JPH0770329B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH0770329B2
JPH0770329B2 JP2295802A JP29580290A JPH0770329B2 JP H0770329 B2 JPH0770329 B2 JP H0770329B2 JP 2295802 A JP2295802 A JP 2295802A JP 29580290 A JP29580290 A JP 29580290A JP H0770329 B2 JPH0770329 B2 JP H0770329B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
aqueous electrolyte
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2295802A
Other languages
Japanese (ja)
Other versions
JPH04169076A (en
Inventor
靖彦 美藤
祐之 村井
修二 伊藤
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2295802A priority Critical patent/JPH0770329B2/en
Publication of JPH04169076A publication Critical patent/JPH04169076A/en
Publication of JPH0770329B2 publication Critical patent/JPH0770329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池に関し、特に正極活物質
を改良した非水電解液二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having an improved positive electrode active material.

従来の技術 リチウム、リチウム合金またはリチウム化合物を負極と
する非水電解液二次電池は高電圧で高エネルギー密度と
なることが期待され、多くの研究が行なわれている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium, a lithium alloy or a lithium compound as a negative electrode are expected to have high energy density at high voltage, and many studies have been conducted.

特に、これら電池の正極活物質としてMnO2やTiS2がよく
検討されている。最近、タックレイらによりLiMn2O4
正極活物質となることが報告された。(マテリアル リ
サーチ ブレチン1983年18巻461−472ページ)LiMn2O4
はスピネル構造をした立方晶の結晶構造であり、電池の
正極活物質として用いた場合、電池の放電電圧が4ボル
ト程度の高い電圧となり、正極活物質として有望と考え
られている。
In particular, MnO 2 and TiS 2 have been well studied as a positive electrode active material for these batteries. Recently, Tuckley et al. Reported that LiMn 2 O 4 serves as a positive electrode active material. (Material Research Bulletin 1983 Vol. 18, pp. 461-472) LiMn 2 O 4
Is a cubic crystal structure having a spinel structure, and when used as a positive electrode active material of a battery, the discharge voltage of the battery becomes a high voltage of about 4 V and is considered to be promising as the positive electrode active material.

LiXMn2O4正極活物質中のX値と開路電位の関係を第4図
に示す。4ボルト付近と2.8ボルト付近の2段の電位曲
線となる。
The relationship between the X value and the open circuit potential in the Li X Mn 2 O 4 positive electrode active material is shown in FIG. It has a two-step potential curve near 4 volts and around 2.8 volts.

これまで、電位曲線の2.8ボルト付近の2段目に着目
し、充電電圧を4ボルト程度とし、放電を2ボルト程度
まで行なう充放電サイクルを行なわせることにより、サ
イクル特性の良好な電池を得る工夫がなされている。
Up to now, focusing on the second stage near the potential curve of 2.8 V, a charging voltage of about 4 V and a charging / discharging cycle of discharging up to about 2 V were performed to obtain a battery with good cycle characteristics. Has been done.

しかし、より高エネルギー密度を得るには、4.5ボルト
まで充電し3ボルトまで放電する電位曲線のうち1段目
を利用する充放電サイクル、つまりX値が1以下、好ま
しくは0.7以下になるまで充電し、X値が1になるまで
または、1.85になるまで放電する方が有利である。しか
し、X値が0.7以下になるまで充電する1段目の充放電
のサイクル特性は悪く、約50サイクル程度で放電容量は
半分に低下した。この劣化の度合は、2段目の電位曲線
を用いるサイルクに較べ極めて大きい。
However, in order to obtain a higher energy density, the charge / discharge cycle that uses the first stage of the potential curve that charges to 4.5 V and discharges to 3 V, that is, charge until the X value is 1 or less, preferably 0.7 or less. However, it is more advantageous to discharge until the X value becomes 1 or 1.85. However, the cycle characteristics of the first-stage charging / discharging for charging until the X value was 0.7 or less were poor, and the discharge capacity decreased to half in about 50 cycles. The degree of this deterioration is extremely large as compared with the sirq using the second-stage potential curve.

またX値が0.7を越える程度に充電した場合には、十分
な放電容量を得ることができない。
Further, when the battery is charged to an X value exceeding 0.7, a sufficient discharge capacity cannot be obtained.

そこで、式LiXMYMn(2-Y)O4で表わされ、MはCo、Cr、N
i、Ta、Znの中の少なくとも一種であり、かつ、0.85≦
X≦1.15であり、0.02≦Y≦0.3である正極活物質を用
いる改良がなされ、サイクル特性の向上が図られてい
る。
Therefore, it is represented by the formula Li X M Y Mn (2-Y) O 4 , where M is Co, Cr, N
At least one of i, Ta and Zn, and 0.85 ≦
Improvements have been made by using a positive electrode active material in which X ≦ 1.15 and 0.02 ≦ Y ≦ 0.3 to improve cycle characteristics.

発明が解決しようとする課題 上記の正極活物質を用いることによりサイクル特性の大
幅な向上が実現できるが、充電電圧が4Vを越えるため、
充電後の電池の自己放電特性が不充分であるという問題
があった。非水電解液二次電池の自己放電については電
池内部の微量水分や電解液溶媒の分解が原因となり、電
池内部抵抗の増大や充放電容量の低下という問題を引き
起こす。特に電池電圧が高くなるほどこれらの現象は顕
著になり、また、高温保存時においてより著しいものと
なる。
Problems to be Solved by the Invention By using the positive electrode active material described above, a significant improvement in cycle characteristics can be realized, but since the charging voltage exceeds 4V,
There is a problem that the self-discharge characteristics of the battery after charging are insufficient. The self-discharge of a non-aqueous electrolyte secondary battery is caused by the decomposition of a small amount of water inside the battery and the solvent of the electrolyte solution, which causes problems such as an increase in internal resistance of the battery and a decrease in charge / discharge capacity. In particular, these phenomena become more remarkable as the battery voltage becomes higher, and become more remarkable when stored at high temperature.

本発明はこのような課題を解決するもので、自己放電特
性を向上した非水電解液二次電池を提供することを目的
とする。
The present invention solves such a problem, and an object thereof is to provide a non-aqueous electrolyte secondary battery having improved self-discharge characteristics.

課題を解決するための手段 この課題を解決するため本発明の非水電解液二次電池
は、リチウム、リチウム合金またはリチウム化合物を負
極、LiMn2-XMeXO4(Me:Co、Cr、Ni、Ta、Znからなる少
なくとも一種)で表わされるマンガン主体の複合酸化物
を活物質として含む正極合剤および非水電解液を有する
非水電解液二次電池において、前記正極合剤に水酸化リ
チウムLiOH、水酸化カリウムKOH、水酸化ナトリウムNaO
Hなどのアルカリ金属水酸化物の少なくとも1種を添加
するものである。
Means for Solving the Problem In order to solve this problem, the non-aqueous electrolyte secondary battery of the present invention is lithium, a lithium alloy or a lithium compound as a negative electrode, LiMn 2-X Me X O 4 (Me: Co, Cr, In a non-aqueous electrolyte secondary battery having a positive electrode mixture containing a manganese-based complex oxide represented by at least one of Ni, Ta, and Zn) as an active material and a non-aqueous electrolyte, the positive electrode mixture is hydroxylated. Lithium LiOH, potassium hydroxide KOH, sodium hydroxide NaO
At least one alkali metal hydroxide such as H is added.

また、正極合剤へのアルカリ金属水酸化物の添加量が前
記正極活物質100gあたり0.05〜0.1モルであることが望
ましい。
Further, the amount of the alkali metal hydroxide added to the positive electrode mixture is preferably 0.05 to 0.1 mol per 100 g of the positive electrode active material.

作用 この構成により本発明の非水電解液二次電池は、二次電
池内部におけるアルカリ金属水酸化物の働きは明確では
ないが、その作用としては、有機電解液の分解の抑制や
分解生成物との反応などを挙げることができる。この結
果、溶媒分解生成物が原因と考えられる電池性能の低下
を軽減できるものと思われる。
Action With this configuration, in the non-aqueous electrolyte secondary battery of the present invention, the action of the alkali metal hydroxide in the secondary battery is not clear, but the action is to suppress the decomposition of the organic electrolyte or to decompose products. And the like. As a result, it is considered that the deterioration of the battery performance, which is considered to be caused by the solvent decomposition product, can be reduced.

実施例 以下本発明の一実施例の非水電解液二次電池について図
面を基にして説明する。
Example A non-aqueous electrolyte secondary battery according to an example of the present invention will be described below with reference to the drawings.

(実施例1) 電池の製造は次のようにして行なった。すなわち正極活
物質として、LiMn1・8CO0.2O4100gに導電剤としてアセチ
レンブラック3.0gを混合し、さらに、アルカリ金属水酸
化物として水酸化リチウムLiOH1.5gを水溶液として添加
し混合した。この混合物を80℃で10時間乾燥し、その後
結着剤としてのポリ弗化エチレン樹脂4.0gを混合して正
極合剤とした。正極合剤0.1グラムを直径17.5mmに1ト
ン/cm2でプレス成型して正極とした。製造した電池の
断面図を第3図に示す。成型した正極1をケース2に置
く。正極1の上にセパレータ3としての多孔性ポリプロ
ピレンフィルムを置いた。負極4として直径17.5mm厚さ
0.3mmのリチウム板を、ポリプロピレン製ガスケット6
を付けた封口板5に圧着した。非水電解液として、1モ
ル/1の過塩素酸リチウムを溶解したプロピレンカーボネ
ート溶液を用い、これをセパレータ3上および負極4上
に加えた。その後電池を封口した。上記のようにして得
られた電池をAとする。
(Example 1) A battery was manufactured as follows. That is, as positive electrode active material, 100 g of LiMn 1 .8 CO 0.2 O 4 was mixed with 3.0 g of acetylene black as a conductive agent, and further 1.5 g of lithium hydroxide LiOH as an alkali metal hydroxide was added and mixed as an aqueous solution. This mixture was dried at 80 ° C. for 10 hours, and then 4.0 g of polyfluorinated ethylene resin as a binder was mixed to prepare a positive electrode mixture. 0.1 g of the positive electrode mixture was press-molded to a diameter of 17.5 mm at 1 ton / cm 2 to obtain a positive electrode. A cross-sectional view of the manufactured battery is shown in FIG. The molded positive electrode 1 is placed in the case 2. A porous polypropylene film as the separator 3 was placed on the positive electrode 1. Diameter 17.5mm thickness as negative electrode 4
0.3mm lithium plate, polypropylene gasket 6
It was pressure-bonded to the sealing plate 5 attached with. As the non-aqueous electrolyte, a propylene carbonate solution in which 1 mol / 1 lithium perchlorate was dissolved was used, and this was added onto the separator 3 and the negative electrode 4. After that, the battery was sealed. The battery obtained as described above is designated as A.

同様の方法により水酸化カリウムKOHを添加した正極を
用いた電池をB、水酸化ナトリウムNaOHを添加した正極
を用いた電池をC、水酸化カリウムKOHと水酸化ナトリ
ウムNaOHをそれぞれ0.75g添加した正極を用いた電池を
D、水酸化リチウムLiOH、水酸化カリウムKOH、水酸化
ナトリウムNaOHをそれぞれ0.50g添加した正極を用いた
電池をEとする。
By the same method, B is a battery using a positive electrode to which potassium hydroxide KOH is added, C is a battery using a positive electrode to which sodium hydroxide NaOH is added, and a positive electrode to which 0.75 g each of potassium hydroxide KOH and sodium hydroxide NaOH is added. Let B be a battery using E, and let E be a battery using a positive electrode to which 0.50 g of lithium hydroxide LiOH, potassium hydroxide KOH, and sodium hydroxide NaOH was added.

比較例として、アルカリ金属水酸化物を添加しない電池
として、LiMn1・8CO0.2O4100、アセチレンブラック3.0
g、ポリ4弗化エチレン樹脂4.0gを混合して正極合剤と
して使用し、以下、同様に電池を構成した。この電池を
Fとする。
As a comparative example, as a battery without adding an alkali metal hydroxide, LiMn 1 .8 CO 0.2 O 4 100, acetylene black 3.0
g and 4.0 g of polytetrafluoroethylene resin were mixed and used as a positive electrode mixture, and a battery was constructed in the same manner. This battery is designated as F.

前記電池A〜Fの自己放電試験を次のようにして行なっ
た。すなわち上記の方法で得られた電池について、2mA
の定電流で4.5ボルトまで充電し、3ボルトまで放電
し、この充電、放電を10サイクル行なった後、11サイク
ル目の充電が終わった後、60℃で4週間貯蔵した。貯蔵
後同じ条件で放電した。ここで、自己放電率は次のよう
に定義する。
The self-discharge test of each of the batteries A to F was conducted as follows. That is, for the battery obtained by the above method, 2 mA
The battery was charged to a constant voltage of 4.5 V and discharged to 3 V. After 10 cycles of this charging and discharging, after the 11th cycle of charging, the battery was stored at 60 ° C. for 4 weeks. After storage, it was discharged under the same conditions. Here, the self-discharge rate is defined as follows.

自己放電率=(10サイクル目の放電電気量−11サイクル
目の放電電気量)/10サイクル目の放電電気量 上記各電池の60℃保存にともなう電池内部抵抗の変化を
第2図に示す。
Self-discharge rate = (Discharged electricity quantity at 10th cycle−Discharged electricity quantity at 11th cycle) / 10 Discharged electricity quantity at 10th cycle FIG. 2 shows the change in the internal resistance of the above batteries due to storage at 60 ° C.

従来構成の電池Fでは保存直後から急激な電池内部抵抗
の増加が認められ、4週間後には40Ω以上になる。一
方、本実施例の電池A〜Eにおいては、電池内部抵抗の
増加は小さいものであり、電池Fの1/5程度である。
In the battery F having the conventional configuration, a rapid increase in the internal resistance of the battery was observed immediately after storage, and after 4 weeks, it became 40Ω or more. On the other hand, in the batteries A to E of this example, the increase in the internal resistance of the battery is small, which is about 1/5 of that of the battery F.

また、第1表には、各電池の4週間後の自己放電率を示
す。
In addition, Table 1 shows the self-discharge rate of each battery after 4 weeks.

電池Fは非常に大きな自己放電率であるが、本実施例の
電池A〜Eでは10%以内に抑えられている。このように
正極合剤へアルカリ金属水酸化物を添加することは高温
保存にともなう自己放電を抑制する効果があり、水酸化
カリウムKOH、水酸化ナトリウム、水酸化リチウムのい
ずれを添加した場合にも効果がある。
The battery F has a very large self-discharge rate, but in the batteries A to E of this example, it is suppressed within 10%. In this way, adding an alkali metal hydroxide to the positive electrode mixture has an effect of suppressing self-discharge due to high temperature storage, and any of potassium hydroxide KOH, sodium hydroxide, or lithium hydroxide is added. effective.

さらに、これらのアルカリ金属水酸化物を混合して添加
した場合にも同様の効果が認められる。
Further, similar effects are observed when these alkali metal hydroxides are mixed and added.

(実施例2) さらに、正極合剤への水酸化リチウムの添加量について
検討した。
(Example 2) Furthermore, the amount of lithium hydroxide added to the positive electrode mixture was examined.

第1図に水酸化ナトリウムの添加量(活物質100gに対す
るモル数)とこれらの正極を用いた電池の60℃、4週間
保存後の電池内部抵抗との関係を示す。結果から正極合
剤への水酸化リチウムの添加量が正極活物質100gに対し
て0.05モル〜0.1モルの範囲で電池内部抵抗の増加を抑
える効果がみられる。したがって、正極への水酸化リチ
ウムの添加量は活物質100gに対して、0.05モル〜0.1モ
ルの範囲が望ましい。
FIG. 1 shows the relationship between the added amount of sodium hydroxide (the number of moles relative to 100 g of the active material) and the internal resistance of the battery using these positive electrodes after storage at 60 ° C. for 4 weeks. From the results, it can be seen that when the amount of lithium hydroxide added to the positive electrode mixture is in the range of 0.05 mol to 0.1 mol with respect to 100 g of the positive electrode active material, an increase in internal resistance of the battery is suppressed. Therefore, the amount of lithium hydroxide added to the positive electrode is preferably in the range of 0.05 mol to 0.1 mol with respect to 100 g of the active material.

また、水酸化カリウムKOH、水酸化ナトリウムの場合に
も、同様の結果が得られ、正極活物質としてLiMn1・8Ni
0・2O4、LiMn1・8Cr0・2O4、LiMn1・8Ta0・2O4、LiMn1・8Zn
0・2O4Coを用いた場合にも同じ効果が認められた。
Similar results were obtained with potassium hydroxide KOH and sodium hydroxide, and LiMn 1 .8 Ni was used as the positive electrode active material.
0 ・ 2 O 4 , LiMn 1 ・ 8 Cr 0 ・ 2 O 4 , LiMn 1 ・ 8 Ta 0 ・ 2 O 4 , LiMn 1 ・ 8 Zn
The same effect was observed when 0.2 O 4 Co was used.

以上のように、LiMn1・8Co0・2O4を正極活物質とする非水
電解質電池において、正極合剤にアルカリ金属水酸化物
を添加することにより、自己放電特性の優れた非水電解
質二次電池を得ることができる。
As described above, the LiMn 1 · 8 Co 0 · 2 O 4 in a non-aqueous electrolyte battery that a positive electrode active material, by adding an alkali metal hydroxide in the positive electrode mixture, the self-discharge characteristics superior non-aqueous An electrolyte secondary battery can be obtained.

以上の実施例では、電解液として1モル/lの過塩素酸リ
チウムを溶解したプロピレンカーボネート溶液を用いた
場合の結果であるが、電解液としてこれ以外に、溶質と
して過塩素酸リチウム、6フッ化燐酸リチウムやトリフ
ロロメタンスルフォン酸リチウム、ホウフッ化リチウ
ム、溶媒としてプロピレンカーボネート、エチレンカー
ボネートなどのカーボネート類、ガンマーブチロラクト
ン、酢酸メチルなどのエステル類を用いた電解液が良好
であった。しかしながら、ジメトキシエタンやテトラヒ
ドロフランなどのエーテル類を使用した場合には、自己
放電特性は悪く、正極中にアルカリ金属水酸化物を添加
することによる自己放電特性の向上は認められず、本実
施例で示したプロピレンカーボネートを用いた場合の約
2倍であった。本実施例では正極は4V以上の電圧となる
ため、エーテル類は酸化されるためと考えている。
In the above examples, the results were obtained when a propylene carbonate solution in which 1 mol / l lithium perchlorate was dissolved was used as the electrolytic solution. However, in addition to this as the electrolytic solution, lithium perchlorate as a solute and 6 fluorine were used. An electrolytic solution using lithium phosphated phosphate, lithium trifluoromethanesulfonate, lithium borofluoride, carbonates such as propylene carbonate and ethylene carbonate as a solvent, and esters such as gamma-butyrolactone and methyl acetate was good. However, when ethers such as dimethoxyethane and tetrahydrofuran were used, the self-discharge characteristics were poor and no improvement in the self-discharge characteristics due to the addition of alkali metal hydroxide in the positive electrode was observed. It was about twice as much as when the propylene carbonate shown was used. In this example, it is considered that the positive electrode has a voltage of 4 V or higher, and the ethers are oxidized.

発明の効果 以上の実施例の説明で明らかなように本発明の非水電解
液二次電池によれば、リチウム、リチウム合金またはリ
チウム化合物を負極、LiMn2-XMeXO4(Me:Co、Cr、Ni、T
a、Znの中の少なくとも一種)で表わされるマンガン主
体の複合酸化物を活物質として含む正極合剤、および非
水電解液を有し、前記正極合剤にアルカリ金属水酸化物
を正極活物質100gあたり0.05〜0.1モル添加したことに
より、自己放電特性が良好な非水電解液二次電池を得る
ことができ、産業上の意義は大きい。
EFFECTS OF THE INVENTION According to the non-aqueous electrolyte secondary battery of the present invention as is clear from the description of the above examples, lithium, a lithium alloy or a lithium compound is used as the negative electrode, and LiMn 2-X Me X O 4 (Me: Co , Cr, Ni, T
a, a positive electrode mixture containing a manganese-based composite oxide represented by (at least one of Zn) as an active material, and a non-aqueous electrolyte solution, and the positive electrode mixture contains an alkali metal hydroxide as a positive electrode active material. By adding 0.05 to 0.1 mol per 100 g, a non-aqueous electrolyte secondary battery having good self-discharge characteristics can be obtained, which has great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例および従来の非水電解液二次
電池における正極合剤への水酸化リチウムの添加量(正
極活物質100gあたりのモル数)と、これらの正極を用い
た電池の60℃、4週間保存後の電池内部抵抗との関係を
示すグラフ、第2図は同電池の60℃保存にともなう電池
内部抵抗の変化を示すグラフ、第3図は同試験に用いた
電池の縦断面図、第4図は同LiXMn2O4正極活物質の活物
質中のX値と開路電位の関係を示すグラフである。
FIG. 1 shows the amount of lithium hydroxide added to the positive electrode mixture (the number of moles per 100 g of the positive electrode active material) in one example of the present invention and a conventional non-aqueous electrolyte secondary battery, and these positive electrodes were used. A graph showing the relationship between the internal resistance of the battery after storage at 60 ° C for 4 weeks, Fig. 2 is a graph showing the change in internal resistance of the battery during storage at 60 ° C, and Fig. 3 was used for the same test. FIG. 4 is a longitudinal sectional view of the battery, and FIG. 4 is a graph showing the relationship between the X value in the active material of the Li X Mn 2 O 4 positive electrode active material and the open circuit potential.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 平2−199770(JP,A) 特開 平2−54865(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toyoguchi ▲ Yoshi ▼ Tokoku 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-2-199770 (JP, A) JP-A 2-54865 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウムまたはリチウム化合物を負極、Li
Mn2-XMeXO4(Me:Co、Cr、Ni、Ta、Zn)で表わされるマ
ンガン主体の複合酸化物を活物質として含む正極合剤、
および非水電解液を有し、前記正極合剤にアルカリ金属
水酸化物を添加したことを特徴とする非水電解液二次電
池。
1. A lithium or lithium compound as a negative electrode, Li
A positive electrode mixture containing a manganese-based composite oxide represented by Mn 2-X Me X O 4 (Me: Co, Cr, Ni, Ta, Zn) as an active material,
And a non-aqueous electrolyte, wherein an alkali metal hydroxide is added to the positive electrode mixture, a non-aqueous electrolyte secondary battery.
【請求項2】正極合剤へのアルカリ金属水酸化物の添加
量が前記正極活物質100gあたり0.005〜0.1モルであるこ
とを特徴とする請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of the alkali metal hydroxide added to the positive electrode mixture is 0.005 to 0.1 mol per 100 g of the positive electrode active material.
JP2295802A 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH0770329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2295802A JPH0770329B2 (en) 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295802A JPH0770329B2 (en) 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04169076A JPH04169076A (en) 1992-06-17
JPH0770329B2 true JPH0770329B2 (en) 1995-07-31

Family

ID=17825357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295802A Expired - Fee Related JPH0770329B2 (en) 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0770329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234899Y2 (en) * 1984-01-10 1990-09-20

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639438A (en) * 1995-12-06 1997-06-17 Kerr-Mcgee Chemical Corporation Lithium manganese oxide compound and method of preparation
KR100378012B1 (en) * 2000-11-09 2003-03-29 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery and lithium secondary battery using same
JP2002298845A (en) * 2001-03-30 2002-10-11 Sony Corp Positive electrode active material and method for synthesizing the same, and battery and method of manufacturing the same
JP5526636B2 (en) 2009-07-24 2014-06-18 ソニー株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
CN102024950B (en) 2009-09-09 2018-05-25 株式会社村田制作所 Positive active material and preparation method thereof, anode and nonaqueous electrolyte battery
WO2012000041A1 (en) * 2010-06-30 2012-01-05 Very Small Particle Company Limited Improved adhesion of active electrode materials to metal electrode substrates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2646689B2 (en) * 1988-08-20 1997-08-27 日本電池株式会社 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JP2554370B2 (en) * 1989-01-27 1996-11-13 富士電気化学株式会社 Method for manufacturing non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234899Y2 (en) * 1984-01-10 1990-09-20

Also Published As

Publication number Publication date
JPH04169076A (en) 1992-06-17

Similar Documents

Publication Publication Date Title
US6379843B1 (en) Nonaqueous secondary battery with lithium titanium cathode
US20110159344A1 (en) Non-aqueous electrolyte secondary cell
JPH04355065A (en) Nonaqueous electrolyte secondary battery
JPS62290072A (en) Organic electrolyte secondary battery
CN1198022A (en) Non aqueous electrolyte secondary batteries
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
JP3029271B2 (en) Non-aqueous secondary battery
JP3232636B2 (en) Non-aqueous electrolyte battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JPH05251080A (en) Negative electrode for nonaqueous electrolyte secondary cell and its manufacture
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JPH04355056A (en) Nonaqueous electrolyte secondary battery
JPH0734367B2 (en) Non-aqueous electrolyte secondary battery
JP2558957B2 (en) Non-aqueous electrolyte secondary battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JP2000090970A (en) Lithium secondary battery
US6200356B1 (en) Lithium ion secondary electrochemical cell and a method of preventing the electrochemical dissolution of a copper current collector therein
JPH0359963A (en) Lithium secondary battery
JPH11162520A (en) Nonaqueous electrolyte secondary battery
JPH06181060A (en) Nonaqueous electrolyte secondary battery
JP2830479B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees