the like. further,
In the examples, the prismatic battery is used for explanation, but not only the prismatic battery but also the cylindrical battery, the cycle characteristics are improved by pressing the electrode plate group with the heat-shrinkable resin film.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、炭素材
料を負極とする非水電解質二次電池の充放電サイクル特
性を著しく向上させることができる。
As described above, according to the present invention, the charge / discharge cycle characteristics of a non-aqueous electrolyte secondary battery having a carbon material as a negative electrode can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の角型非水電解質二次電池の縦
断面図である。
FIG. 1 is a vertical cross-sectional view of a prismatic non-aqueous electrolyte secondary battery according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 電槽 5 負極端子 6 正極集電板 7 負極集電板 8 封口板 9 熱収縮性樹脂フィルム DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Battery case 5 Negative electrode terminal 6 Positive electrode current collector plate 7 Negative electrode current collector plate 8 Sealing plate 9 Heat shrinkable resin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Mito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 充放電に対して可逆性を有する正極、炭
素材料を主活物質とする負極およびセパレータから成る
極板群を具備し、前記極板群の表面の一部を熱収縮性樹
脂フィルムで被覆したことを特徴とする非水電解質二次
電池。
1. An electrode plate group comprising a positive electrode having reversibility to charge and discharge, a negative electrode containing a carbon material as a main active material, and a separator, wherein a part of the surface of the electrode plate group is a heat-shrinkable resin. A non-aqueous electrolyte secondary battery characterized by being covered with a film.
JP26878993A 1993-10-27 1993-10-27 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3276741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26878993A JP3276741B2 (en) 1993-10-27 1993-10-27 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26878993A JP3276741B2 (en) 1993-10-27 1993-10-27 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07122301A true JPH07122301A (en) 1995-05-12
JP3276741B2 JP3276741B2 (en) 2002-04-22

Family

ID=17463304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26878993A Expired - Fee Related JP3276741B2 (en) 1993-10-27 1993-10-27 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3276741B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253330A (en) * 2003-02-21 2004-09-09 Matsushita Electric Ind Co Ltd Square battery and its manufacturing method
KR100573097B1 (en) * 1999-06-30 2006-04-24 삼성에스디아이 주식회사 secondary battery
JP2020087832A (en) * 2018-11-29 2020-06-04 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573097B1 (en) * 1999-06-30 2006-04-24 삼성에스디아이 주식회사 secondary battery
JP2004253330A (en) * 2003-02-21 2004-09-09 Matsushita Electric Ind Co Ltd Square battery and its manufacturing method
JP4558279B2 (en) * 2003-02-21 2010-10-06 パナソニック株式会社 Square battery and method for manufacturing the same
JP2020087832A (en) * 2018-11-29 2020-06-04 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3276741B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
JP3911870B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JPH08236155A (en) Lithium secondary battery
JP3633269B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JPH11121012A (en) Nonaqueous electrolytic battery
JPH07335261A (en) Lithium secondary battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JP2001307735A (en) Lithium secondary battery
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JP3223051B2 (en) Lithium secondary battery
JP2001210318A (en) Manufacturing method of negative electrode for nonaqueous electrolytic solution secondary battery
JP4186200B2 (en) Non-aqueous electrolyte battery
JP3508411B2 (en) Lithium ion secondary battery
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
JP3276741B2 (en) Non-aqueous electrolyte secondary battery
JP2001148258A (en) Non-aqueous electrolytic solution and lithium secondary battery
JPH11273723A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4147691B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3316111B2 (en) Manufacturing method of lithium secondary battery
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
CN1194278A (en) Polymer electrolyte and lithium-polymer cell using said electrolyte
JPH07105977A (en) Non-aqueous electrolyte secondary battery
JP2000090970A (en) Lithium secondary battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees