JP3223523B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3223523B2
JP3223523B2 JP12732391A JP12732391A JP3223523B2 JP 3223523 B2 JP3223523 B2 JP 3223523B2 JP 12732391 A JP12732391 A JP 12732391A JP 12732391 A JP12732391 A JP 12732391A JP 3223523 B2 JP3223523 B2 JP 3223523B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
aqueous electrolyte
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12732391A
Other languages
Japanese (ja)
Other versions
JPH04355057A (en
Inventor
靖彦 美藤
修二 伊藤
祐之 村井
正樹 長谷川
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP12732391A priority Critical patent/JP3223523B2/en
Publication of JPH04355057A publication Critical patent/JPH04355057A/en
Application granted granted Critical
Publication of JP3223523B2 publication Critical patent/JP3223523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
関し、特に正極を改良した非水電解液二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having an improved positive electrode.

【0002】[0002]

【従来の技術】リチウム,リチウム合金またはリチウム
化合物を負極とする非水電解液二次電池は高電圧で高エ
ネルギー密度となることが期待され、多くの研究が行わ
れている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium, a lithium alloy or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and much research has been conducted.

【0003】特に、これら電池の正極活物質としてMn
2やTiS2がよく検討されている。これらの正極活物
質はLiに対する電位が3V程度であるが、最近、Li
Mn 24およびLiCoO2がLiに対して4V以上の
電位を示す正極活物質として注目されている。
In particular, Mn is used as a positive electrode active material for these batteries.
OTwoAnd TiSTwoHas been well studied. These positive electrode active materials
As for the quality, the potential with respect to Li is about 3 V.
Mn TwoOFourAnd LiCoOTwoIs more than 4V with respect to Li
It is attracting attention as a positive electrode active material showing a potential.

【0004】すなわち、電池の高エネルギー密度を得る
手段として容量の拡大とともに電池電圧を高める努力が
なされている。
That is, efforts have been made to increase the battery voltage as well as the capacity as a means for obtaining a high energy density of the battery.

【0005】このうち、LiCoO2は、その放電容量
が大きく、優れた充放電サイクル特性を有する可能性が
あることから正極活物質として有望と考えられている。
[0005] Among them, LiCoO 2 is considered to be promising as a positive electrode active material because it has a large discharge capacity and may have excellent charge / discharge cycle characteristics.

【0006】さらに、二次電池として重要な必要特性の
1つである充放電サイクル特性を向上するため、LiC
oO2へのMn,Ni,Cr,Feなどの添加も試みら
れ、充放電サイクル特性の一層の向上が図られている。
Further, in order to improve the charge / discharge cycle characteristics, which is one of the important necessary characteristics as a secondary battery, LiC
Attempts have been made to add Mn, Ni, Cr, Fe, and the like to oO 2, and further improvement of charge / discharge cycle characteristics has been achieved.

【0007】[0007]

【発明が解決しようとする課題】上記の正極活物質を用
いることにより放電容量が大きく、充放電サイクル特性
に優れた非水電解液二次電池を実現できるが、充電電圧
が4Vを越えるため、充電後の電池の高温保存特性が不
充分であるという問題があった。非水電解液二次電池の
高温保存については電池内部の微量水分や電解液溶媒の
分解が原因となり、電池内部抵抗の増大や充放電容量の
低下という問題を引き起こす。特に電池電圧が高くなる
ほどこれらの現象は顕著になり、また高温保存時におい
てより著しいものとなる。
The use of the above-mentioned positive electrode active material makes it possible to realize a nonaqueous electrolyte secondary battery having a large discharge capacity and excellent charge / discharge cycle characteristics. However, since the charge voltage exceeds 4 V, There is a problem that the high-temperature storage characteristics of the battery after charging are insufficient. High-temperature storage of a non-aqueous electrolyte secondary battery is caused by decomposition of a trace amount of water and electrolyte solvent inside the battery, which causes problems such as an increase in battery internal resistance and a decrease in charge / discharge capacity. In particular, as the battery voltage increases, these phenomena become more remarkable, and become more remarkable during high-temperature storage.

【0008】電池内部へ持ち込まれる水分については、
電解液の蒸留処理を始めとする精製および正極活物質の
乾燥処理などにより電池内部への水分の持込みを抑える
努力がなされている。しかし、充放電を繰り返し行う必
要のある二次電池の場合、特に、充電電圧が4Vを越え
る場合にはこれら水分の除去などの前処理だけでは良好
な高温保存特性を得ることができない。
[0008] Regarding moisture brought into the battery,
Efforts have been made to suppress the incorporation of water into the battery by purifying the electrolyte solution, including the distillation process, and drying the positive electrode active material. However, in the case of a secondary battery that needs to be repeatedly charged and discharged, particularly when the charging voltage exceeds 4 V, good high-temperature storage characteristics cannot be obtained only by pretreatment such as removal of water.

【0009】正極活物質と電解液溶媒との反応や、この
反応により生成した物質と負極活物質との反応が起こり
やすくなり、電池の性能低下が生じると考えられる。
[0009] It is considered that the reaction between the positive electrode active material and the electrolyte solution solvent and the reaction between the substance generated by this reaction and the negative electrode active material are likely to occur, and that the performance of the battery is reduced.

【0010】本発明はこのような課題を解決するもの
で、高温保存特性を向上した非水電解液二次電池を提供
することを目的とする。
An object of the present invention is to solve such a problem and to provide a non-aqueous electrolyte secondary battery having improved high-temperature storage characteristics.

【0011】[0011]

【課題を解決するための手段】この課題を解決するため
本発明の非水電解質二次電池は、LiCoO2で表わさ
れる複合酸化物を活物質とする正極、リチウムを吸蔵放
出することができる負極および非水電解液を有し、前記
正極中に活性炭、シリカゲル、活性アルミナから選ばれ
る少なくとも1つを1gのLiCoO2に対して0.0
02gから0.05g添加したものを用いる.
In order to solve this problem, a nonaqueous electrolyte secondary battery according to the present invention comprises a positive electrode using a composite oxide represented by LiCoO2 as an active material, a negative electrode capable of inserting and extracting lithium, and It has a non-aqueous electrolyte, and the positive electrode is selected from activated carbon, silica gel, and activated alumina.
At least one is 0.0% to 1 g of LiCoO2.
Use from 02 g to 0.05 g .

【0012】[0012]

【0013】[0013]

【作用】この構成により、本発明における、正極中の活
性炭、シリカゲル、活性アルミナから選ばれる少なくと
も1つは非水電解質二次電池内部で残留水および残留ア
ルカリを吸着する作用を奏する。
According to this structure, the activity in the positive electrode in the present invention is improved.
At least selected from charcoal, silica gel and activated alumina
One is the residual water and residual water inside the non-aqueous electrolyte secondary battery.
It has the effect of adsorbing Lucari.

【0014】正極中に活性炭、シリカゲル、活性アルミ
ナから選ばれる少なくとも1つを1gのLiCoO2に
対して0.002gから0.05g添加することによ
り、電池内部の水および正極活物質LiCoO2中に残
留する可能性があるLiOHなどのアルカリを減少させ
る事が可能で、水および残留アルカリが原因と考えられ
る高温保存による電池性能と低下を軽減できると思われ
る。
In the positive electrode, at least one selected from activated carbon, silica gel, and activated alumina is converted into 1 g of LiCoO 2.
On the other hand, by adding 0.002 g to 0.05 g , it is possible to reduce the water and the alkali such as LiOH which may remain in the positive electrode active material LiCoO 2 inside the battery. It is believed that battery performance and deterioration due to possible high-temperature storage can be reduced.

【0015】[0015]

【実施例】以下、本発明の実施例の非水電解液二次電池
について図面を基にして説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0016】(実施例1)電池の製造は次のようにして
行う。
Example 1 A battery is manufactured as follows.

【0017】正極活物質としてLiCoO2100gに
導電剤としてアセチレンブラック3.0gを混合し、さ
らに、活性炭3gを添加,混合し、さらに、結着剤とし
てのポリ四弗化エチレン樹脂4.0gを混合して正極合
剤とした。正極合剤0.1gを直径17.5mmに1トン
/cm2でプレス成型して、正極とした。図1において、
成型した正極1をケース2に置く。正極1の上にセパレ
ータ3としての多孔性ポリプロピレンフィルムを置い
た。負極4として直径17.5mm厚さ0.3mmのリチウ
ム板を、ポリプロピレン製ガスケット6を付けた封口板
5に圧着した。
100 g of LiCoO 2 as a positive electrode active material is mixed with 3.0 g of acetylene black as a conductive agent, 3 g of activated carbon is added and mixed, and 4.0 g of polytetrafluoroethylene resin as a binder is added. The mixture was mixed to form a positive electrode mixture. 0.1 g of the positive electrode mixture was press-formed at a diameter of 17.5 mm at 1 ton / cm 2 to obtain a positive electrode. In FIG.
The molded positive electrode 1 is placed in the case 2. A porous polypropylene film as a separator 3 was placed on the positive electrode 1. A lithium plate having a diameter of 17.5 mm and a thickness of 0.3 mm as the negative electrode 4 was pressure-bonded to a sealing plate 5 provided with a polypropylene gasket 6.

【0018】非水電解液として、プロピレンカーボネー
ト溶液に1モル/1の過塩素酸リチウムを溶解したもの
を用いた。このようにして得た非水電解液をセパレータ
3上および負極4上に加えた。その後ケース2の上縁部
をかしめて電池を封口した。
As the non-aqueous electrolyte, a solution prepared by dissolving 1 mol / 1 of lithium perchlorate in a propylene carbonate solution was used. The non-aqueous electrolyte thus obtained was added onto the separator 3 and the negative electrode 4. Thereafter, the upper edge of the case 2 was swaged to seal the battery.

【0019】さらに、正極1に添加する活性炭の添加量
についても検討を行い、その添加量範囲は(表1)に示
した。
Further, the amount of the activated carbon to be added to the positive electrode 1 was also examined, and the range of the added amount is shown in Table 1.

【0020】比較のため、活性炭を添加しない正極につ
いて上記と同様な方法で電池を製造した。
For comparison, a battery was manufactured in the same manner as described above for the positive electrode to which no activated carbon was added.

【0021】電池の高温保存試験を次の方法で行う。す
なわち、上記の方法で得られた電池について、20℃に
おいて1mAの定電流で4.2Vまで充電し、ついで3
Vまで放電した。この充電および放電を10サイクル行
った後、11サイクル目の充電が終わった後、60℃で
4週間保存した。保存後20℃に戻し、同じ条件で放電
した。ここで、容量維持率は次のように定義した。
A high-temperature storage test of the battery is performed by the following method. That is, the battery obtained by the above method was charged at 20 ° C. to 4.2 V at a constant current of 1 mA, and then charged to 4.2 V.
Discharged to V. After 10 cycles of this charge and discharge, the battery was stored at 60 ° C. for 4 weeks after the charge of the 11th cycle was completed. After storage, the temperature was returned to 20 ° C., and the battery was discharged under the same conditions. Here, the capacity retention rate was defined as follows.

【0022】 容量維持率=100×11サイクル目の放電電気量/1
0サイクル目の放電電気量 また、保存終了後に充電を行い、その後放電容量を評価
した。ここで、容量回復率を次のように定義した。
Capacity retention rate = 100 × discharged electricity amount at 11th cycle / 1
Discharged electricity at the 0th cycle In addition, the battery was charged after the storage was completed, and then the discharge capacity was evaluated. Here, the capacity recovery rate was defined as follows.

【0023】 容量回復率=100×12サイクル目の放電電気量/1
0サイクル目の放電電気量 上記各電池の60℃4週間保存にともなう電池内部抵抗
の変化を示す図2において、内部抵抗は電池電圧をバイ
アス電圧とし、1.0kHzにおいて振幅100mVの条件
で20℃において測定した。
Capacity recovery rate = 100 × discharged electricity amount at the 12th cycle / 1
Electricity Discharge at Cycle 0 FIG. 2 shows the change in the internal resistance of the battery during storage at 60 ° C. for 4 weeks for each battery. In FIG. Was measured.

【0024】活性炭を添加しない電池では、保存直後か
ら急激な電池内部抵抗の増加が認められ、4週間後には
30Ω以上になる。一方、実施例の電池においては、電
池内部抵抗の増加は小さいものである。
In the battery to which no activated carbon was added, a sharp increase in the battery internal resistance was observed immediately after storage, and it became 30 Ω or more after 4 weeks. On the other hand, in the battery of the example, the increase in the battery internal resistance is small.

【0025】また、(表1)には、各電池の正極合剤1
g当りの初期放電容量および4週間後の容量維持率,容
量回復率を示す。
Table 1 shows the positive electrode mixture 1 of each battery.
The initial discharge capacity per g and the capacity retention rate and capacity recovery rate after 4 weeks are shown.

【0026】[0026]

【表1】 [Table 1]

【0027】活性炭を添加しない電池では、60℃4週
間保存にともない非常に大きな容量低下を示す。一方、
活性炭を添加した電池では容量維持率および容量回復率
が高い。しかし、電池の初期容量はLiCoO2に対す
る活性炭の添加重量比が0.05を越えると急激に減少
している。
[0027] The battery without addition of activated carbon shows a very large capacity decrease with storage at 60 ° C for 4 weeks. on the other hand,
A battery to which activated carbon is added has a high capacity retention rate and capacity recovery rate. However, the initial capacity of the battery sharply decreases when the weight ratio of activated carbon to LiCoO 2 exceeds 0.05.

【0028】したがって、特に容量維持率が80%以上
で、容量回復率が85%以上であった活性炭の添加重量
比0.002〜0.05の範囲が望ましいことがわかっ
た。
Accordingly, it has been found that it is particularly desirable that the ratio by weight of the activated carbon having a capacity retention ratio of 80% or more and a capacity recovery ratio of 85% or more be in the range of 0.002 to 0.05.

【0029】このように正極への活性炭の添加は高温保
存にともなう容量低下を抑制する効果がある。
As described above, the addition of the activated carbon to the positive electrode has an effect of suppressing a decrease in capacity due to high-temperature storage.

【0030】(実施例2)つぎに、シリカゲルについて
の検討を行った。
Example 2 Next, silica gel was studied.

【0031】電池の製造および高温保存試験は実施例1
と同様に行った。上記各電池の60℃4週間保存にとも
なう電池内部抵抗の変化を示す図3において、シリカゲ
ルを添加しない電池では、保存直後から急激な電池内部
抵抗の増加が認められ、4週間後には30Ω以上にな
る。一方、実施例の電池においては、電池内部抵抗の増
加は小さいものである。
The battery production and high-temperature storage test were conducted in Example 1.
The same was done. In FIG. 3, which shows the change in the battery internal resistance during storage at 60 ° C. for 4 weeks, the batteries without silica gel showed a sharp increase in the battery internal resistance immediately after storage, and after 4 weeks, the battery internal resistance increased to 30Ω or more. Become. On the other hand, in the battery of the example, the increase in the battery internal resistance is small.

【0032】また、表2には、各電池の正極合剤1g当
りの初期放電容量および4週間後の容量維持率,容量回
復率を示す。
Table 2 shows the initial discharge capacity per 1 g of the positive electrode mixture of each battery and the capacity retention rate and capacity recovery rate after 4 weeks.

【0033】[0033]

【表2】 [Table 2]

【0034】シリカゲルを添加しない電池では、60℃
4週間保存にともない非常に大きな容量低下を示す。一
方、シリカゲルを添加した電池では容量維持率および容
量回復率が高い。しかし、電池の初期容量はLiCoO
2に対するシリカゲルの添加重量比が0.05を越える
と急激に減少している。
For a battery without silica gel added, the temperature was 60 ° C.
It shows a very large capacity decrease with storage for 4 weeks. On the other hand, a battery to which silica gel is added has a high capacity retention rate and a capacity recovery rate. However, the initial capacity of the battery is LiCoO
When the weight ratio of silica gel to 2 exceeds 0.05, the ratio rapidly decreases.

【0035】したがって、特に容量維持率が80%以上
で、容量回復率が85%以上であったシリカゲルの添加
重量比0.002〜0.05の範囲が望ましいことがわ
かった。
Therefore, it was found that the addition ratio of silica gel having a capacity retention of 80% or more and a capacity recovery of 85% or more was particularly desirable in the range of 0.002 to 0.05.

【0036】このように正極へのシリカゲルの添加は高
温保存にともなう容量低下を抑制する効果がある。
As described above, the addition of silica gel to the positive electrode has an effect of suppressing a decrease in capacity due to high-temperature storage.

【0037】また、活性アルミナを用いた場合にも同様
の効果が認められた。検討した中では高温保存特性への
効果はシリカゲルの場合に最も顕著であった。
Similar effects were observed when activated alumina was used. Among the studies, the effect on the high-temperature storage characteristics was most remarkable in the case of silica gel.

【0038】以上のように、LiCoO2で表わされる
複合酸化物を正極活物質とする非水電解質電池におい
て、正極中に活性炭、シリカゲル、活性アルミナから選
ばれる少なくとも1つを1gのLiCoO2に対して
0.002gから0.05g添加することにより、高温
保存特性に優れた非水電解質二次電池を得ることができ
る。
As described above, in a nonaqueous electrolyte battery using a composite oxide represented by LiCoO 2 as a positive electrode active material, the positive electrode is selected from activated carbon, silica gel, and activated alumina.
At least one to 1 g of LiCoO2
High temperature by adding 0.002g to 0.05g
A non-aqueous electrolyte secondary battery with excellent storage characteristics can be obtained.
You.

【0039】さらに、これらの吸着剤を混合して添加し
た場合にも同様の効果が認められた。
Further, the same effect was observed when these adsorbents were mixed and added.

【0040】以上の実施例では、電解液として1モル/
1の過塩素酸リチウムを溶解したプロピレンカーボネー
ト溶液を用いた場合の結果であるが、電解液としてこれ
以外に、溶質として六フッ化燐酸リチウムやトリフロロ
メタンスルフォン酸リチウム,ホウフッ化リチウム,溶
媒としてプロピレンカーボネート,エチレンカーボネー
トなどのカーボネート類、ガンマーブチロラクトン,酢
酸メチルなどのエステル類を用いた電解液が良好であっ
た。しかしながら、ジメトキシエタンやテトラヒドロフ
ランなどのエーテル類を使用した場合には、高温保存特
性は悪く、電解液中にルイス酸を添加することによる高
温保存特性の向上は認められなかった。実施例では正極
は4V以上の電圧となるため、エーテル類は酸化される
ためと考えている。
In the above embodiment, 1 mol / mol of the electrolytic solution was used.
The results are for the case of using a propylene carbonate solution in which lithium perchlorate 1 was dissolved. In addition to this as the electrolytic solution, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium borofluoride, and solute were used as solutes. Electrolyte solutions using carbonates such as propylene carbonate and ethylene carbonate and esters such as gamma-butyrolactone and methyl acetate were good. However, when ethers such as dimethoxyethane and tetrahydrofuran were used, the high-temperature storage characteristics were poor, and improvement of the high-temperature storage characteristics by adding a Lewis acid to the electrolyte was not recognized. In the embodiment, it is considered that since the voltage of the positive electrode becomes 4 V or more, ethers are oxidized.

【0041】[0041]

【発明の効果】以上の実施例の説明で明らかなように、
本発明の非水電解液二次電池によれば、リチウムを吸蔵
放出できる負極、LiCoO2で表わされる複合酸化物
を活物質とする正極および非水電解液を有し、正極中に
活性炭、シリカゲル、活性アルミナから選ばれる少なく
とも1つを1gのLiCoO2に対して0.002gか
ら0.05g添加することにより、1gのLiCoO2
に対して0.002gから0.05g添加することによ
り、高温保存特性が良好な非水電解質二次電池を得るこ
とができ、産業上の意義は大きい。
As is clear from the above description of the embodiment,
According to the non-aqueous electrolyte secondary battery of the present invention, there is provided a negative electrode capable of inserting and extracting lithium, a positive electrode having a composite oxide represented by LiCoO 2 as an active material, and a non-aqueous electrolytic solution.
Less selected from activated carbon, silica gel and activated alumina
0.002g for 1g LiCoO2
1 g of LiCoO2
By adding 0.002 g to 0.05 g
To obtain a non-aqueous electrolyte secondary battery with good high-temperature storage characteristics.
This has great industrial significance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の非水電解液二次電池の縦断面
FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】同実施例1の電池の60℃保存にともなう電池
内部抵抗の変化を示したグラフ
FIG. 2 is a graph showing a change in internal resistance of the battery of Example 1 during storage at 60 ° C.

【図3】同実施例2の電池の60℃保存にともなう電池
内部抵抗の変化を示したグラフ
FIG. 3 is a graph showing a change in internal resistance of the battery of Example 2 during storage at 60 ° C.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレータ 4 負極 5 封口板 6 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Sealing plate 6 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 正樹 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−121259(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/48 - 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masaki Hasegawa 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-63-121259 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/48-4 / 62 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LiCoO2で表わされる複合酸化物を活
物質とする正極と、リチウムを吸蔵放出することができ
る負極および非水電解液を有し、前記正極中に活性炭、
シリカゲル、活性アルミナから選ばれる少なくとも1つ
を1gのLiCoO2に対して0.002gから0.0
5g添加した非水電解液二次電池
A positive electrode comprising a composite oxide represented by LiCoO2 as an active material, a negative electrode capable of inserting and extracting lithium and a non-aqueous electrolyte, wherein the positive electrode contains activated carbon,
At least one selected from silica gel and activated alumina
From 0.002 g to 0.0 g for 1 g of LiCoO2.
Non-aqueous electrolyte secondary battery with 5g added
JP12732391A 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3223523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12732391A JP3223523B2 (en) 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12732391A JP3223523B2 (en) 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04355057A JPH04355057A (en) 1992-12-09
JP3223523B2 true JP3223523B2 (en) 2001-10-29

Family

ID=14957092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12732391A Expired - Fee Related JP3223523B2 (en) 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3223523B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749653B2 (en) 2006-05-15 2010-07-06 Sony Corporation Lithium ion battery
US8252460B2 (en) 2008-02-01 2012-08-28 Sony Corporation Non-aqueous electrolyte battery and negative electrode, and method for manufacturing the same
US8647768B2 (en) 2010-09-15 2014-02-11 Samsung Sdi Co., Ltd. Positive active material composition and positive electrode for electrochemical device, and electrochemical device including the same
US8673498B2 (en) 2007-01-16 2014-03-18 Panasonic Corporation Nonaqueous electrolyte secondary battery
CN104806653A (en) * 2015-04-28 2015-07-29 浙江龙虎锻造有限公司 Ball cage type equal speed universal joint
US9853320B2 (en) 2010-05-06 2017-12-26 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery including same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149832A (en) * 1996-11-20 1998-06-02 Sony Corp Nonaqueous electrolyte secondary battery
EP0949702B1 (en) * 1998-03-17 2003-08-20 Asahi Glass Company Ltd. Secondary battery power source
JP4736943B2 (en) * 2006-05-17 2011-07-27 日亜化学工業株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
US8361653B2 (en) 2009-08-28 2013-01-29 Sharp Kabushiki Kaisha Non-aqueous electrolyte secondary battery
KR101181841B1 (en) 2010-07-02 2012-09-11 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery with high voltage and rechargeable lithium battery including same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749653B2 (en) 2006-05-15 2010-07-06 Sony Corporation Lithium ion battery
US8673498B2 (en) 2007-01-16 2014-03-18 Panasonic Corporation Nonaqueous electrolyte secondary battery
US8252460B2 (en) 2008-02-01 2012-08-28 Sony Corporation Non-aqueous electrolyte battery and negative electrode, and method for manufacturing the same
US9853320B2 (en) 2010-05-06 2017-12-26 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
US8647768B2 (en) 2010-09-15 2014-02-11 Samsung Sdi Co., Ltd. Positive active material composition and positive electrode for electrochemical device, and electrochemical device including the same
CN104806653A (en) * 2015-04-28 2015-07-29 浙江龙虎锻造有限公司 Ball cage type equal speed universal joint

Also Published As

Publication number Publication date
JPH04355057A (en) 1992-12-09

Similar Documents

Publication Publication Date Title
JP2697365B2 (en) Non-aqueous electrolyte secondary battery
US5352548A (en) Secondary battery
US6528212B1 (en) Lithium battery
EP4220754A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
JP3428750B2 (en) Non-aqueous solvent secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
CN113130970B (en) Lithium ion battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
CN114583282B (en) Multifunctional electrolyte for absorbing and supplementing lithium agent and decomposing to generate gas and application thereof
JP3016447B2 (en) Non-aqueous electrolyte battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP2940015B2 (en) Organic electrolyte secondary battery
JP2000306602A (en) Lithium secondary battery
CN112467218B (en) Lithium metal battery based on copper nitrate electrolyte additive
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
JP2003203675A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
JP2000082492A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JP3157209B2 (en) Non-aqueous electrolyte secondary battery
JP3053672B2 (en) Manufacturing method of organic solvent secondary battery
JP3423168B2 (en) Non-aqueous electrolyte secondary battery
JP2830479B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees