JPH10149832A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10149832A
JPH10149832A JP8326125A JP32612596A JPH10149832A JP H10149832 A JPH10149832 A JP H10149832A JP 8326125 A JP8326125 A JP 8326125A JP 32612596 A JP32612596 A JP 32612596A JP H10149832 A JPH10149832 A JP H10149832A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8326125A
Other languages
Japanese (ja)
Inventor
Kazuya Sato
一弥 佐藤
Shigeo Kimura
重男 木村
Fujihiko Watanabe
富二彦 渡辺
Haruaki Ishizaki
晴朗 石崎
Takeharu Kikuchi
健晴 菊池
Shigeharu Obata
重春 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8326125A priority Critical patent/JPH10149832A/en
Publication of JPH10149832A publication Critical patent/JPH10149832A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To concurrently realize a low self-discharge rate and a high recovery factor in a nonaqueous electrolyte secondary battery provided with a positive electrode coated with a positive electrode mix containing a positive electrode active material on a positive electrode current collector, a negative electrode coated with a negative electrode mix containing a negative electrode active material on a negative electrode current collector, and a nonaqueous electrolyte, particularly a lithium ion nonaqueous electrolyte secondary battery. SOLUTION: This nonaqueous electrolyte secondary battery is provided with a positive electrode 2 coated with a positive electrode mix containing a positive electrode active material on a positive electrode current collector 11, a negative electrode 1 coated with a negative electrode mix containing a negative electrode active material on a negative electrode current collector 10, and a nonaqueous electrolyte. Grains having the specific surface area of 0.20-0.32m<2> /g and the moisture value of 150ppm or below are used for the positive electrode active material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関する。より詳しくは、正極活物質を含有する正極
合剤を正極集電体に塗布してなる正極と、負極活物質を
含有する負極合剤を負極集電体に塗布してなる負極と、
非水電解液とを備えた非水電解液二次電池であって、低
い自己放電率と高い回復率とを有する非水電解液二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, a positive electrode obtained by applying a positive electrode mixture containing a positive electrode active material to a positive electrode current collector, and a negative electrode obtained by applying a negative electrode mixture containing a negative electrode active material to a negative electrode current collector,
The present invention relates to a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte and having a low self-discharge rate and a high recovery rate.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により電子機器の
高性能化、小型化、ポータブル化が進み、これら携帯用
電子機器に使用する高エネルギー密度の二次電池電池と
して、リチウムイオンをドープ且つ脱ドープ可能な炭素
材料を負極活物質とし、リチウム遷移金属酸化物を正極
活物質として使用するリチウムイオン非水電解液二次電
池が知られている。
2. Description of the Related Art In recent years, with the advance of electronic technology, electronic devices have been improved in performance, miniaturization, and portability. As secondary batteries having high energy density used in these portable electronic devices, lithium ion-doped secondary batteries have been used. A lithium ion nonaqueous electrolyte secondary battery using a undoped carbon material as a negative electrode active material and a lithium transition metal oxide as a positive electrode active material is known.

【0003】このようなリチウムイオン非水電解液二次
電池の一般的な形状の一つとして渦巻型電極体を備えた
電池が知られており、この渦巻型電池は次のように製造
されている。
[0003] As one of the general shapes of such a lithium ion nonaqueous electrolyte secondary battery, a battery provided with a spiral electrode body is known. This spiral battery is manufactured as follows. I have.

【0004】まず、リチウム遷移金属酸化物を粉末化
し、それを導電材であるカーボンブラックとポリフルオ
ロビニリデン樹脂バインダーとともに均一に混合し、そ
の混合物をN−メチルピロリドンに均一に分散させて正
極合剤スラリーを調製する。この正極合剤スラリーを、
正極集電体であるアルミニウム箔上に塗布し乾燥するこ
とにより正極を作製する。
First, a lithium transition metal oxide is powdered, uniformly mixed with carbon black as a conductive material and a polyvinylidene resin binder, and the mixture is uniformly dispersed in N-methylpyrrolidone to form a positive electrode mixture. Prepare a slurry. This positive electrode mixture slurry is
A positive electrode is manufactured by applying and drying on an aluminum foil which is a positive electrode current collector.

【0005】次に、リチウムイオンをドープ且つ脱ドー
プ可能な炭素材料を粉末化し、それをポリフルオロビニ
リデン樹脂バインダーとともに均一に混合して負極合剤
とし、それをN−メチルピロリドンに均一に分散させて
負極合剤スラリーを調製する。この負極合剤スラリー
を、負極集電体である銅箔上に塗布し乾燥することによ
り負極を作製する。
Next, a carbon material capable of being doped with and dedoped with lithium ions is powdered, and the resulting powder is uniformly mixed with a polyvinylidene resin binder to form a negative electrode mixture, which is uniformly dispersed in N-methylpyrrolidone. To prepare a negative electrode mixture slurry. This negative electrode mixture slurry is applied on a copper foil as a negative electrode current collector and dried to prepare a negative electrode.

【0006】次に、このようにして得られた正極と負極
とをセパレータを介して巻き回して渦巻型積層電極体を
作製する。得られた電極体を電池缶に収容し、その電池
缶の中へ、LiPF6などの電解質を高誘電率溶媒であ
る炭酸プロピレンと低粘度溶媒である炭酸ジエチルとの
非水混合溶媒に溶解させた非水電解液を注入し、その後
は常法に従って電池を組み立て、最後に電池缶にガスケ
ットを介して電池蓋をかしめて固定する。これにより、
渦巻型の非水電解液二次電池が得られる。
Next, the positive electrode and the negative electrode thus obtained are wound around a separator to produce a spirally wound laminated electrode body. The obtained electrode body is accommodated in a battery can, and an electrolyte such as LiPF 6 is dissolved in a non-aqueous mixed solvent of propylene carbonate as a high dielectric constant solvent and diethyl carbonate as a low viscosity solvent in the battery can. Then, the battery is assembled according to a conventional method, and finally, the battery cover is fixed to the battery can via a gasket. This allows
A spiral non-aqueous electrolyte secondary battery is obtained.

【0007】ところで、正極活物質として使用するリチ
ウム遷移金属酸化物の代表例としては、炭酸リチウムと
炭酸コバルトとを0.5モル対1.0モルの比率となる
ように混合し、ほぼ900℃で約5時間、空気中で焼成
してLiCoO2を得、これを市販の粉砕装置を用いて
粒度分布を基準に粉砕した粉砕物を挙げることができ
る。
As a typical example of a lithium transition metal oxide used as a positive electrode active material, lithium carbonate and cobalt carbonate are mixed at a ratio of 0.5 mol to 1.0 mol, and the mixture is mixed at about 900 ° C. For about 5 hours in air to obtain LiCoO 2 , which may be pulverized using a commercially available pulverizer based on the particle size distribution.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、粒度分
布を基準に粉砕した場合には、過度に粉砕してしまうた
めに微粉が多くなり、リチウム遷移金属酸化物の粉砕物
の比表面積が過度に増大し、粉砕物の表面活性が高ま
り、水分吸着量(水分値)が高くなるという問題があっ
た。このような粉砕物を使用して非水電解液二次電池を
作製した場合には、二次電池の実用上の目安として電池
の自己放電率を10.0%以下とし、同時に回復率を9
0.0%以上とすることが強く求められているにもかか
わらず、自己放電率もしくは回復率又はそれらの両者が
所望の範囲を外れてしまうという問題があった。
However, when pulverized on the basis of the particle size distribution, excessive pulverization results in an increase in fine powder and an excessive increase in the specific surface area of the pulverized lithium transition metal oxide. However, there is a problem that the surface activity of the pulverized material is increased, and the amount of adsorbed moisture (moisture value) is increased. When a non-aqueous electrolyte secondary battery is manufactured using such a pulverized product, the self-discharge rate of the battery is set to 10.0% or less and the recovery rate is set to 9 at the same time as a practical reference of the secondary battery.
Although there is a strong demand for the content to be 0.0% or more, there is a problem that the self-discharge rate or the recovery rate or both of them fall outside a desired range.

【0009】本発明は、以上の従来の技術の課題を解決
しようとするものであり、正極活物質を含有する正極合
剤を正極集電体に塗布してなる正極と、負極活物質を含
有する負極合剤を負極集電体に塗布してなる負極と、非
水電解液とを備えた非水電解液二次電池、特に、リチウ
ムイオン非水電解液二次電池に低い自己放電率と高い回
復率とを同時に実現できるようにすることを目的とす
る。
An object of the present invention is to solve the above-mentioned problems of the prior art. A positive electrode prepared by applying a positive electrode mixture containing a positive electrode active material to a positive electrode current collector and a positive electrode containing a negative electrode active material A negative electrode formed by applying a negative electrode mixture to a negative electrode current collector, and a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte, particularly a lithium ion non-aqueous electrolyte secondary battery has a low self-discharge rate. It is an object of the present invention to achieve a high recovery rate at the same time.

【0010】[0010]

【課題を解決するための手段】本発明者は、正極活物質
として、特定範囲の比表面積と水分値とを有する粒子を
使用することにより上述の目的を達成できることを見出
し、本発明を完成させるに至った。
Means for Solving the Problems The present inventors have found that the above object can be achieved by using particles having a specific range of specific surface area and water content as a positive electrode active material, and have completed the present invention. Reached.

【0011】即ち、本発明は、正極活物質を含有する正
極合剤を正極集電体に塗布してなる正極と、負極活物質
を含有する負極合剤を負極集電体に塗布してなる負極
と、非水電解液とを備えた非水電解液二次電池におい
て、正極活物質として、0.20〜0.32m2/gの
比表面積を有し、且つ150ppm以下の水分値を有す
る粒子を使用することを特徴とする非水電解液二次電池
を提供する。
That is, the present invention provides a positive electrode obtained by applying a positive electrode mixture containing a positive electrode active material to a positive electrode current collector, and a negative electrode mixture containing a negative electrode active material is applied to a negative electrode current collector. In the nonaqueous electrolyte secondary battery including the negative electrode and the nonaqueous electrolyte, the positive electrode active material has a specific surface area of 0.20 to 0.32 m 2 / g and a water value of 150 ppm or less. A non-aqueous electrolyte secondary battery characterized by using particles is provided.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0013】本発明の非水電解液二次電池おいては、正
極活物質として、0.20〜0.32m2/gの比表面
積と、150ppm以下の水分値とを有する粒子を使用
する。これにより、電池の自己放電率を増大させず、し
かも回復率を低下させないようにすることができる。な
お、比表面積がこの範囲を外れて増大すると、正極活物
質の表面活性が大きくなり過ぎて水分吸着反応が増大
し、電池の自己放電率が上昇し、また回復率が低下す
る。
In the non-aqueous electrolyte secondary battery of the present invention, particles having a specific surface area of 0.20 to 0.32 m 2 / g and a water content of 150 ppm or less are used as the positive electrode active material. As a result, it is possible to prevent the self-discharge rate of the battery from increasing and not to decrease the recovery rate. If the specific surface area increases outside this range, the surface activity of the positive electrode active material becomes too large, the moisture adsorption reaction increases, the self-discharge rate of the battery increases, and the recovery rate decreases.

【0014】このような正極活物質を使用する本発明の
非水電解液二次電池としては、イオン伝導種としてリチ
ウムイオンを使用するリチウムイオン非水電解液二次電
池を好ましく挙げることができる。このリチウムイオン
非水電解液二次電池としては、正極活物質としてリチウ
ム遷移金属酸化物を使用し、正極集電体として厚さ5〜
40μm程度のアルミニウム箔を使用し、また、負極活
物質としてリチウムイオンをドープ且つ脱ドープし得る
炭素材料を使用し、そして負極集電体として厚さ5〜4
0μm程度の銅箔を使用するものを挙げることができ
る。
As the non-aqueous electrolyte secondary battery of the present invention using such a positive electrode active material, a lithium ion non-aqueous electrolyte secondary battery using lithium ions as an ion conductive species can be preferably mentioned. This lithium ion nonaqueous electrolyte secondary battery uses a lithium transition metal oxide as a positive electrode active material, and has a thickness of 5 to 5 as a positive electrode current collector.
An aluminum foil of about 40 μm is used, a carbon material capable of doping and undoping lithium ions is used as a negative electrode active material, and a thickness of 5 to 4
One using a copper foil of about 0 μm can be mentioned.

【0015】ここで、リチウム含有複合酸化物として
は、従来よりリチウムイオン二次電池の正極活物質とし
て用いられているものを使用することができ、特に式
(1)
Here, as the lithium-containing composite oxide, those conventionally used as a positive electrode active material of a lithium ion secondary battery can be used.

【0016】[0016]

【化1】LixMO2 (1) (式中、Mは遷移金属、好ましくはCo、Ni及びMn
の少なくとも一種であり、xは0.05≦x≦1.10
を満足させる数である。)で表される化合物を好ましく
使用することができる。式中xの値は、充放電状態によ
り0.05≦x≦1.10の範囲内で変化する。なかで
も、MがCoの場合が好ましい。
Embedded image where Li x MO 2 (1) wherein M is a transition metal, preferably Co, Ni and Mn
X is 0.05 ≦ x ≦ 1.10.
Is a number that satisfies. )) Can be preferably used. In the equation, the value of x changes within the range of 0.05 ≦ x ≦ 1.10. Especially, it is preferable that M is Co.

【0017】このようなリチウム複合酸化物は、例えば
リチウム及び遷移金属のそれぞれの塩、例えば、炭酸
塩、硝酸塩、硫酸塩、酸化物、水酸化物、ハロゲン化物
等を原料として製造することができる。例えば、所望の
組成に応じてリチウム塩原料及び遷移金属塩原料をそれ
ぞれ計量し、十分に混合した後に酸素存在雰囲気下60
0℃〜1000℃の温度範囲で加熱焼成することにより
製造することができる。この場合、各成分の混合方法
は、特に限定されるものではなく、粉末状の塩類をその
まま乾式の状態で混合してもよく、あるいは粉末状の塩
類を水に溶解して水溶液の状態で混合してもよい。
Such a lithium composite oxide can be produced using, for example, respective salts of lithium and a transition metal, for example, carbonate, nitrate, sulfate, oxide, hydroxide, halide and the like. . For example, a lithium salt raw material and a transition metal salt raw material are respectively weighed according to a desired composition, mixed sufficiently, and then mixed under an oxygen-containing atmosphere.
It can be manufactured by heating and firing in a temperature range of 0 ° C to 1000 ° C. In this case, the method of mixing the components is not particularly limited, and the powdered salts may be mixed in a dry state as they are, or the powdered salts may be dissolved in water and mixed in an aqueous solution. May be.

【0018】また、焼成の結果得られた正極活物質の比
表面積と水分値とを前述の所定の数値範囲に調整する方
法としては、例えば図2に示したような粉砕装置を用い
且つ粉砕条件を適宜設定することにより行うことができ
る。以下に、図2の粉砕装置の作用について説明し、粉
砕条件を変化させることにより正極活物質の比表面積と
水分値とが調整可能であることを説明する。
As a method of adjusting the specific surface area and the moisture value of the positive electrode active material obtained as a result of the firing to the above-mentioned predetermined numerical ranges, for example, using a pulverizing apparatus as shown in FIG. Can be set as appropriate. Hereinafter, the operation of the pulverizer of FIG. 2 will be described, and the fact that the specific surface area and the water value of the positive electrode active material can be adjusted by changing the pulverization conditions will be described.

【0019】まず、正極活物質は、スクリューフィーダ
(A)により粉砕ローター(F)内部に送られ、高速回
転するグラインディングディスク(B)とライナー
(C)との間で衝撃剪断作用により粉砕される。粉砕さ
れた正極活物質はガイドリング(D)により、高速回転
するセパレータ(E)の遠心力と吸引される気流の向心
力によって分級作用を受け、微粉はセパレータ(E)を
通過して装置外へ搬送され、パルスエア集塵機(図示せ
ず)で捕集される。一方、セパレータで分離された粗粉
はガイドリング(D)の内側から粉砕ローター(F)内
部に戻り、再度粉砕される。
First, the positive electrode active material is sent into the grinding rotor (F) by the screw feeder (A), and is pulverized by the impact shearing action between the high-speed rotating grinding disk (B) and the liner (C). You. The pulverized positive electrode active material is subjected to classification by the centrifugal force of the high-speed rotating separator (E) and the centrifugal force of the sucked air current by the guide ring (D), and the fine powder passes through the separator (E) and goes out of the apparatus. It is conveyed and collected by a pulse air dust collector (not shown). On the other hand, the coarse powder separated by the separator returns from the inside of the guide ring (D) to the inside of the crushing rotor (F) and is crushed again.

【0020】このような構成の粉砕装置における粉砕条
件(例えば粉砕回転数/分級回転数/活物質供給量/風
速)と粉砕物の比表面積及び水分値との関係は以下のよ
うになる。
The relationship between the pulverizing conditions (for example, the number of pulverization revolutions / classification number of revolutions / active material supply amount / wind velocity) and the specific surface area and moisture value of the pulverized material in the pulverizer having such a configuration is as follows.

【0021】(粉砕回転数)粉砕回転数を上昇させると
過粉砕となって比表面積と水分値が増大する。粉砕回転
数を下降させると粗粉砕となって比表面積が減少し、水
分値も低くなるが、粒径が大きくなりフィルターの通り
が悪くなる。
(Pulverization Rotation Number) When the pulverization rotation number is increased, excessive pulverization occurs and the specific surface area and the water content increase. When the number of revolutions of the pulverization is lowered, coarse pulverization is performed, the specific surface area is reduced, and the water value is also reduced.

【0022】(分級回転数)分級回転数を上昇させる
と、粗粉砕の粒子の粉砕装置内滞留時間が長くなり、結
果的に過粉砕となって比表面積と水分値が増大する。分
級回転数を下降させると粗粉砕の粒子が通過できるため
に比表面積が減少し、水分値も低くなるが、粒径が大き
くなってフィルターの通りが悪くなる。
(Classification Rotation Speed) When the classification rotation speed is increased, the residence time of the coarsely crushed particles in the crushing device is prolonged, resulting in excessive pulverization and an increase in the specific surface area and the water content. When the classifying rotation speed is lowered, the specific surface area decreases and the moisture value decreases because coarsely crushed particles can pass through, but the particle size increases and the filter performance deteriorates.

【0023】(活物質供給量)活物質供給量を増加させ
ると粉砕処理量に対して供給量が過剰となり、粉砕され
にくくなって粗粉砕となり比表面積が減少し、水分値も
低くなるが、粒径が大きくなってフィルターの通りが悪
くなる。活物質供給量を減少させると、粉砕処理量に余
裕が生じ、結果的に過粉砕となって比表面積と水分値が
増大する。
(Active Material Supply Amount) When the active material supply amount is increased, the supply amount becomes excessive with respect to the pulverization treatment amount, it becomes difficult to pulverize, coarse pulverization occurs, the specific surface area decreases, and the water value decreases. As the particle size increases, the filter performance deteriorates. When the supply amount of the active material is reduced, the pulverization processing amount has a margin, and as a result, the pulverization is excessive, and the specific surface area and the moisture value increase.

【0024】(風速)風速を上昇させると、活物質の粉
砕装置内の滞留時間が短くなり、粗粉砕となり比表面積
が減少し、水分値も低くなるが、粒径が大きくなってフ
ィルターの通りが悪くなる。風速を下降させると、活物
質の粉砕装置内の滞留時間が長くなり、過粉砕となって
比表面積と水分値が増大する。
(Wind speed) When the wind speed is increased, the residence time of the active material in the crushing device is shortened, and the active material is coarsely crushed, the specific surface area is reduced, and the water content is reduced. Gets worse. When the wind speed is decreased, the residence time of the active material in the pulverizing device is prolonged, resulting in excessive pulverization, which increases the specific surface area and the moisture value.

【0025】以上、説明したように粉砕条件を調整する
ことにより活物質の比表面積と水分値とを調整すること
が可能となる。
As described above, the specific surface area and the water value of the active material can be adjusted by adjusting the pulverization conditions as described above.

【0026】本発明の非水電解液二次電池の正極は、以
上説明したような正極活物質(例えば、リチウム遷移金
属酸化物)を粉末化し、それを導電材(例えばカーボン
ブラック等)とフッ素系バインダー(例えばポリフルオ
ロビニリデン樹脂)とともに均一に混合し、その混合物
をN−メチルピロリドンに均一に分散させて正極合剤ス
ラリーを調製し、この正極合剤スラリーを正極集電体
(例えば、アルミニウム箔等)上に塗布し乾燥すること
により作製することができる。
The positive electrode of the non-aqueous electrolyte secondary battery of the present invention is obtained by pulverizing the above-described positive electrode active material (for example, lithium transition metal oxide) and mixing it with a conductive material (for example, carbon black or the like) and fluorine. A positive electrode mixture slurry is prepared by uniformly mixing with a system binder (for example, a polyvinylidene resin), and dispersing the mixture uniformly in N-methylpyrrolidone to prepare a positive electrode mixture slurry. (A foil or the like) and dried.

【0027】一方、リチウムイオンをドープ且つ脱ドー
プし得る炭素材料(負極活物質)としては、2000℃
以下の比較的低い温度で焼成して得られる低結晶性炭素
材料や、結晶化しやすい原料を3000℃近くの高温で
処理した高結晶性炭素材料等を好ましく使用することが
できる。例えば、熱分解炭素類、コークス類(ピッチコ
ークス、ニードルコークス、石油コークス等)、人造黒
鉛類、天然黒鉛類、ガラス状炭素類、有機高分子化合物
焼成体(フラン樹脂等を適当な温度で焼成し炭素化した
もの)、炭素繊維、活性炭などを使用することができ
る。中でも、(002)面の面間隔が3.70オングス
トローム以上、真密度が1.70g/cc未満、且つ空
気気流中における示差熱分析で700℃以上に発熱ピー
クを持たない低結晶性炭素材料や、負極合剤充填性の高
い真比重が2.10g/cc以上の高結晶性炭素材料を
好ましく使用することができる。
On the other hand, as a carbon material (negative electrode active material) capable of doping and undoping lithium ions, 2,000 ° C.
A low-crystalline carbon material obtained by firing at a relatively low temperature as described below, a high-crystalline carbon material obtained by treating a material that is easily crystallized at a high temperature of about 3000 ° C., and the like can be preferably used. For example, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), artificial graphites, natural graphites, glassy carbons, organic polymer compound fired bodies (furan resin, etc. fired at an appropriate temperature) Carbonized), carbon fiber, activated carbon, and the like. Among them, low-crystalline carbon materials having a (002) plane spacing of 3.70 angstroms or more, a true density of less than 1.70 g / cc, and having no exothermic peak at 700 ° C. or more in differential thermal analysis in an air stream. In addition, a highly crystalline carbon material having a high negative electrode mixture filling property and a true specific gravity of 2.10 g / cc or more can be preferably used.

【0028】本発明の非水電解液二次電池の負極は、以
上説明したような負極活物質(例えば、リチウムイオン
をドープ・脱ドープ可能な炭素材料)を粉末化し、それ
を導電材(例えばカーボンブラック等)とフッ素系バイ
ンダー(例えばポリフルオロビニリデン樹脂)とともに
均一に混合し、その混合物をN−メチルピロリドンに均
一に分散させて負極合剤スラリーを調製し、この負極合
剤スラリーを負極集電体(例えば、銅箔等)上に塗布し
乾燥することにより作製することができる。
The negative electrode of the non-aqueous electrolyte secondary battery of the present invention is obtained by pulverizing the above-described negative electrode active material (for example, a carbon material capable of doping and undoping lithium ions) and converting it into a conductive material (for example, Carbon black, etc.) and a fluorine-based binder (for example, polyvinylidene resin) are uniformly mixed, and the mixture is evenly dispersed in N-methylpyrrolidone to prepare a negative electrode mixture slurry. It can be produced by coating on an electric body (for example, copper foil or the like) and drying.

【0029】本発明の非水電解液二次電池において使用
する非水電解液の非水溶媒としては、従来より種々の非
水電解液二次電池において使用されている非水溶媒を好
ましく使用することができる。例えば、リチウムイオン
非水電解液二次電池の場合には、高誘電率溶媒である炭
酸プロピレン、炭酸エチレン、炭酸ブチレン、γ−ブチ
ロラクトン等や、低粘度溶媒である1,2−ジメトキシ
エタン、2−メチルテトラヒドロフラン、炭酸ジメチ
ル、炭酸メチルエチル、炭酸ジエチル等を使用すること
ができる。
As the non-aqueous solvent of the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention, non-aqueous solvents conventionally used in various non-aqueous electrolyte secondary batteries are preferably used. be able to. For example, in the case of a lithium ion nonaqueous electrolyte secondary battery, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, etc., which are high dielectric constant solvents, and 1,2-dimethoxyethane, which is a low viscosity solvent, are used. -Methyltetrahydrofuran, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like can be used.

【0030】以上のような非水溶媒に溶解させて非水電
解液を調製する際に使用する電解質としては、一般に、
伝導イオン種により異なるが、伝導イオン種がリチウム
イオンである場合にはLiClO4、LiAsF6、Li
PF6、LiBF4、LiCl、LiBr、CH3SO3
i、CF3SO3Li等を好ましく使用することができ
る。これらは単独でも2種類以上を混合しても用いるこ
とができる。
As the electrolyte used when preparing the non-aqueous electrolyte by dissolving the above-mentioned non-aqueous solvent, generally,
Although it depends on the conductive ion species, when the conductive ion species is lithium ion, LiClO 4 , LiAsF 6 , Li
PF 6 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 L
i, CF 3 SO 3 Li or the like can be preferably used. These can be used alone or in combination of two or more.

【0031】本発明の非水電解液二次電池のセパレー
タ、電池缶、PTC素子等の他の構成については、従来
のリチウムイオン非水電解液二次電池などと同様とする
ことができる。
Other configurations of the separator, battery can, PTC element and the like of the non-aqueous electrolyte secondary battery of the present invention can be the same as those of the conventional lithium ion non-aqueous electrolyte secondary battery.

【0032】本発明の非水電解液二次電池の電池形状に
ついては特に限定されず、必要に応じて円筒型形状、角
型形状、コイン型形状、ボタン型形状等の種々の形状と
することができる。
The shape of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a button shape may be used as necessary. Can be.

【0033】[0033]

【実施例】以下、本発明の非水電解液二次電池を実施例
により具体的に説明する。
EXAMPLES Hereinafter, the nonaqueous electrolyte secondary battery of the present invention will be described in detail with reference to examples.

【0034】実施例1〜4及び比較例1〜3 図1に示す電池の断面図を参照しながら具体的に説明す
る。
Examples 1 to 4 and Comparative Examples 1 to 3 A specific description will be given with reference to the sectional view of the battery shown in FIG.

【0035】(負極(1)の作製)石油ピッチに酸素を
含む官能基を10〜20%導入(酸素架橋)した後、不
活性ガス中1000℃で焼成することにより、ガラス状
炭素材料に近い性質の難黒鉛化炭素材料{(002)面
の面間隔=3.76オングストローム(X線回折測定に
よる);真比重=1.58}を得た。
(Preparation of Negative Electrode (1)) After introducing 10 to 20% of a functional group containing oxygen into a petroleum pitch (oxygen cross-linking), it is fired at 1000 ° C. in an inert gas to be close to a glassy carbon material. A non-graphitizable carbon material having the property {plane spacing of (002) plane = 3.76 Å (by X-ray diffraction measurement); true specific gravity = 1.58} was obtained.

【0036】次に、得られた炭素材料を平均粒径10μ
mの粉末に粉砕した。この粉末89.5重量部と結着材
としてポリフッ化ビニリデン10重量部とを混合し、こ
の混合物にN−メチル−2−ピロリドンを加えてスラリ
ーとし、更にアルミニウム系カップリング剤としてアル
キルアセトアセテートアルミニウムジイソプロレート
(アルミキレートM、川研ファインケミカル社製)0.
5重量部を加え、均一に混合することにより負極合剤ス
ラリーを調製した。
Next, the obtained carbon material was treated with an average particle size of 10 μm.
m of powder. 89.5 parts by weight of this powder and 10 parts by weight of polyvinylidene fluoride as a binder are mixed, N-methyl-2-pyrrolidone is added to this mixture to form a slurry, and alkylacetoacetate aluminum is used as an aluminum-based coupling agent. Diisoprolate (aluminum chelate M, manufactured by Kawaken Fine Chemical Co., Ltd.)
5 parts by weight were added and uniformly mixed to prepare a negative electrode mixture slurry.

【0037】そして、このスラリーを負極集電体(1
0)である10μm厚の銅箔の両面に塗布し、乾燥後ロ
ールプレス機で圧縮成型を行うことにより帯状の負極
(1)を作製した。
Then, this slurry was mixed with the negative electrode current collector (1).
0) was coated on both sides of a 10 μm-thick copper foil, dried, and then compression-molded with a roll press to produce a strip-shaped negative electrode (1).

【0038】(正極(2)の作製)まず、炭酸リチウム
と炭酸コバルトとを0.5モル対1.0モルの比率とな
るように混合し、900℃で5時間、空気中で焼成する
ことによりLiCoO2を得た。
(Preparation of Positive Electrode (2)) First, lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol to 1.0 mol and calcined at 900 ° C. for 5 hours in air. As a result, LiCoO 2 was obtained.

【0039】得られたLiCoO2を、表1に示した粉
砕条件(粉砕回転数rpm/分級回転数rpm/活物質
供給量rpm)で図2に示したような粉砕装置に投入
し、風速40m/sで粉砕し、表1に示した比表面積と
水分値とを有する正極活物質粉体を得た。
The obtained LiCoO 2 was put into a pulverizer as shown in FIG. 2 under the pulverization conditions (pulverization speed rpm / classification rotation speed rpm / active material supply amount rpm) shown in Table 1, and the wind speed was 40 m. / S to obtain a positive electrode active material powder having a specific surface area and a water value shown in Table 1.

【0040】[0040]

【表1】 粉砕 分級 活物質 水分値 比表面積 回転数(rpm) 回転数(rpm) 供給量(rpm) (ppm) (m2/g) 実施例 1 1800 900 10.5 142 0.283 2 1500 900 10.5 137 0.283 3 1800 900 20.4 145 0.255 4 2100 700 20.4 80 0.210 比較例 1 2700 900 20.4 225 0.312 2 2700 900 10.5 205 0.398 3 1800 1000 20.4 147 0.3331 [Table 1] Pulverization Classification Active material Moisture value Specific surface area Number of revolutions (rpm) Number of revolutions (rpm) Supply amount (rpm) (ppm) (m 2 / g) Example 1 1800 900 10.5 142 0.283 2 1500 900 900 10.5 137 0.283 3 1800 900 20.4 145 0.255 4 2100 700 20.4 80 0.210 Comparative Example 1 2700 900 20.4 225 0.312 2 2700 900 10.5 205 0.398 3 1800 1000 20 .4 147 0.3331

【0041】次に、得られた正極活物質粉体(LiCo
2)91重量部と、導電材としてグラファイト6重量
部と、結着材としてポリフッ化ビニリデン3重量部とを
混合し、この混合物にN−メチル−2−ピロリドンを加
えてスラリーとし、更にアルミニウム系カップリング剤
としてアルキルアセトアセテートアルミニウムジイソプ
ロレート(アルミキレートM、川研ファインケミカル社
製)0.5重量部を加え、均一に混合することにより正
極合剤スラリーを調製した。
Next, the obtained positive electrode active material powder (LiCo
O 2 ) 91 parts by weight, 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder are mixed, and N-methyl-2-pyrrolidone is added to this mixture to form a slurry. A positive electrode mixture slurry was prepared by adding 0.5 parts by weight of an alkyl acetoacetate aluminum diisoprolate (aluminum chelate M, manufactured by Kawaken Fine Chemical Co., Ltd.) as a system coupling agent and uniformly mixing.

【0042】次に、このスラリーを正極集電体(11)
である20μm厚のアルミニウム箔の両面に均一に塗布
し、乾燥後ロールプレス機で圧縮成型を行うことにより
帯状の正極(2)を得た。
Next, this slurry was mixed with a positive electrode current collector (11).
Was uniformly applied to both surfaces of a 20 μm-thick aluminum foil, dried, and compression-molded by a roll press to obtain a belt-shaped positive electrode (2).

【0043】(非水電解液二次電池の作製)以上のよう
に作製した帯状の負極(1)と正極(2)と、厚さが2
5μmの微多孔性ポリエチレンフィルムからなるセパレ
ータ(3)とを順に積層してセンターピンの回りに多数
巻回することにより、ニッケルメッキを施した鉄製の電
池缶(5)(外径13.8mm,高さ51.8mm)に
適切に収まるような大きさの渦巻式電極体を作製した。
(Preparation of Nonaqueous Electrolyte Secondary Battery) The strip-shaped negative electrode (1) and positive electrode (2) prepared as described above,
A separator (3) made of a microporous polyethylene film of 5 μm is laminated in order and wound around a center pin in large numbers, so that a nickel-plated iron battery can (5) (outer diameter 13.8 mm, A spiral electrode body having a size suitable to fit within a height of 51.8 mm) was produced.

【0044】次に、この渦巻式電極体を電池缶(5)に
収納し、その渦巻式電極体上下両面に絶縁板(4)を配
置し、そして正極(2)及び負極(1)のそれぞれの集
電を行うために、アルミニウムからなる正極リード(1
3)を正極集電体(11)から導出して電流遮断装置と
してのPTC素子(9)を備えた安全弁装置(8)を介
して電池蓋(7)に接続した。また、ニッケルからなる
負極リード(12)を負極集電体(10)から導出して
電池缶(5)に熔接した。
Next, the spiral electrode body is housed in a battery can (5), insulating plates (4) are arranged on both upper and lower surfaces of the spiral electrode body, and the positive electrode (2) and the negative electrode (1) are respectively disposed. The positive electrode lead (1) made of aluminum
3) was led out from the positive electrode current collector (11) and connected to the battery lid (7) via a safety valve device (8) provided with a PTC element (9) as a current interrupting device. Further, a negative electrode lead (12) made of nickel was led out of the negative electrode current collector (10) and was welded to the battery can (5).

【0045】次に、電池缶(5)の中に、炭酸プロピレ
ン50容量%と炭酸ジエチル50容量%とからなる混合
非水溶媒に、LiPF6を1モル/リットルの濃度で溶
解させた非水電解液を注入した。そして、アスファルト
を塗布したガスケット(6)を介して電池蓋(7)と電
池缶(5)とをかしめることによりこれらを固定した。
こうして、図1に示すような直径13.8mmで高さ5
0mmの円筒型非水電解液二次電池を作製した。
Next, a non-aqueous solution prepared by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixed non-aqueous solvent consisting of 50% by volume of propylene carbonate and 50% by volume of diethyl carbonate was placed in a battery can (5). The electrolyte was injected. Then, the battery cover (7) and the battery can (5) were fixed by caulking via a gasket (6) coated with asphalt.
Thus, a diameter of 13.8 mm and a height of 5 as shown in FIG.
A 0 mm cylindrical non-aqueous electrolyte secondary battery was produced.

【0046】(電池性能の評価)このようにして作製し
た実施例1〜4及び比較例1〜3の円筒型非水電解液二
次電池について、自己放電率と回復率とを試験し、その
結果を表2に示した。
(Evaluation of Battery Performance) The self-discharge rate and the recovery rate of the cylindrical non-aqueous electrolyte secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3 thus manufactured were tested. The results are shown in Table 2.

【0047】[0047]

【表2】 水分値 比表面積 自己放電率 回復率 (ppm) (m2/g) (%) (%) 実施例 1 142 0.283 8.4 93.4 2 137 0.283 9.1 92.0 3 145 0.255 8.8 92.5 4 80 0.210 9.2 92.8 比較例 1 225 0.312 12.0 89.9 2 205 0.398 13.9 90.7 3 147 0.3331 11.0 90.6 [Table 2] Moisture value Specific surface area Self-discharge rate Recovery rate (ppm) (m 2 / g) (%) (%) Example 1 142 0.283 8.4 93.4 2 137 0.283 9.1 92.0 3 145 0.255 8.8 92.5 480 0.210 9.2 92.8 Comparative Example 1 225 0.312 12.0 89.9 2 205 0.398 13.9 90.7 3 147 0.3331 11 0.0 90.6

【0048】表2の結果から、正極活物質が0.20〜
0.32m2/gの比表面積と150ppm以下の水分
値とを有する実施例1〜4の非水電解液二次電池は、比
較例1〜3の非水電解液二次電池に比べて自己放電率が
低く、回復率が高いことがわかる。
From the results in Table 2, it was found that the positive electrode active material
The non-aqueous electrolyte secondary batteries of Examples 1 to 4 having a specific surface area of 0.32 m 2 / g and a moisture value of 150 ppm or less were more self-contained than the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 3. It can be seen that the discharge rate is low and the recovery rate is high.

【0049】[0049]

【発明の効果】本発明によれば、正極活物質を含有する
正極合剤を正極集電体に塗布してなる正極と、負極活物
質を含有する負極合剤を負極集電体に塗布してなる負極
と、非水電解液とを備えた非水電解液二次電池、特に、
リチウムイオン非水電解液二次電池に低い自己放電率と
高い回復率とを同時に実現できる。
According to the present invention, a positive electrode obtained by applying a positive electrode mixture containing a positive electrode active material to a positive electrode current collector, and a negative electrode mixture containing a negative electrode active material are applied to a negative electrode current collector. Negative electrode, a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, in particular,
A low self-discharge rate and a high recovery rate can be simultaneously realized in a lithium ion nonaqueous electrolyte secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液二次電池の断面図である。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention.

【図2】粉砕装置の概略端面図である。FIG. 2 is a schematic end view of a crusher.

【符号の説明】[Explanation of symbols]

1 負極、 2 正極、 3 セパレータ、 4 絶縁
板、 5 電池缶、6 ガスケット、 7 電池蓋、
8 安全弁装置、 9 PTC素子、10 負極集電
体、 11 正極集電体、 12 負極リ−ド、13
正極リード
1 negative electrode, 2 positive electrode, 3 separator, 4 insulating plate, 5 battery can, 6 gasket, 7 battery cover,
8 safety valve device, 9 PTC element, 10 negative electrode current collector, 11 positive electrode current collector, 12 negative electrode lead, 13
Positive lead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石崎 晴朗 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 菊池 健晴 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 小幡 重春 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Haruo Ishizaki, Inventor 6-7-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Inventor Takeharu Kikuchi 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Inventor Shigeharu Obata 6-7-35 Kita Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質を含有する正極合剤を正極集
電体に塗布してなる正極と、負極活物質を含有する負極
合剤を負極集電体に塗布してなる負極と、非水電解液と
を備えた非水電解液二次電池において、正極活物質とし
て、0.20〜0.32m2/gの比表面積を有し、且
つ150ppm以下の水分値を有する粒子を使用するこ
とを特徴とする非水電解液二次電池。
A positive electrode obtained by applying a positive electrode mixture containing a positive electrode active material to a positive electrode current collector, a negative electrode obtained by applying a negative electrode mixture containing a negative electrode active material to a negative electrode current collector, In a nonaqueous electrolyte secondary battery provided with an aqueous electrolyte, particles having a specific surface area of 0.20 to 0.32 m 2 / g and a water value of 150 ppm or less are used as a positive electrode active material. Non-aqueous electrolyte secondary battery characterized by the above-mentioned.
【請求項2】 正極活物質がリチウム遷移金属酸化物で
ある請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is a lithium transition metal oxide.
【請求項3】 リチウム遷移金属酸化物がLiCoO2
である請求項1又2記載の非水電解液二次電池。
3. The lithium transition metal oxide is LiCoO 2.
The non-aqueous electrolyte secondary battery according to claim 1, wherein
【請求項4】 負極活物質がリチウムイオンをドープ且
つ脱ドープし得る炭素材料である請求項1〜3のいずれ
かに記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is a carbon material capable of doping and undoping lithium ions.
JP8326125A 1996-11-20 1996-11-20 Nonaqueous electrolyte secondary battery Pending JPH10149832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8326125A JPH10149832A (en) 1996-11-20 1996-11-20 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8326125A JPH10149832A (en) 1996-11-20 1996-11-20 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10149832A true JPH10149832A (en) 1998-06-02

Family

ID=18184354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8326125A Pending JPH10149832A (en) 1996-11-20 1996-11-20 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10149832A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297764A (en) * 2000-04-04 2001-10-26 Sony Corp Positive electrode activator and nonaqueous electrolyte secondary cell
JP2007280830A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using them
JP2011154879A (en) * 2010-01-27 2011-08-11 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2011154949A (en) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2011154983A (en) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd Lithium ion polymer battery
JP2017045673A (en) * 2015-08-28 2017-03-02 株式会社Gsユアサ Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456064A (en) * 1990-06-20 1992-02-24 Sony Corp Positive electrode active material licoo2 for lithium secondary battery
JPH04355057A (en) * 1991-05-30 1992-12-09 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07114915A (en) * 1993-10-15 1995-05-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456064A (en) * 1990-06-20 1992-02-24 Sony Corp Positive electrode active material licoo2 for lithium secondary battery
JPH04355057A (en) * 1991-05-30 1992-12-09 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07114915A (en) * 1993-10-15 1995-05-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297764A (en) * 2000-04-04 2001-10-26 Sony Corp Positive electrode activator and nonaqueous electrolyte secondary cell
JP2007280830A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using them
JP2011154879A (en) * 2010-01-27 2011-08-11 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2011154949A (en) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2011154983A (en) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd Lithium ion polymer battery
JP2017045673A (en) * 2015-08-28 2017-03-02 株式会社Gsユアサ Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JP4644895B2 (en) Lithium secondary battery
US9437873B2 (en) Spinel-type lithium manganese-based composite oxide
US10263244B2 (en) Lithium metal composite oxide having layered structure
WO2014077277A1 (en) Lithium composite oxide, method for producing same, positive electrode active material for secondary batteries containing said lithium composite oxide, positive electrode for secondary batteries containing said positive electrode active material, and lithium ion secondary battery using said positive electrode
JP3539223B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2002117833A (en) Nonaqueous electrolyte secondary battery
US9537140B2 (en) Manganese spinel-type lithium transition metal oxide
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
KR101772402B1 (en) Method for preparing anode active material and anode active material for lithium secondary battery prepared thereby
KR20160010448A (en) Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery
JP4104561B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
KR20210100113A (en) The positive electrode active material precursor for lithium secondary batteries, the manufacturing method of the positive electrode active material precursor for lithium secondary batteries, and the manufacturing method of the positive electrode active material for lithium secondary batteries
JP2014118335A (en) Lithium multiple oxide and method for manufacturing the same, anode active material for a secondary battery including the lithium multiple oxide, anode for a secondary battery including the same, and lithium ion secondary battery using the same as an anode
KR102636609B1 (en) positive electrode active material
JP4491950B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JPH1145715A (en) Manufacture of nonaqueous electrolytic secondary battery and of its negative electrode
JP4163410B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP2003171110A (en) Method for manufacturing graphite material, negative pole material for lithium ion secondary battery and lithium ion secondary battery
JPH09274920A (en) Nonaqueous electrolyte battery
JP2007280943A (en) Positive electrode active material powder
KR20150107674A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JPH10149832A (en) Nonaqueous electrolyte secondary battery
JPH09199112A (en) Nonaqueous electrolyte secondary cell
JP2849561B2 (en) Lithium ion secondary battery and negative electrode material for the secondary battery
JPH10125324A (en) Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040629