JP2554370B2 - Method for manufacturing non-aqueous electrolyte secondary battery - Google Patents
Method for manufacturing non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP2554370B2 JP2554370B2 JP1016369A JP1636989A JP2554370B2 JP 2554370 B2 JP2554370 B2 JP 2554370B2 JP 1016369 A JP1016369 A JP 1016369A JP 1636989 A JP1636989 A JP 1636989A JP 2554370 B2 JP2554370 B2 JP 2554370B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- secondary battery
- aqueous electrolyte
- electrolyte secondary
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 《産業上の利用分野》 この発明は、非水電解液二次電池の製造方法に関し、
特に充放電によるLiイオンの出入りが良好で、サイクル
寿命特性に優れた非水電解液二次電池の製造方法を提供
するものである。TECHNICAL FIELD The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery,
In particular, the present invention provides a method for manufacturing a non-aqueous electrolyte secondary battery, in which the Li ions are excellently taken in and out by charge and discharge and which has excellent cycle life characteristics.
《従来の技術》 Liを負極とする非水電解液二次電池にあっては、負極
活物質として金属リチウム,リチウム合金,リチウムイ
オンをドーピングした誘電性高分子、さらにはリチウム
イオンを結晶中に混入した層間化合物が用いられてお
り、電解液としては有機電解液が用いられている。<< Prior Art >> In a non-aqueous electrolyte secondary battery using Li as a negative electrode, metallic lithium, a lithium alloy, a dielectric polymer doped with lithium ions as a negative electrode active material, and further lithium ions in a crystal are used. A mixed intercalation compound is used, and an organic electrolytic solution is used as the electrolytic solution.
一方、正極活物質については、各種の材料が検討され
ており、代表的なものとしては、MoS2,TiS2,MoO3,V2O5,
LiMn2O4などの金属硫化物,金属酸化物や、Li−Mn系複
合酸化物、Mn−Cr系材料が掲げられる。On the other hand, various materials have been studied for the positive electrode active material, and typical examples include MoS 2 , TiS 2 , MoO 3 , V 2 O 5 ,
Examples include metal sulfides such as LiMn 2 O 4 and metal oxides, Li-Mn-based composite oxides, and Mn-Cr-based materials.
これら正極材料を用いた電池の放電反応は負極のリチ
ウムイオンが正極活物質であるこれら材料の層間に移行
することによって進行し、逆に充電する場合には前記材
料の層間からリチウムイオンが負極に移行する反応を行
うことによって充放電を繰返すことができる。The discharge reaction of the battery using these positive electrode materials proceeds by the transfer of lithium ions in the negative electrode between the layers of these materials that are the positive electrode active material, and in the case of reverse charging, lithium ions are transferred from the layers of the material to the negative electrode. Charging and discharging can be repeated by carrying out a transition reaction.
《発明が解決しようとする課題》 しかしながら、従来の金属酸化物,硫化物、Li−Mn系
複合酸化物などの正極材料は二次電池として充放電反応
を繰返すと、次第に放電容量が減少してしまう欠点があ
った。<< Problems to be Solved by the Invention >> However, when a positive electrode material such as a conventional metal oxide, sulfide, or Li-Mn-based complex oxide is repeatedly charged and discharged as a secondary battery, the discharge capacity gradually decreases. There was a drawback.
これは、放電によって正極活物質中に侵入したリチウ
ムイオンが次第に外にでにくくなり、充電反応によって
も負極側に戻るものが少なくなることによる。This is because the lithium ions that have penetrated into the positive electrode active material due to the discharge gradually become less likely to come out, and less of them return to the negative electrode side due to the charging reaction.
すなわち、マンガン酸化物を例にとれば、正極側にお
いて、Mn酸化物の結晶構造内に結合した状態のまま残
り、新たに安定な酸化物を生成してしまうため、次の放
電反応に関与するリチウムイオンの量が減少すると推測
される。That is, if manganese oxide is taken as an example, on the positive electrode side, it remains bound in the crystal structure of the Mn oxide, and a new stable oxide is generated, which is involved in the next discharge reaction. It is speculated that the amount of lithium ions will decrease.
したがって、現行の材料を用いたのでは、充電を行っ
ても放電容量が減少し、サイクル寿命特性が良好でない
二次電池となっていた。Therefore, when the current material is used, the discharge capacity is reduced even when charging is performed, and the secondary battery has a poor cycle life characteristic.
この発明は、以上の問題点に鑑みなされたものであっ
て、その目的は、従来の正極材料に見られるようなリチ
ウムイオンの移行に伴う放電容量の劣化が小さく、サイ
クル寿命特性には優れた非水電解液二次電池の製造方法
を提供することにある。The present invention has been made in view of the above problems, and an object thereof is to reduce deterioration of discharge capacity due to migration of lithium ions as seen in conventional positive electrode materials and to provide excellent cycle life characteristics. It is to provide a method for manufacturing a non-aqueous electrolyte secondary battery.
《課題を解決するための手段》 本発明者は以上の目的を達成するために正極材料中に
当初からリチウムを含有させた組成物を検討したとこ
ろ、Li Mn Cr O4で示される複合酸化物を正極とするこ
とによって、サイクル寿命特性の著しい増加が見られる
ことを知見するに至った。<< Means for Solving the Problem >> The present inventor studied a composition containing lithium in the positive electrode material from the beginning in order to achieve the above object, and found that a composite oxide represented by Li Mn Cr O 4 was used. It has been found out that the cycle life characteristic is remarkably increased by using as a positive electrode.
この発明は、かかる知見に基づき成されたものであっ
て、リチウム水酸化物とMnO2とCrO3とを混合した後、空
気雰囲気中で300〜450℃の熱処理を行ってLi Mn Cr O4
で示される複合酸化物を生成し、これを粉砕して非水電
解液二次電池の正極とするのである。The present invention was made based on such findings, and after mixing lithium hydroxide, MnO 2 and CrO 3 , heat treatment was performed at 300 to 450 ° C. in an air atmosphere to obtain Li Mn Cr O 4
The composite oxide represented by is produced and pulverized to obtain a positive electrode for a non-aqueous electrolyte secondary battery.
そして、この複合酸化物を正極活物質としてこれにア
セチレンブラックおよびバインダとしてPTFEパウダーを
混合し、円盤状に成形し、ネット状集電体に圧着したの
ちに、乾燥し、電池ケース内でPC−DME,LiClO4などの十
分な有機非水電液中で過剰量の金属リチウムまたはその
合金またはリチウムを含む誘電性高分子からなる負極に
対接させることで、非水電解液二次電池を得られる。Then, this composite oxide was mixed with acetylene black as a positive electrode active material and PTFE powder as a binder, molded into a disk shape, and then pressed onto a net-shaped current collector, followed by drying, and PC-in a battery case. A non-aqueous electrolyte secondary battery can be obtained by contacting a negative electrode composed of an excess amount of metallic lithium or its alloy or a dielectric polymer containing lithium in a sufficient organic non-aqueous electrolyte such as DME or LiClO 4. .
なお、正極活物質として得られた前記複合酸化物の混
合比は、Li:Mn:Cr=1:1:1とし、これら以外の配合では
従来のLiMn2O4またはCrMnO4を用いた二次電池と同等程
度のサイクル数に対する容量低下割合となり、効果が認
められない。The mixing ratio of the composite oxide obtained as the positive electrode active material was Li: Mn: Cr = 1: 1: 1, and in the other combinations, the conventional LiMn 2 O 4 or CrMnO 4 was used. The capacity reduction rate is about the same as the cycle number of the battery, and no effect is observed.
したがって、製造時において、前記組成比に応じた混
合比の配合をすることで前記の組成比の複合酸化物を得
られ、これを用いた二次電池にあっては、従来の正極活
物質を用いたものに比べてサイクル寿命特性の向上を得
ることができることになるのである。Therefore, at the time of production, a compound oxide having the above composition ratio can be obtained by blending a mixing ratio according to the above composition ratio, and in a secondary battery using the same, a conventional positive electrode active material is used. It is possible to obtain an improvement in cycle life characteristics as compared with the one used.
《作用および効果》 以上の組成の複合酸化物を正極活物質として用いるこ
とにより、充放電反応を多数繰り返した後であっても、
放電反応により正極側に移行したリチウムイオンの充電
反応時における負極側に対する再移動は良好に行われて
いることが後述する実施例における測定結果により判明
している。<< Operation and Effect >> By using the composite oxide having the above composition as the positive electrode active material, even after a large number of charge / discharge reactions are repeated,
It has been clarified from the measurement results in Examples described later that the lithium ions transferred to the positive electrode side due to the discharge reaction are favorably re-migrated to the negative electrode side during the charge reaction.
また、このことは前記Mnの置換型固溶体を形成するCr
が比較的安定な結晶構造をとり、外部からLiイオンが入
り込んだとしても、新たな化合物として結合することが
なく、充電時における移動量の減少が少なくなるものと
推定される。This also means that Cr which forms the substitutional solid solution of Mn described above.
It has a relatively stable crystal structure, and it is presumed that even if Li ions enter from the outside, they do not bond as new compounds and the decrease in the amount of transfer during charging is reduced.
したがって、この発明によって製造された非水電解液
二次電池にあっては、従来の正極活物質材料に比べてサ
イクル寿命特性の大幅な向上を得られる。Therefore, in the non-aqueous electrolyte secondary battery manufactured according to the present invention, the cycle life characteristics can be significantly improved as compared with the conventional positive electrode active material.
《実 施 例》 以下の表1に示す正極活物質を構成する各原料の混合
比のものについてそれぞれ混合した後空気雰囲気中で40
0℃で72時間処理を行い、これの粉砕した複合酸化物を
正極として、非水電解二次電池を作成した。<< Examples >> 40% in the air atmosphere after mixing the materials having the mixing ratios of the respective raw materials constituting the positive electrode active material shown in Table 1 below.
Treatment was carried out at 0 ° C. for 72 hours, and a pulverized composite oxide was used as a positive electrode to prepare a non-aqueous electrolytic secondary battery.
この電池は、複合酸化物を正極活物質としてこれの80
重量部にアセチレンブラック10重量部およびバインダと
してPTFEパウダー10重量部を混合し、常法により直径10
mm,厚さ0.5mmの円盤状に成形し、ネット状集電体に圧着
したのちに、250℃で10時間乾燥し、電池ケースの内部
に配置した状態でPC−DME,LiClO4からなる十分な有機非
水電液中で過剰量の金属リチウムからなる負極に対接さ
せることで得られる。This battery uses a complex oxide as the positive electrode active material.
By mixing 10 parts by weight of acetylene black and 10 parts by weight of PTFE powder as a binder, the diameter of
mm-thickness 0.5 mm disc-shaped, press-bonded to a net-shaped current collector, dried at 250 ° C for 10 hours, and placed in a battery case. PC-DME, LiClO 4 It is obtained by contacting with a negative electrode made of an excessive amount of metallic lithium in another organic non-aqueous electrolyte.
なお、この複合酸化物を化学分析し、組成比を表1中
に示した。The composite oxide was chemically analyzed and the composition ratio is shown in Table 1.
前記と同一要領で以下の表2に示すごとく従来のLi−
Mn系正極活物質からなる電池(サンプルNo21〜24)およ
びMn−Cr系正極活物質からなる電池(サンプルNo25〜2
9)を作成した。 In the same manner as above, as shown in Table 2 below, conventional Li-
Batteries made of Mn-based positive electrode active material (Sample Nos. 21 to 24) and batteries made of Mn-Cr positive electrode active material (Samples No. 25 to 2)
9) created.
次に、サンプルNo,1〜20の配合比による二次電池の30
回までの充放電サイクルに対する容量(%)の低下度合
いを測定した結果、第1図(a)〜(e)に示す特性を
得られた。また、この条件としては、1mAの定電流によ
り3.8v〜2.0vまでの充放電を繰返すことによって行っ
た。 Next, sample No. 1 to 20 mix ratio of the secondary battery 30
As a result of measuring the degree of decrease in capacity (%) with respect to charge / discharge cycles up to the number of times, the characteristics shown in FIGS. 1 (a) to 1 (e) were obtained. Moreover, this condition was performed by repeating charging / discharging from 3.8v to 2.0v with a constant current of 1 mA.
また、第2図(a)は従来のLi−Mn酸化物からなるサ
ンプルNo,21〜24の正極活物質を用いたサイクル特性を
示し、同図に見られるようにサイクルに対する容量低下
度合いが著しい。Further, FIG. 2 (a) shows the cycle characteristics using the positive electrode active material of Sample Nos. 21 to 24 made of conventional Li-Mn oxide, and as shown in the figure, the degree of capacity decrease with the cycle is remarkable. .
また、第2図(b)は従来のMn−Cr酸化物からなるサ
ンプルNo,25〜29の正極活物質を用いたサイクル特性を
示し、同図に見られるようにサイクルに対する容量低下
度合いが著しい。Further, FIG. 2 (b) shows the cycle characteristics using the positive electrode active material of Sample No. 25 to 29 made of the conventional Mn-Cr oxide, and as shown in FIG. .
上記の第1図及び第2図から明らかなように、従来の
表2に示した組成のものは表1に示した組成のものより
も著しく劣っている。一方、表1に示した組成の内、サ
ンプルNO.11に示した本発明のもの以外にもサンプルNo.
12、19、20も優れた特性を示しているが、サンプルNo.1
2のものは添加リチウムの量が多くコストメリットが少
なく、またサンプルNo.19、20はCrが多く同様にコスト
メリットが少ない。従って、実用的には、本発明のサン
プルNo.11のものが最適な組成であると言える。As is clear from FIGS. 1 and 2 above, the conventional compositions shown in Table 2 are significantly inferior to the compositions shown in Table 1. On the other hand, among the compositions shown in Table 1, in addition to those of the present invention shown in Sample No. 11, Sample No.
12, 19 and 20 also show excellent characteristics, but sample No. 1
No. 2 has a large amount of added lithium and little cost merit, and sample Nos. 19 and 20 have much Cr and likewise have little cost merit. Therefore, practically, it can be said that the sample No. 11 of the present invention has the optimum composition.
なお、第3図は表1に示した本発明に係るNO.11のサ
ンプルについて、加熱温度条件をかえて、50サイクルの
容量を測定した結果を示している。In addition, FIG. 3 shows the results of measuring the capacity of 50 cycles of the NO. 11 sample according to the present invention shown in Table 1 under different heating temperature conditions.
同図では400℃で加熱したものを100とした指数で示し
ているが、300℃〜400℃の間で良好な特性を示してお
り、特に400℃の条件で最も良好な結果が得られた。In the figure, the one heated at 400 ° C is shown as an index with 100, but it shows good characteristics between 300 ° C and 400 ° C, and the best result was obtained especially under the condition of 400 ° C. .
第1図(a)〜(e)は本発明の実施例を含む各種組成
の複合酸化物を正極とした非水電解液二次電池のサイク
ル寿命特性を示すグラフ、第2図(a),(b)は従来
の各種組成の複合酸化物を正極とした非水電解液二次電
池のサイクル寿命特性を示すグラフ、第3図は本発明の
正極の加熱処理の温度条件とサイクル容量との関係を示
すグラフである。1 (a) to 1 (e) are graphs showing cycle life characteristics of a non-aqueous electrolyte secondary battery in which a composite oxide having various compositions including an embodiment of the present invention is used as a positive electrode, FIG. 2 (a), (B) is a graph showing cycle life characteristics of a non-aqueous electrolyte secondary battery using a conventional composite oxide having various compositions as a positive electrode, and FIG. 3 shows temperature conditions and cycle capacity of heat treatment of the positive electrode of the present invention. It is a graph which shows a relationship.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中西 正典 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (72)発明者 名倉 秀哲 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 平2−65061(JP,A) 特開 昭63−210028(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masanori Nakanishi 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Kikai Co., Ltd. (72) Hidenori Nagura 5-36-11 Shinbashi, Minato-ku, Tokyo (56) References JP-A-2-65061 (JP, A) JP-A-63-210028 (JP, A)
Claims (1)
る非水電解液二次電池の製造方法において、リチウム水
酸化物とMnO2とCrO3とを混合した後、空気雰囲気中で30
0〜450℃の熱処理を行ってLi Mn Cr O4で示される複合
酸化物を生成し、これを粉砕して前記正極とすることを
特徴とする非水電解液二次電池の製造方法。1. A method of manufacturing a non-aqueous electrolyte secondary battery comprising a negative electrode containing Li, an organic electrolyte and a positive electrode, wherein lithium hydroxide, MnO 2 and CrO 3 are mixed and then in an air atmosphere. 30
A method for producing a non-aqueous electrolyte secondary battery, which comprises subjecting a composite oxide represented by Li Mn Cr O 4 to heat treatment at 0 to 450 ° C. and pulverizing the composite oxide to obtain the positive electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1016369A JP2554370B2 (en) | 1989-01-27 | 1989-01-27 | Method for manufacturing non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1016369A JP2554370B2 (en) | 1989-01-27 | 1989-01-27 | Method for manufacturing non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02199770A JPH02199770A (en) | 1990-08-08 |
JP2554370B2 true JP2554370B2 (en) | 1996-11-13 |
Family
ID=11914394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1016369A Expired - Fee Related JP2554370B2 (en) | 1989-01-27 | 1989-01-27 | Method for manufacturing non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2554370B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0770329B2 (en) * | 1990-10-31 | 1995-07-31 | 松下電器産業株式会社 | Non-aqueous electrolyte secondary battery |
JPH04233169A (en) * | 1990-12-28 | 1992-08-21 | Matsushita Electric Ind Co Ltd | Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery |
CA2240805C (en) | 1997-06-19 | 2005-07-26 | Tosoh Corporation | Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07112929B2 (en) * | 1987-02-25 | 1995-12-06 | 日立マクセル株式会社 | Synthesis method of lithium manganese oxide solid solution |
JP2703278B2 (en) * | 1988-08-30 | 1998-01-26 | 三洋電機株式会社 | Non-aqueous secondary battery |
-
1989
- 1989-01-27 JP JP1016369A patent/JP2554370B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02199770A (en) | 1990-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0615296B1 (en) | Non-aqueous electrolyte secondary battery and method of producing the same | |
Yang et al. | SiOx-based anodes for secondary lithium batteries | |
KR0134080B1 (en) | Positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte | |
JPH05242891A (en) | Non-aqueous battery | |
JPH0831417A (en) | Positive electrode active material of non-aqueous electrolyte secondary battery and battery using it | |
EP0592301A1 (en) | Cathode material and secondary battery using the same | |
JP2554370B2 (en) | Method for manufacturing non-aqueous electrolyte secondary battery | |
JPH11111295A (en) | Active material for lithium battery | |
JPH0644971A (en) | Nonaqueous electrolyte lithium secondary battery | |
JP3429328B2 (en) | Lithium secondary battery and method of manufacturing the same | |
JP2001256978A (en) | Positive pole active material for lithium secondary battery and its manufacturing method | |
JP3086297B2 (en) | Non-aqueous solvent secondary battery | |
KR20040011629A (en) | composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell | |
JPH04289662A (en) | Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material | |
JPH0644970A (en) | Nonaqueous electrolyte lithium battery | |
JP4843833B2 (en) | Method for improving low temperature characteristics of lithium secondary battery | |
JPH04237970A (en) | Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material | |
JP3227771B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JPH03283356A (en) | Positive electrode active material for secondary battery | |
JP2002260661A (en) | Negative electrode for nonaqueous electrolyte secondary battery | |
KR100358804B1 (en) | Method of preparing positive active material for lithium secondary battery | |
JP2528183B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
US20230395791A1 (en) | Cathode for all-solid-state batteries and method for manufacturing the same | |
JP2000082459A (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
JP2807481B2 (en) | Cathode of non-aqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |