JP5093669B2 - Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material - Google Patents

Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material Download PDF

Info

Publication number
JP5093669B2
JP5093669B2 JP2008073460A JP2008073460A JP5093669B2 JP 5093669 B2 JP5093669 B2 JP 5093669B2 JP 2008073460 A JP2008073460 A JP 2008073460A JP 2008073460 A JP2008073460 A JP 2008073460A JP 5093669 B2 JP5093669 B2 JP 5093669B2
Authority
JP
Japan
Prior art keywords
sodium
compound
manganese
calcium
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008073460A
Other languages
Japanese (ja)
Other versions
JP2009227505A (en
Inventor
順二 秋本
明博 深堀
博 早川
倫人 木嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008073460A priority Critical patent/JP5093669B2/en
Publication of JP2009227505A publication Critical patent/JP2009227505A/en
Application granted granted Critical
Publication of JP5093669B2 publication Critical patent/JP5093669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、マンガン酸化物、電池用電極活物質、及びそれらの製造方法、並びに電池用電極活物質を用いた二次電池に関する。   The present invention relates to a manganese oxide, a battery electrode active material, a method for producing the same, and a secondary battery using the battery electrode active material.

現在我が国においては、携帯型ゲーム機、カメラ用のアルカリ電池、リチウム電池、或いは、携帯電話、ノートパソコンなどの携帯型電子機器に搭載されているリチウム二次電池において、多くのマンガン酸化物が電極材料として使用されている。今後、これまでの携帯用電子機器としての需要以外にも、非常用バックアップ電源、分散型電源として、電池の重要性はますます高まっている。   Currently, in Japan, many manganese oxides are used for electrodes in portable game machines, alkaline batteries for cameras, lithium batteries, or lithium secondary batteries mounted on portable electronic devices such as mobile phones and laptop computers. Used as a material. In the future, in addition to the demand for portable electronic devices so far, the importance of batteries as an emergency backup power source and distributed power source is increasing.

このリチウム二次電池は、リチウム含有遷移金属複合酸化物を活物質とする正極と、リチウム金属、リチウム合金、金属酸化物、カーボンといった、リチウムを吸蔵・放出することが出来る材料を活物質とする負極と、非水系電解液を含むセパレータ又は固体電解質を主要構成要素とする。   This lithium secondary battery uses a positive electrode having a lithium-containing transition metal composite oxide as an active material and a material capable of inserting and extracting lithium, such as lithium metal, lithium alloy, metal oxide, and carbon. The main component is a negative electrode and a separator or solid electrolyte containing a non-aqueous electrolyte.

これらの構成要素のうち、正極活物質として検討されているのは、層状岩塩型リチウムコバルト酸化物(LiCoO)、層状岩塩型リチウムニッケル酸化物(LiNiO)、スピネル型リチウムマンガン酸化物(LiMn)などが挙げられる。 Among these constituent elements, the layered rock salt type lithium cobalt oxide (LiCoO 2 ), the layered rock salt type lithium nickel oxide (LiNiO 2 ), the spinel type lithium manganese oxide (LiMnM) are considered as the positive electrode active material. 2 O 4 ).

特に、リチウムコバルト酸化物LiCoO正極活物質と炭素材料を負極とした組み合わせた電池において、4V近い電圧が可能となり、また充放電容量(正極から脱離・挿入可能なリチウム量)も大きいことから、リチウムコバルト酸化物正極が、現行のリチウム二次電池において広く採用されている。 In particular, in a battery in which a lithium cobalt oxide LiCoO 2 positive electrode active material and a carbon material are used as a negative electrode, a voltage close to 4 V is possible, and the charge / discharge capacity (the amount of lithium that can be desorbed and inserted from the positive electrode) is also large. Lithium cobalt oxide positive electrodes are widely used in current lithium secondary batteries.

しかしながら、LiCoOのコバルトは希少金属であり、コバルト価格高騰からリチウム二次電池の価格上昇の原因になっている。加えて、全世界のコバルト生産量の約20%を電池産業が占めており、今後の需要拡大に対応ができないと予想される。 However, the cobalt of LiCoO 2 is a rare metal, which causes a rise in the price of lithium secondary batteries due to the rising price of cobalt. In addition, the battery industry accounts for about 20% of global cobalt production, and is expected to be unable to meet future demand growth.

これに対して、LiNiOはコバルトよりも安価なニッケルを用いており、価格的にはリチウムコバルト酸化物よりも有利であり、また、電池容量もリチウムコバルト酸化物より高容量が可能となることから、LiCoOの有力な代替材料と考えられている。 On the other hand, LiNiO 2 uses nickel, which is cheaper than cobalt, and is advantageous over lithium cobalt oxide in terms of price, and the battery capacity can be higher than lithium cobalt oxide. Therefore, it is considered as an effective alternative material for LiCoO 2 .

しかしながら、このLiNiOを正極材料として用いたリチウム二次電池は、充電状態での正極活物質の不安定性から、高温に保持すると分解、発熱、発火などの危険性があり、解決すべき問題が多くある。 However, a lithium secondary battery using LiNiO 2 as a positive electrode material has a risk of decomposition, heat generation, ignition and the like when held at a high temperature due to the instability of the positive electrode active material in a charged state. There are many.

一方、スピネル型のリチウムマンガン酸化物LiMnはリチウムコバルト酸化物やリチウムニッケル酸化物と比較すると、容量が小さいという欠点があるが、コバルトやニッケルよりも安価なマンガンを用いており、かつ充電時の安全性という点でも優れている。このことから、安全性が重要になる携帯型ゲーム機や、自動車用の電池材料として注目されている。 On the other hand, spinel-type lithium manganese oxide LiMn 2 O 4 has a disadvantage that its capacity is small compared to lithium cobalt oxide and lithium nickel oxide, but uses manganese which is cheaper than cobalt and nickel, and It is also excellent in terms of safety during charging. For this reason, it has been attracting attention as a battery material for portable game machines and automobiles where safety is important.

しかしながら、このスピネル型のリチウムマンガン酸化物は、電池の充放電を繰り返すと電池容量が著しく減少する、つまり充放電サイクル特性が悪いという問題点があった。さらに、60℃以上の高温で電池を長期間保存しておくと、電池容量が著しく減少する、という高温貯蔵劣化の問題点もあった。   However, this spinel type lithium manganese oxide has a problem that the battery capacity is remarkably reduced when the battery is repeatedly charged and discharged, that is, the charge / discharge cycle characteristics are poor. Furthermore, there has been a problem of high temperature storage deterioration that the battery capacity is remarkably reduced when the battery is stored at a high temperature of 60 ° C. or higher for a long period of time.

今後、リチウム二次電池やキャパシタ等の充放電可能な二次電池は、自動車用電源や大容量のバックアップ電源、定置型電源など、大型で長寿命のものが必要となることが予測されることから、資源的に豊富なマンガン酸化物を活用した長寿命化に資する電極活物質が必要とされていた。   In the future, it is expected that rechargeable secondary batteries such as lithium secondary batteries and capacitors will require large-sized, long-life batteries such as automotive power supplies, large-capacity backup power supplies, and stationary power supplies. Therefore, there has been a need for an electrode active material that contributes to a long life utilizing resource-rich manganese oxide.

そこで、結晶構造の安定性がスピネル構造よりも高く、高電位で充放電可能であり、かつ高容量が可能となるトンネル構造を有するNaMn18型の材料が検討されてきた。(特許文献1から4、非特許文献1及び2参照) Therefore, Na 4 Mn 9 O 18 type materials having a tunnel structure in which the stability of the crystal structure is higher than that of the spinel structure, charge / discharge can be performed at a high potential, and a high capacity is possible have been studied. (See Patent Documents 1 to 4, Non-Patent Documents 1 and 2)

上記材料は、イオン交換合成法により、ナトリウムをリチウムに交換することで作製可能であり、低コストで、かつ高電位・高容量のリチウム二次電池用の電極材料として注目されている。   The above material can be produced by exchanging sodium for lithium by an ion exchange synthesis method, and has attracted attention as an electrode material for a lithium secondary battery having a low cost and a high potential and a high capacity.

また、マンガンの一部をチタンで置き換えることによって、更なる高容量化が可能であることが明らかとなっている。   Further, it has been clarified that the capacity can be further increased by replacing a part of manganese with titanium.

しかしながら、上記材料を正極として使用したリチウム二次電池においては、充放電に伴うサイクル劣化が顕著であり、初期サイクルにおける高容量を長期にわたり維持できないことが問題であった。   However, in a lithium secondary battery using the above-mentioned material as a positive electrode, cycle deterioration due to charge / discharge is remarkable, and it is a problem that a high capacity in an initial cycle cannot be maintained for a long time.

また、上記材料のナトリウムマンガン酸化物について、ナトリウムをカルシウムに置換した化合物Na1.1Ca1.8Mn18が報告されているが、カルシウム置換量がナトリウムより多く、この化学組成では電池用には適さず、またこのカルシウム置換体の二次電池電極活物質への適用について開示したものはない。(非特許文献3)
特開2005−259362号公報 特開2005−263583号公報 特開2005−268127号公報 特願2007−524578号公報 J.Akimoto,J.Awaka,Y.Takahashi,N.Kijima,M.Tabuchi,A.Nakashima,H.Sakaebe,K.Tatsumi,Electrochemical and Solid−State Letters,8,A554−A557(2005) J.Awaka,J.Akimoto,H.Hayakawa,Y.Takahashi,N.Kijima,M.Tabuchi,H.Sakaebe,K.Tatsumi,Journal of Power Sources,174,1218−1223(2007) N.Floros,C.Michel,M.Hervieu,B.Raveau,Journal of Solid State Chemistry,162,34−41(2001)
In addition, regarding the sodium manganese oxide of the above material, a compound Na 1.1 Ca 1.8 Mn 9 O 18 in which sodium is substituted with calcium has been reported. There is no disclosure about the application of this calcium-substituted product to a secondary battery electrode active material. (Non Patent Literature 3)
JP 2005-259362 A JP 2005-263583 A JP 2005-268127 A Japanese Patent Application No. 2007-524578 J. et al. Akimoto, J. et al. Awaka, Y. et al. Takahashi, N .; Kijima, M .; Tabuchi, A .; Nakashima, H .; Sakabe, K .; Tatsumi, Electrochemical and Solid-State Letters, 8, A554-A557 (2005) J. et al. Awaka, J. et al. Akimoto, H. et al. Hayagawa, Y .; Takahashi, N .; Kijima, M .; Tabuchi, H .; Sakabe, K .; Tatsumi, Journal of Power Sources, 174, 1218-1223 (2007) N. Floros, C.I. Michel, M.M. Hervieu, B.H. Raveau, Journal of Solid State Chemistry, 162, 34-41 (2001)

本発明は、上記のような既存の正極材料の課題を解決して、長期にわたる充放電サイクルに優れ、高容量が期待でき、かつ低価格な電池電極材料として重要なマンガン酸化物、電池用電極活物質、及びそれらの製造方法、並びに電池用電極活物質を用いた二次電池を提供することにある。   The present invention solves the problems of the existing positive electrode materials as described above, is excellent in long-term charge / discharge cycle, can be expected to have a high capacity, and is an important manganese oxide and battery electrode as a low-cost battery electrode material An active material, a manufacturing method thereof, and a secondary battery using the electrode active material for a battery.

本発明者らは鋭意検討した結果、構成元素としてカルシウムを加えた系で新化合物NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)が生成すること、及びその化学組成、結晶構造、製造方法を明らかにし、更に、NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)を活物質として用いた電極を構成部材として含む二次電池を作製し、優れた初期放電容量と良好なサイクル特性を確認できたことで、本発明は完成するに至った。 As a result of intensive studies, the present inventors have found that a new compound Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8) in a system in which calcium is added as a constituent element. And 0 ≦ z ≦ 5), and its chemical composition, crystal structure, and production method are clarified, and Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x <9). , 0 <y <1.8 and 0 ≦ z ≦ 5) were produced as a secondary battery, and an excellent initial discharge capacity and good cycle characteristics were confirmed. Thus, the present invention has been completed.

すなわち、本発明は、下記に示す(1)〜(6)の構成をとるものである。
(1)一般式としてNaxCayMn9-zTiz18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)なる化学組成をとり、ナトリウム、カルシウム、マンガン、チタン、酸素を主成分として含有することを特徴とするマンガン酸化物。
(2)一般式としてNaxCayMn9-zTiz18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)なる化学組成をとるとともに、斜方晶系の結晶格子を有し、Na4Mn4Ti518型のナトリウムとカルシウムイオンが占有したトンネル構造を有することを特徴とするマンガン酸化物。
(3)一般式としてNaxCayMn9-zTiz18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)なる化学組成をとるマンガン酸化物を含む電池用電極活物質。
(4)金属ナトリウム及びナトリウム化合物、金属カルシウム及びカルシウム化合物、金属マンガン及びマンガン化合物、金属チタン及びチタン化合物、並びに、前記4元素のうちの複数を含む複合化合物の中から、ナトリウム、カルシウム、マンガン及びチタンがNa x Ca y Mn 9-z Ti z 18 (組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)の組成範囲内となるように選択される金属及び/又は化合物を出発原料として、空気中600℃〜1300℃の高温焼成により合成する工程を含む(1)又は(2)のいずれかに記載のマンガン酸化物の製造方法。
(5)金属ナトリウム及びナトリウム化合物、金属カルシウム及びカルシウム化合物、金属マンガン及びマンガン化合物、金属チタン及びチタン化合物、並びに、前記4元素のうちの複数を含む複合化合物の中から、ナトリウム、カルシウム、マンガン及びチタンがNa x Ca y Mn 9-z Ti z 18 (組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)の組成範囲内となるように選択される金属及び/又は化合物を出発原料として、空気中600℃〜1300℃の高温焼成により合成する工程を含む(3)に記載の電池用電極活物質の製造方法。
(6)正極及び負極として使用する2つの電極と、電解質からなる二次電池であって、(3)に記載の電池用電極活物質を電極の構成部材として用いた二次電池。
That is, this invention takes the structure of (1)-(6) shown below.
(1) Na x Ca y Mn 9-z Ti z O 18 as a general formula (compositional range: 0 <x <9,0 <y <1.8, and 0 ≦ z ≦ 5) takes becomes chemical composition, sodium Manganese oxide characterized by containing calcium, manganese, titanium and oxygen as main components.
(2) General formula as Na x Ca y Mn 9-z Ti z O 18 ( composition ranges: 0 <x <9,0 <y <1.8, and 0 ≦ z ≦ 5) with taking becomes chemical composition, A manganese oxide having an orthorhombic crystal lattice and having a tunnel structure occupied by sodium and calcium ions of Na 4 Mn 4 Ti 5 O 18 type.
(3) Na x Ca y Mn 9-z Ti z O 18 as a general formula (compositional range: 0 <x <9,0 <y <1.8, and 0 ≦ z ≦ 5) consisting of manganese oxide which takes the chemical composition Electrode active material for battery, including products.
(4) Among sodium, sodium, sodium compound, metal calcium and calcium compound, metal manganese and manganese compound, metal titanium and titanium compound, and a composite compound containing plural of the four elements, sodium, calcium, manganese and is selected to be in: (0 <x <9,0 < y <1.8 and 0 ≦ z ≦ 5, the composition range) composition range of the titanium Na x Ca y Mn 9-z Ti z O 18 The manufacturing method of the manganese oxide in any one of (1) or (2) including the process of synthesize | combining by the high-temperature baking of 600 to 1300 degreeC in the air by using a metal and / or a compound as a starting material.
(5) Sodium, calcium, manganese, metallic calcium and calcium compounds, metallic manganese and manganese compounds, metallic titanium and titanium compounds, and composite compounds containing a plurality of the four elements is selected to be in: (0 <x <9,0 < y <1.8 and 0 ≦ z ≦ 5, the composition range) composition range of the titanium Na x Ca y Mn 9-z Ti z O 18 The method for producing an electrode active material for a battery according to (3), comprising a step of synthesizing by a high-temperature firing at 600 ° C. to 1300 ° C. in air using a metal and / or compound as a starting material.
(6) A secondary battery comprising two electrodes used as a positive electrode and a negative electrode and an electrolyte, wherein the battery active material according to (3) is used as a constituent member of the electrode.

本発明によれば、マンガン酸化物NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)が製造可能であり、このマンガン酸化物を電極材料の活物質として使用することによって、優れた特性を有する二次電池が可能となる。 According to the present invention, manganese oxide Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) can be produced. In addition, by using this manganese oxide as an active material for an electrode material, a secondary battery having excellent characteristics can be obtained.

本発明のマンガン酸化物NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)は、その結晶構造の特徴として、斜方晶系の結晶格子を有し、NaMnTi18型のナトリウムとカルシウムイオンが占有したトンネル構造を有することを特徴とする化合物である。
さらに、上記新化合物NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)は、電池用の電極材料の活物質として使用できることを特徴とする。
The manganese oxide Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) of the present invention is characterized by its crystal structure. As a compound having an orthorhombic crystal lattice and having a tunnel structure occupied by sodium and calcium ions of Na 4 Mn 4 Ti 5 O 18 type.
Furthermore, the new compound Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) is an electrode material for batteries. It can be used as an active material.

本発明のうち、NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)の製造方法は、ナトリウム、カルシウム、マンガン、チタン、酸素から構成される化合物を出発原料として、空気中600℃〜1300℃の高温焼成によって合成されることを特徴とする方法である。 Among the present inventions, the production method of Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) includes sodium, calcium. And a compound composed of manganese, titanium, and oxygen as a starting material, and synthesized by high-temperature firing at 600 ° C. to 1300 ° C. in air.

また、本発明のNaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)を活物質として含有する電極を構成部材として用いたアルカリ二次電池は、高容量で、かつ充放電サイクルに伴う劣化が少ない、長寿命が期待できる二次電池である。 In addition, an electrode containing Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) of the present invention as an active material is provided. The alkaline secondary battery used as a constituent member is a secondary battery that has a high capacity and little deterioration associated with a charge / discharge cycle and can be expected to have a long life.

本発明のマンガン酸化物NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)の有する一次元のトンネル構造とは、図1に示すように、(Mn、Ti)O及び(Mn、Ti)O多面体が連結することによって構築された骨格構造によって、サイズの異なる2種類のトンネル空間を有する結晶構造であることを特徴とする。この結晶構造をとることから、トンネル内に大量のアルカリイオンを吸蔵することが可能となり、また一次元の伝導パスが確保されていることから、トンネル方向のイオンの移動が容易であり、かつカルシウムがトンネル構造を安定化する、という特徴がある。 One-dimensional tunnel structure of manganese oxide Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) of the present invention As shown in FIG. 1, a crystal structure having two types of tunnel spaces of different sizes by a skeletal structure constructed by connecting (Mn, Ti) O 5 and (Mn, Ti) O 6 polyhedra. It is characterized by being. Because of this crystal structure, it is possible to occlude a large amount of alkali ions in the tunnel, and since a one-dimensional conduction path is secured, the movement of ions in the tunnel direction is easy, and calcium Has the feature of stabilizing the tunnel structure.

本発明に係わる製造方法を更に詳しく説明する。   The production method according to the present invention will be described in more detail.

(マンガン酸化物の合成)
本発明のうち、マンガン酸化物NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)は、原料としてナトリウム化合物の少なくとも1種、カルシウム化合物の少なくとも1種、マンガン化合物の少なくとも1種、及びチタン化合物の少なくとも1種を、上記組成範囲内で自由に選択された割合となるように秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって、製造することができる。
(Synthesis of manganese oxide)
Among the present invention, manganese oxide Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) is sodium as a raw material. At least one of the compounds, at least one of the calcium compounds, at least one of the manganese compounds, and at least one of the titanium compounds are weighed and mixed so that the ratio is freely selected within the above composition range, and air It can manufacture by heating in the atmosphere in which oxygen gas exists, such as inside.

ナトリウム原料としては、ナトリウム(金属ナトリウム)及びナトリウム化合物の少なくとも一種を用いる。ナトリウム化合物としては、ナトリウムを含有するものであれば特に制限されず、例えば、NaO,NaNO等の酸化物、NaCO、NaNO等の塩類、NaOHなどの水酸化物が挙げられる。これらの中でも、特にNaCO等が好ましい。 As the sodium raw material, at least one of sodium (metallic sodium) and a sodium compound is used. The sodium compound is not particularly limited as long as it contains sodium, and examples thereof include oxides such as Na 2 O and NaNO 3 , salts such as Na 2 CO 3 and NaNO 3 , and hydroxides such as NaOH. It is done. Among these, Na 2 CO 3 is particularly preferable.

カルシウム原料としては、カルシウム(金属カルシウム)及びカルシウム化合物の少なくとも一種を用いる。カルシウム化合物としては、カルシウムを含有するものであれば特に制限されず、例えば、CaO等の酸化物、CaCO、Ca(NO等の塩類、Ca(OH)などの水酸化物が挙げられる。これらの中でも、特にCaCO等が好ましい。 As the calcium raw material, at least one of calcium (metallic calcium) and a calcium compound is used. The calcium compound is not particularly limited as long as it contains calcium, and examples thereof include oxides such as CaO, salts such as CaCO 3 and Ca (NO 3 ) 2 , and hydroxides such as Ca (OH) 2. Can be mentioned. Of these, CaCO 3 is particularly preferable.

マンガン原料としては、マンガン(金属マンガン)及びマンガン化合物の少なくとも一種を用いる。マンガン化合物としては、マンガンを含有するものであれば特に制限されず、例えば、Mn,Mn,MnO等の酸化物、MnCO,MnCl等の塩類、Mn(OH)等などの水酸化物,MnOOH等の酸化水酸化物が挙げられる。これらの中でも特にMn等が好ましい。 As the manganese raw material, at least one of manganese (metallic manganese) and a manganese compound is used. The manganese compound is not particularly limited as long as it contains manganese, and examples thereof include oxides such as Mn 3 O 4 , Mn 2 O 3 and MnO 2 , salts such as MnCO 3 and MnCl 2 , Mn (OH) Examples thereof include hydroxides such as 2 and oxide hydroxides such as MnOOH. Among these, Mn 2 O 3 and the like are particularly preferable.

チタン原料としては、チタン(金属チタン)及びチタン化合物の少なくとも一種を用いる。チタン化合物としては、チタンを含有するものであれば特に制限されず、例えば、TiO、Ti、TiO等の酸化物等が挙げられる。これらの中でも特にTiO等が好ましい。 As the titanium raw material, at least one of titanium (metallic titanium) and a titanium compound is used. The titanium compound is not particularly limited as long as it contains titanium, and examples thereof include oxides such as TiO, Ti 2 O 3 , and TiO 2 . Of these, TiO 2 is particularly preferable.

或いは、ナトリウム、カルシウム、マンガン、チタンの中で、あらかじめ複数の構成元素からなる複合化合物を原料としてもよい。たとえば、ナトリウムマンガン複合化合物、ナトリウムチタン複合化合物、マンガンチタン複合化合物、カルシウムチタン複合化合物等を出発原料として用いることができる。具体的には、NaMnO、NaTiO、MnTiO、CaTiO等の複合酸化物等や、複合炭酸塩、複合酢酸塩、複合シュウ酸塩等の塩類、複合水酸化物、複合酸化水酸化物等が挙げられる。これらの中でも特にマンガンチタン複合酸化水酸化物等が好ましい。 Alternatively, a composite compound composed of a plurality of constituent elements in advance among sodium, calcium, manganese, and titanium may be used as a raw material. For example, a sodium manganese complex compound, a sodium titanium complex compound, a manganese titanium complex compound, a calcium titanium complex compound, or the like can be used as a starting material. Specifically, complex oxides such as NaMnO 2 , NaTiO 2 , MnTiO 3 and CaTiO 3 , salts such as complex carbonates, complex acetates and complex oxalates, complex hydroxides and complex oxide hydroxides Etc. Among these, manganese titanium composite oxide hydroxide is particularly preferable.

はじめに、これらを含む混合物を調整する。ナトリウム原料とカルシウム原料及びマンガン原料の混合割合は、前記NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)の組成範囲内となるように自由に選択された化学組成で混合することが望ましい。また、加熱時にナトリウムは揮発し易く、生成物中のナトリウム量が仕込み組成よりも少なくなることが多いので、ナトリウム量は、モル%で数%〜10数%程度過剰に加えた方が好ましい。 First, a mixture containing these is prepared. The mixing ratio of the sodium raw material, the calcium raw material, and the manganese raw material is the Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5). It is desirable to mix with a chemical composition freely selected so as to be within the composition range of Moreover, since sodium easily volatilizes during heating and the amount of sodium in the product is often less than the charged composition, it is preferable to add the sodium amount in excess of several percent to several tens percent in mol%.

また、混合方法は、これらを均一に混合できる限り特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式又は乾式で混合すればよい。   Moreover, a mixing method is not specifically limited as long as these can be mixed uniformly, For example, what is necessary is just to mix by a wet type or a dry type using well-known mixers, such as a mixer.

次いで、混合物を焼成する。焼成温度は、混合物の組成等に応じて設定することが出来るが、通常は600℃〜1300℃程度、好ましくは700℃〜1100℃とすればよい。また焼成雰囲気も特に限定されず、通常は酸化性雰囲気又は大気雰囲気で実施すればよい。焼成時間は、焼成温度に応じて適宜変更することができる。冷却方法も特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷すればよい。   The mixture is then fired. The firing temperature can be set according to the composition of the mixture and the like, but is usually about 600 ° C to 1300 ° C, preferably 700 ° C to 1100 ° C. Also, the firing atmosphere is not particularly limited, and it may be usually carried out in an oxidizing atmosphere or an air atmosphere. The firing time can be appropriately changed according to the firing temperature. Although the cooling method is not particularly limited, usually, natural cooling (cooling in the furnace) or slow cooling may be performed.

焼成後は、必要に応じて焼成物を公知の方法で粉砕し、さらに上記の焼成工程を実施してもよい。すなわち、本発明方法では、上記混合物の焼成、冷却及び粉砕を1回以上実施することが好ましい。なお、粉砕の程度は、焼成温度などに応じて適宜調節すればよい。   After firing, the fired product may be pulverized by a known method as necessary, and the above firing step may be further performed. That is, in the method of the present invention, it is preferable that the mixture is fired, cooled and pulverized at least once. Note that the degree of pulverization may be adjusted as appropriate according to the firing temperature and the like.

(二次電池)
本発明の電池は、マンガン酸化物NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)活物質を含有する電極を構成部材として用いるものである。すなわち、電極材料のひとつに本発明のNaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)活物質を用いる以外は、公知の二次電池(コイン型、ボタン型、円筒型、全固体型等)の電池要素をそのまま採用することができる。
図2は、本発明の二次電池を、コイン型リチウム二次電池に適用した1例を示す模式図である。このコイン型二次電池1は、負極端子2、負極3、(セパレータ+電解液)4、絶縁パッキング5、正極6、正極缶7により構成される。
(Secondary battery)
The battery of the present invention contains a manganese oxide Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) active material The electrode to be used is used as a constituent member. That is, the active material Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) of the present invention is used as one of electrode materials. Except for use, battery elements of known secondary batteries (coin type, button type, cylindrical type, all solid type, etc.) can be employed as they are.
FIG. 2 is a schematic view showing an example in which the secondary battery of the present invention is applied to a coin-type lithium secondary battery. The coin-type secondary battery 1 includes a negative electrode terminal 2, a negative electrode 3, a (separator + electrolyte) 4, an insulating packing 5, a positive electrode 6, and a positive electrode can 7.

本発明では、上記本発明のNaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)活物質に、必要に応じて導電剤、結着剤等を配合して電極合材を調製し、これを集電体に圧着することにより電極が作製できる。集電体としては、好ましくはステンレスメッシュ、アルミ箔等を用いることができる。導電剤としては、好ましくはアセチレンブラック、ケッチェンブラック等を用いることができる。結着剤としては、好ましくはテトラフルオロエチレン、ポリフッ化ビニリデン等を用いることができる。 In the present invention, the above-described Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) is necessary for the active material. In accordance with the above, an electrode mixture can be prepared by blending a conductive agent, a binder and the like, and an electrode can be produced by pressure-bonding it to a current collector. As the current collector, a stainless mesh, aluminum foil or the like can be preferably used. As the conductive agent, acetylene black, ketjen black or the like can be preferably used. As the binder, tetrafluoroethylene, polyvinylidene fluoride, or the like can be preferably used.

電極合材におけるNaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)活物質、導電剤、結着剤等の配合も特に限定的ではないが、通常は導電剤が1〜30重量%程度(好ましくは5〜25重量%)、結着剤が0〜30重量%(好ましくは3〜10重量%)とし、残部をNaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)活物質となるようにすればよい。 Na x Ca y Mn 9-z Ti z O 18 in the electrode mixture material (composition range: 0 <x <9,0 <y <1.8, and 0 ≦ z ≦ 5) active material, conductor, binder, Although there is no particular limitation on the blending, etc., the conductive agent is usually about 1 to 30% by weight (preferably 5 to 25% by weight), and the binder is 0 to 30% by weight (preferably 3 to 10% by weight). And the remainder may be an active material of Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5). .

本発明の二次電池において、上記電極に対する対極としては、例えば金属リチウム、リチウム合金、金属ナトリウムなど、リチウム又はナトリウムを吸蔵している公知のもの、或いはリチウムを吸蔵可能な炭素材料等を採用することができる。   In the secondary battery of the present invention, as the counter electrode with respect to the electrode, for example, a metal lithium, lithium alloy, metal sodium, or other known material that occludes lithium or sodium, or a carbon material that can occlude lithium is adopted. be able to.

また、本発明の電池において、セパレータ、電池容器等も公知の電池要素を採用すればよい。   Moreover, what is necessary is just to employ | adopt a well-known battery element for a separator, a battery container, etc. in the battery of this invention.

さらに、電解質としても公知の電解液、固体電解質等が適用できる。例えば、リチウム二次電池としての使用の場合は、電解液としては、過塩素酸リチウム、6フッ化リン酸リチウム等の電解質を、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)等の溶媒に溶解させたものが使用できる。   Furthermore, known electrolyte solutions, solid electrolytes, and the like can be applied as the electrolyte. For example, in the case of use as a lithium secondary battery, an electrolyte such as lithium perchlorate or lithium hexafluorophosphate is used as an electrolyte, such as ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC ), Those dissolved in a solvent such as diethyl carbonate (DEC) can be used.

以下に、実施例を示し、本発明の特徴とするところをより一層明確にする。本発明は、これら実施例に限定されるものではない。   Hereinafter, examples will be shown to further clarify the features of the present invention. The present invention is not limited to these examples.

(マンガン酸化物Na3.6Ca0.2Mn18の合成)
炭酸ナトリウム(NaCO)、炭酸カルシウム(CaCO)、酸化マンガン(MnO)をNa:Ca:Mnのモル比が3.6:0.2:9の割合となるように秤量した。これらを乳鉢中で均一に混合したのち、混合物をアルミナるつぼ(JIS規格品SSA−S)に充填し、電気炉を用いて、空気中1000℃で10時間加熱した。その後、電気炉中で自然放冷し、得られた焼成体を粉砕することによって、Na3.6Ca0.2Mn18なる化学組成を有する新化合物を得た。
(Synthesis of Manganese Oxide Na 3.6 Ca 0.2 Mn 9 O 18 )
Sodium carbonate (Na 2 CO 3 ), calcium carbonate (CaCO 3 ), and manganese oxide (MnO 2 ) were weighed so that the molar ratio of Na: Ca: Mn was 3.6: 0.2: 9. After mixing these uniformly in a mortar, the mixture was filled in an alumina crucible (JIS standard product SSA-S) and heated in air at 1000 ° C. for 10 hours using an electric furnace. Then, naturally allowed to cool in the electric furnace, by grinding the resulting fired body was obtained new compound having a chemical composition comprising Na 3.6 Ca 0.2 Mn 9 O 18 .

得られた試料について、X線粉末回折装置(リガク製、商品名RINT2500V)により、良好な結晶性を有する、斜方晶系、空間群Pbamに属するトンネル構造の単一相であることが明らかとなった。得られたNa3.6Ca0.2Mn18の粉末X線回折パターンを図3に示す。 It is clear that the obtained sample is a single phase of a tunnel structure belonging to the orthorhombic system and the space group Pbam having good crystallinity by an X-ray powder diffractometer (trade name RINT2500V, manufactured by Rigaku). became. The powder X-ray diffraction pattern of the obtained Na 3.6 Ca 0.2 Mn 9 O 18 is shown in FIG.

またエネルギー分散型元素分析装置を付加した走査型電子顕微鏡(日本電子製SEM−EDX、商品名JSM5400)により、粉体試料の粒子形態と化学組成について調べた。その結果、試料は、長さ約1〜5μm程度の柱状の一次粒子から構成され、また各粒子の化学分析スペクトルから、カルシウムが検出され、試料中に均質にカルシウムが置換できていることが確認された。図4に、試料の走査型電子顕微鏡写真を示す。   Further, the particle morphology and chemical composition of the powder sample were examined with a scanning electron microscope (JEOL SEM-EDX, trade name JSM5400) with an energy dispersive elemental analyzer. As a result, the sample was composed of columnar primary particles with a length of about 1 to 5 μm, and calcium was detected from the chemical analysis spectrum of each particle, and it was confirmed that calcium could be uniformly substituted in the sample. It was done. FIG. 4 shows a scanning electron micrograph of the sample.

(二次電池)
このようにして得られたNa3.6Ca0.2Mn18を電極活物質として、導電剤としてアセチレンブラック、結着剤としてテトラフルオロエチレンを、重量比20:5:1となるように配合して電極を作製し、対極にリチウム金属を用いて、6フッ化リン酸リチウムをエチレンカーボネート(EC)とヂエチルカーボネート(DEC)との混合溶媒(体積比1:1)に溶解させた1M溶液を電解液とする、図2に示す構造のリチウム二次電池を作製し、その充放電特性を試験した。電池の作製は、公知のセルの構成・組み立て方法に従って行った。
(Secondary battery)
The Na 3.6 Ca 0.2 Mn 9 O 18 thus obtained was used as an electrode active material, acetylene black as a conductive agent, and tetrafluoroethylene as a binder so that the weight ratio was 20: 5: 1. An electrode is prepared by mixing with lithium metal, and lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) using lithium metal as a counter electrode. A lithium secondary battery having the structure shown in FIG. 2 was prepared using the 1M solution as an electrolyte, and its charge / discharge characteristics were tested. The battery was produced according to a known cell configuration / assembly method.

作製されたリチウム二次電池について、25℃の温度条件下で、電流密度30mA/g、カットオフ電位4.8−1.0Vで充放電試験を行ったところ、初期放電容量80mAh/g程度で、3.0V付近に放電平坦部を有し、かつ、可逆的に充放電可能であることが判明した。充放電に伴う電圧変化を、図5に示す。   The manufactured lithium secondary battery was subjected to a charge / discharge test at a current density of 30 mA / g and a cut-off potential of 4.8-1.0 V under a temperature condition of 25 ° C., with an initial discharge capacity of about 80 mAh / g. , It has been found that it has a flat discharge portion in the vicinity of 3.0 V and can be reversibly charged and discharged. The voltage change accompanying charging / discharging is shown in FIG.

(マンガン酸化物Na3.0Ca0.5Mn18の合成)
炭酸ナトリウム(NaCO),炭酸カルシウム(CaCO),酸化マンガン(MnO)をNa:Ca:Mnのモル比が3.0:0.5:9の割合となるように秤量した。これらを乳鉢中で均一に混合したのち、混合物をアルミナるつぼ(JIS規格品SSA−S)に充填し、電気炉を用いて、空気中1000℃で10時間加熱した。その後、電気炉中で自然放冷し、得られた焼成体を粉砕することによって、Na3.0Ca0.5Mn18なる化学組成を有する新化合物を得た。
(Synthesis of Manganese Oxide Na 3.0 Ca 0.5 Mn 9 O 18 )
Sodium carbonate (Na 2 CO 3 ), calcium carbonate (CaCO 3 ), and manganese oxide (MnO 2 ) were weighed so that the molar ratio of Na: Ca: Mn was 3.0: 0.5: 9. After mixing these uniformly in a mortar, the mixture was filled in an alumina crucible (JIS standard product SSA-S) and heated in air at 1000 ° C. for 10 hours using an electric furnace. Then, naturally allowed to cool in the electric furnace, by grinding a sintered body obtained, to obtain a new compound having a chemical composition comprising Na 3.0 Ca 0.5 Mn 9 O 18 .

得られた試料について、X線粉末回折装置(リガク製、商品名RINT2500V)により、良好な結晶性を有する、斜方晶系、空間群Pbamに属するトンネル構造の単一相であることが明らかとなった。得られたNa3.0Ca0.5Mn18の粉末X線回折パターンを図6に示す。 It is clear that the obtained sample is a single phase of a tunnel structure belonging to the orthorhombic system and the space group Pbam having good crystallinity by an X-ray powder diffractometer (trade name RINT2500V, manufactured by Rigaku). became. FIG. 6 shows the powder X-ray diffraction pattern of the obtained Na 3.0 Ca 0.5 Mn 9 O 18 .

またエネルギー分散型元素分析装置を付加した走査型電子顕微鏡(日本電子製SEM−EDX、商品名JSM5400)により、粉体試料の粒子形態と化学組成について調べた。その結果、試料は、長さ約1〜5μm程度の柱状の一次粒子から構成され、また各粒子の化学分析スペクトルから、カルシウムが検出され、試料中に均質にカルシウムが置換できていることが確認された。図7に、試料の走査型電子顕微鏡写真を示す。以上から、本発明のマンガン酸化物は、カルシウム置換量yに組成幅を有する系であることが明らかとなった。   Further, the particle morphology and chemical composition of the powder sample were examined with a scanning electron microscope (JEOL SEM-EDX, trade name JSM5400) with an energy dispersive elemental analyzer. As a result, the sample was composed of columnar primary particles with a length of about 1 to 5 μm, and calcium was detected from the chemical analysis spectrum of each particle, and it was confirmed that calcium could be uniformly substituted in the sample. It was done. FIG. 7 shows a scanning electron micrograph of the sample. From the above, it was revealed that the manganese oxide of the present invention is a system having a composition range in the calcium substitution amount y.

本発明のマンガン酸化物NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)は、一次元的なトンネル構造を有するという結晶構造の特徴から、現行のスピネル型リチウムマンガン酸化物よりも構造的な安定性が高く、リチウム等のアルカリイオンのスムーズな吸蔵・放出に有利であり、かつ充放電サイクル特性の観点でも優れた材料である。そのため、リチウム二次電池をはじめとする二次電池用の電極活物質として実用的価値の高いものである。 The manganese oxide Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) of the present invention is a one-dimensional tunnel. Due to the characteristics of the crystal structure that it has a structure, it has higher structural stability than the current spinel-type lithium manganese oxide, is advantageous for smooth occlusion / release of alkali ions such as lithium, and has charge / discharge cycle characteristics. It is an excellent material from the viewpoint. Therefore, it has high practical value as an electrode active material for secondary batteries such as lithium secondary batteries.

また、その製造方法も、特別な装置を必要とせず、さらに、使用する原料も低価格であることから、低コストで高付加価値の材料を製造可能である。   Also, the manufacturing method does not require a special apparatus, and the raw material to be used is low in price, so that a high value-added material can be manufactured at a low cost.

さらに、本発明のマンガン酸化物NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)を活物質として電極材料に適用した二次電池は、高容量で、かつ長期にわたる充放電サイクルに対応可能な二次電池である。 Furthermore, the manganese oxide Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) of the present invention is used as an active material. The secondary battery applied to the material is a secondary battery that has a high capacity and can be used for a long charge / discharge cycle.

本発明のマンガン酸化物NaCaMn9−zTi18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)が有する結晶構造を示す模式図である。Schematic showing the crystal structure of the manganese oxide Na x Ca y Mn 9-z Ti z O 18 (composition range: 0 <x < 9, 0 <y <1.8, and 0 ≦ z ≦ 5) of the present invention. FIG. 二次電池の1例(コイン型リチウム二次電池)を示す模式図である。It is a schematic diagram which shows one example (coin-type lithium secondary battery) of a secondary battery. 実施例1で得られた本発明のマンガン酸化物Na3.6Ca0.2Mn18の粉末X線回折図形である。2 is a powder X-ray diffraction pattern of the manganese oxide Na 3.6 Ca 0.2 Mn 9 O 18 of the present invention obtained in Example 1. FIG. 実施例1で得られた本発明のマンガン酸化物Na3.6Ca0.2Mn18の粒子形態を示す走査型電子顕微鏡写真である。2 is a scanning electron micrograph showing the particle morphology of the manganese oxide Na 3.6 Ca 0.2 Mn 9 O 18 of the present invention obtained in Example 1. FIG. 実施例1で得られた本発明の二次電池の充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of the secondary battery of this invention obtained in Example 1. FIG. 実施例2で得られた本発明のマンガン酸化物Na3.0Ca0.5Mn18の粉末X線回折図形である。2 is a powder X-ray diffraction pattern of the manganese oxide Na 3.0 Ca 0.5 Mn 9 O 18 of the present invention obtained in Example 2. FIG. 実施例2で得られた本発明のマンガン酸化物Na3.0Ca0.5Mn18の粒子形態を示す走査型電子顕微鏡写真である。4 is a scanning electron micrograph showing the particle morphology of the manganese oxide Na 3.0 Ca 0.5 Mn 9 O 18 of the present invention obtained in Example 2. FIG.

符号の説明Explanation of symbols

a カルシウム
b ナトリウム
1 コイン型リチウム二次電池
2 負極端子
3 負極
4 セパレータ+電解液
5 絶縁パッキング
6 正極
7 正極缶
a calcium b sodium 1 coin-type lithium secondary battery 2 negative electrode terminal 3 negative electrode 4 separator + electrolyte 5 insulating packing 6 positive electrode 7 positive electrode can

Claims (6)

一般式としてNaxCayMn9-zTiz18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)なる化学組成をとり、ナトリウム、カルシウム、マンガン、チタン、酸素を主成分として含有することを特徴とするマンガン酸化物。 Na x Ca y Mn 9-z Ti z O 18 as a general formula (compositional range: 0 <x <9,0 <y <1.8, and 0 ≦ z ≦ 5) takes becomes chemical composition, sodium, calcium, Manganese oxide characterized by containing manganese, titanium and oxygen as main components. 一般式としてNaxCayMn9-zTiz18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)なる化学組成をとるとともに、斜方晶系の結晶格子を有し、Na4Mn4Ti518型のナトリウムとカルシウムイオンが占有したトンネル構造を有することを特徴とするマンガン酸化物。 Na x Ca y Mn 9-z Ti z O 18 as a general formula (compositional range: 0 <x <9,0 <y <1.8, and 0 ≦ z ≦ 5) with taking becomes chemical composition, orthorhombic A manganese oxide, characterized by having a tunneling structure having a system crystal lattice and occupied by Na 4 Mn 4 Ti 5 O 18 type sodium and calcium ions. 一般式としてNaxCayMn9-zTiz18(組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)なる化学組成をとるマンガン酸化物を含む電池用電極活物質。 Na x Ca y Mn 9-z Ti z O 18 as a general formula (compositional range: 0 <x <9,0 <y <1.8, and 0 ≦ z ≦ 5) comprising a comprising manganese oxide takes the chemical composition Battery electrode active material. 金属ナトリウム及びナトリウム化合物、金属カルシウム及びカルシウム化合物、金属マンガン及びマンガン化合物、金属チタン及びチタン化合物、並びに、前記4元素のうちの複数を含む複合化合物の中から、ナトリウム、カルシウム、マンガン及びチタンがNa x Ca y Mn 9-z Ti z 18 (組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)の組成範囲内となるように選択される金属及び/又は化合物を出発原料として、空気中600℃〜1300℃の高温焼成により合成する工程を含む請求項1又は2のいずれか1項に記載のマンガン酸化物の製造方法。 Among sodium, sodium, sodium compound, metal calcium and calcium compound, metal manganese and manganese compound, metal titanium and titanium compound, and a composite compound containing plural of the above four elements, sodium, calcium, manganese and titanium are Na. x Ca y Mn 9-z Ti z O 18 ( composition ranges: 0 <x <9,0 <y <1.8, and 0 ≦ z ≦ 5) of the metal selected to be within the composition range and / Or the manufacturing method of the manganese oxide of any one of Claim 1 or 2 including the process of synthesize | combining by a high-temperature baking of 600 to 1300 degreeC in the air by using a compound as a starting material. 金属ナトリウム及びナトリウム化合物、金属カルシウム及びカルシウム化合物、金属マンガン及びマンガン化合物、金属チタン及びチタン化合物、並びに、前記4元素のうちの複数を含む複合化合物の中から、ナトリウム、カルシウム、マンガン及びチタンがNa x Ca y Mn 9-z Ti z 18 (組成範囲:0<x<9、0<y<1.8、かつ0≦z≦5)の組成範囲内となるように選択される金属及び/又は化合物を出発原料として、空気中600℃〜1300℃の高温焼成により合成する工程を含む請求項3に記載の電池用電極活物質の製造方法。 Among sodium, sodium, sodium compound, metal calcium and calcium compound, metal manganese and manganese compound, metal titanium and titanium compound, and a composite compound containing plural of the above four elements, sodium, calcium, manganese and titanium are Na. x Ca y Mn 9-z Ti z O 18 ( composition ranges: 0 <x <9,0 <y <1.8, and 0 ≦ z ≦ 5) of the metal selected to be within the composition range and / Or the manufacturing method of the electrode active material for batteries of Claim 3 including the process of synthesize | combining by a high-temperature baking of 600 to 1300 degreeC in the air by using a compound as a starting material. 正極及び負極として使用する2つの電極と、電解質からなる二次電池であって、請求項3に記載の電池用電極活物質を電極の構成部材として用いた二次電池。   The secondary battery which consists of two electrodes used as a positive electrode and a negative electrode, and electrolyte, Comprising: The secondary battery using the electrode active material for batteries of Claim 3 as a structural member of an electrode.
JP2008073460A 2008-03-21 2008-03-21 Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material Active JP5093669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008073460A JP5093669B2 (en) 2008-03-21 2008-03-21 Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073460A JP5093669B2 (en) 2008-03-21 2008-03-21 Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material

Publications (2)

Publication Number Publication Date
JP2009227505A JP2009227505A (en) 2009-10-08
JP5093669B2 true JP5093669B2 (en) 2012-12-12

Family

ID=41243343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073460A Active JP5093669B2 (en) 2008-03-21 2008-03-21 Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material

Country Status (1)

Country Link
JP (1) JP5093669B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5625390B2 (en) * 2009-03-13 2014-11-19 住友化学株式会社 Composite metal oxide, electrode and sodium secondary battery
JP6247051B2 (en) * 2013-08-28 2017-12-13 京セラ株式会社 Secondary battery active material and secondary battery using the same
CN114864891A (en) * 2022-04-22 2022-08-05 四川大学 Preparation method of heterojunction sodium ion battery sodium manganese oxygen positive electrode material and positive electrode material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3647758B2 (en) * 2001-02-19 2005-05-18 日本電信電話株式会社 Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
JP4257426B2 (en) * 2004-03-19 2009-04-22 独立行政法人産業技術総合研究所 Alkali transition metal oxide crystal material and method for producing the same
JP4431786B2 (en) * 2004-03-19 2010-03-17 独立行政法人産業技術総合研究所 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2006252940A (en) * 2005-03-10 2006-09-21 Ngk Insulators Ltd Lithium secondary battery and manufacturing method of lithium manganate
WO2007007581A1 (en) * 2005-07-08 2007-01-18 National Institute Of Advanced Industrial Science And Technology Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same

Also Published As

Publication number Publication date
JP2009227505A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US8313721B2 (en) Lithium-oxygen (AIR) electrochemical cells and batteries
EP3145869B1 (en) Compositions containing doped nickelate compounds
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP7060776B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5177672B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the same
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JP6541115B2 (en) Positive electrode material and lithium secondary battery using the same for positive electrode
JP5644273B2 (en) Titanium oxide, method for producing the same, and electrochemical device using the same as member
JP2019123668A (en) Lithium sodium composite oxide, cathode active material for secondary battery, and secondary battery
JP4257426B2 (en) Alkali transition metal oxide crystal material and method for producing the same
JP5880928B2 (en) Lithium manganese titanium nickel composite oxide, method for producing the same, and lithium secondary battery using the same as a member
JP5207360B2 (en) Lithium manganese oxide powder particles, production method thereof, and lithium secondary battery using the same as a positive electrode active material
JP4431786B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2008159543A (en) Positive electrode active material for non-aqueous type electrolyte secondary battery, and method for manufacturing the material, and non-aqueous type electrolyte secondary battery using the material
KR100784637B1 (en) Synthetic method of lithium titanate spinel oxide material using a li based molten salt
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP2019114454A (en) Method of manufacturing positive electrode material for non-aqueous secondary battery
JP4431785B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5120919B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the active material
JP5004239B2 (en) Manganese oxide, secondary battery electrode active material, production method thereof, and lithium secondary battery using secondary battery electrode active material
JP2006040572A (en) Positive active material for aqueous lithium secondary battery and aqueous lithium secondary battery
JP2000154021A (en) New lithium manganese oxide, its production and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5093669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250