JP2006252940A - Lithium secondary battery and manufacturing method of lithium manganate - Google Patents

Lithium secondary battery and manufacturing method of lithium manganate Download PDF

Info

Publication number
JP2006252940A
JP2006252940A JP2005067569A JP2005067569A JP2006252940A JP 2006252940 A JP2006252940 A JP 2006252940A JP 2005067569 A JP2005067569 A JP 2005067569A JP 2005067569 A JP2005067569 A JP 2005067569A JP 2006252940 A JP2006252940 A JP 2006252940A
Authority
JP
Japan
Prior art keywords
lithium manganate
range
lithium
formula
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005067569A
Other languages
Japanese (ja)
Inventor
Michio Takahashi
道夫 高橋
Toshihiro Yoshida
俊広 吉田
Hiroyuki Katsukawa
裕幸 勝川
Masayuki Yoshio
真幸 芳尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005067569A priority Critical patent/JP2006252940A/en
Publication of JP2006252940A publication Critical patent/JP2006252940A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery enhancing high temperature characteristics, especially enhancing high temperature storage characteristics and suppressing increase in manufacturing cost. <P>SOLUTION: The lithium secondary battery uses a positive active material containing lithium manganate having spinel structure, represented by general formula (1) LiaMn<SB>2-x</SB>M<SB>x</SB>O<SB>4-σ</SB>(in formula (1), M represents a substituent element group (Li, Mg, Ca and Ti, or Li and Al) substituting a part of Mn; X represents the substituted amount of each substituent element group (M) in a range 0<X≤0.5; a represents the amount of Li in a range of 0.1≤a≤1.3; σ represents the deficient amount of oxygen in a range of 0≤σ≤0.05), and having a specific surface area of 1 m<SP>2</SP>/g or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池及びマンガン酸リチウムの製造方法に関し、さらに詳しくは、高温特性、特に高温保存特性に優れたリチウム二次電池及びリチウム二次電池の正極活物質中に含有されるマンガン酸リチウムの製造方法に関する。   The present invention relates to a lithium secondary battery and a method for producing lithium manganate. More specifically, the present invention relates to a lithium secondary battery excellent in high temperature characteristics, particularly high temperature storage characteristics, and manganese contained in a positive electrode active material of the lithium secondary battery. The present invention relates to a method for producing lithium acid.

近年、携帯電話やVTR、ノート型パソコン等の携帯型電子機器の小型軽量化が加速度的に進行しており、その電源用電池として、リチウム遷移元素複合酸化物を含有した正極活物質、炭素質材料から構成された負極活物質、及びLiイオン電解質を有機溶媒に溶解した有機電解液を備えた二次電池が用いられるようになっている。   In recent years, portable electronic devices such as mobile phones, VTRs, notebook computers, etc. have been reduced in size and weight at an accelerated pace. As power batteries, positive electrode active materials containing lithium transition element composite oxides, carbonaceous materials A secondary battery including a negative electrode active material composed of a material and an organic electrolyte obtained by dissolving a Li ion electrolyte in an organic solvent is used.

このような電池は、一般的にリチウム二次電池又はリチウムイオン電池と称せられており、エネルギー密度が大きく、また、単電池電圧も約4V程度と高い特徴を有することから、上述の携帯型電子機器のみならず、最近の環境問題を背景に、低公害車として積極的な一般への普及が図られている電気自動車(EV)又はハイブリット電気自動車(HEV)のモータ駆動電源としても注目を集めている。   Such a battery is generally called a lithium secondary battery or a lithium ion battery, and has a high energy density and a high single cell voltage of about 4V. It attracts attention not only as a device but also as a motor drive power source for electric vehicles (EV) or hybrid electric vehicles (HEV) that are actively popularized as low-pollution vehicles against the background of recent environmental problems. ing.

このようなリチウム二次電池において、その電池特性は、用いる正極活物質の材料特性に依存するところが大きい。ここで、正極活物質に含有されるリチウム遷移元素複合酸化物としては、具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が挙げられる。このような正極活物質の中で、安価で安全性に優れたスピネル構造を有するマンガン酸リチウムが主に使用されつつあるが、高温特性の改善が課題となっている。高温特性が悪い要因として、高温時に、電解質から生成する遊離酸によって、マンガン酸リチウムからMnが溶出し、これがマンガン酸リチウムの結晶性低下を招いたり、溶出したMnが負極材料、例えば、黒鉛等の表面に沈着して、負極自体に悪影響を及ぼすことが考えられている。Mn溶出抑制の方策の一つとして、マンガン酸リチウムの低比表面積化等が検討されている。一般的に、マンガン酸リチウムを低比表面積化するには合成時に高温焼成する必要がある。しかし、マンガン酸リチウムを高温焼成すると、マンガン酸リチウムから酸素が離脱して酸素欠損を生じ易く、これが原因で電池特性を悪化させることが報告さている。そのため、高温焼成後に水酸化リチウムを添加して、さらに低い温度で再焼成することによって、酸素欠損を抑制することが開示されている(特許文献1〜3参照)。
特開2001−335323号公報 特開2002−145618号公報 特開2003−128421号公報
In such a lithium secondary battery, the battery characteristics largely depend on the material characteristics of the positive electrode active material used. Here, as the lithium transition element composite oxide contained in the positive electrode active material, specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc. Is mentioned. Among such positive electrode active materials, lithium manganate having a spinel structure that is inexpensive and excellent in safety is being used mainly, but improvement in high-temperature characteristics has been an issue. As a cause of poor high temperature characteristics, Mn is eluted from lithium manganate due to free acid generated from the electrolyte at high temperatures, which causes a decrease in the crystallinity of lithium manganate, or the eluted Mn is a negative electrode material such as graphite. It is considered that the negative electrode itself is adversely affected by depositing on the surface of the negative electrode. As one of the measures for suppressing Mn elution, a reduction in specific surface area of lithium manganate has been studied. Generally, in order to reduce the specific surface area of lithium manganate, it is necessary to bake at a high temperature during synthesis. However, it has been reported that when lithium manganate is fired at a high temperature, oxygen is released from the lithium manganate and oxygen vacancies are likely to occur, which deteriorates battery characteristics. Therefore, it is disclosed that oxygen deficiency is suppressed by adding lithium hydroxide after high-temperature baking and re-baking at a lower temperature (see Patent Documents 1 to 3).
JP 2001-335323 A JP 2002-145618 A JP 2003-128421 A

前述の特許文献1〜3に開示された方法の場合、水酸化リチウムを新たに添加して再焼成する必要があること等から、製造工程が長くなり、コストアップにつながらざるを得なかった。しかしながら、水酸化リチウムを新たに添加することなしに酸素欠損を抑制することは困難であるため、高温焼成によるマンガン酸リチウムの低比表面積化を実現することは極めて困難であるという問題があった。
本発明は、上述の問題を解決するためになされたものであり、高温特性、特に高温保存特性に優れたリチウム二次電池及びリチウム二次電池の正極活物質中に含有されるマンガン酸リチウムの効率的な製造方法を提供することを目的とする。
In the case of the methods disclosed in Patent Documents 1 to 3 described above, since it is necessary to newly add lithium hydroxide and re-sinter it, the manufacturing process becomes long, leading to an increase in cost. However, since it is difficult to suppress oxygen vacancies without newly adding lithium hydroxide, there is a problem that it is extremely difficult to realize a low specific surface area of lithium manganate by high-temperature firing. .
The present invention has been made to solve the above-described problems, and is a lithium secondary battery excellent in high temperature characteristics, particularly high temperature storage characteristics, and lithium manganate contained in the positive electrode active material of the lithium secondary battery. An object is to provide an efficient manufacturing method.

上記目的を達成するため、本発明によれば、以下のリチウム二次電池及びマンガン酸リチウムの製造方法が提供される。   In order to achieve the above object, the present invention provides the following lithium secondary battery and method for producing lithium manganate.

[1]マンガン酸リチウムを含有した、リチウムイオンの挿入・脱離が可能な正極活物質を備えたリチウム二次電池であって、前記正極活物質に含有されるマンガン酸リチウムが、一般式(I)LiaMn2-xx4-σ(式(I)中、Mは、Mnの一部を置換する置換元素群(Li、Mg、Ca及びTi、又はLi及びAl)、Xは、0<X≦0.5の範囲の置換元素群(M)の置換量、aは、0.1≦a≦1.3の範囲のLi量、σは、0≦σ≦0.05の範囲の酸素欠損量をそれぞれ意味する)で示されるスピネル構造を有するマンガン酸リチウムであり、かつその比表面積が1m2/g以下であることを特徴とするリチウム二次電池。 [1] A lithium secondary battery including a positive electrode active material containing lithium manganate and capable of inserting and removing lithium ions, wherein the lithium manganate contained in the positive electrode active material has a general formula ( during I) LiaMn 2-x M x O 4- σ ( formula (I), M is a substituted element group for substituting a part of Mn (Li, Mg, Ca and Ti, or Li and Al), X is Substitution amount of substitution element group (M) in the range of 0 <X ≦ 0.5, a is the Li amount in the range of 0.1 ≦ a ≦ 1.3, and σ is in the range of 0 ≦ σ ≦ 0.05 And a specific surface area of 1 m 2 / g or less. The lithium secondary battery is characterized in that the lithium manganate has a spinel structure as shown in FIG.

[2]前記式(I)で示されるマンガン酸リチウムの置換元素群(M)が、Li、Mg、Ca及びTiの場合、前記Li、Mg、Ca及びTiのそれぞれの置換量(XLi、XMg、XCa及びXTi)が、0<(XLi、XMg、XCa、XTi)≦0.2の範囲にある前記[1]に記載のリチウム二次電池。 [2] When the substitution element group (M) of the lithium manganate represented by the formula (I) is Li, Mg, Ca and Ti, the substitution amounts of each of the Li, Mg, Ca and Ti (X Li , The lithium secondary battery according to the above [1], wherein X Mg , X Ca and X Ti ) are in the range of 0 <(X Li , X Mg , X Ca , X Ti ) ≦ 0.2.

[3]前記式(I)で示されるマンガン酸リチウムの置換元素群(M)がAlを含む場合、前記Alの置換量(XAl)が、0<(XAl)≦0.4の範囲にある前記[1]又は[2]に記載のリチウム二次電池。 [3] When the substitution element group (M) of lithium manganate represented by the formula (I) contains Al, the substitution amount (X Al ) of the Al is in the range of 0 <(X Al ) ≦ 0.4. The lithium secondary battery according to [1] or [2] above.

[4]前記式(I)で示されるマンガン酸リチウムの、結晶子サイズが600Å以上で、格子歪が0.1%以下である前記[1]〜[3]のいずれかに記載のリチウム二次電池。 [4] The lithium manganate represented by the formula (I) has a crystallite size of 600 mm or more and a lattice strain of 0.1% or less, according to any one of [1] to [3]. Next battery.

[5]前記式(I)で示されるマンガン酸リチウムの、(440)面XRD回折ピークにおける積分幅が0.5以下である前記[1]〜[4]のいずれかに記載のリチウム二次電池。 [5] The lithium secondary according to any one of [1] to [4], wherein the integration width of the lithium manganate represented by the formula (I) in the (440) plane XRD diffraction peak is 0.5 or less. battery.

[6]前記式(I)で示されるマンガン酸リチウムが、前記マンガン酸リチウムを構成することになる元素を含む出発原料を、酸化雰囲気中、900〜1000℃の範囲の温度で、5〜50時間の範囲の時間をかけて焼成し、次いで、酸化雰囲気中、600〜900℃の範囲の温度で、1〜50時間の範囲の時間をかけて再焼成することによって得られたものである前記[1]〜[5]のいずれかに記載のリチウム二次電池。 [6] The starting material containing the element that the lithium manganate represented by the formula (I) constitutes the lithium manganate is placed in an oxidizing atmosphere at a temperature in the range of 900 to 1000 ° C. and 5 to 50 Baked over a time range, and then refired in an oxidizing atmosphere at a temperature in the range of 600-900 ° C. for a time in the range of 1-50 hours. The lithium secondary battery according to any one of [1] to [5].

[7]前記正極活物質に加えて負極活物質を備え、前記負極活物質が、ハードカーボン、人造黒鉛又は天然黒鉛である前記[1]〜[6]のいずれかに記載のリチウム二次電池。 [7] The lithium secondary battery according to any one of [1] to [6], further including a negative electrode active material in addition to the positive electrode active material, wherein the negative electrode active material is hard carbon, artificial graphite, or natural graphite. .

[8]リチウム二次電池の正極活物質中に含有されるマンガン酸リチウムの製造方法であって、出発原料として、一般式(I)LiaMn2-xx4-σ(式(I)中、Mは、Mnの一部を置換する置換元素群(Li、Mg、Ca及びTi、又はLi及びAl)、Xは、0<X≦0.5の範囲の置換元素群(M)の置換量、aは、0.1≦a≦1.3の範囲のLi量、σは、0≦σ≦0.05の範囲の酸素欠損量をそれぞれ意味する)で示されるスピネル構造を有するマンガン酸リチウムを構成することになる元素を含むものを用い、前記出発原料を、酸化雰囲気中、900〜1000℃の範囲の温度で、5〜50時間の範囲の時間をかけて焼成し、次いで、酸化雰囲気中、600〜900℃の範囲の温度で、1〜50時間の範囲の時間をかけて再焼成し、前記式(I)で示されるとともに、その比表面積が1m2/g以下である前記スピネル構造を有するマンガン酸リチウムを得ることを特徴とするマンガン酸リチウムの製造方法。 [8] A method for producing lithium manganate contained in a positive electrode active material of a lithium secondary battery, wherein as a starting material, a general formula (I) LiaMn 2-x M x O 4- σ (formula (I) M is a substitution element group (Li, Mg, Ca and Ti, or Li and Al) for substituting a part of Mn, and X is a substitution element group (M) in the range of 0 <X ≦ 0.5. The amount of substitution, a means the amount of Li in the range of 0.1 ≦ a ≦ 1.3, and σ means the amount of oxygen deficiency in the range of 0 ≦ σ ≦ 0.05, respectively. Using an element containing an element constituting lithium acid, and firing the starting material in an oxidizing atmosphere at a temperature in the range of 900 to 1000 ° C. for a time in the range of 5 to 50 hours, In an oxidizing atmosphere, at a temperature in the range of 600 to 900 ° C., taking a time in the range of 1 to 50 hours. A method for producing lithium manganate, which is refired to obtain lithium manganate having the spinel structure represented by the formula (I) and having a specific surface area of 1 m 2 / g or less.

[9]前記式(I)で示されるマンガン酸リチウムとして、その置換元素群(M)が、Li、Mg、Ca及びTiの場合、前記Li、Mg、Ca及びTiのそれぞれの置換量(XLi、XMg、XCa及びXTi)が、0<(XLi、XMg、XCa、XTi)≦0.2の範囲にあるものを用いる前記[8]に記載のマンガン酸リチウムの製造方法。 [9] As the lithium manganate represented by the formula (I), when the substitution element group (M) is Li, Mg, Ca and Ti, the respective substitution amounts of the Li, Mg, Ca and Ti (X Li , X Mg , X Ca and X Ti ) are in the range of 0 <(X Li , X Mg , X Ca , X Ti ) ≦ 0.2. Production method.

[10]前記式(I)で示されるマンガン酸リチウムとして、その置換元素群(M)がAlを含む場合、前記Alの置換量(XAl)が、0<(XAl)≦0.4の範囲にあるものを用いる前記[8]又は[9]に記載のマンガン酸リチウムの製造方法。 [10] As the lithium manganate represented by the formula (I), when the substitution element group (M) contains Al, the substitution amount (X Al ) of the Al is 0 <(X Al ) ≦ 0.4 The method for producing lithium manganate according to the above [8] or [9], wherein a material in the range is used.

[11]前記式(I)で示されるマンガン酸リチウムとして、その結晶子サイズが600Å以上で、格子歪が0.1%以下であるものを用いる前記[8]〜[10]のいずれかに記載のマンガン酸リチウムの製造方法。 [11] The lithium manganate represented by the formula (I) having a crystallite size of 600 mm or more and a lattice strain of 0.1% or less is used. The manufacturing method of lithium manganate of description.

[12]前記式(I)で示されるマンガン酸リチウムとして、その(440)面XRD回折ピークにおける積分幅が0.5以下であるものを用いる前記[8]〜[11]のいずれかに記載のマンガン酸リチウムの製造方法。 [12] The lithium manganate represented by the formula (I), wherein the integral width at the (440) plane XRD diffraction peak is 0.5 or less, is used in any one of the above [8] to [11] Of manufacturing lithium manganate.

本発明によって、高温特性、特に高温保存特性に優れたリチウム二次電池及びリチウム二次電池の正極活物質中に含有されるマンガン酸リチウムの効率的な製造方法が提供される。   The present invention provides a lithium secondary battery excellent in high temperature characteristics, particularly high temperature storage characteristics, and an efficient method for producing lithium manganate contained in the positive electrode active material of the lithium secondary battery.

以下、本発明を実施するための最良の形態を具体的に説明する。   The best mode for carrying out the present invention will be specifically described below.

本発明のリチウム二次電池は、リチウムイオンの挿入・脱離が可能なマンガン酸リチウムを含有した正極活物質を備えたリチウム二次電池であって、正極活物質に含有されるマンガン酸リチウムが、一般式(I)LiaMn2-xx4-σ(式(I)中、Mは、Mnの一部を置換する置換元素群(Li、Mg、Ca及びTi、又はLi及びAl)、Xは、0<X≦0.5の範囲の置換元素群(M)の置換量(置換元素群(M)を構成する置換元素のそれぞれの置換量の合計)、aは、0.1≦a≦1.3の範囲のLi量、σは、0≦σ≦0.05の範囲の酸素欠損量をそれぞれ意味する)で示されるスピネル構造を有するマンガン酸リチウムであり、かつその比表面積が1m2/g以下であることを特徴とするものである。 The lithium secondary battery of the present invention is a lithium secondary battery comprising a positive electrode active material containing lithium manganate capable of inserting and removing lithium ions, wherein the lithium manganate contained in the positive electrode active material is general formula (I) LiaMn 2-x M x O 4- σ ( formula (in I), M is a substituted element group for substituting a part of Mn (Li, Mg, Ca and Ti, or Li and Al) , X is the substitution amount of the substitution element group (M) in the range of 0 <X ≦ 0.5 (the total substitution amount of substitution elements constituting the substitution element group (M)), and a is 0.1 ≦ a ≦ 1.3 Li amount, σ means an oxygen deficiency amount in the range of 0 ≦ σ ≦ 0.05), and a specific surface area thereof Is 1 m 2 / g or less.

本発明のリチウム二次電池の電池構造としては特に制限はないが、例えば、板状に成形された正極活物質と負極活物質との間にセパレータを配して電解液を充填させたコイン型や、金属箔の表面に正極活物質を塗工してなる正極板と、同様に金属箔の表面に負極活物質を塗工してなる負極板とを、セパレータを介して捲回又は積層してなる電極体を用いた円筒型や箱型の各種電池を挙げることができる。   The battery structure of the lithium secondary battery of the present invention is not particularly limited. For example, a coin type in which a separator is disposed between a positive electrode active material and a negative electrode active material formed into a plate shape and filled with an electrolyte. Alternatively, a positive electrode plate formed by applying a positive electrode active material to the surface of a metal foil and a negative electrode plate formed by applying a negative electrode active material to the surface of the metal foil are wound or laminated via a separator. Cylindrical and box-type batteries using the electrode body can be mentioned.

本発明に用いられるマンガン酸リチウムは、前記式(I)における置換元素群(M)、すなわち、Li、Mg、Ca及びTi、又はLi及びAlによってMnの一部が置換されることで、合成時に高温焼成しても酸素欠損が生じ難く、低比表面積化される。このような低比表面積化によってマンガン酸リチウムからのMn溶出が抑制されるとともに、酸素欠損が抑制されているので、殊更製造コストを増大させることなしに、電池の高温特性、特に高温保存特性を向上させることができる。   The lithium manganate used in the present invention is synthesized by substituting a part of Mn by the substitution element group (M) in the formula (I), that is, Li, Mg, Ca and Ti, or Li and Al. Oxygen vacancies hardly occur even when fired at high temperatures, and the specific surface area is reduced. By reducing the specific surface area in this way, elution of Mn from lithium manganate is suppressed and oxygen vacancies are suppressed, so that the high temperature characteristics of the battery, particularly the high temperature storage characteristics, can be improved without increasing the manufacturing cost. Can be improved.

置換元素群(M)の置換量(X)は、0<X≦0.5の範囲にあることが必要であり、0<X≦0.3の範囲にあることが好ましい。置換量(X)が0.5を超えると、マンガン酸リチウムの正極活物質としての容量が小さくなり、電池の容量自体もが小さくなる。なお、前記式(I)で示されるマンガン酸リチウムの置換元素群(M)が、Li、Mg、Ca及びTiの場合、前記Li、Mg、Ca及びTiのそれぞれの置換量(XLi、XMg、XCa及びXTi)は、それぞれ0<(XLi、XMg、XCa、XTi)≦0.2の範囲にあることがさらに好ましく、また、前記式(I)で示されるマンガン酸リチウムの置換元素群(M)がAlを含む場合、Alの置換量(XAl)は、0<(XAl)≦0.4の範囲にあることがさらに好ましい。 The substitution amount (X) of the substitution element group (M) needs to be in the range of 0 <X ≦ 0.5, and preferably in the range of 0 <X ≦ 0.3. When the substitution amount (X) exceeds 0.5, the capacity of the lithium manganate as the positive electrode active material becomes small, and the capacity of the battery itself becomes small. In addition, when the substitution element group (M) of the lithium manganate represented by the formula (I) is Li, Mg, Ca, and Ti, the respective substitution amounts (X Li , X Mg , X Ca and X Ti ) are more preferably in the range of 0 <(X Li , X Mg , X Ca , X Ti ) ≦ 0.2, respectively, and manganese represented by the above formula (I) When the substitution element group (M) of lithium acid contains Al, the substitution amount (X Al ) of Al is more preferably in the range of 0 <(X Al ) ≦ 0.4.

酸素欠損量(σ)は、0≦σ≦0.05の範囲にあることが必要である。酸素欠損量(σ)が、0.05を超えると、電池特性を悪化させる。なお、酸素欠損量(σ)の測定は、文献「酸素欠損スピネルLi1+xMn2-x4-zの充放電挙動」(八木、秀島、杉田、野口、芳尾、Electrochemistry,68,No.4(2000)252を参考にして、リチウム二次電池の充放電試験を行い、その放電曲線の3.2V付近の容量から求めることができる。 The oxygen deficiency (σ) needs to be in the range of 0 ≦ σ ≦ 0.05. When the oxygen deficiency (σ) exceeds 0.05, the battery characteristics are deteriorated. Note that the amount of oxygen deficiency (σ) was measured using the literature “charge / discharge behavior of oxygen deficient spinel Li 1 + x Mn 2−x O 4−z ” (Yagi, Hideshima, Sugita, Noguchi, Yoshio, Electrochemistry, 68, No. 4 (2000) 252 is referred to, a charge / discharge test of the lithium secondary battery is performed, and it can be obtained from the capacity near 3.2 V of the discharge curve.

比表面積は1m2/g以下であることが必要であり、0.6m2/g以下であることが好ましい。比表面積が1m2/gを超えると、Mn溶出量が大きくなり、混合による効果がみられなくなる。 The specific surface area is required to be 1 m 2 / g or less, and preferably 0.6 m 2 / g or less. When the specific surface area exceeds 1 m 2 / g, the elution amount of Mn increases and the effect of mixing is not observed.

結晶子サイズは、600Å以上が好ましく、650Å以上がさらに好ましい。また格子歪は0.1%以下が好ましく、0.05%以下がさらに好ましい。結晶子サイズ及び格子歪は、理学電機(株)製の粉末X線回折装置RAD−IBを使用して以下の条件で測定し、回折角2θ=10°〜70°に出現するマンガン酸リチウムのピーク位置から、Wilson法により求めることができる。なお、ピーク位置及び装置関数の決定に当ってはSi単結晶(SRM640b)を内部標準試料として用いる。なお、結晶子とは、一般的にクリスタレットと呼ばれる小さい単結晶を意味し、この結晶子の大きさ、すなわち本発明における結晶子サイズは、粉末X線回折法による回折像を、Wilson法により解析して得られる値である。同時に、格子歪についても値が得られる。具体的には、本発明における結晶子サイズ及び格子歪は、「理学電機(株)、RINT2000シリーズアプリケーションソフトウエア「結晶子の大きさ格子歪の解析」3版、19996.10.16」により求めて決定することができる。   The crystallite size is preferably 600 mm or more, and more preferably 650 mm or more. The lattice strain is preferably 0.1% or less, more preferably 0.05% or less. The crystallite size and the lattice strain were measured under the following conditions using a powder X-ray diffractometer RAD-IB manufactured by Rigaku Corporation. From the peak position, it can be determined by the Wilson method. Note that a Si single crystal (SRM640b) is used as an internal standard sample in determining the peak position and device function. The crystallite means a small single crystal generally called crystallet. The size of the crystallite, that is, the crystallite size in the present invention is a diffraction image obtained by a powder X-ray diffraction method by a Wilson method. This is a value obtained by analysis. At the same time, values are also obtained for the lattice strain. Specifically, the crystallite size and the lattice strain in the present invention are determined by “Rigaku Denki Co., Ltd., RINT2000 series application software“ Analysis of crystallite size lattice strain ”, 3rd edition, 1999.10.16”. Can be determined.

Figure 2006252940
Figure 2006252940

(440)面XRD回折ピークにおける積分幅は0.5以下であることが好ましく、0.4以下であることがさらに好ましい。積分幅が0.5を超えると、マンガン酸リチウムの組成が不均一となっており、電池特性に悪影響を及ぼすことがある。積分幅は、理学電機(株)製の粉末X線回折装置RAD−IBを使用して表2に示す条件で測定し、回折角2θ=64付近に出現するXRDピーク(440)面から積分幅を求めることができる。   The integral width in the (440) plane XRD diffraction peak is preferably 0.5 or less, and more preferably 0.4 or less. When the integral width exceeds 0.5, the composition of lithium manganate is not uniform, which may adversely affect battery characteristics. The integral width was measured using the powder X-ray diffractometer RAD-IB manufactured by Rigaku Corporation under the conditions shown in Table 2, and the integral width from the XRD peak (440) plane appearing near the diffraction angle 2θ = 64. Can be requested.

Figure 2006252940
Figure 2006252940

本発明に用いられるマンガン酸リチウムは、マンガン酸リチウムを構成することになる元素を含む出発原料を、酸化雰囲気中、900〜1000℃の範囲の温度で、5〜50時間の範囲の時間をかけて焼成し、次いで、酸化雰囲気中、600〜900℃の範囲の温度で、1〜50時間の範囲の時間をかけて再焼成することによって得られたものであることが好ましい。焼成温度が、600℃未満であると、原料が未反応となることがあり、1000℃を超えると、マンガン酸リチウムの低比表面積化が進む一方で、マンガン酸リチウム以外に第2相(異相)が生成することがある。焼成時間が5時間未満であると、焼成物のXRDチャートに原料の残留を示すピーク、例えばリチウム源として炭酸リチウム(Li2CO3)のピークが観察され、単相生成物が得られないことがあり、50時間を超えると、マンガン酸リチウム以外に第2相(異相)が生成することがある。 The lithium manganate used in the present invention takes a starting material containing an element constituting lithium manganate in an oxidizing atmosphere at a temperature in the range of 900 to 1000 ° C. and a time in the range of 5 to 50 hours. It is preferably obtained by firing and then re-baking in an oxidizing atmosphere at a temperature in the range of 600 to 900 ° C. for a time in the range of 1 to 50 hours. When the firing temperature is less than 600 ° C., the raw material may be unreacted. When the firing temperature exceeds 1000 ° C., the specific surface area of lithium manganate is reduced. ) May be generated. When the firing time is less than 5 hours, a peak indicating residual material, for example, a peak of lithium carbonate (Li 2 CO 3 ) as a lithium source is observed on the XRD chart of the fired product, and a single-phase product cannot be obtained. If it exceeds 50 hours, a second phase (heterophase) may be generated in addition to lithium manganate.

焼成温度は、最高温度が上述のように、900〜1000℃であることが好ましい。このような最高温度で焼成する前における焼成温度は、900℃未満(例えば、600℃以上、900℃未満)であってもよい。ただし、最高温度で焼成した後、再焼成(アニール焼成)として600〜900℃の温度で、1〜50時間の範囲の時間をかけて処理することが好ましい。再焼成温度(アニール焼成温度)は650〜800℃、再焼成時間(アニール焼成時間)は5〜25時間であることがさらに好ましい。再焼成温度(アニール焼成温度)が600℃未満、又は900℃を超えると、再焼成(アニール焼成)の効果が認められないことがある。再焼成時間(アニール焼成時間)が1時間未満であると、再焼成(アニール焼成)の効果が不十分となることがあり、50時間を超えると、再焼成(アニール焼成)の効果は50時間以下の場合とほとんど変わらない。   As for a calcination temperature, it is preferable that the maximum temperature is 900-1000 degreeC as mentioned above. The firing temperature before firing at such maximum temperature may be less than 900 ° C. (for example, 600 ° C. or more and less than 900 ° C.). However, after baking at the maximum temperature, it is preferable to perform the re-baking (anneal baking) at a temperature of 600 to 900 ° C. for a time in the range of 1 to 50 hours. More preferably, the re-baking temperature (anneal baking temperature) is 650 to 800 ° C., and the re-baking time (anneal baking time) is 5 to 25 hours. When the re-baking temperature (anneal baking temperature) is less than 600 ° C. or exceeds 900 ° C., the effect of re-baking (anneal baking) may not be recognized. If the re-baking time (anneal baking time) is less than 1 hour, the effect of re-baking (anneal baking) may be insufficient. If it exceeds 50 hours, the effect of re-baking (anneal baking) is 50 hours. Almost the same as the following cases.

出発原料としては、各元素(元素置換を行う場合には置換元素群(M)を含む)の塩及び/又は酸化物が用いられる。各元素の塩は特に限定されるものではないが、原料として純度が高くしかも安価なものを用いることが好ましい。また、昇温時や焼成時に有害な分解ガスが発生しない炭酸塩、水酸化物、有機酸塩を用いることが好ましい。ただし、硝酸塩や塩酸塩、硫酸塩等を用いることもできる。なお、Li原料については、通常、酸化物であるLi2Oは吸湿性が強いために取扱い難く、従って、化学的に安定な炭酸塩が好適に用いられる。 As the starting material, a salt and / or an oxide of each element (including a substitution element group (M) when element substitution is performed) is used. The salt of each element is not particularly limited, but it is preferable to use a raw material having high purity and low cost. Further, it is preferable to use carbonates, hydroxides, and organic acid salts that do not generate harmful decomposition gas at the time of temperature rise or firing. However, nitrates, hydrochlorides, sulfates and the like can also be used. Regarding Li raw materials, normally, Li 2 O, which is an oxide, is difficult to handle due to its strong hygroscopicity, and therefore a chemically stable carbonate is preferably used.

本発明に用いられるマンガン酸リチウムのモルフォロジーとしては、例えば、粒状であり、一次粒子が八面体形を有するものであることが好ましい。マンガン酸リチウムの単結晶が八面体形であることから、一次粒子が八面体形であることは、マンガン酸リチウムの結晶性(組成が均一であること)を簡略的に比較、評価する上での一つの尺度となる。   The morphology of the lithium manganate used in the present invention is preferably, for example, granular and the primary particles have an octahedral shape. Since the single crystal of lithium manganate is octahedral, the primary particle is octahedral when comparing and evaluating the crystallinity of lithium manganate (having a uniform composition). It becomes one measure of.

本発明に用いられるマンガン酸リチウムの粒度分布としては、例えば、一次粒子と一次粒子が集合した二次粒子が混在する混在物の平均粒子径が50μm以下であることが好ましい。これは、平均粒子径が50μmを超えると、粒子内でのLi+イオンの拡散抵抗が大きくなり、マンガン酸リチウム自体の抵抗が高くなるとともに、電池にした場合に内部抵抗が大きくなることがある。また、電極板が作り難くなることがある。 As the particle size distribution of the lithium manganate used in the present invention, for example, it is preferable that the average particle diameter of a mixture in which primary particles and secondary particles in which primary particles are aggregated is 50 μm or less. This is because when the average particle diameter exceeds 50 μm, the diffusion resistance of Li + ions in the particles increases, the resistance of lithium manganate itself increases, and the internal resistance may increase when used in a battery. . Also, it may be difficult to make an electrode plate.

本発明のリチウム二次電池を構成するための他の部材(材料)としては、従来公知の種々の材料を用いることができる。例えば、負極活物質としては、ソフトカーボン、ハードカーボン等のアモルファス系炭素質材料;人造黒鉛、天然黒鉛等の高黒鉛化炭素材料を適宜選択して用いることができる。中でも、リチウム容量の大きい高黒鉛化炭素材料を用いることが好ましい。   As other members (materials) for constituting the lithium secondary battery of the present invention, various conventionally known materials can be used. For example, as the negative electrode active material, amorphous carbonaceous materials such as soft carbon and hard carbon; and highly graphitized carbon materials such as artificial graphite and natural graphite can be appropriately selected and used. Among them, it is preferable to use a highly graphitized carbon material having a large lithium capacity.

非水電解液に用いられる有機溶媒としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)等の炭酸エステル系溶媒;γ−ブチロラクトン、テトラヒドロフラン、アセトニトリル等の単独溶媒又は混合溶媒が好適に用いられる。   Examples of the organic solvent used in the non-aqueous electrolyte include carbonate solvents such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and propylene carbonate (PC); γ-butyrolactone, tetrahydrofuran, acetonitrile, and the like These single solvents or mixed solvents are preferably used.

電解質としては、六フッ化リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF44)等のリチウム錯体フッ素化合物;過塩素酸リチウム(LiClO4)等のリチウムハロゲン化物、リチウムビス(オキサラト)ボレート(LiBOB)等を挙げることができ、1種類又は2種類以上を上述の溶媒に溶解して用いることができる。特に、酸化分解が起こり難く、非水電解液の導電性の高いLiPF6を用いることが好ましい。 Examples of the electrolyte include lithium complex fluorine compounds such as lithium hexafluorophosphate (LiPF 6 ) and lithium borofluoride (LiBF 4 4 ); lithium halides such as lithium perchlorate (LiClO 4 ), lithium bis (oxalato) borate ( LiBOB) and the like can be used, and one type or two or more types can be dissolved in the above solvent and used. In particular, it is preferable to use LiPF 6 which does not easily undergo oxidative decomposition and has a high conductivity of the non-aqueous electrolyte.

本発明のマンガン酸リチウムの製造方法は、リチウム二次電池の正極活物質中に含有されるマンガン酸リチウムの製造方法であって、出発原料として、一般式(I)LiaMn2-xx4-σ(式(I)中、Mは、Mnの一部を置換する置換元素群(Li、Mg、Ca及びTi、又はLi及びAl)、Xは、0<X≦0.5の範囲の置換元素群(M)の置換量(置換元素群(M)を構成する置換元素のそれぞれの置換量の合計)、aは、0.1≦a≦1.3の範囲のLi量、σは、0≦σ≦0.05の範囲の酸素欠損量をそれぞれ意味する)で示されるスピネル構造を有するマンガン酸リチウムを構成することになる元素を含むものを用い、出発原料を、酸化雰囲気中、900〜1000℃の範囲の温度で、5〜50時間の範囲の時間をかけて焼成し、次いで、酸化雰囲気中、600〜900℃の範囲の温度で、1〜50時間の範囲の時間をかけて再焼成し、前記式(I)で示されるとともに、その比表面積が1m2/g以下であるスピネル構造を有するマンガン酸リチウムを得ることを特徴とする。 The method for producing lithium manganate according to the present invention is a method for producing lithium manganate contained in a positive electrode active material of a lithium secondary battery, wherein the starting material is represented by the general formula (I) LiaMn 2-x M x O 4- σ (in formula (I), M is a substitution element group that substitutes a part of Mn (Li, Mg, Ca and Ti, or Li and Al), and X is in the range of 0 <X ≦ 0.5. The substitution amount of the substitution element group (M) (the total substitution amount of substitution elements constituting the substitution element group (M)), a is the Li amount in the range of 0.1 ≦ a ≦ 1.3, σ Means an oxygen deficiency amount in the range of 0 ≦ σ ≦ 0.05), and includes an element that constitutes lithium manganate having a spinel structure represented by Baked at a temperature in the range of 900 to 1000 ° C. for a time in the range of 5 to 50 hours. And then re-baked in an oxidizing atmosphere at a temperature in the range of 600 to 900 ° C. for a time in the range of 1 to 50 hours. The specific surface area is 1 m 2 as shown by the formula (I). It is characterized by obtaining lithium manganate having a spinel structure which is not more than / g.

このように構成することによって、酸素欠損が抑制された、比表面積の小さなマンガン酸リチウムを合成することができる。   By comprising in this way, lithium manganate with a small specific surface area in which oxygen deficiency is suppressed can be synthesized.

前記式(I)で示されるマンガン酸リチウムとして、その置換元素群(M)が、Li、Mg、Ca及びTiの場合、前記Li、Mg、Ca及びTiのそれぞれの置換量(XLi、XMg、XCa及びXTi)が、0<(XLi、XMg、XCa、XTi)≦0.2の範囲にあるものを用いることが好ましいのは、本発明のリチウム二次電池の場合と同様である。 As the lithium manganate represented by the formula (I), when the substitution element group (M) is Li, Mg, Ca and Ti, the respective substitution amounts of the Li, Mg, Ca and Ti (X Li , X mg, X Ca and X Ti) is, 0 <(X Li, X mg, X Ca, X Ti) ≦ 0.2 for it is preferable to use those in the range of, of the lithium secondary battery of the present invention Same as the case.

前記式(I)で示されるマンガン酸リチウムとして、その置換元素群(M)がAlを含む場合、前記Alの置換量(XAl)が、0<(XAl)≦0.4の範囲にあるものを用いることが好ましいのも、本発明のリチウム二次電池の場合と同様である。 As the lithium manganate represented by the formula (I), when the substitution element group (M) contains Al, the substitution amount (X Al ) of the Al is in the range of 0 <(X Al ) ≦ 0.4. It is preferable to use a certain battery as in the case of the lithium secondary battery of the present invention.

前記式(I)で示されるマンガン酸リチウムとして、その結晶子サイズが600Å以上で、格子歪が0.1%以下であるものを用いることが好ましいのも、本発明のリチウム二次電池の場合と同様である。   In the case of the lithium secondary battery of the present invention, it is preferable to use a lithium manganate represented by the formula (I) having a crystallite size of 600 mm or more and a lattice strain of 0.1% or less. It is the same.

前記式(I)で示されるマンガン酸リチウムとして、その(440)面XRD回折ピークにおける積分幅が0.5以下であるものを用いることが好ましいのも、本発明のリチウム二次電池の場合と同様である。   As the lithium manganate represented by the formula (I), it is preferable to use a lithium manganate whose (440) plane XRD diffraction peak has an integral width of 0.5 or less. It is the same.

(マンガン酸リチウムの合成)
(実施例1〜2)
出発原料として、市販のLi2CO3、MnO2、MgO、TiO2、Al23粉末を用い、表3に示す組成となるようにそれぞれ秤量し、混合した。次いで、酸化雰囲気中、1000℃、24時間の焼成を行い、その後に800℃、10時間で再焼成(アニール焼成)することでスピネル構造を有するマンガン酸リチウムを合成した。
(Synthesis of lithium manganate)
(Examples 1-2)
Commercially available Li 2 CO 3 , MnO 2 , MgO, TiO 2 , and Al 2 O 3 powders were used as starting materials and weighed and mixed so as to have the compositions shown in Table 3. Next, firing was performed in an oxidizing atmosphere at 1000 ° C. for 24 hours, and then refiring (anneal firing) at 800 ° C. for 10 hours to synthesize lithium manganate having a spinel structure.

(比較例1〜7)
実施例1、2において、マンガン酸リチウムの組成を表3に示すように変えたことを除いて、実施例1、2と同様にした。
(Comparative Examples 1-7)
Examples 1 and 2 were the same as Examples 1 and 2 except that the composition of lithium manganate was changed as shown in Table 3.

Figure 2006252940
Figure 2006252940

(実施例3〜6、比較例8〜9)
実施例1、2において、マンガン酸リチウムの焼成温度を表4に示すように変えたこと以外は実施例1、2と同様にした。
(Examples 3-6, Comparative Examples 8-9)
Examples 1 and 2 were the same as Examples 1 and 2 except that the firing temperature of lithium manganate was changed as shown in Table 4.

Figure 2006252940
Figure 2006252940

(実施例7〜22、比較例10)
実施例1、2において、マンガン酸リチウムの組成を表5に示すように変えたこと以外は実施例1、2と同様にした。
(Examples 7 to 22, Comparative Example 10)
Examples 1 and 2 were the same as Examples 1 and 2 except that the composition of lithium manganate was changed as shown in Table 5.

Figure 2006252940
Figure 2006252940

(実施例23〜26、比較例11〜14)
実施例1、2において、マンガン酸リチウムの焼成温度及び再焼成(アニール焼成)温度を表6に示すように変えたこと以外は実施例1、2と同様にした。
(Examples 23 to 26, Comparative Examples 11 to 14)
Examples 1 and 2 were the same as Examples 1 and 2 except that the firing temperature and re-firing (anneal firing) temperature of lithium manganate were changed as shown in Table 6.

Figure 2006252940
Figure 2006252940

(実施例27〜30、比較例15〜16)
実施例1、2において、マンガン酸リチウムの焼成時間を表7に示すように変えたこと以外は実施例1、2と同様にした。
(Examples 27-30, Comparative Examples 15-16)
In Examples 1 and 2, the procedure was the same as in Examples 1 and 2 except that the firing time of lithium manganate was changed as shown in Table 7.

Figure 2006252940
Figure 2006252940

(実施例31〜32、比較例17〜20)
実施例1、2において、マンガン酸リチウムの再焼成(アニール焼成)を表8に示すように変えたこと以外は実施例1、2と同様にした。
(Examples 31-32, Comparative Examples 17-20)
Examples 1 and 2 were the same as Examples 1 and 2 except that the recalcination (anneal firing) of lithium manganate was changed as shown in Table 8.

Figure 2006252940
Figure 2006252940

(電池の作製)
前述の正極材料(計52サンプル)を使用し、導電材たるアセチレンブラック粉末と結着材たるポリフッ化ビニリデンを、質量比で70:25:5で添加・混合した。得られた混合物を300kg/cm2の圧力で直径10mmφの円板状にプレス成形して正極とした。次に、ECとDECが等体積比(1:1)で混合された有機溶媒に電解質としてLiPF6を1mol/Lの濃度となるように溶解して調製した電解液、人造黒鉛又はハードカーボンからなる負極、正極及び負極を隔離するセパレータ、並びに前述のようにして作製した正極を用いてコインセルを作製した。
(Production of battery)
Using the above positive electrode material (total 52 samples), acetylene black powder as a conductive material and polyvinylidene fluoride as a binder were added and mixed at a mass ratio of 70: 25: 5. The obtained mixture was press-molded into a disk shape having a diameter of 10 mmφ at a pressure of 300 kg / cm 2 to obtain a positive electrode. Next, from an electrolytic solution prepared by dissolving LiPF 6 as an electrolyte in an organic solvent in which EC and DEC are mixed at an equal volume ratio (1: 1) to a concentration of 1 mol / L, artificial graphite or hard carbon A coin cell was manufactured using the negative electrode, the separator separating the positive electrode and the negative electrode, and the positive electrode manufactured as described above.

(セルの高温保存特性の評価)
次に、実施例と同じ要領で作製した52個のコインセル(負極は人造黒鉛を使用)を室温1C電流レートで4.1Vまで充電、3.0Vまで放電のサイクルを1サイクルして、計3サイクルの充放電を行った(この時の3サイクル目の放電容量を(X)とする)。その後、さらに同じく1C電流レートで4.1Vまで充電し、内温60℃に設定した恒温槽内に128h設置した。60℃保存後、コインセルを恒温槽から取出して、室温、1C電流レートで3.0Vまで放電、4.1Vまで充電、3.0Vまで放電(この時の放電容量を(Y)とする)を行った。これにより、放電容量維持率(%)=Y/Xを求めた。結果を表9〜12に示す。表9から、置換元素群のL、Mg、Ca及びTi、又はLi及びAlで置換したマンガン酸リチウムでは明らかに酸素欠損の抑制効果があり、いずれかの元素が欠けた場合には、その抑制効果が小さくなることがわかる。また、マンガン酸リチウムの酸素欠損量σについて、0≦σ≦0.05の範囲であることが必要であることがわかる(実施例1〜2、比較例1〜7参照)。一方、比表面積については、置換元素群のL、Mg、Ca及びTi、又はLi及びAlで置換したマンガン酸リチウムにおいて、比表面積が1.0m2/g以下であることが必要で、好ましくは0.6m2/g以下であることがわかる(実施例3〜6、比較例8〜9参照)。
(Evaluation of high-temperature storage characteristics of cells)
Next, 52 coin cells produced using the same procedure as in the example (artificial graphite was used for the negative electrode) were charged to 4.1 V at a room temperature 1 C current rate, and discharged to 3.0 V for one cycle. The cycle was charged and discharged (the discharge capacity at the third cycle at this time is (X)). Thereafter, the battery was further charged to 4.1 V at a 1 C current rate, and installed in a thermostat set at an internal temperature of 60 ° C. for 128 hours. After storage at 60 ° C., the coin cell is taken out from the thermostat, discharged to 3.0 V at room temperature and 1 C current rate, charged to 4.1 V, discharged to 3.0 V (the discharge capacity at this time is (Y)) went. Thereby, the discharge capacity retention ratio (%) = Y / X was obtained. The results are shown in Tables 9-12. From Table 9, lithium manganate substituted with L, Mg, Ca and Ti, or Li and Al in the substitution element group clearly has an effect of suppressing oxygen deficiency, and when any element is lacking, the suppression is achieved. It turns out that an effect becomes small. It can also be seen that the oxygen deficiency σ of lithium manganate is required to be in the range of 0 ≦ σ ≦ 0.05 (see Examples 1-2 and Comparative Examples 1-7). On the other hand, with respect to the specific surface area, in the lithium manganate substituted with L, Mg, Ca and Ti or Li and Al of the substitution element group, the specific surface area needs to be 1.0 m 2 / g or less, preferably It turns out that it is 0.6 m < 2 > / g or less (refer Examples 3-6 and Comparative Examples 8-9).

Figure 2006252940
Figure 2006252940

表10から、置換量の合計(X)としては、0<X≦0.5であることが必要で、好ましくは0<X≦0.3であることがわかる。   From Table 10, it can be seen that the total substitution amount (X) needs to satisfy 0 <X ≦ 0.5, and preferably 0 <X ≦ 0.3.

Figure 2006252940
Figure 2006252940

表11から、各置換元素の置換量は、0<(XLi、XMg、XCa、XTi)≦0.2、0<(XAl)≦0.4の範囲にあることが好ましいことがわかる。 From Table 11, the substitution amount of each substitution element is preferably in the range of 0 <(X Li , X Mg , X Ca , X Ti ) ≦ 0.2, 0 <(X Al ) ≦ 0.4. I understand.

Figure 2006252940
Figure 2006252940

表12から、マンガン酸リチウムの結晶子サイズは600Å以上、格子歪は0.1%以下であることが好ましいことがわかる。   From Table 12, it can be seen that the crystallite size of lithium manganate is preferably 600Å or more and the lattice strain is preferably 0.1% or less.

Figure 2006252940
Figure 2006252940

(実施例27〜30、比較例15〜16)
実施例1、2において、焼成時間を変えたこと以外は実施例1、2と同様にした。表13にマンガン酸リチウムの積分幅と60℃容量維持率の関係を示す。表13から、マンガン酸リチウムの(440)面XRD回折ピークにおける積分幅は0.5以下であることが好ましいことがわかる。なお、結晶性がよいほど、積分幅は狭くなる。
(Examples 27-30, Comparative Examples 15-16)
In Examples 1 and 2, it was the same as Examples 1 and 2 except that the firing time was changed. Table 13 shows the relationship between the integrated width of lithium manganate and the 60 ° C. capacity retention rate. From Table 13, it can be seen that the integral width of the (440) plane XRD diffraction peak of lithium manganate is preferably 0.5 or less. The better the crystallinity, the narrower the integration width.

Figure 2006252940
Figure 2006252940

(実施例31〜32、比較例17〜20)
実施例1、2において、アニ−ル焼成温度を変えたこと以外は実施例1、2と同様にした。表14にコインセルの60℃容量維持率を示す。表14から、マンガン酸リチウムの再焼成(アニール焼成)温度は900℃以下の温度で行うことが好ましいことがわかる。再焼成(アニール焼成)を900℃以上で行ってもさらなる電池特性の向上は認められない。理由は明らかでないが、900℃以下の温度で行う再焼成(アニール焼成)する方が効果があることがわかる。ただし、再焼成(アニール焼成)は900℃以下の温度が好ましく、さらに好ましくは800℃以下となる。
(Examples 31-32, Comparative Examples 17-20)
Examples 1 and 2 were the same as Examples 1 and 2 except that the annealing temperature was changed. Table 14 shows the 60 ° C. capacity retention rate of the coin cell. It can be seen from Table 14 that the recalcination (anneal firing) temperature of lithium manganate is preferably 900 ° C. or lower. Even if refiring (annealing) is performed at 900 ° C. or higher, no further improvement in battery characteristics is observed. Although the reason is not clear, it can be seen that re-baking (anneal baking) performed at a temperature of 900 ° C. or lower is more effective. However, re-baking (anneal baking) is preferably performed at a temperature of 900 ° C. or lower, more preferably 800 ° C. or lower.

Figure 2006252940
Figure 2006252940

(実施例35〜36)
実施例1、2において用いた負極活物質としての人造黒鉛をハードカーボンに変えたこと以外は実施例1、2と同様にした。表15に、それぞれの容量維持率を示す。表15から、表9と比較して容量維持率が高くなり、ハードカーボンの方が、高温保存特性がよりよくなることがわかった。
(Examples 35-36)
The same procedure as in Examples 1 and 2 was performed except that the artificial graphite as the negative electrode active material used in Examples 1 and 2 was changed to hard carbon. Table 15 shows the capacity maintenance rates. From Table 15, it was found that the capacity retention rate was higher than in Table 9, and that hard carbon had better high-temperature storage characteristics.

Figure 2006252940
Figure 2006252940

本発明のリチウム二次電池は、ハイブリッド自動車、電気機器、通信機器等の駆動用電池として有効に用いられる。   The lithium secondary battery of the present invention is effectively used as a driving battery for hybrid vehicles, electrical devices, communication devices, and the like.

Claims (12)

マンガン酸リチウムを含有した、リチウムイオンの挿入・脱離が可能な正極活物質を備えたリチウム二次電池であって、
前記正極活物質に含有されるマンガン酸リチウムが、一般式(I)LiaMn2-xx4-σ(式(I)中、Mは、Mnの一部を置換する置換元素群(Li、Mg、Ca及びTi、又はLi及びAl)、Xは、0<X≦0.5の範囲の置換元素群(M)の置換量、aは、0.1≦a≦1.3の範囲のLi量、σは、0≦σ≦0.05の範囲の酸素欠損量をそれぞれ意味する)で示されるスピネル構造を有するマンガン酸リチウムであり、かつその比表面積が1m2/g以下であることを特徴とするリチウム二次電池。
A lithium secondary battery comprising a positive electrode active material containing lithium manganate and capable of inserting and removing lithium ions,
The lithium manganate is contained in the positive electrode active material, in the general formula (I) LiaMn 2-x M x O 4- σ ( formula (I), M is a substituted element group for substituting a part of Mn (Li , Mg, Ca and Ti, or Li and Al), X is the substitution amount of the substitution element group (M) in the range of 0 <X ≦ 0.5, and a is in the range of 0.1 ≦ a ≦ 1.3 Li is a lithium manganate having a spinel structure represented by the following formula: and the specific surface area is 1 m 2 / g or less. A lithium secondary battery characterized by that.
前記式(I)で示されるマンガン酸リチウムの置換元素群(M)が、Li、Mg、Ca及びTiの場合、前記Li、Mg、Ca及びTiのそれぞれの置換量(XLi、XMg、XCa及びXTi)が、0<(XLi、XMg、XCa、XTi)≦0.2の範囲にある請求項1に記載のリチウム二次電池。 When the substitution element group (M) of the lithium manganate represented by the formula (I) is Li, Mg, Ca and Ti, the respective substitution amounts of the Li, Mg, Ca and Ti (X Li , X Mg , 2. The lithium secondary battery according to claim 1, wherein X Ca and X Ti ) are in a range of 0 <(X Li , X Mg , X Ca , X Ti ) ≦ 0.2. 前記式(I)で示されるマンガン酸リチウムの置換元素群(M)がAlを含む場合、前記Alの置換量(XAl)が、0<(XAl)≦0.4の範囲にある請求項1又は2に記載のリチウム二次電池。 When the substitution element group (M) of lithium manganate represented by the formula (I) contains Al, the substitution amount (X Al ) of the Al is in the range of 0 <(X Al ) ≦ 0.4. Item 3. The lithium secondary battery according to Item 1 or 2. 前記式(I)で示されるマンガン酸リチウムの、結晶子サイズが600Å以上で、格子歪が0.1%以下である請求項1〜3のいずれかに記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the lithium manganate represented by the formula (I) has a crystallite size of 600 mm or more and a lattice strain of 0.1% or less. 前記式(I)で示されるマンガン酸リチウムの、(440)面XRD回折ピークにおける積分幅が0.5以下である請求項1〜4のいずれかに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 4, wherein an integration width of a lithium manganate represented by the formula (I) at a (440) plane XRD diffraction peak is 0.5 or less. 前記式(I)で示されるマンガン酸リチウムが、前記マンガン酸リチウムを構成することになる元素を含む出発原料を、酸化雰囲気中、900〜1000℃の範囲の温度で、5〜50時間の範囲の時間をかけて焼成し、次いで、酸化雰囲気中、600〜900℃の範囲の温度で、1〜50時間の範囲の時間をかけて再焼成することによって得られたものである請求項1〜5のいずれかに記載のリチウム二次電池。   The starting material containing the element in which the lithium manganate represented by the formula (I) constitutes the lithium manganate is used in an oxidizing atmosphere at a temperature in the range of 900 to 1000 ° C. for 5 to 50 hours. And then firing again in an oxidizing atmosphere at a temperature in the range of 600 to 900 ° C. for a time in the range of 1 to 50 hours. The lithium secondary battery according to any one of 5. 前記正極活物質に加えて負極活物質を備え、前記負極活物質が、ハードカーボン、人造黒鉛又は天然黒鉛である請求項1〜6にのいずれかに記載のリチウム二次電池。   The lithium secondary battery according to claim 1, further comprising a negative electrode active material in addition to the positive electrode active material, wherein the negative electrode active material is hard carbon, artificial graphite, or natural graphite. リチウム二次電池の正極活物質中に含有されるマンガン酸リチウムの製造方法であって、
出発原料として、一般式(I)LiaMn2-xx4-σ(式(I)中、Mは、Mnの一部を置換する置換元素群(Li、Mg、Ca及びTi、又はLi及びAl)、Xは、0<X≦0.5の範囲の置換元素群(M)の置換量、aは、0.1≦a≦1.3の範囲のLi量、σは、0≦σ≦0.05の範囲の酸素欠損量をそれぞれ意味する)で示されるスピネル構造を有するマンガン酸リチウムを構成することになる元素を含むものを用い、
前記出発原料を、酸化雰囲気中、900〜1000℃の範囲の温度で、5〜50時間の範囲の時間をかけて焼成し、次いで、酸化雰囲気中、600〜900℃の範囲の温度で、1〜50時間の範囲の時間をかけて再焼成し、前記式(I)で示されるとともに、その比表面積が1m2/g以下である前記スピネル構造を有するマンガン酸リチウムを得ることを特徴とするマンガン酸リチウムの製造方法。
A method for producing lithium manganate contained in a positive electrode active material of a lithium secondary battery,
As a starting material, in the general formula (I) LiaMn 2-x M x O 4- σ ( formula (I), M is a substituted element group for substituting a part of Mn (Li, Mg, Ca and Ti, or Li And Al), X is the substitution amount of the substitution element group (M) in the range of 0 <X ≦ 0.5, a is the Li amount in the range of 0.1 ≦ a ≦ 1.3, and σ is 0 ≦ X each of which contains an element that constitutes lithium manganate having a spinel structure represented by σ ≦ 0.05 in the range of σ ≦ 0.05,
The starting material is baked in an oxidizing atmosphere at a temperature in the range of 900 to 1000 ° C. for 5 to 50 hours, and then in an oxidizing atmosphere at a temperature in the range of 600 to 900 ° C. Recalcination for a time in a range of ˜50 hours to obtain lithium manganate having the spinel structure represented by the formula (I) and having a specific surface area of 1 m 2 / g or less. A method for producing lithium manganate.
前記式(I)で示されるマンガン酸リチウムとして、その置換元素群(M)が、Li、Mg、Ca及びTiの場合、前記Li、Mg、Ca及びTiのそれぞれの置換量(XLi、XMg、XCa及びXTi)が、0<(XLi、XMg、XCa、XTi)≦0.2の範囲にあるものを用いる請求項8に記載のマンガン酸リチウムの製造方法。 As the lithium manganate represented by the formula (I), when the substitution element group (M) is Li, Mg, Ca and Ti, the respective substitution amounts of the Li, Mg, Ca and Ti (X Li , X The method for producing lithium manganate according to claim 8, wherein Mg , X Ca and X Ti ) are in the range of 0 <(X Li , X Mg , X Ca , X Ti ) ≦ 0.2. 前記式(I)で示されるマンガン酸リチウムとして、その置換元素群(M)がAlを含む場合、前記Alの置換量(XAl)が、0<(XAl)≦0.4の範囲にあるものを用いる請求項8又は9に記載のマンガン酸リチウムの製造方法。 As the lithium manganate represented by the formula (I), when the substitution element group (M) contains Al, the substitution amount (X Al ) of the Al is in the range of 0 <(X Al ) ≦ 0.4. The method for producing lithium manganate according to claim 8 or 9, wherein a certain one is used. 前記式(I)で示されるマンガン酸リチウムとして、その結晶子サイズが600Å以上で、格子歪が0.1%以下であるものを用いる請求項8〜10のいずれかに記載のマンガン酸リチウムの製造方法。   11. The lithium manganate according to claim 8, wherein the lithium manganate represented by the formula (I) has a crystallite size of 600 mm or more and a lattice strain of 0.1% or less. Production method. 前記式(I)で示されるマンガン酸リチウムとして、その(440)面XRD回折ピークにおける積分幅が0.5以下であるものを用いる請求項8〜11のいずれかに記載のマンガン酸リチウムの製造方法。   The production of lithium manganate according to any one of claims 8 to 11, wherein the lithium manganate represented by the formula (I) is one having an integration width of 0.5 or less in the (440) plane XRD diffraction peak. Method.
JP2005067569A 2005-03-10 2005-03-10 Lithium secondary battery and manufacturing method of lithium manganate Withdrawn JP2006252940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067569A JP2006252940A (en) 2005-03-10 2005-03-10 Lithium secondary battery and manufacturing method of lithium manganate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067569A JP2006252940A (en) 2005-03-10 2005-03-10 Lithium secondary battery and manufacturing method of lithium manganate

Publications (1)

Publication Number Publication Date
JP2006252940A true JP2006252940A (en) 2006-09-21

Family

ID=37093206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067569A Withdrawn JP2006252940A (en) 2005-03-10 2005-03-10 Lithium secondary battery and manufacturing method of lithium manganate

Country Status (1)

Country Link
JP (1) JP2006252940A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251390A (en) * 2007-03-30 2008-10-16 Toda Kogyo Corp Nonaqueous electrolyte secondary battery, manganate lithium therefor, and manufacturing method thereof
WO2009063630A1 (en) 2007-11-12 2009-05-22 Toda Kogyo Corporation Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2009084214A1 (en) 2007-12-28 2009-07-09 Toda Kogyo Corporation Lithium manganate for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2009227506A (en) * 2008-03-21 2009-10-08 National Institute Of Advanced Industrial & Technology Manganese oxide, electrode active material for secondary battery, those producing methods and lithium secondary battery using electrode active material for secondary battery
JP2009227505A (en) * 2008-03-21 2009-10-08 National Institute Of Advanced Industrial & Technology Manganese oxide, electrode active material for battery, those producing methods and secondary battery using electrode active material for battery
WO2010032449A1 (en) 2008-09-18 2010-03-25 戸田工業株式会社 Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
WO2011002074A1 (en) * 2009-07-03 2011-01-06 三井金属鉱業株式会社 Method for producing lithium transition metal oxide
WO2012008480A1 (en) 2010-07-16 2012-01-19 三井金属鉱業株式会社 Spinel-type lithium transition metal oxide and positive electrode active material substance for lithium batteries
WO2012039563A3 (en) * 2010-09-20 2012-05-31 주식회사 엘지화학 Positive electrode active material comprising lithium manganese oxide and non-aqueous electrolyte secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126364A1 (en) 2007-03-30 2008-10-23 Toda Kogyo Corporation Lithium manganese for non-aqueous electrolyte secondary battery, method for production thereof, and non-aqueous electrolyte secondary battery
JP2008251390A (en) * 2007-03-30 2008-10-16 Toda Kogyo Corp Nonaqueous electrolyte secondary battery, manganate lithium therefor, and manufacturing method thereof
US8821766B2 (en) 2007-03-30 2014-09-02 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
US8440113B2 (en) 2007-03-30 2013-05-14 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
WO2009063630A1 (en) 2007-11-12 2009-05-22 Toda Kogyo Corporation Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US8323612B2 (en) 2007-12-28 2012-12-04 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
WO2009084214A1 (en) 2007-12-28 2009-07-09 Toda Kogyo Corporation Lithium manganate for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2009176732A (en) * 2007-12-28 2009-08-06 Toda Kogyo Corp Lithium manganate for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery
JP2009227506A (en) * 2008-03-21 2009-10-08 National Institute Of Advanced Industrial & Technology Manganese oxide, electrode active material for secondary battery, those producing methods and lithium secondary battery using electrode active material for secondary battery
JP2009227505A (en) * 2008-03-21 2009-10-08 National Institute Of Advanced Industrial & Technology Manganese oxide, electrode active material for battery, those producing methods and secondary battery using electrode active material for battery
WO2010032449A1 (en) 2008-09-18 2010-03-25 戸田工業株式会社 Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
KR20110061565A (en) 2008-09-18 2011-06-09 도다 고교 가부시끼가이샤 Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
WO2011002074A1 (en) * 2009-07-03 2011-01-06 三井金属鉱業株式会社 Method for producing lithium transition metal oxide
JP4673451B2 (en) * 2009-07-03 2011-04-20 三井金属鉱業株式会社 Method for producing lithium transition metal oxide
JP4939670B2 (en) * 2010-07-16 2012-05-30 三井金属鉱業株式会社 Spinel type lithium transition metal oxide and cathode active material for lithium battery
WO2012008480A1 (en) 2010-07-16 2012-01-19 三井金属鉱業株式会社 Spinel-type lithium transition metal oxide and positive electrode active material substance for lithium batteries
US8734998B2 (en) 2010-07-16 2014-05-27 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium transition metal oxide and positive electrode active material for lithium battery
WO2012039563A3 (en) * 2010-09-20 2012-05-31 주식회사 엘지화학 Positive electrode active material comprising lithium manganese oxide and non-aqueous electrolyte secondary battery
US9515314B2 (en) 2010-09-20 2016-12-06 Lg Chem, Ltd. Cathode active material comprising lithium manganese-based oxide and non-aqueous electrolyte secondary battery based upon the same

Similar Documents

Publication Publication Date Title
TWI613858B (en) Bivalent metal doping for sodium manganese oxide as cathode materials for sodium ion batteries
JP3142522B2 (en) Lithium secondary battery
JP4959145B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4954481B2 (en) Lithium secondary battery
US7892679B2 (en) Non-aqueous electrolyte secondary battery
KR20190008120A (en) Ni based cathode material for rechargeable lithium-ion batteries
KR20130098372A (en) Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
KR20120068826A (en) Lithium ion batteries with long cycling performance
JP2004253169A (en) Lithium secondary battery and manufacturing method of positive electrode active material used therefor
JP2006236830A (en) Lithium secondary battery
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
JP2006252940A (en) Lithium secondary battery and manufacturing method of lithium manganate
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2000200607A (en) Lithium secondary battery
KR20160125386A (en) Positive electrode mixture and nonaqueous electrolyte secondary cell
US20100081056A1 (en) Non-aqueous electrolyte secondary battery, positive electrode active material used for the battery, and manufacturing method of the positive electrode active material
JP2004241242A (en) Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP2004235166A (en) Lithium secondary battery
JP3497420B2 (en) Lithium secondary battery
JP3631150B2 (en) Method for selecting lithium manganate and method for producing lithium secondary battery
JP4209160B2 (en) Lithium secondary battery
JP3563268B2 (en) Lithium secondary battery
JP2004087278A (en) Manufacturing method of lithium secondary battery and positive electrode active material used for it

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513