KR20040011629A - composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell - Google Patents

composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell Download PDF

Info

Publication number
KR20040011629A
KR20040011629A KR1020020044443A KR20020044443A KR20040011629A KR 20040011629 A KR20040011629 A KR 20040011629A KR 1020020044443 A KR1020020044443 A KR 1020020044443A KR 20020044443 A KR20020044443 A KR 20020044443A KR 20040011629 A KR20040011629 A KR 20040011629A
Authority
KR
South Korea
Prior art keywords
magnesium
nickel oxide
secondary battery
nickel
sulfur secondary
Prior art date
Application number
KR1020020044443A
Other languages
Korean (ko)
Other versions
KR100454238B1 (en
Inventor
이재영
송민상
한상철
김현석
이호
김진호
안효준
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR10-2002-0044443A priority Critical patent/KR100454238B1/en
Publication of KR20040011629A publication Critical patent/KR20040011629A/en
Application granted granted Critical
Publication of KR100454238B1 publication Critical patent/KR100454238B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: Provided is a cathode for lithium-sulfur secondary cell which can improve service life of electrode of lithium-sulfur secondary cell and initial capacity by preventing the active substance sulfur from being eluted into electrolytes as well as promoting the cell reaction, by adding a magnesium-nickel oxide which can be served as an absorbing agent and catalyst to the cathode. CONSTITUTION: The cathode for lithium-sulfur secondary cell comprises a magnesium-nickel oxide represented by the following formula: MgxNi(1-x)O, wherein x is 0.1-0.9. The magnesium-nickel oxide is prepared by blending a nickel compound, magnesium compound and a chelating agent in distilled water with stirring until the mixture forms a gel, and calcining the gel at 650-750 deg.C for 4-6 hours.

Description

마그네슘-니켈 산화물이 포함된 리튬유황이차전지용 양극 및 이를 포함하는 리튬유황이차전지{composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell}A cathode for a lithium sulfur secondary battery containing magnesium-nickel oxide and a lithium sulfur secondary battery comprising the same {composite cathode with MgxNi1-xO for rechargeable Li / S secondary cell, Li / S secondary cell}

본 발명은 마그네슘-니켈 산화물이 포함된 리튬유황이차전지용 양극 및 이를 포함하는 리튬유황이차전지, 마그네슘-니켈 산화물의 제조방법에 관한 것으로서 보다 상세하게는 상온에서 작동하는 리튬유황이차전지의 수명과 전지 용량을 향상시키기 위해서 마그네슘-니켈 산화물이 포함된 리튬유황이차전지용 양극과 이를 포함하는 리튬유황이차전지, 전기의 마그네슘-니켈 산화물의 제조방법에 관한 것이다.The present invention relates to a positive electrode for a lithium sulfur secondary battery containing magnesium-nickel oxide, a lithium sulfur secondary battery comprising the same, and a method of manufacturing magnesium-nickel oxide, and more particularly, to the life and battery of a lithium sulfur secondary battery operating at room temperature. The present invention relates to a positive electrode for a lithium sulfur secondary battery containing magnesium-nickel oxide, a lithium sulfur secondary battery comprising the same, and a method of manufacturing magnesium-nickel oxide in the past.

산업기술의 발전에 따라 노트북, 캠코더, 핸드폰, 콤팩트디스크(CD), 소형 녹음기와 같은 휴대용 전기기기가 상품화되면서 이들의 수요가 점차 증가하고 있으며, 이러한 휴대용 전기기기의 수요의 증가에 따라 이들의 에너지원인 전지가 점차 중요한 문제로 대두되고 있다.With the development of industrial technology, portable electric devices such as laptops, camcorders, mobile phones, compact discs (CDs), and compact recorders have been commercialized, and their demands are gradually increasing. Cause Batteries are becoming an increasingly important issue.

전지중에서 특히 재사용이 가능한 2차 전지의 수요는 급속히 증가하고 있으며, 이러한 2차 전지 중 리튬이차전지는 높은 에너지 밀도 및 방전전압으로 인해 가장 많이 연구되고 있으며 또한 상용화되고 있다.Among batteries, the demand for secondary batteries that can be reused is increasing rapidly, and among these secondary batteries, lithium secondary batteries are the most studied and commercialized due to their high energy density and discharge voltage.

리튬이차전지 뿐만 아니라 전지에서 가장 중요한 부분은 음극 및 양극을 구성하고 있는 물질이며, 특히 리튬이차전지 양극에 사용되는 물질로는 (1)높은 방전용량을 가지고 있어야 하며, (2)활물질의 가격이 저렴하여야 하며, (3)오랫동안 사용하기 위하여 전극수명이 우수하여야 한다.The most important part of the battery as well as the lithium secondary battery is the material constituting the negative electrode and the positive electrode. Especially, the material used for the positive electrode of the lithium secondary battery should have (1) high discharge capacity, and (2) It should be inexpensive and (3) should have good electrode life for long use.

리튬이차전지중 양극에 유황을 사용하는 리튬유황이차전지의 양극전극은 이론용량이 유황무게당 1,675mAh/g 으로서 매우 높은 방전용량을 가지고 있으며, 활물질인 유황의 가격이 매우 저렴하며, 중금속을 사용하지 않아 환경친화적인 장점을 가지고 있다. 그러나, 리튬유황이차전지는 상온에서 초기에 급격히 퇴화되어 50 사이클(cycle) 이후에 전지 용량이 초기 용량의 절반 이하로 떨어지는 매우 나쁜 단점을 가지고 있어 사용화의 걸림돌이 되고 있다.The positive electrode of the lithium secondary battery that uses sulfur as the positive electrode of the lithium secondary battery has a very high discharge capacity with a theoretical capacity of 1,675 mAh / g per sulfur weight, and the price of sulfur as an active material is very low and heavy metal is used. It does not have eco-friendly advantages. However, the lithium sulfur secondary battery has a very bad disadvantage that the battery capacity is rapidly deteriorated at an initial temperature at room temperature and drops to less than half of the initial capacity after 50 cycles.

아직 까지 상온에서의 리튬유황전지의 퇴화의 원인은 명확하게 규명되어 있지 않은 상태이며, 전지 수명의 향상 방법이 명확하게 제시된 바가 없다. 다만, 방전시 생성물인 리튬설파이드(Li2S)가 충방전을 할수록 점점 뭉치게 되어서, 결국에는 충전시에 유황(Sulfur)로 다시 환원이 되지 않기 때문에 퇴화가 일어난다고 알려져 있다.The cause of the deterioration of the lithium sulfur battery at room temperature has not been clearly identified yet, and there is no clear method for improving the battery life. However, lithium sulfide (Li 2 S), which is a product at the time of discharging, becomes more agglomerated as it is charged and discharged, and eventually degenerates because it is not reduced to sulfur (Sulfur) at the time of charging.

최근에 미국의 Moltech Corporation에서는 흡착효과(adsorbing effect)를 가진 산화물(MxOy의 형태)을 이용하여 리튬유황이차전지의 전극반응중에 생성되는 리튬과 황의 준안정 상태(metastable state)의 폴리설파이드(polysulfide)를 양극에 흡착(adsorbing)시킴으로써 전극의 퇴화를 지연시킨다는 발표를 하였다. 이는 기존의 리튬이차전지의 사이클 수명(Cycle Life)을 보다 향상시켰지만 아직 리튬이차전지의 상용화에 요구되는 수준에는 부족한 실정이다.Recently, Moltech Corporation of the United States utilizes an adsorbing effect (in the form of MxOy), a polysulfide in a metastable state of lithium and sulfur produced during electrode reaction of a lithium sulfur secondary battery. Is adsorbed on the anode to delay the degradation of the electrode. This improved the cycle life of the conventional lithium secondary battery (Cycle Life), but it is still insufficient to the level required for commercialization of the lithium secondary battery.

본 발명은 상온에서의 리튬유황이차전지 전극수명 향상에 대해 노력하던중 흡착제 및 촉매의 역할을 할 수 있는 마그네슘-니켈 산화물을 리튬유황이차전지의 양극에 첨가시키면 양극의 활물질인 유황의 전해질로의 용출을 막고 동시에 전지반응을 촉진시켜 리튬유황이차전지의 전극수명이 향상됨을 알게 되어 발명을 완성하였다.According to the present invention, when magnesium-nickel oxide, which can serve as an adsorbent and a catalyst, is added to the positive electrode of a lithium sulfur secondary battery, while efforts to improve electrode life of a lithium sulfur secondary battery at room temperature are performed. By preventing elution and promoting battery reaction at the same time, it was found that the electrode life of a lithium sulfur secondary battery was improved, thereby completing the invention.

따라서 본 발명은 마그네슘-니켈 산화물이 포함된 리튬유황이차전지용 양극 및 이를 포함하는 리튬유황이차전지를 제공하는 것을 목적으로 한다.Therefore, an object of the present invention is to provide a lithium sulfur secondary battery positive electrode containing a magnesium-nickel oxide and a lithium sulfur secondary battery comprising the same.

또한 본 발명은 리튬유황이차전지용 양극에서 흡착제 및 촉매의 역할을 하는마그네슘-니켈 산화물의 제조방법의 제공을 또다른 목적으로 한다.Another object of the present invention is to provide a method for preparing magnesium-nickel oxide, which serves as an adsorbent and a catalyst in a cathode for a lithium sulfur secondary battery.

도 1은 비교예로서 마그네슘-니켈 산화물을 양극에 첨가하지 않은 리튬유황이차전지의 상온에서의 전극수명을 나타낸 그래프이다.1 is a graph showing electrode life at room temperature of a lithium sulfur secondary battery in which magnesium-nickel oxide is not added to a cathode as a comparative example.

도 2는 마그네슘-니켈 산화물(Mg0.6Ni0.4O)을 양극에 첨가하여 제조한 리튬유황이차전지의 상온에서의 전극수명을 나타낸 그래프이다.FIG. 2 is a graph showing electrode life at room temperature of a lithium sulfur secondary battery prepared by adding magnesium-nickel oxide (Mg 0.6 Ni 0.4 O) to a positive electrode.

본 발명은 마그네슘-니켈 산화물이 포함된 리튬유황이차전지용 양극, 이 양극을 포함하는 리튬유황이차전지, 리튬유황이차전지용 양극에 포함된 마그네슘-니켈 산화물의 제조방법에 관한 것으로서 이들에 대한 구체적인 설명은 다음과 같다.The present invention relates to a method for manufacturing a magnesium-nickel oxide contained in a positive electrode for a lithium sulfur secondary battery containing a magnesium-nickel oxide, a lithium sulfur secondary battery comprising the positive electrode, a positive electrode for a lithium sulfur secondary battery. As follows.

본 발명의 리튬유황이차전지용 양극은 공지의 리튬유황이차전지의 양극에 있어서, 하기의 식(1)으로 나타낼 수 있으며 20∼40nm의 입자크기를 가지는 마그네슘-니켈 산화물을 1∼30 중량% 포함하는 것을 특징으로 한다.The positive electrode for a lithium sulfur secondary battery of the present invention, which is a positive electrode of a known lithium sulfur secondary battery, may be represented by the following formula (1) and contains 1 to 30% by weight of magnesium-nickel oxide having a particle size of 20 to 40 nm. It is characterized by.

MgxNi1-xO......(1)Mg x Ni 1-x O ...... (1)

상기 식에서 x는 0.1 ∼ 0.9을 나타낸다.In the formula, x represents 0.1 to 0.9.

본 발명에서 상기 식(1)의 마그네슘-니켈 산화물을 양극 중에서 1 중량% 미만 사용하면 MgO의 흡착효과와 NiO의 촉매효과를 가지는 MgxNi1-xO가 양극의 성능 개선에 충분하지 않은 문제가 있고, 30 중량% 초과 사용하면 상대적으로 양극에서의 카본 전기전도체(carbon current collector)의 함량이 줄어들어 양극에서 요구되는 전기전도도(electric conductivity)를 제대로 공급할 수 없는 문제가 있어 본 발명에서 마그네슘-니켈 산화물은 양극 중에서 1∼30 중량% 포함하는 것이 좋다.In the present invention, when the magnesium-nickel oxide of Formula (1) is less than 1% by weight in the positive electrode, Mg x Ni 1-x O having the adsorption effect of MgO and the catalytic effect of NiO is not sufficient to improve the performance of the positive electrode. When used in excess of 30% by weight, there is a problem in that the content of carbon current collector at the cathode is relatively reduced, so that the electrical conductivity required at the anode cannot be properly supplied. The oxide is preferably contained 1 to 30% by weight in the positive electrode.

본 발명에서 사용하는 마그네슘-니켈 산화물은 20∼40nm의 매우 작은 입자크기를 가지고 있기 때문에 그 효과가 더 월등히 나타날 수 있다.Since the magnesium-nickel oxide used in the present invention has a very small particle size of 20 to 40 nm, the effect may be more excellent.

본 발명의 리튬유황이차전지용 양극은 흡착제 및 촉매의 역할을 하는 마그네슘-니켈 산화물 이외에 통상의 첨가물로서 활물질인 유황(sulfur), 바인더인 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVdF), 전기전도체인 카본(아세틸렌 블랙)과 같은 공지의 물질을 사용할 수 있는바 이는 당업자라면 임의적으로 선택하여 사용할 수 있으므로 이에 대한 자세한 내용은 생략하기로 한다.The positive electrode for a lithium sulfur secondary battery of the present invention is a sulfur (active material), a binder polyvinylidene fluoride (PVdF), an electrical conductor, as a conventional additive in addition to magnesium-nickel oxide, which serves as an adsorbent and a catalyst, Known materials such as acetylene black) can be used, and those skilled in the art can arbitrarily select and use the details thereof.

본 발명은 상기에서 언급한 것 처럼 MgO의 흡착효과와 NiO의 촉매효과를 가지는 마그네슘-니켈 산화물(MgxNi1-xO)이 첨가된 양극을 양극전극으로 사용하는 리튬유황이차전지를 포함한다.The present invention includes a lithium sulfur secondary battery using a cathode to which magnesium-nickel oxide (Mg x Ni 1-x O) to which the adsorption effect of MgO and the catalytic effect of NiO are added as mentioned above is used as a cathode electrode. .

또한 본 발명은 상기 리튬유황이차전지용 양극에 MgO의 흡착효과(adsorbing effect)와 NiO의 촉매효과(catalytic effect)를 가진 마그네슘-니켈 산화물(MgxNi1-xO)의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing magnesium-nickel oxide (Mg x Ni 1-x O) having the adsorption effect (MgO) and the catalytic effect of NiO (MgO) on the positive electrode for a lithium sulfur secondary battery.

마그네슘-니켈 산화물의 제조는 니켈과 마그네슘을 함유하는 마그네슘-니켈 산화물의 제조에 있어서,The preparation of magnesium-nickel oxide is in the preparation of magnesium-nickel oxide containing nickel and magnesium,

니켈 화합물, 마그네슘 화합물과 킬레이트 에이전트를 증류수에 넣고 겔(gel) 상태가 될 때가지 교반하는 단계와,Adding a nickel compound, a magnesium compound and a chelating agent to distilled water and stirring until it becomes a gel;

교반 후 650∼750℃에서 4∼6시간 동안 하소시켜 하기 식(1)의 마그네슘-니켈 산화물을 제조하는 단계를 포함한다.It is followed by calcination at 650 ~ 750 ℃ for 4-6 hours after stirring to produce a magnesium-nickel oxide of the formula (1).

MgxNi1-xO......(1)Mg x Ni 1-x O ...... (1)

상기 식에서 x는 0.1 ∼ 0.9 이다.In said formula, x is 0.1-0.9.

상기에서 니켈 화합물은 니켈(Ⅱ)질화 육수화물(Nickel(Ⅱ) nitrate hexahydrate, Ni(NO3)2ㆍ6H2O)을 마그네슘-니켈 산화물 중에서 25∼35중량% 포함시키며, 마그네슘 화합물은 마그네슘질화 육수화물(magnesium nitrate hexahydrate, Mg(NO3)2ㆍ6H2O)을 마그네슘-니켈 산화물 중에서 35∼45중량% 포함시키고, 킬레이트 에이전트는 시트릭산(citric acid)을 마그네슘-니켈 산화물 중에서 30∼40중량% 포함되도록 한다.The nickel compound includes nickel (II) nitrate hexahydrate (Nickel (II) nitrate hexahydrate, Ni (NO 3 ) 2 ㆍ 6H 2 O) in the magnesium-nickel oxide in 25 to 35% by weight, and the magnesium compound is magnesium nitride Magnesium nitrate hexahydrate (Mg (NO 3 ) 2 ㆍ 6H 2 O) is contained in the magnesium-nickel oxide 35 to 45% by weight, the chelate agent is citric acid (citric acid) in the magnesium-nickel oxide 30-40 % By weight.

마그네슘-니켈 산화물은 하기 실시예에 언급한 Mg0.6Ni0.4O 조성의 MgxNi1-xO(x=0.6)를 만들기 위해 니켈 화합물 25∼35중량%, 마그네슘 화합물 35∼45중량%, 킬레이트 에이전트(시트릭산) 30∼40중량% 사용하며, 기타 다른 조성의 MgxNi1-xO를 만들려고 한다면 니켈 화합물, 마그네슘 화합불, 킬레이트 화합물을 다른 중량비를 사용하여 제조할 수 있다. 또한 졸겔법을 이용하여 본 발명의 마그네슘-니켈 산화물 제조시 킬레이트 에이전트를 사용하는 이유는 졸겔법에서 일어나는 hydrolysis와 condensation의 반응속도를 조절하고 궁극적으로 화학적 조성 분포가 균질한gel을 얻을 수 있기 때문이다.Magnesium-nickel oxide is 25-35 wt% nickel compound, 35-45 wt% magnesium compound, chelate to make Mg x Ni 1-x O (x = 0.6) of Mg 0.6 Ni 0.4 O composition mentioned in the examples below If 30 to 40% by weight of the agent (citric acid) is used, and Mg x Ni 1-x O of any other composition is to be made, nickel compounds, magnesium fluoride, and chelate compounds may be prepared using different weight ratios. In addition, the reason for using the chelating agent in the preparation of the magnesium-nickel oxide of the present invention using the sol-gel method is to control the reaction rate of hydrolysis and condensation occurring in the sol-gel method and ultimately obtain a homogeneous gel with a chemical composition distribution. .

이하 본 발명의 내용을 실시예에 의해 보다 상세하게 설명하기로 한다. 다만 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되어지는 것으로 해석되어져서는 아니된다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples. However, these examples are only presented to understand the content of the present invention, and the scope of the present invention should not be construed as being limited to these embodiments.

<실시예><Example>

(1)마그네슘-니켈 산화물(Mg(1) magnesium-nickel oxide (Mg xx NiNi 1-x1-x O(x = 0.6))의 제조Preparation of O (x = 0.6)

니켈(Ⅱ)질화 육수화물(Ni(NO3)2ㆍ6H2O, 99%, Aldrech) 11.6g(29 중량%), 마그네슘질화 육수화물(Mg(NO3)2ㆍ6H2O, 99%, Aldrech) 15.4g(38.5 중량%), 킬레이트 에이젼트인 시트릭산(citric acid) 13g(32.5 중량%)을 함께 증류수(deionized water) 150ml가 담긴 플라스크에 넣고 마그네틱바(magnetic bar)를 이용하여 균일한 혼합물이 되도록 교반(stirring)한다.Nickel (II) nitride hexahydrate (Ni (NO 3 ) 2 ㆍ 6H 2 O, 99%, Aldrech) 11.6g (29 wt%), magnesium nitrate hexahydrate (Mg (NO 3 ) 2 ㆍ 6H 2 O, 99% , 15.4 g (38.5 wt%) of Aldrech and 13 g (32.5 wt%) of citric acid, a chelating agent, were added together to a flask containing 150 ml of deionized water and a uniform magnetic bar was used. Stir to the mixture.

이때 90∼130℃의 열을 함께 가하면서 교반을 하여 혼합물이 겔(gel) 상태가 될 때까지 계속 교반을 한 후, 겔 상태가 되면 700℃에서 5시간 동안 하소(calcination)시켜 20∼40nm 입자크기를 갖는 MgxNi1-xO (x = 0.6)을 얻었다.At this time, the mixture was stirred while applying heat of 90 to 130 ° C. and stirred until the mixture became a gel state. When the mixture became gel, it was calcined at 700 ° C. for 5 hours to obtain 20-40 nm particles. Mg x Ni 1-x O (x = 0.6) with size was obtained.

(2)마그네슘-니켈 산화물이 첨가된 리튬유황이차전지용 양극의 제조(2) Production of positive electrode for lithium sulfur secondary battery with magnesium-nickel oxide

유황 0.12g(30wt%), 카본(아세틸렌 블랙) 0.18g(45wt%)과 상기 (1)단계에서제조한 마그네슘-니켈 산화물(Mg0.6Ni0.4O) 0.06g(15wt%)을 칭량한 후 1시간 동안 아르곤 분위기에서 볼 밀링(ball milling, Spex-8000 Mixer/Mill)을 하였다.After weighing 0.12 g (30 wt%) of sulfur, 0.18 g (45 wt%) of carbon (acetylene black) and 0.06 g (15 wt%) of magnesium-nickel oxide (Mg 0.6 Ni 0.4 O) prepared in step (1), 1 Ball milling (Spex-8000 Mixer / Mill) was carried out in argon atmosphere for hours.

볼밀된 분말(powder)을 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVdF) 0.04g(10wt%)을 녹인 N-메틸-2-피롤리돈(N-Methyl-2-pyrrolidone, NMP) 5 ml의 용액에 넣고 균질하게 교반시켜 양극 슬러리(slurry)를 제조하였으며 이렇게 제조된 양극 슬러리를 1cm2넓이로 알루미늄 포일(Al foil)에 10㎛의 두께로 바른 후 60℃의 온도에서 24시간 진공건조를 실시하여 마그네슘-니켈 산화물이 첨가된 리튬유황이차전지용 양극을 제조하였다.Ball milled powder was added to a 5 ml solution of N-Methyl-2-pyrrolidone (NMP) in 0.04 g (10 wt%) of polyvinylidene fluoride (PVdF). The anode slurry was prepared by homogenizing and stirring uniformly.The anode slurry thus prepared was applied to an aluminum foil with a thickness of 10 μm in an aluminum foil of 1 cm 2 , and then vacuum dried at a temperature of 60 ° C. for 24 hours. A positive electrode for a lithium sulfur secondary battery to which nickel oxide was added was prepared.

(3)전지의 조립(3) Assembly of batteries

전지는 (2)단계에서 제조된 마그네슘-니켈 산화물이 첨가된 리튬유황이차전지용 양극과 1M LiTFSI가 첨가된 분자량이 500인 폴리(에틸렌-글리콜)디메틸 에테르((Poly(ethylene-glycol) dimethyl ether, PEGDME) 전해질 그리고 리튬포일(Lithium Foil) 음극을 사용하여 아르곤(Ar) 분위기의 글로브 박스(glove box)에서 코인(coin) 형태의 리튬유황이차전지(Li/S secondary cell)를 조립하였다.The battery is a positive electrode for a lithium-sulfur secondary battery added with magnesium-nickel oxide prepared in step (2) and a poly (ethylene-glycol) dimethyl ether having a molecular weight of 500 where 1M LiTFSI is added ((Poly (ethylene-glycol) dimethyl ether, Coin-type lithium sulfur secondary batteries (Li / S secondary cells) were assembled from an argon (Ar) glove box using a PEGDME) electrolyte and a lithium foil anode.

<시험예><Test Example>

상기 실시예에서 제조한 리튬유황전지와 비교예로서 Mg0.6Ni0.4O을 첨가하지않고, 유황 40wt%, 카본 50wt%을 사용하는 것을 제외하고는 다른 모든 조건은 실시예와 같이 하여 제조한 리튬유황이차전지를 27℃의 온도에서 1시간 동안 유지시킨 후에 충방전 실험을 하였다.Lithium sulfur prepared in the same manner as in the Example except that the lithium sulfur battery prepared in the above Example and using the sulfur 40wt%, carbon 50wt% without adding Mg 0.6 Ni 0.4 O as a comparative example After the secondary battery was maintained at a temperature of 27 ° C. for 1 hour, charging and discharging experiments were performed.

충전조건은 0.1C의 충전속도로 10시간 동안 하였으며, 과충전을 방지하기 위하여 3.5V에서 자동으로 커트 오프(Cut off) 하게 하였다. 방전조건 역시 0.1C의 방전속도로 1.5V까지 방전을 하였다. 충전과 방전사이에 휴지시간은 5분을 주었다.Charging conditions were 10 hours at a charging rate of 0.1C, and was automatically cut off at 3.5V to prevent overcharging. Discharge conditions were also discharged to 1.5V at a discharge rate of 0.1C. There was a 5 minute pause between charge and discharge.

도 1은 Mg0.6Ni0.4O을 양극에 첨가하지 않은 비교예의 리튬유황이차전지 전극수명 그래프를 나타내고 있다. 이 경우에 초기 전지용량은 503mAh/g 이고 전지용량이 50 cycle 이내에 초기 상태의 절반이하로 퇴화되는 것을 볼 수 있다.FIG. 1 shows a graph of electrode life of lithium sulfur secondary battery of Comparative Example in which Mg 0.6 Ni 0.4 O was not added to the positive electrode. In this case, the initial battery capacity is 503 mAh / g and it can be seen that the battery capacity deteriorates to less than half of the initial state within 50 cycles.

도 2는 Mg0.6Ni0.4O를 첨가한 양극을 사용한 실시예의 리튬유황이차전지 전극수명 그래프이다. 이 경우 초기 전지용량이 1180mAh/g이고 100cycle 때 초기 전지용량의 72%가 유지되고 있음을 보여주고 있어 위의 경우보다 용량과 사이클 수명(cycle life)면에서 더욱 향상된 결과를 나타내고 있음을 알 수 있다.FIG. 2 is a graph of electrode life of a lithium sulfur secondary battery of an example using a positive electrode to which Mg 0.6 Ni 0.4 O was added. FIG. In this case, the initial battery capacity is 1180mAh / g, and it shows that 72% of the initial battery capacity is maintained at 100 cycles, which shows that the results are more improved in terms of capacity and cycle life. .

상기의 시험예의 결과에서처럼 본 발명은 저가의 상온형 고용량 리튬유황이차전지의 개발의 가장 큰 문제점으로 지적되고 있는 급격한 전지 수명의 퇴화와 낮은 초기 용량 개선시켜 앞으로의 리튬유황전지의 상용화를 한발 더 앞당기는 계기를 마련하였다.As a result of the above test example, the present invention is one of the biggest problems in the development of low-cost, high-temperature, high-capacity lithium-sulfur secondary battery, which has been pointed out as the biggest problem of rapid battery life and low initial capacity. Laid the occasion.

Claims (8)

공지의 리튬유황이차전지의 양극에 있어서,In the positive electrode of a known lithium sulfur secondary battery, 하기의 식(1)으로 나타내는 마그네슘-니켈 산화물을 포함하는 것을 특징으로 하는 리튬유황이차전지용 양극A lithium sulfur secondary battery positive electrode comprising magnesium-nickel oxide represented by the following formula (1) MgxNi1-xO......(1)Mg x Ni 1-x O ...... (1) 상기 식에서 x는 0.1∼0.9 이다.In the above formula, x is 0.1 to 0.9. 제 1항에 있어서, 식(1)의 마그네슘-니켈 산화물을 리튬유황이차전지용 양극에 1∼30 중량% 포함하는 것을 특징으로 하는 리튬유황이차전지용 양극The cathode for a lithium sulfur secondary battery according to claim 1, wherein the magnesium-nickel oxide of formula (1) is contained in an amount of 1 to 30% by weight in the cathode for a lithium sulfur secondary battery. 제 1항에 있어서, 식(1)의 마그네슘-니켈 산화물은 20∼40nm의 입자크기인 것을 특징으로 하는 리튬유황이차전지용 양극The anode for lithium sulfur secondary battery according to claim 1, wherein the magnesium-nickel oxide of formula (1) has a particle size of 20 to 40 nm. 특허청구범위 제 1항 내지 제 3항중 선택된 어느 한항의 마그네슘-니켈 산화물이 함유된 양극을 포함하는 리튬유황이차전지Lithium sulfur secondary battery comprising a positive electrode containing the magnesium-nickel oxide of any one of claims 1 to 3 공지의 마그네슘-니켈 산화물의 제조에 있어서,In the production of known magnesium-nickel oxides, 니켈 화합물, 마그네슘 화합물과 킬레이트 에이전트를 증류수에 넣고겔(gel) 상태가 될 때가지 교반하는 단계와,Adding a nickel compound, a magnesium compound, and a chelating agent to distilled water and stirring until it becomes a gel; 교반 후 650∼750℃에서 4∼6시간 동안 하소시켜 하기 식(1)의 마그네슘-니켈 산화물을 제조하는 단계를 포함하는 것을 특징으로 하는 마그네슘-니켈 산화물의 제조방법Method of producing magnesium-nickel oxide, characterized in that it comprises the step of calcination at 650 ~ 750 ℃ for 4-6 hours after stirring to prepare a magnesium-nickel oxide of the formula (1) MgxNi1-xO......(1)Mg x Ni 1-x O ...... (1) 상기 식에서 x는 0.1∼0.9 이다.In the above formula, x is 0.1 to 0.9. 제 5항에 있어서, 니켈 화합물은 니켈(Ⅱ)질화 육수화물(Ni(NO3)2ㆍ6H2O) 임을 특징으로 하는 마그네슘-니켈 산화물의 제조방법The method of producing magnesium-nickel oxide according to claim 5, wherein the nickel compound is nickel (II) nitride hexahydrate (Ni (NO 3 ) 2 .6H 2 O). 제 5항에 있어서, 마그네슘 화합물은 마그네슘질화 육수화물(Mg(NO3)2ㆍ6H2O) 임을 특징으로 하는 마그네슘-니켈 산화물의 제조방법The method of preparing magnesium-nickel oxide according to claim 5, wherein the magnesium compound is magnesium nitride hexahydrate (Mg (NO 3 ) 2 .6H 2 O). 제 5항에 있어서, 킬레이트 에이전트는 시트릭산(citric acid) 임을 특징으로 하는 니켈-마그네슘 산화물의 제조방법The method for preparing nickel-magnesium oxide according to claim 5, wherein the chelating agent is citric acid.
KR10-2002-0044443A 2002-07-27 2002-07-27 composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell KR100454238B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0044443A KR100454238B1 (en) 2002-07-27 2002-07-27 composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0044443A KR100454238B1 (en) 2002-07-27 2002-07-27 composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell

Publications (2)

Publication Number Publication Date
KR20040011629A true KR20040011629A (en) 2004-02-11
KR100454238B1 KR100454238B1 (en) 2004-10-26

Family

ID=37319707

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0044443A KR100454238B1 (en) 2002-07-27 2002-07-27 composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell

Country Status (1)

Country Link
KR (1) KR100454238B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142794A2 (en) * 2008-03-05 2009-11-26 Eaglepicher Technologies, Llc Lithium-sulfur battery and cathode therefore
CN103746096A (en) * 2013-12-18 2014-04-23 广西科技大学 Carbon-sulfur composite positive pole material and preparation method thereof
US8748043B2 (en) 2004-01-06 2014-06-10 Sion Power Corporation Electrolytes for lithium sulfur cells
US8828610B2 (en) 2004-01-06 2014-09-09 Sion Power Corporation Electrolytes for lithium sulfur cells
CN105322189A (en) * 2014-07-01 2016-02-10 中国科学院大连化学物理研究所 Cathode material used for lithium sulfur battery, preparation and application thereof
US9577289B2 (en) 2012-12-17 2017-02-21 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US9847550B2 (en) 2011-09-07 2017-12-19 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound and battery including the cell
CN107768638A (en) * 2017-10-19 2018-03-06 北京理工大学 A kind of lithium sulfur battery anode material and the lithium-sulfur cell using the positive electrode
US11705555B2 (en) 2010-08-24 2023-07-18 Sion Power Corporation Electrolyte materials for use in electrochemical cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060883A (en) * 2000-08-11 2002-02-28 Toyota Industries Corp Hydrogen storage alloy
US7135251B2 (en) * 2001-06-14 2006-11-14 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859588B2 (en) 2004-01-06 2018-01-02 Sion Power Corporation Electrolytes for lithium sulfur cells
US8748043B2 (en) 2004-01-06 2014-06-10 Sion Power Corporation Electrolytes for lithium sulfur cells
US8828610B2 (en) 2004-01-06 2014-09-09 Sion Power Corporation Electrolytes for lithium sulfur cells
US10985403B2 (en) 2004-01-06 2021-04-20 Sion Power Corporation Electrolytes for lithium sulfur cells
US9716291B2 (en) 2004-01-06 2017-07-25 Sion Power Corporation Electrolytes for lithium sulfur cells
WO2009142794A3 (en) * 2008-03-05 2010-05-14 Eaglepicher Technologies, Llc Lithium-sulfur battery and cathode therefore
US8252461B2 (en) 2008-03-05 2012-08-28 Eaglepicher Technologies, Llc Lithium-sulfur battery and cathode therefore
EP2597702A3 (en) * 2008-03-05 2013-06-19 EaglePicher Technologies, LLC Lithium-sulfur battery and cathode therefore
WO2009142794A2 (en) * 2008-03-05 2009-11-26 Eaglepicher Technologies, Llc Lithium-sulfur battery and cathode therefore
US11705555B2 (en) 2010-08-24 2023-07-18 Sion Power Corporation Electrolyte materials for use in electrochemical cells
US10854921B2 (en) 2011-09-07 2020-12-01 Sion Power Corporation Electrochemical cell including electrolyte having insoluble nitrogen-containing material and battery including the cell
US9847550B2 (en) 2011-09-07 2017-12-19 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound and battery including the cell
US10468721B2 (en) 2012-12-17 2019-11-05 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US10050308B2 (en) 2012-12-17 2018-08-14 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US9577289B2 (en) 2012-12-17 2017-02-21 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US11502334B2 (en) 2012-12-17 2022-11-15 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
CN103746096A (en) * 2013-12-18 2014-04-23 广西科技大学 Carbon-sulfur composite positive pole material and preparation method thereof
CN105322189B (en) * 2014-07-01 2017-09-26 中国科学院大连化学物理研究所 It is a kind of for the positive electrode of lithium-sulphur cell positive electrode and its preparation and application
CN105322189A (en) * 2014-07-01 2016-02-10 中国科学院大连化学物理研究所 Cathode material used for lithium sulfur battery, preparation and application thereof
CN107768638A (en) * 2017-10-19 2018-03-06 北京理工大学 A kind of lithium sulfur battery anode material and the lithium-sulfur cell using the positive electrode

Also Published As

Publication number Publication date
KR100454238B1 (en) 2004-10-26

Similar Documents

Publication Publication Date Title
US8313721B2 (en) Lithium-oxygen (AIR) electrochemical cells and batteries
JP4153288B2 (en) Nonaqueous electrolyte secondary battery
EP2919304B1 (en) Positive electrode active material and hybrid ion battery
WO2012035648A1 (en) Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2000277116A (en) Lithium secondary battery
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
KR20010096191A (en) Coating materials and method of lithium manganese oxide for positive electr odes in the Lithium secondary batteries
JP2011228052A (en) Lithium ion secondary battery
CN113539694B (en) Method for reducing oxidation potential of cathode pre-metallization, application of method and electrochemical energy storage device
JP2000512425A (en) Lithium cell with lithium-metal-chalcogenide mixed cathode
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
KR100454238B1 (en) composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell
JP4821023B2 (en) Positive electrode for lithium secondary battery and lithium ion battery using the same
US8609285B2 (en) Cathode material for a battery with improved cycle performance at a high current density
JP2004175609A (en) Lithium cobaltate used for positive electrode of lithium ion battery, its manufacturing process and lithium ion battery
KR20090027332A (en) Manufacturing method of active material
JPWO2007007581A1 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP3885720B2 (en) Positive electrode active material for lithium ion secondary battery
JP4069066B2 (en) Method for producing lithium-manganese composite oxide
JP2020107536A (en) Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same
JP2005322550A (en) Non-aqueous electrolyte secondary battery
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP2005067924A (en) Method for manufacturing polyanion type lithium iron multiple oxide and battery using the same
KR100358799B1 (en) Method of preparing positive active material for lithium secondary battery
KR20060119382A (en) Positive electrode active material for lithium ion secondary cell coated with hetero metal oxide on the surface and lithium ion secondary cell comprising thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080930

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee