JP5846482B2 - Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member - Google Patents

Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member Download PDF

Info

Publication number
JP5846482B2
JP5846482B2 JP2011226352A JP2011226352A JP5846482B2 JP 5846482 B2 JP5846482 B2 JP 5846482B2 JP 2011226352 A JP2011226352 A JP 2011226352A JP 2011226352 A JP2011226352 A JP 2011226352A JP 5846482 B2 JP5846482 B2 JP 5846482B2
Authority
JP
Japan
Prior art keywords
sodium
manganese
composite oxide
titanium
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011226352A
Other languages
Japanese (ja)
Other versions
JP2012206925A (en
Inventor
秋本 順二
順二 秋本
直哉 石田
直哉 石田
早川 博
博 早川
今泉 純一
純一 今泉
英香 渋谷
英香 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tanaka Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tanaka Chemical Corp
Priority to JP2011226352A priority Critical patent/JP5846482B2/en
Publication of JP2012206925A publication Critical patent/JP2012206925A/en
Application granted granted Critical
Publication of JP5846482B2 publication Critical patent/JP5846482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ナトリウム二次電池用の正極材料活物質及びその製造方法、並びにそれを部材として使用したナトリウム二次電池に関する。 The present invention relates to a positive electrode material active material for a sodium secondary battery, a method for producing the same, and a sodium secondary battery using the same as a member.

現在我が国においては、携帯電話、ノートパソコンなどの携帯型電子機器に搭載されている二次電池のほとんどは、リチウム二次電池である。また、リチウム二次電池は、今後はハイブリッドカー、電力負荷平準化システム用などの大形電池としても実用化されるものと予想されており、その重要性はますます高まっている。 Currently, in Japan, most of the secondary batteries installed in portable electronic devices such as mobile phones and notebook computers are lithium secondary batteries. In addition, lithium secondary batteries are expected to be put into practical use as large batteries for hybrid cars and power load leveling systems in the future, and their importance is increasing.

このリチウム二次電池は、いずれもリチウムを可逆的に吸蔵・放出することが可能な材料を含有する正極及び負極、非水系有機溶媒にリチウムイオン伝導体を溶解させた電解液、セパレータを主要構成要素とする。 This lithium secondary battery mainly comprises a positive electrode and a negative electrode containing materials capable of reversibly occluding and releasing lithium, an electrolyte solution in which a lithium ion conductor is dissolved in a non-aqueous organic solvent, and a separator. Element.

これらの構成要素のうち、電極用の活物質として検討されているのは、リチウムコバルト酸化物(LiCoO)、リチウムマンガン酸化物(LiMn)、リチウムチタン酸化物(LiTi12)などの酸化物系、金属リチウム、リチウム合金、スズ合金などの金属系、及び黒鉛、MCMB(メソカーボンマイクロビーズ)などの炭素系材料が挙げられる。 Among these constituent elements, lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMn 2 O 4 ), and lithium titanium oxide (Li 4 Ti 5 O) are considered as active materials for electrodes. 12 ) and other metal materials such as metal lithium, lithium alloy and tin alloy, and carbon materials such as graphite and MCMB (mesocarbon microbeads).

これらの材料について、それぞれの活物質中のリチウム含有量における、化学ポテンシャルの差によって、電池の電圧が決定されるが、特に組み合わせによって、大きな電位差を形成できることが、エネルギー密度に優れるリチウム二次電池の特徴である。 For these materials, the voltage of the battery is determined by the difference in chemical potential in the lithium content of each active material, but a lithium potential battery that is excellent in energy density is capable of forming a large potential difference depending on the combination. It is the feature.

その中でも、層状岩塩型構造を有するリチウムコバルト酸化物LiCoO活物質と炭素材料を電極とした組み合わせにおいて、4V近い電圧が可能となり、また充放電容量(電極から脱離・挿入可能なリチウム量)も大きく、さらに安全性も高いことから、この電極材料の組み合わせが、現行のリチウム二次電池において広く採用されている。 Among them, in the combination using a lithium cobalt oxide LiCoO 2 active material having a layered rock salt structure and a carbon material as an electrode, a voltage close to 4V is possible, and charge / discharge capacity (amount of lithium that can be desorbed / inserted from the electrode) This combination of electrode materials is widely used in current lithium secondary batteries because of its large size and safety.

今後、二次電池は、自動車用電源や大容量のバックアップ電源、緊急用電源など、大型で高出力、長寿命のものが必要となることが予測されることから、前項のような酸化物系正極材料活物質について、さらに高性能(高容量)な電極活物質が必要とされていた。 In the future, secondary batteries are expected to be large, high-power, long-life, such as automotive power supplies, large-capacity backup power supplies, and emergency power supplies. As a positive electrode material active material, a higher performance (high capacity) electrode active material has been required.

一方、大型蓄電池の普及に伴って、資源量が少ないリチウムを使用することは、資源とコストの観点からも問題であり、リチウムを使用しない化学電池の開発が必要とされていた。 On the other hand, with the spread of large-sized storage batteries, the use of lithium with a small amount of resources is also a problem from the viewpoint of resources and costs, and the development of chemical batteries that do not use lithium has been required.

このような観点から、近年では、リチウムに代わりナトリウムを利用したナトリウム二次電池の検討がなされている。すなわち、リチウムに代わりナトリウムを利用した二次電池が作製できれば、資源・コストの観点から、優れた二次電池を製造することが可能となる。 From such a viewpoint, in recent years, sodium secondary batteries using sodium instead of lithium have been studied. That is, if a secondary battery using sodium instead of lithium can be manufactured, an excellent secondary battery can be manufactured from the viewpoint of resources and cost.

その際、現行のリチウム二次電池と同様の材料構成が可能であり、酸化物系の正極材料活物質、炭素材料系の負極材料活物質、非水系の電解液からなる電池構成が検討されている。 At that time, a material configuration similar to that of the current lithium secondary battery is possible, and a battery configuration comprising an oxide-based positive electrode material active material, a carbon material-based negative electrode material active material, and a non-aqueous electrolyte solution has been studied. Yes.

すなわち、正極材料として、ナトリウムを吸蔵・放出可能であり、かつ可逆性が高く、吸蔵量が多いナトリウム酸化物系が必要となる。 That is, a sodium oxide system that can occlude and release sodium, has high reversibility, and has a large amount of occlusion is required as a positive electrode material.

特に、二次電池の低コストを目指すのであれば、正極材料酸化物についても資源的に乏しいコバルト、ニッケルなどを活物質構成元素として使用しないような正極材料の開発が必要とされていた。 In particular, if aiming at low cost of the secondary battery, it has been necessary to develop a positive electrode material that does not use cobalt, nickel, etc., which are scarce in resources, as active material constituent elements.

このような観点で、リチウム二次電池において検討されているのと同様に、マンガン酸化物系活物質は、対極にナトリウム金属を使用した場合、約3V程度の電圧であることから、様々な結晶構造を有する材料がナトリウム二次電池正極活物質としての可能性について検討されている。 From this point of view, the manganese oxide active material has a voltage of about 3 V when sodium metal is used as the counter electrode, as in the case of lithium secondary batteries. The possibility of a material having a structure as a positive electrode active material for a sodium secondary battery has been studied.

中でも、ナトリウムマンガン酸化物Na0.44MnOは、ナトリウム基準で約3V領域で、ナトリウム脱離・挿入反応の可逆性が良好であることから、現在、検討がなされている。(非特許文献1) Among them, sodium manganese oxide Na 0.44 MnO 2 is currently under investigation because it has a good reversibility of sodium elimination / insertion reaction in the region of about 3 V on the basis of sodium. (Non-Patent Document 1)

本材料は、マンガンの一部をチタンに置換することによって、結晶構造の安定性、およびイオン伝導性が改善されることから、電極材料としての適用が期待されている。(非特許文献2、特許文献1) This material is expected to be applied as an electrode material since the stability of the crystal structure and the ionic conductivity are improved by substituting a part of manganese with titanium. (Non-patent document 2, Patent document 1)

しかしながら、酸化物活物質重量当たりの容量は100−150mA/g程度しかなく、高容量ナトリウム二次電池への応用は困難であった。 However, the capacity per weight of the oxide active material is only about 100 to 150 mA / g, and application to a high capacity sodium secondary battery has been difficult.

一方、層状岩塩型構造を有するナトリウムマンガン酸化物NaMnOは、ナトリウム含有量が多いことから、高容量材料として注目されている。 On the other hand, sodium manganese oxide NaMnO 2 having a layered rock salt structure has been attracting attention as a high-capacity material because of its high sodium content.

中でも、菱面体晶系で空間群R−3mの層状岩塩型構造を有するナトリウムニッケルマンガン酸化物(NaNi0.5Mn0.5)は、ナトリウム基準で約3Vの電位平坦部を有し、185mAh/g程度の放電容量が報告されている。(特許文献2、非特許文献3参照) Among them, sodium nickel manganese oxide (NaNi 0.5 Mn 0.5 O 2 ) having a rhombohedral system and a layered rock salt structure of the space group R-3m has a potential flat portion of about 3 V on the basis of sodium. A discharge capacity of about 185 mAh / g has been reported. (See Patent Document 2 and Non-Patent Document 3)

しかしながら、公知のこれらの材料の充放電反応は、含有するニッケルの2価−4価の酸化還元反応を利用するものであるため、構成する遷移金属元素に対してニッケルが50%以上含有する必要があることから、二次電池の低コスト化には繋がらず、問題となっていた。 However, since the known charge / discharge reaction of these materials uses a bivalent to tetravalent oxidation-reduction reaction of nickel contained, it is necessary to contain 50% or more of nickel with respect to the constituent transition metal element. Therefore, the secondary battery is not cost-effective and has been a problem.

このような状況で、層状岩塩型構造を有する系で、ナトリウム、マンガン、チタンを主要構成元素とし、一部ニッケルを置換したような酸化物系については、検討されていなかった。
Under such circumstances, an oxide system in which sodium, manganese, and titanium are main constituent elements and nickel is partially substituted in a system having a layered rock salt structure has not been studied.

特許第4257426号Japanese Patent No. 4257426 特願2009−079178Japanese Patent Application No. 2009-079178

F.Sauvage,L.Laffont,J.−M.Tarascon,E.Baudrin,Inorganic Chemistry,46,3289−3294(2007)F. Sauvage, L.A. Laffont, J.M. -M. Tarascon, E .; Baudrin, Inorganic Chemistry, 46, 3289-3294 (2007) F.Funabiki,H.Hayakawa,N.Kijima,J.Akimoto,Electrocehmical and Solid−State Letters,12,F35−F38(2009)F. Funabiki, H .; Hayagawa, N .; Kijima, J .; Akimoto, Electrochemical and Solid-State Letters, 12, F35-F38 (2009) S.Komaba,T.Nakayama,A.Ogata,T.Shimizu,C.Takei,S.Takada,A.Hokura,I.Nakai,ECS Transactions,16,43−55(2009)S. Komaba, T .; Nakayama, A .; Ogata, T .; Shimizu, C.I. Takei, S .; Takada, A .; Hokuura, I. et al. Nakai, ECS Transactions, 16, 43-55 (2009)

したがって、本発明は、上記のような現状の課題を解決し、高容量が期待できるナトリウム二次電池正極材料として重要な層状岩塩型構造を有するナトリウムマンガンチタンニッケル酸化物活物質、およびその製造方法、並びにその活物質を含有した電極を構成部材として含むナトリウム二次電池を提供することを課題とする。 Accordingly, the present invention solves the above-mentioned problems as described above, and a sodium manganese titanium nickel oxide active material having a layered rock-salt structure that is important as a positive electrode material for sodium secondary batteries that can be expected to have a high capacity, and a method for producing the same An object of the present invention is to provide a sodium secondary battery including an electrode containing the active material as a constituent member.

本発明者は鋭意検討した結果、原料化合物を高温焼成する製造方法によって、層状岩塩型構造を有するナトリウムマンガンチタンニッケル複合酸化物NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)が作製可能であることが確認でき、さらに、このナトリウムマンガンチタンニッケル複合酸化物を正極活物質として作製した電極を用いたナトリウム二次電池において、200mAh/gを超える高容量と、可逆的な充放電反応が確認できたことで、本発明は完成するに至った。 The present inventors have a result of intensive studies, the manufacturing method of high-temperature baking of the raw material compound, sodium manganese titanium-nickel composite oxide having a layered rock-salt structure Na x Mn y Ti z Ni 1 -y-z O 2 ( although Shikichu , 0 <x ≦ 1.0, 0.5 <y < 1.0, 0 < z ≦ 0.5 , 0.5 <y + z <1.0 ) can be confirmed. In a sodium secondary battery using an electrode made of sodium manganese titanium nickel composite oxide as a positive electrode active material, a high capacity exceeding 200 mAh / g and a reversible charge / discharge reaction were confirmed, and the present invention was completed. It came to do.

本発明は、下記に示す層状岩塩型構造を有するナトリウムマンガンチタンニッケル複合酸化物NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)、及びその製造方法を提供する。

すなわち、本発明は、NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)なる化学組成を有することを特徴とするナトリウムマンガンチタンニッケル複合酸化物である。
また本発明は、NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)なる化学組成を有し、結晶構造が、層状岩塩型構造であることを特徴とするナトリウムマンガンチタンニッケル複合酸化物である。
さらに本発明は、NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)なる化学組成を有し、結晶構造が、菱面体晶系に属する層状岩塩型構造であることを特徴とするナトリウムマンガンチタンニッケル複合酸化物である。
さらに本発明は、出発原料として、酢酸ナトリウムとマンガン、チタン、ニッケルの1種類以上を含有する水酸化物を所定の原子比で混合し、400℃以上1000℃以下の温度で高温焼成することによって合成することを特徴とするNaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)なる化学組成を有することを特徴とするナトリウムマンガンチタンニッケル複合酸化物の製造方法である。
また、本発明のナトリウムマンガンチタンニッケル複合酸化物の製造方法においては、出発原料として、マンガン、チタン、ニッケルの1種類以上を含有する水酸化物が、あらかじめ共沈法で得られた水酸化物を用いることができる。
またさらに、本発明は、正極、負極、セパレータ及び電解質を含むナトリウム二次電池において、本発明のナトリウムマンガンチタンニッケル複合酸化物を正極の電極活物質として含有する正極を用いたナトリウム二次電池に関するものでもある。
The present invention, sodium manganese titanium-nickel composite oxide Na x Mn y Ti z Ni 1 -y-z O 2 ( except Shikichu having a layered rock-salt structure shown below, 0 <x ≦ 1.0, 0.5 <Y <1.0, 0 <z ≦ 0.5, 0.5 <y + z <1.0 ), and a production method thereof.

That is, the present invention, Na x Mn y Ti z Ni 1-y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0.5 0.5 <y + z <1.0 ), which is a sodium manganese titanium nickel composite oxide characterized by having a chemical composition.
The present invention, Na x Mn y Ti z Ni 1-y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0.5, A sodium manganese titanium-nickel composite oxide having a chemical composition of 0.5 <y + z <1.0 ) and a crystal structure of a layered rock salt structure.
The present invention further, Na x Mn y Ti z Ni 1-y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0.5, A sodium manganese titanium-nickel composite oxide having a chemical composition of 0.5 <y + z <1.0 ) and a crystal structure of a layered rock salt structure belonging to a rhombohedral system.
Furthermore, the present invention includes mixing as a starting material a hydroxide containing sodium acetate and one or more of manganese, titanium, and nickel at a predetermined atomic ratio, and firing at a high temperature at a temperature of 400 ° C. to 1000 ° C. Na x Mn y Ti z Ni 1 -y-z O 2 ( except Shikichu, characterized by combining, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0. 5, 0.5 <y + z <1.0 ). A method for producing a sodium manganese titanium-nickel composite oxide characterized by having a chemical composition.
In the method for producing a sodium manganese titanium nickel composite oxide of the present invention, a hydroxide containing at least one of manganese, titanium and nickel as a starting material is obtained in advance by a coprecipitation method. Can be used.
Furthermore, the present invention relates to a sodium secondary battery including a positive electrode, a negative electrode, a separator, and an electrolyte, and a sodium secondary battery using a positive electrode containing the sodium manganese titanium nickel composite oxide of the present invention as an electrode active material of the positive electrode. It is also a thing.

本発明によれば、層状岩塩型構造を有するナトリウムマンガンチタンニッケル複合酸化物NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)が作製可能であり、このナトリウムマンガンチタンニッケル複合酸化物を正極活物質として作製した電極を用いたナトリウム二次電池において、高容量と、可逆性の高い充放電特性が可能となる。 According to the present invention, sodium manganese titanium-nickel composite oxide having a layered rock-salt structure Na x Mn y Ti z Ni 1 -y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 < y <1.0, 0 <z ≦ 0.5, 0.5 <y + z <1.0 ), and sodium using an electrode prepared using this sodium manganese titanium nickel composite oxide as a positive electrode active material In the secondary battery, high capacity and charge / discharge characteristics with high reversibility are possible.

ナトリウム二次電池の1例を示す模式図である。It is a schematic diagram which shows one example of a sodium secondary battery. 実施例1で得られた本発明のナトリウムマンガンチタンニッケル複合酸化物Na0.57Mn0.51Ti0.23Ni0.26のX線粉末回折図形である。 2 is an X-ray powder diffraction pattern of sodium manganese titanium nickel composite oxide Na 0.57 Mn 0.51 Ti 0.23 Ni 0.26 O 2 of the present invention obtained in Example 1. FIG. 参考例1〜参考例4、および比較例1で得られた本発明のナトリウムマンガンチタン複合酸化物およびナトリウムマンガン酸化物のX線粉末回折図形である。 2 is an X-ray powder diffraction pattern of the sodium manganese titanium composite oxide and sodium manganese oxide of the present invention obtained in Reference Examples 1 to 4 and Comparative Example 1. FIG. 実施例2〜実施例8で得られた本発明のナトリウムマンガンチタンニッケル複合酸化物のX線粉末回折図形である。 It is an X-ray powder diffraction pattern of the sodium manganese titanium nickel composite oxide of the present invention obtained in Examples 2 to 8 . 実施例9で得られた本発明のナトリウムマンガンチタンニッケル複合酸化物Na1.0Mn0.61Ti0.24Ni0.15のX線粉末回折図形である。 4 is an X-ray powder diffraction pattern of sodium manganese titanium nickel composite oxide Na 1.0 Mn 0.61 Ti 0.24 Ni 0.15 O 2 of the present invention obtained in Example 9. FIG. 参考例4で得られた本発明のナトリウムマンガンチタン複合酸化物Na0.59Mn0.90Ti0.10を電極活物質として用いたナトリウム二次電池の充放電に伴う電圧変化を示す図である。It shows the voltage change due to charging and discharging of the sodium secondary battery using the sodium-manganese-titanium composite oxide Na 0.59 Mn 0.90 Ti 0.10 O 2 of the present invention obtained in Reference Example 4 as an electrode active material FIG. 実施例9で得られた本発明のナトリウムマンガンチタンニッケル複合酸化物Na1.0Mn0.61Ti0.24Ni0.15を電極活物質として用いたナトリウム二次電池の充放電に伴う電圧変化を示す図である。 For charging and discharging of a sodium secondary battery using the sodium manganese titanium nickel composite oxide Na 1.0 Mn 0.61 Ti 0.24 Ni 0.15 O 2 of the present invention obtained in Example 9 as an electrode active material It is a figure which shows the accompanying voltage change.

本発明者らは、構成元素を含む原料化合物を出発原料とした層状岩塩型構造を有するナトリウムマンガンチタンニッケル複合酸化物の製造方法について鋭意検討した結果、菱面体晶系に属する層状岩塩型構造となったNaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)が作製可能であることを見出し、同構造を有する新規化学組成の化合物であることを見出した。 As a result of intensive studies on a method for producing a sodium manganese titanium-nickel composite oxide having a layered rock salt structure using a raw material compound containing a constituent element as a starting material, the present inventors have found that the layered rock salt structure belonging to the rhombohedral system and since Na x Mn y Ti z Ni 1 -y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0.5,0.5 It was found that <y + z <1.0 ) can be produced, and it was found to be a compound having a novel chemical composition having the same structure.

その結果として、公知の層状岩塩型構造を有するナトリウムマンガン酸化物系と比べて、本発明の菱面体晶系に属する層状岩塩型構造を有するナトリウムマンガンチタンニッケル複合酸化物を活物質として作製した正極を使用したナトリウム二次電池において、200mAh/gを超える初期容量と、可逆性の高い充放電挙動が確認できたことから、本発明は完成するに至った。 As a result, compared with the sodium manganese oxide system having a known layered rock salt type structure, the positive electrode produced using the sodium manganese titanium nickel composite oxide having the layered rock salt type structure belonging to the rhombohedral system of the present invention as an active material In the sodium secondary battery using the above, the initial capacity exceeding 200 mAh / g and the reversible charge / discharge behavior were confirmed, and the present invention was completed.

本発明のナトリウムマンガンチタンニッケル複合酸化物は、構成元素を含む原料化合物を出発原料として高温焼成することで作製されたNaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)なる化学組成をもつ化合物である。
その結晶構造の特徴として、層状岩塩型構造を取ることを特徴とする化合物である。
より詳しい層状岩塩型構造の特徴として、結晶系が菱面体晶系に属する化合物である。
また、このナトリウムマンガンチタンニッケル複合酸化物の製造方法は、構成元素を含む原料化合物を出発原料として、400℃以上1000℃以下の温度で高温焼成することを特徴としている。
より詳しい製造方法としては、出発原料として、マンガン、チタン、ニッケルの1種類以上を含有する水酸化物を用いて合成することを特徴としている。
さらにまた、このナトリウムマンガンチタンニッケル複合酸化物は、蓄電池、ナトリウム二次電池において正極材料活物質として使用できることを特徴とする。
Sodium manganese titanium-nickel composite oxide of the present invention, Na x Mn y Ti z Ni 1-y-z O 2 ( except Shikichu the starting compound was prepared by high temperature firing as the starting material containing the constituent elements, 0 <X ≦ 1.0, 0.5 <y < 1.0, 0 <z ≦ 0.5 , 0.5 <y + z <1.0 ).
It is a compound characterized by taking a layered rock salt type structure as a characteristic of its crystal structure.
As a more detailed feature of the layered rock salt structure, the crystal system is a compound belonging to the rhombohedral system.
The method for producing the sodium manganese titanium nickel composite oxide is characterized by firing at a high temperature at a temperature of 400 ° C. or higher and 1000 ° C. or lower using a raw material compound containing a constituent element as a starting material.
A more detailed production method is characterized in that the starting material is synthesized using a hydroxide containing one or more of manganese, titanium, and nickel.
Furthermore, this sodium manganese titanium nickel composite oxide can be used as a positive electrode material active material in a storage battery and a sodium secondary battery.

本発明に係わる製造方法をさらに詳しく説明する。
(ナトリウムマンガンチタンニッケル複合酸化物NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)の合成)
本発明のナトリウムマンガンチタンニッケル複合酸化物NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)は、原料として、ナトリウム金属、或いはナトリウム化合物の少なくとも1種、及びマンガン金属、またはマンガン化合物の少なくとも1種、チタン金属、またはチタン化合物の少なくとも1種、ニッケル金属、またはニッケル化合物の少なくとも1種を、NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)の化学組成となるように秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって、製造することができる。
The production method according to the present invention will be described in more detail.
(Sodium manganese titanium-nickel composite oxide Na x Mn y Ti z Ni 1 -y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0 .5, 0.5 <y + z <1.0 ))
Sodium manganese titanium-nickel composite oxide Na x Mn y Ti z Ni 1 -y-z O 2 ( although Shikichu of the present invention, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0.5, 0.5 <y + z <1.0 ) is a raw material of sodium metal or at least one of sodium compounds, manganese metal or at least one of manganese compounds, titanium metal, or titanium compounds. at least one, at least one kind of, Na x Mn y Ti z Ni 1-y-z O 2 ( although Shikichu nickel metal or a nickel compound,, 0 <x ≦ 1.0, 0.5 <y <1 0.0, 0 <z ≦ 0.5, 0.5 <y + z <1.0 ) by weighing and mixing so as to have a chemical composition, and heating in an atmosphere in which oxygen gas exists such as in the air, Can be manufactured

あるいはまた、出発原料として、ナトリウム、マンガン、チタン、ニッケルの2種類以上からなる化合物を用いて、NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)の化学組成となるように秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって、製造することができる。 Alternatively, as a starting material, sodium, manganese, titanium, using a compound consisting of two or more of nickel, Na x Mn y Ti z Ni 1-y-z O 2 ( although Shikichu, 0 <x ≦ 1. 0, 0.5 <y <1.0 , 0 <z ≦ 0.5 , 0.5 <y + z <1.0 ) are weighed and mixed so that there is oxygen gas in the air. It can manufacture by heating in the atmosphere to do.

ナトリウム原料としては、ナトリウム(金属ナトリウム)及びナトリウム化合物の少な
くとも1種を用いる。ナトリウム化合物としては、ナトリウムを含有するものであれば特に制限されず、例えばCHCOONa、CHCOONa・3HO等の酢酸塩、NaNO等の塩類、NaOHなどの水酸化物、NaO、Na等の酸化物、NaCO等の炭酸塩等が挙げられる。或いはすでにNaTiO、NaTiなどのナトリウムチタン酸化物、NaMnOなどのナトリウムマンガン酸化物、NaNiOなどのナトリウムニッケル酸化物となっている化合物等が挙げられる。これらの中でも、500℃以下の低い温度でも反応性が高い、CHCOONa等が好ましい。
As the sodium raw material, at least one of sodium (metallic sodium) and a sodium compound is used. The sodium compound is not particularly limited as long as it contains sodium. For example, acetates such as CH 3 COONa, CH 3 COONa · 3H 2 O, salts such as NaNO 3 , hydroxides such as NaOH, Na 2 Examples thereof include oxides such as O and Na 2 O 2 and carbonates such as Na 2 CO 3 . Or already sodium titanium oxide such as Na 2 TiO 3, Na 2 Ti 3 O 7, sodium manganese oxides such as NaMnO 2, sodium nickel oxide and going on compounds such as NaNiO 2 and the like. Among these, CH 3 COONa, which has high reactivity even at a low temperature of 500 ° C. or lower, is preferable.

マンガン原料としては、マンガン(金属マンガン)及びマンガン化合物の少なくとも1種を用いる。マンガン化合物としては、マンガンを含有するものであれば特に制限されず、例えばMnO、Mn、Mn、MnO等の酸化物、MnOH、MnOOH等の水酸化物等が挙げられる。これらの中でも、マンガン水酸化物等が好ましい。 As the manganese raw material, at least one of manganese (metallic manganese) and a manganese compound is used. The manganese compound is not particularly limited as long as it contains manganese, and examples thereof include oxides such as MnO, Mn 2 O 3 , Mn 3 O 4 , and MnO 2 , and hydroxides such as MnOH and MnOOH. . Among these, manganese hydroxide and the like are preferable.

チタン原料としては、チタン(金属チタン)及びチタン化合物の少なくとも1種を用いる。チタン化合物としては、チタンを含有するものであれば特に制限されず、例えばTiO、Ti、TiO等の酸化物、TiCl等の塩類等が挙げられる。或いはすでにマンガンチタン化合物となっている水酸化物等が挙げられる。これらの中でも、600℃以下の低い温度でも反応性が高いマンガンチタン水酸化物等が好ましい。 As the titanium raw material, at least one of titanium (metallic titanium) and a titanium compound is used. The titanium compound is not particularly limited as long as it contains titanium, and examples thereof include oxides such as TiO, Ti 2 O 3 and TiO 2 , salts such as TiCl 4 and the like. Or the hydroxide etc. which are already manganese titanium compounds are mentioned. Among these, manganese titanium hydroxide having high reactivity even at a low temperature of 600 ° C. or lower is preferable.

ニッケル原料としては、ニッケル(金属ニッケル)及びニッケル化合物の少なくとも1種を用いる。ニッケル化合物としては、ニッケルを含有するものであれば特に制限されず、例えばNiO等の酸化物、NiOH、NiOOH等の水酸化物等が挙げられる。或いはすでにマンガンニッケル化合物となっている水酸化物、マンガンチタンニッケル化合物となっている水酸化物等が挙げられる。これらの中でも、500℃以下の低い温度でも反応性が高く、不純物が生成し難いことから、マンガンチタンニッケル水酸化物等が好ましい。 As the nickel raw material, at least one of nickel (metallic nickel) and a nickel compound is used. The nickel compound is not particularly limited as long as it contains nickel, and examples thereof include oxides such as NiO and hydroxides such as NiOH and NiOOH. Or the hydroxide already used as the manganese nickel compound, the hydroxide used as the manganese titanium nickel compound, etc. are mentioned. Among these, manganese titanium nickel hydroxide and the like are preferable because they are highly reactive even at a low temperature of 500 ° C. or lower and hardly generate impurities.

はじめに、これらを含む混合物を調整する。各構成元素の混合割合は、NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)の化学組成となるように混合することが好ましい。また、加熱時にナトリウムは揮発しやすいので、若干過剰の仕込み量とした方がよく、好ましくは、0.5〜1.1の範囲とすればよい。また、混合方法は、これらを均一に混合できる限り特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式又は乾式で混合すればよい。 First, a mixture containing these is prepared. The mixing ratio of the respective elements are, Na x Mn y Ti z Ni 1-y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0 0.5, 0.5 <y + z <1.0 ) It is preferable to mix so that it may become a chemical composition. Further, since sodium easily volatilizes during heating, it is better to make the amount slightly excessive, and preferably within the range of 0.5 to 1.1. Moreover, a mixing method is not specifically limited as long as these can be mixed uniformly, For example, what is necessary is just to mix by a wet type or a dry type using well-known mixers, such as a mixer.

次いで、混合物を焼成する。焼成温度は、原料によって適宜設定することができるが、通常は、400℃〜1000℃程度、好ましくは450℃から650℃とすればよい。また、焼成雰囲気も特に限定されず、通常は酸化性雰囲気又は大気中で実施すればよい。 The mixture is then fired. The firing temperature can be appropriately set depending on the raw materials, but is usually about 400 ° C to 1000 ° C, preferably 450 ° C to 650 ° C. Also, the firing atmosphere is not particularly limited, and it is usually performed in an oxidizing atmosphere or air.

焼成時間は、焼成温度等に応じて適宜変更することができる。冷却方法も特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷とすればよい。 The firing time can be appropriately changed according to the firing temperature and the like. The cooling method is not particularly limited, but may be natural cooling (cooling in the furnace) or slow cooling.

焼成後は、必要に応じて焼成物を公知の方法で粉砕し、さらに上記の焼成工程を実施してもよいが、ナトリウムの揮発を抑えるためには、1回の焼成とすることが好ましい。なお、粉砕の程度は、焼成温度などに応じて適宜調節すればよい。 After firing, the fired product may be pulverized by a known method as necessary, and the above firing step may be performed. However, in order to suppress sodium volatilization, it is preferable to perform firing once. Note that the degree of pulverization may be appropriately adjusted according to the firing temperature and the like.

(ナトリウム二次電池)
本発明のナトリウム二次電池は、前記ナトリウムマンガンチタンニッケル複合酸化物NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)を活物質として含有する正極を構成部材として用いるものである。すなわち、正極材料活物質として本発明のナトリウムマンガンチタンニッケル複合酸化物を用いる以外は、公知のナトリウム電池(コイン型、ボタン型、円筒型、全固体型等)の電池要素をそのまま採用することができる。図1は、本発明のナトリウム二次電池を、コイン型ナトリウム二次電池に適用した1例を示す模式図である。このコイン型電池1は、負極端子2、負極3、(セパレータ+電解液)4、絶縁パッキング5、正極6、正極缶7により構成される。
(Sodium secondary battery)
Sodium secondary battery of the present invention, the sodium manganese titanium-nickel composite oxide Na x Mn y Ti z Ni 1 -y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 <y < A positive electrode containing 1.0, 0 <z ≦ 0.5, 0.5 <y + z <1.0 ) as an active material is used as a constituent member. That is, a battery element of a known sodium battery (coin type, button type, cylindrical type, all solid type, etc.) can be used as it is, except that the sodium manganese titanium nickel composite oxide of the present invention is used as the positive electrode material active material. it can. FIG. 1 is a schematic view showing an example in which the sodium secondary battery of the present invention is applied to a coin-type sodium secondary battery. The coin-type battery 1 includes a negative electrode terminal 2, a negative electrode 3, a (separator + electrolyte) 4, an insulating packing 5, a positive electrode 6, and a positive electrode can 7.

本発明では、上記本発明のナトリウムマンガンチタンニッケル複合酸化物活物質に、必要に応じて導電剤、結着剤等を配合して正極合材を調整し、これを集電体に圧着することにより正極が作製できる。集電体としては、好ましくはステンレスメッシュ、アルミメッシュ、アルミ箔等を用いることができる。導電剤としては、好ましくはアセチレンブラック、ケッチェンブラック等を用いることができる。結着剤としては、好ましくはテトラフルオロエチレン、ポリフッ化ビニリデン等を用いることができる。 In the present invention, the sodium manganese titanium nickel composite oxide active material of the present invention is mixed with a conductive agent, a binder or the like as necessary to prepare a positive electrode mixture, and this is crimped to a current collector. Thus, a positive electrode can be produced. As the current collector, a stainless mesh, an aluminum mesh, an aluminum foil or the like can be preferably used. As the conductive agent, acetylene black, ketjen black or the like can be preferably used. As the binder, tetrafluoroethylene, polyvinylidene fluoride, or the like can be preferably used.

正極合材におけるナトリウムマンガンチタンニッケル複合酸化物活物質、導電剤、結着剤等の配合も特に限定的ではないが、通常は導電剤が1〜30重量%程度(好ましくは5〜25重量%)、結着剤が0〜30重量%(好ましくは3〜10重量%)とし、残部を本発明のナトリウムマンガンチタンニッケル複合酸化物活物質となるようにすればよい。 The composition of the sodium manganese titanium nickel composite oxide active material, the conductive agent, the binder and the like in the positive electrode mixture is not particularly limited, but usually the conductive agent is about 1 to 30% by weight (preferably 5 to 25% by weight). ), The binder may be 0 to 30% by weight (preferably 3 to 10% by weight), and the balance may be the sodium manganese titanium nickel composite oxide active material of the present invention.

本発明のナトリウム二次電池において、上記正極に対する対極としては、例えば金属ナトリウム、ナトリウム合金、及び黒鉛、MCMB(メソカーボンマイクロビーズ)などの炭素系材料など、負極として機能し、ナトリウムを吸蔵・放出可能な公知のものを採用することができる。 In the sodium secondary battery of the present invention, the counter electrode with respect to the positive electrode functions as a negative electrode such as metallic sodium, sodium alloy, and carbon-based materials such as graphite and MCMB (mesocarbon microbeads), and occludes and releases sodium. Possible known ones can be employed.

また、本発明のナトリウム二次電池において、セパレータ、電池容器等も公知の電池要素を採用すればよい。 Moreover, in the sodium secondary battery of the present invention, a known battery element may be adopted for the separator, the battery container, and the like.

さらに、電解質としても公知の電解液、固体電解質等が適用できる。例えば、電解液としては、過塩素酸ナトリウム等の電解質を、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等の溶媒に溶解させたものが使用できる。 Furthermore, known electrolyte solutions, solid electrolytes, and the like can be applied as the electrolyte. For example, as the electrolytic solution, an electrolyte such as sodium perchlorate dissolved in a solvent such as propylene carbonate (PC) or ethylene carbonate (EC) can be used.

以下に、実施例を示し、本発明の特徴とするところをより一層明確にする。本発明は、これら実施例に限定されるものではない。 Hereinafter, examples will be shown to further clarify the features of the present invention. The present invention is not limited to these examples.

(ナトリウムマンガンチタンニッケル複合酸化物Na0.57Mn0.51Ti0.22Ni0.26の合成)
純度99%以上の酢酸ナトリウム(CHCOONa)粉末と、共沈法によって得られたマンガンチタンニッケル水酸化物(Mn:Ti:Ni=0.50:0.25:0.25)粉末を原子量比でNa:Mn:Ni:Ti=0.7:0.50:0.25:0.25となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
(Synthesis of sodium manganese titanium nickel composite oxide Na 0.57 Mn 0.51 Ti 0.22 Ni 0.26 O 2 )
An atomic weight of sodium acetate (CH 3 COONa) powder having a purity of 99% or more and manganese titanium nickel hydroxide powder (Mn: Ti: Ni = 0.50: 0.25: 0.25) obtained by a coprecipitation method The ratio of Na: Mn: Ni: Ti was 0.7: 0.50: 0.25: 0.25. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、菱面体晶系の単一相であることが明らかとなった。この時の粉末X線回折図形を図2に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、格子定数からも新規化学組成を有する層状岩塩型構造であることが確認された。
a=0.289nm±0.001nm
c=1.685nm±0.002nm
When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer (trade name: RINT2550V, manufactured by Rigaku), it was found to be a rhombohedral single phase having good crystallinity. . The powder X-ray diffraction pattern at this time is shown in FIG. In addition, when the lattice constant was obtained by the least square method using each index and the spacing between the surfaces, the following values were obtained, and it was confirmed from the lattice constant that the layered rock salt structure had a new chemical composition.
a = 0.289 nm ± 0.001 nm
c = 1.485 nm ± 0.002 nm

さらに、得られた化合物について、ICP発光分析法(VARIAN社製、商品名VISTA−Pro)により化学組成を分析したところ、Na0.57Mn0.51Ti0.22Ni0.26の組成式であることが明らかとなった。 Furthermore, when the chemical composition of the obtained compound was analyzed by ICP emission analysis (trade name VISTA-Pro, manufactured by VARIAN), Na 0.57 Mn 0.51 Ti 0.22 Ni 0.26 O 2 was analyzed. It became clear that it was a composition formula.

参考例1
(ナトリウムマンガンチタン複合酸化物Na0.56Mn0.53Ti0.47の合成)
純度99%以上の酢酸ナトリウム(CHCOONa)粉末と、マンガンチタンの組成比が、Mn:Ti=0.51:0.49組成であらかじめ共沈法で得られたマンガンチタン水酸化物粉末を原子量比でNa:M(M=Mn、Ti)=0.7:1.0となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
( Reference Example 1 )
(Synthesis of sodium manganese titanium composite oxide Na 0.56 Mn 0.53 Ti 0.47 O 2 )
A manganese titanium hydroxide powder obtained by coprecipitation in advance with a composition ratio of sodium acetate (CH 3 COONa) powder of purity 99% or more and manganese titanium having a composition of Mn: Ti = 0.51: 0.49. It measured so that it might become Na: M (M = Mn, Ti) = 0.7: 1.0 by atomic weight ratio. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、いずれも結晶性はあまり高くないものの、菱面体晶系に属するほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図3(a)に示す。 When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was revealed that none of the obtained compounds was an almost single phase belonging to the rhombohedral system although the crystallinity was not so high. The powder X-ray diffraction pattern at this time is shown in FIG.

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na0.56Mn0.53Ti0.47なる化学組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that the chemical composition formula was Na 0.56 Mn 0.53 Ti 0.47 O 2 .

参考例2
(ナトリウムマンガンチタン複合酸化物Na0.64Mn0.70Ti0.30の合成)
純度99%以上の酢酸ナトリウム(CHCOONa)粉末と、マンガンチタンの組成比が、Mn:Ti=0.67:0.33組成であらかじめ共沈法で得られたマンガンチタン水酸化物粉末を原子量比でNa:M(M=Mn、Ti)=0.7:1.0となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
( Reference Example 2 )
(Synthesis of sodium manganese titanium composite oxide Na 0.64 Mn 0.70 Ti 0.30 O 2 )
A manganese titanium hydroxide powder having a composition ratio of sodium acetate (CH 3 COONa) having a purity of 99% or more and manganese titanium having a composition of Mn: Ti = 0.67: 0.33 and obtained in advance by a coprecipitation method. It measured so that it might become Na: M (M = Mn, Ti) = 0.7: 1.0 by atomic weight ratio. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、いずれも結晶性はあまり高くないものの、菱面体晶系に属するほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図3(b)に示す。 When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was revealed that none of the obtained compounds was an almost single phase belonging to the rhombohedral system although the crystallinity was not so high. The powder X-ray diffraction pattern at this time is shown in FIG.

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na0.64Mn0.70Ti0.30なる化学組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that the chemical composition formula was Na 0.64 Mn 0.70 Ti 0.30 O 2 .

参考例3
(ナトリウムマンガンチタン複合酸化物Na0.59Mn0.80Ti0.20の合成)
純度99%以上の酢酸ナトリウム(CHCOONa)粉末と、マンガンチタンの組成比が、Mn:Ti=0.77:0.23組成であらかじめ共沈法で得られたマンガンチタン水酸化物粉末を原子量比でNa:M(M=Mn、Ti)=0.7:1.0となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
( Reference Example 3 )
(Synthesis of sodium manganese titanium composite oxide Na 0.59 Mn 0.80 Ti 0.20 O 2 )
A manganese titanium hydroxide powder obtained by coprecipitation in advance with a composition ratio of sodium acetate (CH 3 COONa) powder having a purity of 99% or more and manganese titanium having a composition of Mn: Ti = 0.77: 0.23. It measured so that it might become Na: M (M = Mn, Ti) = 0.7: 1.0 by atomic weight ratio. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、いずれも結晶性はあまり高くないものの、菱面体晶系に属するほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図3(c)に示す。 When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was revealed that none of the obtained compounds was an almost single phase belonging to the rhombohedral system although the crystallinity was not so high. The powder X-ray diffraction pattern at this time is shown in FIG.

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na0.59Mn0.80Ti0.20なる化学組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that the chemical composition formula was Na 0.59 Mn 0.80 Ti 0.20 O 2 .

参考例4
(ナトリウムマンガンチタン複合酸化物Na0.59Mn0.90Ti0.10の合成)
純度99%以上の酢酸ナトリウム(CHCOONa)粉末と、マンガンチタンの組成比が、Mn:Ti=0.89:0.11組成であらかじめ共沈法で得られたマンガンチタン水酸化物粉末を原子量比でNa:M(M=Mn、Ti)=0.7:1.0となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
( Reference Example 4 )
(Synthesis of sodium manganese titanium composite oxide Na 0.59 Mn 0.90 Ti 0.10 O 2 )
A manganese titanium hydroxide powder having a composition ratio of sodium acetate (CH 3 COONa) having a purity of 99% or more and manganese titanium having a composition of Mn: Ti = 0.89: 0.11 and obtained in advance by a coprecipitation method. It measured so that it might become Na: M (M = Mn, Ti) = 0.7: 1.0 by atomic weight ratio. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、いずれも結晶性はあまり高くないものの、菱面体晶系に属するほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図3(d)に示す。 When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was revealed that none of the obtained compounds was an almost single phase belonging to the rhombohedral system although the crystallinity was not so high. The powder X-ray diffraction pattern at this time is shown in FIG.

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na0.59Mn0.90Ti0.10なる化学組成式であることが明らかとなった。 Furthermore, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that the chemical composition formula was Na 0.59 Mn 0.90 Ti 0.10 O 2 .

(ナトリウムマンガンチタンニッケル複合酸化物Na1.00Mn0.56Ti0.24Ni0.20の合成)
純度99%以上の酢酸ナトリウム三水和物(CHCOONa・3HO)粉末と、共沈法によって得られたマンガンチタンニッケル水酸化物(Mn:Ti:Ni=0.50:0.25:0.25)粉末と同マンガンチタン水酸化物(Mn:Ti:Ni=0.77:0.23)を原子量比でNa:Mn:Ni:Ti=1.0:0.56:0.20:0.24となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
(Synthesis of sodium manganese titanium nickel composite oxide Na 1.00 Mn 0.56 Ti 0.24 Ni 0.20 O 2 )
Sodium acetate trihydrate (CH 3 COONa · 3H 2 O) powder having a purity of 99% or more and manganese titanium nickel hydroxide (Mn: Ti: Ni = 0.50: 0.25) obtained by coprecipitation method : 0.25) powder and the same manganese titanium hydroxide (Mn: Ti: Ni = 0.77: 0.23) at an atomic weight ratio of Na: Mn: Ni: Ti = 1.0: 0.56: 0. 20: 0.24 was weighed. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、良好な結晶性を有する、菱面体晶系に属する層状岩塩型構造のほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図4(a)に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、格子定数からも新規化学組成を有する層状岩塩型構造であることが確認された。
a=0.289nm±0.001nm
c=1.679nm±0.001nm
When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was found that it was a substantially single phase of a layered rock salt structure belonging to a rhombohedral system having good crystallinity. The powder X-ray diffraction pattern at this time is shown in FIG. In addition, when the lattice constant was obtained by the least square method using each index and the spacing between the surfaces, the following values were obtained, and it was confirmed from the lattice constant that the layered rock salt structure had a new chemical composition.
a = 0.289 nm ± 0.001 nm
c = 1.679 nm ± 0.001 nm

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na1.0Mn0.56Ti0.24Ni0.20の組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that it was a composition formula of Na 1.0 Mn 0.56 Ti 0.24 Ni 0.20 O 2 .

(ナトリウムマンガンチタンニッケル複合酸化物Na1.00Mn0.61Ti0.24Ni0.15の合成)
純度99%以上の酢酸ナトリウム三水和物(CHCOONa・3HO)粉末と、共沈法によって得られたマンガンチタンニッケル水酸化物(Mn:Ti:Ni=0.50:0.25:0.25)粉末と同マンガンチタン水酸化物(Mn:Ti:Ni=0.77:0.23)を原子量比でNa:Mn:Ni:Ti=1.0:0.61:0.24:0.15となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
(Synthesis of sodium manganese titanium nickel composite oxide Na 1.00 Mn 0.61 Ti 0.24 Ni 0.15 O 2 )
Sodium acetate trihydrate (CH 3 COONa · 3H 2 O) powder having a purity of 99% or more and manganese titanium nickel hydroxide (Mn: Ti: Ni = 0.50: 0.25) obtained by coprecipitation method : 0.25) Powder and the same manganese titanium hydroxide (Mn: Ti: Ni = 0.77: 0.23) in terms of atomic weight ratio Na: Mn: Ni: Ti = 1.0: 0.61: 0. 24: Weighed to 0.15. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、良好な結晶性を有する、菱面体晶系に属する層状岩塩型構造のほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図4(b)に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、格子定数からも新規化学組成を有する層状岩塩型構造であることが確認された。
a=0.289nm±0.001nm
c=1.678nm±0.001nm
When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was found that it was a substantially single phase of a layered rock salt structure belonging to a rhombohedral system having good crystallinity. The powder X-ray diffraction pattern at this time is shown in FIG. In addition, when the lattice constant was obtained by the least square method using each index and the spacing between the surfaces, the following values were obtained, and it was confirmed from the lattice constant that the layered rock salt structure had a new chemical composition.
a = 0.289 nm ± 0.001 nm
c = 1.678 nm ± 0.001 nm

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na1.0Mn0.61Ti0.24Ni0.15の組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that it was a composition formula of Na 1.0 Mn 0.61 Ti 0.24 Ni 0.15 O 2 .

(ナトリウムマンガンチタンニッケル複合酸化物Na1.00Mn0.67Ti0.23Ni0.10の合成)
純度99%以上の酢酸ナトリウム三水和物(CHCOONa・3HO)粉末と、共沈法によって得られたマンガンチタンニッケル水酸化物(Mn:Ti:Ni=0.50:0.25:0.25)粉末と同マンガンチタン水酸化物(Mn:Ti:Ni=0.77:0.23)を原子量比でNa:Mn:Ni:Ti=1.0:0.67:0.23:0.10となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
(Synthesis of sodium manganese titanium nickel composite oxide Na 1.00 Mn 0.67 Ti 0.23 Ni 0.10 O 2 )
Sodium acetate trihydrate (CH 3 COONa · 3H 2 O) powder having a purity of 99% or more and manganese titanium nickel hydroxide (Mn: Ti: Ni = 0.50: 0.25) obtained by coprecipitation method : 0.25) powder and the same manganese titanium hydroxide (Mn: Ti: Ni = 0.77: 0.23) at an atomic weight ratio of Na: Mn: Ni: Ti = 1.0: 0.67: 0. 23: Weighed to be 0.10. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、良好な結晶性を有する、菱面体晶系に属する層状岩塩型構造のほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図4(c)に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、格子定数からも新規化学組成を有する層状岩塩型構造であることが確認された。
a=0.288nm±0.001nm
c=1.678nm±0.002nm
When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was found that it was a substantially single phase of a layered rock salt structure belonging to a rhombohedral system having good crystallinity. The powder X-ray diffraction pattern at this time is shown in FIG. In addition, when the lattice constant was obtained by the least square method using each index and the spacing between the surfaces, the following values were obtained, and it was confirmed from the lattice constant that the layered rock salt structure had a new chemical composition.
a = 0.288 nm ± 0.001 nm
c = 1.678 nm ± 0.002 nm

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na1.0Mn0.67Ti0.23Ni0.10の組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that the composition formula was Na 1.0 Mn 0.67 Ti 0.23 Ni 0.10 O 2 .

(ナトリウムマンガンチタンニッケル複合酸化物Na1.00Mn0.72Ti0.23Ni0.05の合成)
純度99%以上の酢酸ナトリウム三水和物(CHCOONa・3HO)粉末と、共沈法によって得られたマンガンチタンニッケル水酸化物(Mn:Ti:Ni=0.50:0.25:0.25)粉末と同マンガンチタン水酸化物(Mn:Ti:Ni=0.77:0.23)を原子量比でNa:Mn:Ni:Ti=1.0:0.72:0.23:0.05となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
(Synthesis of sodium manganese titanium nickel composite oxide Na 1.00 Mn 0.72 Ti 0.23 Ni 0.05 O 2 )
Sodium acetate trihydrate (CH 3 COONa · 3H 2 O) powder having a purity of 99% or more and manganese titanium nickel hydroxide (Mn: Ti: Ni = 0.50: 0.25) obtained by coprecipitation method : 0.25) powder and the same manganese titanium hydroxide (Mn: Ti: Ni = 0.77: 0.23) at an atomic weight ratio of Na: Mn: Ni: Ti = 1.0: 0.72: 0. Weighed to be 23: 0.05. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、良好な結晶性を有する、菱面体晶系に属する層状岩塩型構造のほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図4(d)に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、格子定数からも新規化学組成を有する層状岩塩型構造であることが確認された。
a=0.287nm±0.001nm
c=1.672nm±0.002nm
When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was found that it was a substantially single phase of a layered rock salt structure belonging to a rhombohedral system having good crystallinity. The powder X-ray diffraction pattern at this time is shown in FIG. In addition, when the lattice constant was obtained by the least square method using each index and the spacing between the surfaces, the following values were obtained, and it was confirmed from the lattice constant that the layered rock salt structure had a new chemical composition.
a = 0.287 nm ± 0.001 nm
c = 1.672 nm ± 0.002 nm

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na1.0Mn0.72Ti0.23Ni0.05の組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that the composition formula was Na 1.0 Mn 0.72 Ti 0.23 Ni 0.05 O 2 .

(ナトリウムマンガンチタンニッケル複合酸化物Na1.00Mn0.0.90Ti0.05Ni0.05の合成)
純度99%以上の酢酸ナトリウム三水和物(CHCOONa・3HO)粉末と、共沈法によって得られたマンガンチタンニッケル水酸化物(Mn:Ti:Ni=0.50:0.25:0.25)粉末と同マンガン水酸化物を原子量比でNa:Mn:Ni:Ti=1.0:0.90:0.05:0.05となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
(Synthesis of sodium manganese titanium nickel composite oxide Na 1.00 Mn 0.0.90 Ti 0.05 Ni 0.05 O 2 )
Sodium acetate trihydrate (CH 3 COONa · 3H 2 O) powder having a purity of 99% or more and manganese titanium nickel hydroxide (Mn: Ti: Ni = 0.50: 0.25) obtained by coprecipitation method : 0.25) The powder and the same manganese hydroxide were weighed so that the atomic weight ratio was Na: Mn: Ni: Ti = 1.0: 0.90: 0.05: 0.05. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、良好な結晶性を有する、菱面体晶系に属する層状岩塩型構造のほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図4(e)に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、格子定数からも新規化学組成を有する層状岩塩型構造であることが確認された。
a=0.286nm±0.001nm
c=1.675nm±0.005nm
When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was found that it was a substantially single phase of a layered rock salt structure belonging to a rhombohedral system having good crystallinity. The powder X-ray diffraction pattern at this time is shown in FIG. In addition, when the lattice constant was obtained by the least square method using each index and the spacing between the surfaces, the following values were obtained, and it was confirmed from the lattice constant that the layered rock salt structure had a new chemical composition.
a = 0.286 nm ± 0.001 nm
c = 1.675 nm ± 0.005 nm

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na1.0Mn0.90Ti0.05Ni0.05の組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that it was a composition formula of Na 1.0 Mn 0.90 Ti 0.05 Ni 0.05 O 2 .

(ナトリウムマンガンチタンニッケル複合酸化物Na1.00Mn0.80Ti0.10Ni0.10の合成)
純度99%以上の酢酸ナトリウム三水和物(CHCOONa・3HO)粉末と、共沈法によって得られたマンガンチタンニッケル水酸化物(Mn:Ti:Ni=0.50:0.25:0.25)粉末と同マンガン水酸化物を原子量比でNa:Mn:Ni:Ti=1.0:0.80:0.10:0.10となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
(Synthesis of sodium manganese titanium nickel composite oxide Na 1.00 Mn 0.80 Ti 0.10 Ni 0.10 O 2 )
Sodium acetate trihydrate (CH 3 COONa · 3H 2 O) powder having a purity of 99% or more and manganese titanium nickel hydroxide (Mn: Ti: Ni = 0.50: 0.25) obtained by coprecipitation method : 0.25) The powder and the manganese hydroxide were weighed so that the atomic weight ratio was Na: Mn: Ni: Ti = 1.0: 0.80: 0.10: 0.10. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、良好な結晶性を有する、菱面体晶系に属する層状岩塩型構造のほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図4(f)に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、格子定数からも新規化学組成を有する層状岩塩型構造であることが確認された。
a=0.286nm±0.001nm
c=1.673nm±0.004nm
When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was found that it was a substantially single phase of a layered rock salt structure belonging to a rhombohedral system having good crystallinity. The powder X-ray diffraction pattern at this time is shown in FIG. In addition, when the lattice constant was obtained by the least square method using each index and the spacing between the surfaces, the following values were obtained, and it was confirmed from the lattice constant that the layered rock salt structure had a new chemical composition.
a = 0.286 nm ± 0.001 nm
c = 1.673 nm ± 0.004 nm

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na1.0Mn0.80Ti0.10Ni0.10の組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that it was a composition formula of Na 1.0 Mn 0.80 Ti 0.10 Ni 0.10 O 2 .

(ナトリウムマンガンチタンニッケル複合酸化物Na1.00Mn0.0.70Ti0.15Ni0.15の合成)
純度99%以上の酢酸ナトリウム三水和物(CHCOONa・3HO)粉末と、共沈法によって得られたマンガンチタンニッケル水酸化物(Mn:Ti:Ni=0.50:0.25:0.25)粉末と同マンガン水酸化物を原子量比でNa:Mn:Ni:Ti=1.0:0.70:0.15:0.15となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
(Synthesis of sodium manganese titanium nickel composite oxide Na 1.00 Mn 0.0.70 Ti 0.15 Ni 0.15 O 2 )
Sodium acetate trihydrate (CH 3 COONa · 3H 2 O) powder having a purity of 99% or more and manganese titanium nickel hydroxide (Mn: Ti: Ni = 0.50: 0.25) obtained by coprecipitation method : 0.25) The powder and the manganese hydroxide were weighed so that the atomic weight ratio was Na: Mn: Ni: Ti = 1.0: 0.70: 0.15: 0.15. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、良好な結晶性を有する、菱面体晶系に属する層状岩塩型構造のほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図4(g)に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、格子定数からも新規化学組成を有する層状岩塩型構造であることが確認された。
a=0.288nm±0.001nm
c=1.679nm±0.002nm
When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was found that it was a substantially single phase of a layered rock salt structure belonging to a rhombohedral system having good crystallinity. The powder X-ray diffraction pattern at this time is shown in FIG. In addition, when the lattice constant was obtained by the least square method using each index and the spacing between the surfaces, the following values were obtained, and it was confirmed from the lattice constant that the layered rock salt structure had a new chemical composition.
a = 0.288 nm ± 0.001 nm
c = 1.679 nm ± 0.002 nm

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na1.0Mn0.70Ti0.15Ni0.15の組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that it was a composition formula of Na 1.0 Mn 0.70 Ti 0.15 Ni 0.15 O 2 .

(ナトリウムマンガンチタンニッケル複合酸化物Na0.7Mn0.61Ti0.24Ni0.15の合成)
純度99%以上の酢酸ナトリウム三水和物(CHCOONa・3HO)粉末と、共沈法によって得られたマンガンチタンニッケル水酸化物(Mn:Ti:Ni=0.50:0.25:0.25)粉末と同マンガンチタン水酸化物(Mn:Ti:Ni=0.77:0.23)を原子量比でNa:Mn:Ni:Ti=0.7:0.61:0.24:0.15となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
(Synthesis of sodium manganese titanium nickel composite oxide Na 0.7 Mn 0.61 Ti 0.24 Ni 0.15 O 2 )
Sodium acetate trihydrate (CH 3 COONa · 3H 2 O) powder having a purity of 99% or more and manganese titanium nickel hydroxide (Mn: Ti: Ni = 0.50: 0.25) obtained by coprecipitation method : 0.25) Powder and the same manganese titanium hydroxide (Mn: Ti: Ni = 0.77: 0.23) at an atomic weight ratio of Na: Mn: Ni: Ti = 0.7: 0.61: 0. 24: Weighed to 0.15. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、良好な結晶性を有する、菱面体晶系に属する層状岩塩型構造のほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図5に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、格子定数からも新規化学組成を有する層状岩塩型構造であることが確認された。
a=0.288nm±0.001nm
c=1.678nm±0.002nm
When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was found that it was a substantially single phase of a layered rock salt structure belonging to a rhombohedral system having good crystallinity. The powder X-ray diffraction pattern at this time is shown in FIG. In addition, when the lattice constant was obtained by the least square method using each index and the spacing between the surfaces, the following values were obtained, and it was confirmed from the lattice constant that the layered rock salt structure had a new chemical composition.
a = 0.288 nm ± 0.001 nm
c = 1.678 nm ± 0.002 nm

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na0.7Mn0.61Ti0.24Ni0.15の組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that it was a composition formula of Na 0.7 Mn 0.61 Ti 0.24 Ni 0.15 O 2 .

(参考例5)
(ナトリウム二次電池)
参考例4で得られたナトリウムマンガンチタン複合酸化物Na0.59Mn0.90Ti0.10を活物質とし、導電剤としてアセチレンブラック、結着剤としてテトラフルオロエチレンを、重量比で45:45:10となるように配合し電極を作製し、対極にナトリウム金属を用いて、過塩素酸ナトリウムをプロピレンカーボネート(PC)の溶媒に溶解させた1M溶液を電解液とする、図1に示す構造のナトリウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。電池の作製は、公知のセルの構成・組み立て方法に従って行った。
(Reference Example 5)
(Sodium secondary battery)
Sodium manganese titanium composite oxide Na 0.59 Mn 0.90 Ti 0.10 O 2 obtained in Reference Example 4 was used as an active material, acetylene black as a conductive agent, and tetrafluoroethylene as a binder in a weight ratio. An electrode is prepared by blending so as to be 45:45:10, and a 1M solution in which sodium perchlorate is dissolved in a propylene carbonate (PC) solvent using sodium metal as a counter electrode is used as an electrolytic solution. A sodium secondary battery (coin-type cell) having the structure shown in FIG. The battery was produced according to a known cell configuration / assembly method.

作製されたナトリウム二次電池について、25℃の温度条件下で、電流密度30mA/g、4.2V−1.5Vのカットオフ電位で定電流充放電試験を行ったところ、平均放電電位2.4Vで、初回充電容量が82mAh/g、初回放電容量が178mAh/gで充放電することが可能であることが判明した。初回充放電反応に伴う電圧変化を、図6に示す。また、上限の充電電圧を4.5Vとすることで、さらなる高容量化が可能であり、放電容量が200mAh/gを超えることを確認した。以上から、本発明のNa0.59Mn0.90Ti0.10が、高容量のナトリウム二次電池の正極材料活物質として有用であることが明らかとなった。 The manufactured sodium secondary battery was subjected to a constant current charge / discharge test under a temperature density of 25 mA at a current density of 30 mA / g and a cutoff potential of 4.2 V to 1.5 V. It was found that it was possible to charge and discharge at 4 V with an initial charge capacity of 82 mAh / g and an initial discharge capacity of 178 mAh / g. The voltage change accompanying the first charge / discharge reaction is shown in FIG. In addition, it was confirmed that by setting the upper limit charging voltage to 4.5 V, the capacity could be further increased, and the discharge capacity exceeded 200 mAh / g. From the above, it was revealed that Na 0.59 Mn 0.90 Ti 0.10 O 2 of the present invention is useful as a positive electrode material active material for a high-capacity sodium secondary battery.

(ナトリウム二次電池)
実施例9で得られたナトリウムマンガンチタンニッケル複合酸化物Na0.7Mn0.61Ti0.24Ni0.15を活物質とし、導電剤としてアセチレンブラック、結着剤としてテトラフルオロエチレンを、重量比で45:45:10となるように配合し電極を作製し、対極にナトリウム金属を用いて、過塩素酸ナトリウムをプロピレンカーボネート(PC)の溶媒に溶解させた1M溶液を電解液とする、図1に示す構造のナトリウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。電池の作製は、公知のセルの構成・組み立て方法に従って行った。
(Sodium secondary battery)
Using sodium manganese titanium nickel composite oxide Na 0.7 Mn 0.61 Ti 0.24 Ni 0.15 O 2 obtained in Example 9 as an active material, acetylene black as a conductive agent, and tetrafluoroethylene as a binder Were mixed so that the weight ratio would be 45:45:10, an electrode was prepared, and a 1M solution in which sodium perchlorate was dissolved in a propylene carbonate (PC) solvent using sodium metal as the counter electrode was used as the electrolyte. A sodium secondary battery (coin-type cell) having the structure shown in FIG. 1 was prepared, and its charge / discharge characteristics were measured. The battery was produced according to a known cell configuration / assembly method.

作製されたナトリウム二次電池について、25℃の温度条件下で、電流密度30mA/g、4.5V−1.5Vのカットオフ電位で定電流充放電試験を行ったところ、平均放電電位2.9Vで、充電容量が約170mAh/g、放電容量が約150mAh/gで繰り返して充放電することが可能であることが判明した。2サイクル目、および3サイクル目の充放電反応に伴う電圧変化を、図7に示す。参考例5と比較すると、ニッケルを置換させることで、容量はやや低下してしまうが、作動電圧がより高電圧とできることを見出し、ニッケル置換の効果が明らかとなった。以上から、本発明のNa0.7Mn0.61Ti0.24Ni0.15が、高容量のナトリウム二次電池の正極材料活物質として有用であることが明らかとなった。 About the produced sodium secondary battery, when a constant current charging / discharging test was conducted under the temperature condition of 25 ° C. with a current density of 30 mA / g and a cut-off potential of 4.5 V to 1.5 V, an average discharge potential of 2. It was found that charging and discharging can be repeated at 9 V with a charge capacity of about 170 mAh / g and a discharge capacity of about 150 mAh / g. FIG. 7 shows voltage changes associated with charge / discharge reactions in the second and third cycles. Compared with Reference Example 5 , the capacity was slightly reduced by substituting nickel, but it was found that the operating voltage could be higher, and the effect of nickel replacement became clear. From the above, it was revealed that Na 0.7 Mn 0.61 Ti 0.24 Ni 0.15 O 2 of the present invention is useful as a positive electrode material active material for a high-capacity sodium secondary battery.

(比較例1)
(ナトリウムマンガン酸化物の合成)
純度99%以上の酢酸ナトリウム(CHCOONa)粉末と、共沈法で得られたマンガン水酸化物粉末を原子量比でNa:Mn=0.7:1.0となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中500℃で12時間焼成した。その後、電気炉中で自然放冷し、出発原料を得た。
(Comparative Example 1)
(Synthesis of sodium manganese oxide)
Sodium acetate (CH 3 COONa) powder having a purity of 99% or more and manganese hydroxide powder obtained by the coprecipitation method were weighed so that the atomic weight ratio was Na: Mn = 0.7: 1.0. These were mixed in a mortar, filled in an alumina crucible, and baked at 500 ° C. in air for 12 hours using an electric furnace. Thereafter, it was naturally cooled in an electric furnace to obtain a starting material.

得られた化合物について、粉末X線回折装置により結晶構造を調べたところ、結晶性はあまり高くないものの、菱面体晶系に属するほぼ単一相であることが明らかとなった。この時の粉末X線回折図形を図3(e)に示す。 When the crystal structure of the obtained compound was examined by a powder X-ray diffractometer, it was found that although the crystallinity was not so high, it was an almost single phase belonging to the rhombohedral system. The powder X-ray diffraction pattern at this time is shown in FIG.

さらに、得られた化合物について、ICP発光分析法により化学組成を分析したところ、Na0.47MnOなる化学組成式であることが明らかとなった。 Further, when the chemical composition of the obtained compound was analyzed by ICP emission analysis, it was revealed that the chemical composition formula was Na 0.47 MnO 2 .

1 コイン型ナトリウム二次電池
2 負極端子
3 負極
4 固体電解質
5 絶縁パッキング
6 正極
7 正極缶
DESCRIPTION OF SYMBOLS 1 Coin type sodium secondary battery 2 Negative electrode terminal 3 Negative electrode 4 Solid electrolyte 5 Insulation packing 6 Positive electrode 7 Positive electrode can

Claims (6)

NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)なる化学組成を有することを特徴とするナトリウムマンガンチタンニッケル複合酸化物。 Na x Mn y Ti z Ni 1 -y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0.5,0.5 <y + z <1.0 ) A sodium manganese titanium-nickel composite oxide having a chemical composition of NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)なる化学組成を有し、結晶構造が、層状岩塩型構造であることを特徴とするナトリウムマンガンチタンニッケル複合酸化物。 Na x Mn y Ti z Ni 1 -y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0.5,0.5 <y + z <1.0 ) A sodium-manganese-titanium-nickel composite oxide characterized in that the crystal structure is a layered rock salt structure. NaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)なる化学組成を有し、結晶構造が、菱面体晶系に属する層状岩塩型構造であることを特徴とするナトリウムマンガンチタンニッケル複合酸化物。 Na x Mn y Ti z Ni 1 -y-z O 2 ( although Shikichu, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0.5,0.5 <y + z <1.0 ) A sodium manganese titanium-nickel composite oxide characterized in that the crystal structure is a layered rock salt structure belonging to the rhombohedral system. 出発原料として、酢酸ナトリウムとマンガン、チタン、ニッケルの1種類以上を含有する水酸化物を所定の原子比で混合し、400℃以上1000℃以下の温度で高温焼成することによって合成することを特徴とするNaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)なる化学組成を有するナトリウムマンガンチタンニッケル複合酸化物の製造方法。 As a starting material, it is synthesized by mixing sodium acetate and a hydroxide containing one or more of manganese, titanium and nickel at a predetermined atomic ratio and firing at a high temperature of 400 ° C. to 1000 ° C. Na x Mn y Ti z Ni 1 -y-z O 2 to (but Shikichu, 0 <x ≦ 1.0, 0.5 <y <1.0,0 <z ≦ 0.5,0.5 <Y + z <1.0 ) The manufacturing method of the sodium manganese titanium nickel composite oxide which has a chemical composition. マンガン、チタン、ニッケルの1種類以上を含有する水酸化物が、あらかじめ共沈法で得られた水酸化物である請求項4に記載したNaMnTiNi1−y−z(ただし式中、0<x≦1.0、0.5<y<1.0、0<z≦0.5、0.5<y+z<1.0)なる化学組成を有するナトリウムマンガンチタンニッケル複合酸化物の製造方法。 Manganese, titanium, hydroxide containing one or more nickel, Na x Mn y Ti z Ni 1-y-z O 2 as described in claim 4 is a hydroxide obtained in advance coprecipitation ( Wherein, sodium manganese titanium nickel having a chemical composition of 0 <x ≦ 1.0, 0.5 <y < 1.0, 0 < z ≦ 0.5 , 0.5 <y + z <1.0 ) A method for producing a composite oxide. 正極、負極、セパレータ及び電解質を含むナトリウム二次電池において、上記請求項1から請求項3のいずれか1項に記載のナトリウムマンガンチタンニッケル複合酸化物を正極の電極活物質として含有する正極を用いたナトリウム二次電池。
In the sodium secondary battery containing a positive electrode, a negative electrode, a separator, and electrolyte, the positive electrode which contains the sodium manganese titanium nickel composite oxide of any one of the said Claim 1 to 3 as an electrode active material of a positive electrode is used. Sodium secondary battery.
JP2011226352A 2011-03-14 2011-10-14 Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member Active JP5846482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011226352A JP5846482B2 (en) 2011-03-14 2011-10-14 Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011055673 2011-03-14
JP2011055673 2011-03-14
JP2011226352A JP5846482B2 (en) 2011-03-14 2011-10-14 Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member

Publications (2)

Publication Number Publication Date
JP2012206925A JP2012206925A (en) 2012-10-25
JP5846482B2 true JP5846482B2 (en) 2016-01-20

Family

ID=47187006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011226352A Active JP5846482B2 (en) 2011-03-14 2011-10-14 Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member

Country Status (1)

Country Link
JP (1) JP5846482B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028285B2 (en) * 2012-02-23 2016-11-16 国立研究開発法人産業技術総合研究所 Sodium secondary battery positive electrode material, method for producing the positive electrode material for sodium secondary battery, sodium secondary battery electrode using the sodium secondary battery positive electrode material, non-aqueous sodium secondary provided with the sodium secondary battery electrode Batteries and electric devices using the non-aqueous sodium secondary batteries
CN103840149A (en) * 2012-11-27 2014-06-04 中国科学院物理研究所 Sodium ion secondary battery, layered manganese-containing oxide active substance and anode active substance used in sodium ion secondary battery, and preparation method of layered manganese-containing oxide active substance
JP6096517B2 (en) * 2013-01-24 2017-03-15 京セラ株式会社 Active material and secondary battery using the same
WO2014122566A1 (en) * 2013-02-11 2014-08-14 Basf Se Active cathode material and its use in rechargeable electrochemical cells
KR102144996B1 (en) 2013-09-30 2020-08-18 삼성전자주식회사 cathode active material and cathode and sodium secondary battery using the same
JP6460316B2 (en) * 2013-12-09 2019-01-30 日本電気硝子株式会社 Sodium ion battery electrode mixture, method for producing the same, and sodium all-solid battery
GB201400347D0 (en) 2014-01-09 2014-02-26 Faradion Ltd Doped nickelate compounds
GB201409163D0 (en) 2014-05-22 2014-07-09 Faradion Ltd Compositions containing doped nickelate compounds
JP6349998B2 (en) * 2014-06-17 2018-07-04 住友電気工業株式会社 Sodium ion secondary battery
JP2018514908A (en) * 2015-04-01 2018-06-07 フンダシオン セントロ デ インベスティガシオン コオペラティバ デ エネルヒアス アルテルナティバス セイセ エネルヒグネ フンダツィオアFundacion Centro De Investigacion Cooperativa De Energias Alternativas Cic Energigune Fundazioa Cathode active material for sodium ion batteries
CN111435740B (en) * 2019-01-11 2022-04-22 宁德时代新能源科技股份有限公司 Positive electrode active material, positive plate and sodium ion battery
CN109830671A (en) * 2019-03-06 2019-05-31 四川大学 A kind of tunnel recombination structure material and the sodium-ion battery positive material using tunnel recombination structure material preparation
CN117529829A (en) 2021-12-28 2024-02-06 禄内西斯股份有限公司 Positive electrode active material, positive electrode mixture, and secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0117235D0 (en) * 2001-07-14 2001-09-05 Univ St Andrews Improvements in or relating to electrochemical cells
JP4257426B2 (en) * 2004-03-19 2009-04-22 独立行政法人産業技術総合研究所 Alkali transition metal oxide crystal material and method for producing the same

Also Published As

Publication number Publication date
JP2012206925A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
KR102010690B1 (en) Divalent metal doping for sodium manganese oxide as cathode material for sodium ion batteries
JP4595475B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP3045998B2 (en) Interlayer compound and method for producing the same
US6277521B1 (en) Lithium metal oxide containing multiple dopants and method of preparing same
JP4997693B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP5177672B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the same
WO2013137380A1 (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
US10505189B2 (en) Cathode material and lithium secondary battery using same as cathode
JP2000277116A (en) Lithium secondary battery
KR20070083550A (en) Manganese oxide composite electrode for lithium batteries
JP6830120B2 (en) Lithium sodium composite oxide, positive electrode active material for secondary batteries and secondary batteries
KR20140111045A (en) Manganese spinel-type lithium transition metal oxide
WO2015001957A1 (en) Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
JP5880928B2 (en) Lithium manganese titanium nickel composite oxide, method for producing the same, and lithium secondary battery using the same as a member
JP4257426B2 (en) Alkali transition metal oxide crystal material and method for producing the same
JP4431786B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2015187936A (en) Active material for lithium secondary batteries, manufacturing method thereof, and lithium secondary battery arranged by use thereof
JP2009242121A (en) Lithium manganese oxide powder particle and production method of the same, and lithium secondary battery using the same as positive active material
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP2024121136A (en) Lithium manganese composite oxide and its manufacturing method, active material for lithium ion secondary battery containing the same, and lithium ion secondary battery
JP5004239B2 (en) Manganese oxide, secondary battery electrode active material, production method thereof, and lithium secondary battery using secondary battery electrode active material
JP2016064967A (en) Lithium composite oxide, manufacturing method of lithium composite oxide, cathode active material for lithium secondary battery and lithium secondary battery
WO2016080471A1 (en) Lithium sodium complex oxide, method for manufacturing lithium sodium complex oxide, cathode active material for secondary battery and secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151112

R150 Certificate of patent or registration of utility model

Ref document number: 5846482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250