JP5177672B2 - Active material for lithium battery, method for producing the same, and lithium battery using the same - Google Patents

Active material for lithium battery, method for producing the same, and lithium battery using the same Download PDF

Info

Publication number
JP5177672B2
JP5177672B2 JP2008296604A JP2008296604A JP5177672B2 JP 5177672 B2 JP5177672 B2 JP 5177672B2 JP 2008296604 A JP2008296604 A JP 2008296604A JP 2008296604 A JP2008296604 A JP 2008296604A JP 5177672 B2 JP5177672 B2 JP 5177672B2
Authority
JP
Japan
Prior art keywords
lithium
active material
lithium battery
electrode
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008296604A
Other languages
Japanese (ja)
Other versions
JP2010123424A (en
Inventor
順二 秋本
邦光 片岡
明美 河島
博 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008296604A priority Critical patent/JP5177672B2/en
Publication of JP2010123424A publication Critical patent/JP2010123424A/en
Application granted granted Critical
Publication of JP5177672B2 publication Critical patent/JP5177672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、リチウム電池用活物質及びその製造方法、並びにその活物質を含有した電極を構成部材として含むリチウム電池に関する。   The present invention relates to an active material for a lithium battery, a method for producing the same, and a lithium battery including an electrode containing the active material as a constituent member.

現在我が国においては、カメラ用、時計用電源としてリチウム一次電池、携帯電話、ノートパソコンなどの携帯型電子機器用のバッテリーとしてリチウム二次電池が使用されており、リチウム電池が重要な蓄電池の一つとなっている。また、リチウム二次電池は、今後ハイブリッドカー、電力負荷平準化システムなどの大型電池としても実用化されるものと予測されており、その重要性はますます高まっている。   Currently, in Japan, lithium primary batteries are used as power sources for cameras and watches, and lithium secondary batteries are used as portable electronic devices such as mobile phones and laptop computers. Lithium batteries are one of the important storage batteries. It has become. In addition, lithium secondary batteries are expected to be put into practical use as large batteries such as hybrid cars and power load leveling systems in the future, and their importance is increasing.

このリチウム電池は、いずれもリチウムを吸蔵・放出することが可能な材料を含有する正極及び負極、さらに非水系電解液を含むセパレータ又は固体電解質を主要構成要素とする。   This lithium battery has a positive electrode and a negative electrode each containing a material capable of inserting and extracting lithium, and a separator or a solid electrolyte containing a non-aqueous electrolyte as main components.

これらの構成要素のうち、電極用の活物質として検討されているのは、二酸化マンガン(MnO)、リチウムコバルト酸化物(LiCoO)、リチウムマンガン酸化物(LiMn)、リチウムチタン酸化物(LiTi12)などの酸化物系、金属リチウム、リチウム合金、スズ合金などの金属系、及び黒鉛、MCMB(メソカーボンマイクロビーズ)などの炭素系材料が挙げられる。 Among these constituent elements, manganese dioxide (MnO 2 ), lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium titanium oxide are considered as active materials for electrodes. Examples thereof include oxides such as products (Li 4 Ti 5 O 12 ), metals such as lithium metal, lithium alloy and tin alloy, and carbon materials such as graphite and MCMB (mesocarbon microbeads).

これらの材料について、それぞれの活物質中のリチウム含有量における、化学ポテンシャルの差によって、電池の電圧が決定されるが、特に組み合わせによって、大きな電位差を形成できることが、リチウム電池の特徴である。   Regarding these materials, the voltage of the battery is determined by the difference in chemical potential in the lithium content in each active material, but it is a feature of the lithium battery that a large potential difference can be formed particularly by combination.

特に、リチウムコバルト酸化物LiCoO活物質と炭素材料を電極とした組み合わせにおいて、4V近い電圧が可能となり、また充放電容量(電極から脱離・挿入可能なリチウム量)も大きく、さらに安全性も高いことから、この電極材料の組み合わせが、現行のリチウム二次電池において広く採用されている。 In particular, in the combination of lithium cobalt oxide LiCoO 2 active material and carbon material as an electrode, a voltage close to 4V is possible, the charge / discharge capacity (the amount of lithium that can be desorbed and inserted from the electrode) is large, and the safety is also high. Due to its high cost, this combination of electrode materials is widely used in current lithium secondary batteries.

今後、リチウム電池やキャパシタ等の化学電池は、自動車用電源や大容量のバックアップ電源、緊急用電源など、大型で長寿命のものが必要となることが予測されることから、前項のような酸化物活物質の組み合わせで、さらに高性能(高容量)な電極活物質が必要とされていた。   In the future, chemical batteries such as lithium batteries and capacitors are expected to be large, long-life, such as automotive power supplies, large-capacity backup power supplies, and emergency power supplies. There has been a need for a higher performance (high capacity) electrode active material in combination with a material active material.

このうち、チタン酸化物系活物質は、対極にリチウム金属を使用した場合、約1〜2V程度の電圧であることから、様々な結晶構造を有する材料が、電極活物質としての可能性について検討されている。   Of these, titanium oxide active materials have a voltage of about 1 to 2 V when lithium metal is used for the counter electrode, so the possibility of materials having various crystal structures as electrode active materials is examined. Has been.

中でも、スピネル型のリチウムチタン酸化物(LiTi12)活物質を含む電極は、リチウム基準で約1.5Vの電位平坦部を有し、理論容量175mAh/g程度の高容量が得られることから、注目され、主としてリチウム二次電池に使用されている。 In particular, an electrode including a spinel-type lithium titanium oxide (Li 4 Ti 5 O 12 ) active material has a potential flat portion of about 1.5 V with respect to lithium, and a high capacity of about 175 mAh / g is obtained. Therefore, it is attracting attention and is mainly used for lithium secondary batteries.

また、アルカリチタン酸化物として、NaTi13及びKTi13について、電極材料として検討がなされ、それぞれ150mAh/g及び100mAh/g程度の挿入容量が報告されている。(非特許文献1、2参照) Further, Na 2 Ti 6 O 13 and K 2 Ti 6 O 13 as alkali titanium oxides have been studied as electrode materials, and insertion capacities of about 150 mAh / g and 100 mAh / g have been reported, respectively. (See Non-Patent Documents 1 and 2)

これらの化合物がとる結晶構造は、NaTi13型トンネル構造であり、3つのTiO八面体が連結したユニットによって、アルカリ元素が2つ占有できるトンネル空間を有することが特徴である。その結晶構造を図1に示す。図1において八面体はTiO八面体を表し、その中央にチタンが占有している。また、球は、カリウム、ナトリウム、リチウム、或いは水素が占有している位置を表している。 The crystal structure taken by these compounds is a Na 2 Ti 6 O 13 type tunnel structure, and is characterized by having a tunnel space in which two alkali elements can be occupied by a unit in which three TiO 6 octahedrons are connected. The crystal structure is shown in FIG. In FIG. 1, an octahedron represents a TiO 6 octahedron, and titanium is occupied in the center thereof. A sphere represents a position occupied by potassium, sodium, lithium, or hydrogen.

一方、類似した化学組成を有する層状構造ナトリウムチタン酸化物NaTiとそのプロトン交換体HTi、及びそのリチウムイオン交換体LiTiについても活物質として検討され、それぞれ44mAh/g、174mAh/g、及び147mAh/gの挿入容量が報告されている。(特許文献1、非特許文献3参照) On the other hand, a layered structure sodium titanium oxide Na 2 Ti 3 O 7 having a similar chemical composition, its proton exchanger H 2 Ti 3 O 7 , and its lithium ion exchanger Li 2 Ti 3 O 7 are also considered as active materials. And insertion capacities of 44 mAh / g, 174 mAh / g, and 147 mAh / g, respectively, have been reported. (See Patent Document 1 and Non-Patent Document 3)

すなわち、出発物質であるナトリウム化合物と比べて、ナトリウムよりもイオンのサイズが小さいリチウムやプロトンと交換した化合物活物質ほど、高容量が得られていることがわかる。   That is, it can be seen that the compound active material exchanged with lithium or proton, which has a smaller ion size than sodium, has a higher capacity compared to the starting sodium compound.

このことを、ATi13(A=K、Na、Li、H)系について当てはめて検討してみると、最近報告されているHTi13について、初期の挿入容量は、283mAh/gという高容量が得られていることから、A元素のイオン半径が小さいほど、結晶構造の特徴であるトンネル空間中の空きスペースが広がることから、高容量が得られていることがわかる。(特許文献2) When this is applied to the A 2 Ti 6 O 13 (A = K, Na, Li, H) system, the initial insertion capacity of the recently reported H 2 Ti 6 O 13 is Since a high capacity of 283 mAh / g is obtained, the smaller the ion radius of the element A, the larger the empty space in the tunnel space, which is a characteristic of the crystal structure, which indicates that a high capacity is obtained. . (Patent Document 2)

しかしながら、プロトン交換体は、リチウム電池の中で、電解液中のリチウムと反応してしまうことが問題であり、分解によって水を発生することから、電極材料活物質としては、問題であった。   However, the proton exchanger has a problem in that it reacts with lithium in the electrolyte solution in the lithium battery, and generates water by decomposition, which is a problem as an electrode material active material.

一方、ATi13系のうちで、A=LiであるLiTi13の化学組成を有する複合チタン酸化物については、電極活物質への適用について開示したものはなかった。
特開2007−234233号公報 特願2008−039820号 R.Dominko,E.Baudrin,P.Umek,D.Arcon,M.Gaberscek,J.Jamnik,Electrochemstry Communications,8,673−677(2006) R.Dominko,L.Dupont,M.Gaberscek,J.Jamnik,E.Baudrin,Journal of Power Sources,174,1172−1176(2007) K.Chiba,N.Kijima,Y.Takahashi,Y.Idemoto,J.Akimoto,Solid State Ionics,178,1725−1730(2008)
On the other hand, regarding the composite titanium oxide having a chemical composition of Li 2 Ti 6 O 13 in which A = Li in the A 2 Ti 6 O 13 system, there has been no disclosure of application to an electrode active material.
JP 2007-234233 A Japanese Patent Application No. 2008-039820 R. Dominko, E .; Baudrin, P.M. Umek, D.M. Arcon, M.M. Gabersek, J. et al. Jamnik, Electrochemistry Communications, 8, 673-677 (2006) R. Dominko, L .; Dupont, M.M. Gabersek, J. et al. Jamnik, E .; Baudrin, Journal of Power Sources, 174, 1172-1176 (2007) K. Chiba, N .; Kijima, Y. et al. Takahashi, Y .; Idemoto, J .; Akimoto, Solid State Ionics, 178, 1725-1730 (2008)

本発明は、上記のような現状の課題を解決し、高容量が期待できるリチウム電池電極材料として重要なNaTi13型のトンネル構造を有するリチウムチタン酸化物活物質及びその製造方法、並びにその活物質を含有した電極を構成部材として含むリチウム電池を提供することにある。 The present invention solves the above-mentioned problems as described above, and a lithium titanium oxide active material having a Na 2 Ti 6 O 13 type tunnel structure important as a lithium battery electrode material that can be expected to have a high capacity, and a method for producing the same, Another object of the present invention is to provide a lithium battery including an electrode containing the active material as a constituent member.

本発明者は鋭意検討した結果、図1に示すようなNaTi13型トンネル構造複合チタン酸化物LiTi13活物質、及びその製造方法について明らかにし、その活物質を含有した電極を構成部材として含むリチウム電池を作製し、高い挿入容量が確認できたことで、本発明は完成するに至った。 As a result of intensive studies, the present inventor has clarified the Na 2 Ti 6 O 13 type tunnel structure composite titanium oxide Li 2 Ti 6 O 13 active material as shown in FIG. 1 and the production method thereof, and contains the active material. The present invention was completed by producing a lithium battery including the prepared electrode as a constituent member and confirming a high insertion capacity.

すなわち、本発明は、下記に示すNaTi13型トンネル構造複合チタン酸化物LiTi13活物質及びその製造方法、並びにその活物質を含有した電極を構成部材として含むリチウム電池を提供する。
(1)化学式LiTi13 (ただし、残留するNa量:Li量=0.13〜0(すなわち、検出限界以下):1.87〜2)で表される複合チタン酸化物を主成分とするリチウム電池用活物質。
(2)結晶構造が単斜晶系のNaTi13型トンネル構造であることを特徴とする(1)に記載のリチウム電池用活物質。
(3)単斜晶系の格子定数が、残留するナトリウム量によって決定され、a軸長は1.507〜1.545nm、b軸長が0.373〜0.376nm、c軸長が0.911〜0.916nm、β角が99.0〜99.8°の範囲であることを特徴とする(2)に記載のリチウム電池用活物質。
(4)ナトリウム化合物とチタン酸化物から生成されたナトリウムチタン酸化物NaTi13を出発原料として、イオン交換する工程によって合成されることを特徴とする(1)に記載のリチウム電池用活物質の製造方法。
(5)上記イオン交換する工程は、リチウム溶融塩を用いるリチウムイオン交換反応を適用することを特徴とする(4)に記載のリチウム電池用活物質の製造方法。
(6)上記リチウム溶融塩を用いるリチウムイオン交換反応における熱処理温度が290℃から500℃の範囲内にある(5)に記載のリチウム電池用活物質の製造方法。
(7)正極及び負極として使用する2つの電極と、電解質からなるリチウム電池において、(1)ないし(3)のいずれかに記載の活物質を含有する電極を構成部材として用いたリチウム電池。
That is, the present invention provides a lithium battery including, as constituent members, the following Na 2 Ti 6 O 13 type tunnel structure composite titanium oxide Li 2 Ti 6 O 13 active material, a method for producing the same, and an electrode containing the active material. I will provide a.
(1) Mainly a composite titanium oxide represented by the chemical formula Li 2 Ti 6 O 13 (however, residual Na amount: Li amount = 0.13 to 0 (ie, below detection limit): 1.87 to 2)) An active material for lithium batteries as a component.
(2) The active material for a lithium battery according to (1), wherein the crystal structure is a monoclinic Na 2 Ti 6 O 13 type tunnel structure.
(3) The monoclinic lattice constant is determined by the amount of residual sodium, the a-axis length is 1.507 to 1.545 nm, the b-axis length is 0.373 to 0.376 nm, and the c-axis length is 0.1. The active material for a lithium battery as described in (2), wherein the range is 911 to 0.916 nm and the β angle is in the range of 99.0 to 99.8 °.
(4) The lithium-titanium battery according to (1), which is synthesized by an ion exchange process using sodium titanium oxide Na 2 Ti 6 O 13 generated from a sodium compound and titanium oxide as a starting material. A method for producing an active material.
(5) The method for producing an active material for a lithium battery according to (4), wherein the ion exchange step applies a lithium ion exchange reaction using a lithium molten salt.
(6) The method for producing an active material for a lithium battery according to (5), wherein the heat treatment temperature in the lithium ion exchange reaction using the lithium molten salt is in the range of 290 ° C. to 500 ° C.
(7) A lithium battery comprising two electrodes used as a positive electrode and a negative electrode and an electrolyte, wherein the electrode containing an active material according to any one of (1) to (3) is used as a constituent member.

本発明によれば、NaTi13型トンネル構造を有する複合チタン酸化物LiTi13活物質が製造可能であり、この活物質を電極材料として使用することによって、高い挿入容量を有するリチウム電池が可能となる。 According to the present invention, a composite titanium oxide Li 2 Ti 6 O 13 active material having a Na 2 Ti 6 O 13 type tunnel structure can be manufactured. By using this active material as an electrode material, a high insertion capacity can be obtained. A lithium battery having

本発明のリチウム電池用電極材料活物質は、LiTi13なる化学組成の化合物を主成分とする材料である。
また、その結晶構造の特徴は、NaTi13型トンネル構造を有することを特徴とする材料である。
さらに、上記複合チタン酸化物LiTi13の格子定数は、出発原料に由来して残留するナトリウム量によって決定されることになるが、それぞれa軸長は1.507〜1.545nm、b軸長が0.373〜0.376nm、c軸長が0.911〜0.916nm、β角が99.0〜99.8°の範囲である。
The electrode material active material for a lithium battery of the present invention is a material mainly composed of a compound having a chemical composition of Li 2 Ti 6 O 13 .
Further, the crystal structure is characterized by having a Na 2 Ti 6 O 13 type tunnel structure.
Furthermore, the lattice constant of the composite titanium oxide Li 2 Ti 6 O 13 is determined by the amount of sodium remaining from the starting material, and the a-axis length is 1.507 to 1.545 nm, The b-axis length is 0.373 to 0.376 nm, the c-axis length is 0.911 to 0.916 nm, and the β angle is 99.0 to 99.8 °.

本発明のうち、リチウム電池用電極材料活物質の製造方法は、ナトリウム化合物とチタン酸化物から生成されたナトリウムチタン酸化物を出発原料として、ナトリウムをリチウムにイオン交換する工程によって合成されることを特徴とする方法である。
また、本発明の複合チタン酸化物活物質を含有する電極を構成部材として用いたリチウム電池は、200mAh/gを超える高容量が期待できる電池である。
Among the present inventions, the method for producing an active material for an electrode material for a lithium battery is synthesized by a step of ion-exchanging sodium to lithium using sodium titanium oxide generated from a sodium compound and titanium oxide as a starting material. It is a characteristic method.
In addition, a lithium battery using an electrode containing the composite titanium oxide active material of the present invention as a constituent member is a battery that can be expected to have a high capacity exceeding 200 mAh / g.

本発明に係わる製造方法をさらに詳しく説明する。   The production method according to the present invention will be described in more detail.

(出発原料NaTi13の製造)
本発明のうち、出発原料であるNaTi多結晶体は、原料として、ナトリウム化合物の少なくとも1種、及びチタン化合物の少なくとも1種を、NaTi13の化学組成となるように秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって、製造することができる。
(Production of starting material Na 2 Ti 6 O 13 )
Among the present inventions, the Na 2 Ti 3 O 7 polycrystal as a starting material has a chemical composition of Na 2 Ti 6 O 13 with at least one sodium compound and at least one titanium compound as raw materials. Thus, it can be manufactured by weighing and mixing, and heating in an atmosphere containing oxygen gas such as air.

ナトリウム原料としては、ナトリウム(金属ナトリウム)及びナトリウム化合物の少なくとも1種を用いる。ナトリウム化合物としては、ナトリウムを含有するものであれば特に制限されず、例えばNaO、Na等の酸化物、NaCO、NaNO等の塩類、NaOHなどの水酸化物等が挙げられる。これらの中でも、特にNaCO等が好ましい。 As the sodium raw material, at least one of sodium (metallic sodium) and a sodium compound is used. The sodium compound is not particularly limited as long as it contains sodium. For example, oxides such as Na 2 O and Na 2 O 2 , salts such as Na 2 CO 3 and NaNO 3 , hydroxides such as NaOH, etc. Is mentioned. Among these, Na 2 CO 3 is particularly preferable.

チタン原料としては、チタン(金属チタン)及びチタン化合物の少なくとも1種を用いる。チタン化合物としては、チタンを含有するものであれば特に制限されず、例えばTiO、Ti、TiO等の酸化物、TiCl等の塩類等が挙げられる。これらの中でも、特にTiO等が好ましい。 As the titanium raw material, at least one of titanium (metallic titanium) and a titanium compound is used. The titanium compound is not particularly limited as long as it contains titanium, and examples thereof include oxides such as TiO, Ti 2 O 3 and TiO 2 , salts such as TiCl 4 and the like. Among these, TiO 2 is particularly preferable.

はじめに、これらを含む混合物を調整する。ナトリウム原料とチタン原料の混合割合は、NaTi13の化学組成となるように混合することが好ましい。また、加熱時にナトリウムは揮発しやすいので、ナトリウム量は上記化学式における2よりも若干過剰な仕込み量とした方がよく、好ましくは、2.0〜2.1の範囲とすればよい。また、混合方法は、これらを均一に混合できる限り特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式又は乾式で混合すればよい。 First, a mixture containing these is prepared. The mixing ratio of sodium raw material and titanium material is preferably mixed such that the chemical composition of Na 2 Ti 6 O 13. In addition, since sodium easily volatilizes during heating, the amount of sodium should be slightly more excessive than 2 in the above chemical formula, and preferably in the range of 2.0 to 2.1. Moreover, a mixing method is not specifically limited as long as these can be mixed uniformly, For example, what is necessary is just to mix by a wet type or a dry type using well-known mixers, such as a mixer.

次いで、混合物を焼成する。焼成温度は、原料によって適宜設定することができるが、通常は、600℃〜1200℃程度、好ましくは700℃から1050℃とすればよい。また、焼成雰囲気も特に限定されず、通常は酸化性雰囲気又は大気中で実施すればよい。焼成時間は、焼成温度等に応じて適宜変更することができる。冷却方法も特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷とすればよい。   The mixture is then fired. The firing temperature can be appropriately set depending on the raw material, but is usually about 600 ° C to 1200 ° C, preferably 700 ° C to 1050 ° C. Also, the firing atmosphere is not particularly limited, and it is usually performed in an oxidizing atmosphere or air. The firing time can be appropriately changed according to the firing temperature and the like. The cooling method is not particularly limited, but may be natural cooling (cooling in the furnace) or slow cooling.

焼成後は、必要に応じて焼成物を公知の方法で粉砕し、さらに上記の焼成工程を実施してもよい。すなわち、本発明方法では、上記混合物の焼成、冷却及び粉砕を2回以上繰り返して実施することが好ましい。なお、粉砕の程度は、焼成温度などに応じて適宜調節すればよい。   After firing, the fired product may be pulverized by a known method as necessary, and the above firing step may be further performed. That is, in the method of the present invention, it is preferable that the mixture is repeatedly fired, cooled and pulverized twice or more. Note that the degree of pulverization may be adjusted as appropriate according to the firing temperature and the like.

(リチウム交換体LiTi13活物質の製造)
次いで、上記により得られたNaTi13を出発原料として、リチウム化合物を含む溶融塩中でリチウムイオン交換反応を適用することにより、出発原料化合物中のナトリウムのほぼすべてがリチウムと交換したリチウムイオン交換体活物質LiTi13が得られる。
(Production of Lithium Exchanger Li 2 Ti 6 O 13 Active Material)
Next, using Na 2 Ti 6 O 13 obtained as described above as a starting material, by applying a lithium ion exchange reaction in a molten salt containing a lithium compound, almost all of the sodium in the starting material compound was exchanged for lithium. A lithium ion exchanger active material Li 2 Ti 6 O 13 is obtained.

この場合、リチウム化合物を含む溶融塩中において、粉砕されたNaTi13を分散させながら、イオン交換処理を施すことが好適である。溶融塩としては、硝酸リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等の比較的低温で溶融する塩類のうちで、いずれか1種以上を含む溶融塩を用いることができる。好ましい方法としては、あらかじめリチウム塩を溶融させ、そこにNaTi13粉末を投入するとよい。混合比は、通常、NaTi13の重量に対するリチウム塩全体の重量の割合として、3〜100、好ましくは10〜30である。 In this case, it is preferable to perform the ion exchange treatment while dispersing the pulverized Na 2 Ti 6 O 13 in the molten salt containing the lithium compound. As the molten salt, a molten salt containing any one or more of salts that melt at a relatively low temperature such as lithium nitrate, lithium chloride, lithium bromide, and lithium iodide can be used. As a preferred method, a lithium salt is melted in advance, and Na 2 Ti 6 O 13 powder is added thereto. The mixing ratio is usually 3 to 100, preferably 10 to 30, as a ratio of the weight of the entire lithium salt to the weight of Na 2 Ti 6 O 13 .

イオン交換処理の温度は、30℃〜500℃、好ましくは200℃〜400℃の範囲である。処理時間は、通常2〜72時間、好ましくは5〜50時間である。   The temperature of the ion exchange treatment is in the range of 30 ° C to 500 ° C, preferably 200 ° C to 400 ° C. The treatment time is usually 2 to 72 hours, preferably 5 to 50 hours.

さらに、リチウムイオン交換処理の方法として、リチウム化合物を融解した有機溶剤又は水溶液中で処理する方法も適する。この場合、リチウム化合物を一定濃度溶解させた有機溶剤又は水中に、粉砕されたNaTi13原料を投入し、その有機溶剤又は水の沸点以下の温度で処理する。溶媒の蒸発を避けるために、溶媒を還流させながら、イオン交換することが好ましい。処理温度は通常30℃〜300℃、好ましくは50℃〜180℃で処理する。また、処理時間は特に制限されないが、通常は5〜50時間、好ましくは10〜20時間である。 Furthermore, as a method of the lithium ion exchange treatment, a method of treating in an organic solvent or an aqueous solution in which a lithium compound is melted is also suitable. In this case, the pulverized Na 2 Ti 6 O 13 raw material is put into an organic solvent or water in which a lithium compound is dissolved at a constant concentration, and the mixture is treated at a temperature not higher than the boiling point of the organic solvent or water. In order to avoid evaporation of the solvent, it is preferable to perform ion exchange while refluxing the solvent. The treatment temperature is usually 30 ° C to 300 ° C, preferably 50 ° C to 180 ° C. The treatment time is not particularly limited, but is usually 5 to 50 hours, preferably 10 to 20 hours.

本発明に用いられるリチウム化合物としては、水酸化物、炭酸塩、酢酸塩、硝酸塩、シュウ酸塩、ハロゲン化物、ブチルリチウム等が好ましく、これらを単独又は必要に応じて2種類以上を組み合わせて用いる。また、本発明に用いられる有機溶剤としては、ヘキサノール、エトキシエタノール等の高級アルコール類、ジエチルグルコールモノエチルエーテル等のエーテル類、もしくは沸点が140℃以上の有機溶剤が、作業性が良好である点で好ましい。これらを単独又は必要に応じて2種類以上組み合わせて用いる。   As the lithium compound used in the present invention, hydroxide, carbonate, acetate, nitrate, oxalate, halide, butyllithium and the like are preferable, and these are used alone or in combination of two or more as required. . As the organic solvent used in the present invention, higher alcohols such as hexanol and ethoxyethanol, ethers such as diethyl glycol monoethyl ether, or organic solvents having a boiling point of 140 ° C. or more have good workability. This is preferable. These may be used alone or in combination of two or more as required.

有機溶剤又は水溶液中におけるリチウム化合物の濃度は、通常3〜10モル%、好ましくは5〜8モル%である。また、有機溶剤又は水溶液中でのNaTi13原料の分散濃度は、特に制限されないが、操作性及び経済性の観点から1〜20重量%程度が好ましい。 The density | concentration of the lithium compound in an organic solvent or aqueous solution is 3-10 mol% normally, Preferably it is 5-8 mol%. Further, the dispersion concentration of the Na 2 Ti 6 O 13 raw material in the organic solvent or the aqueous solution is not particularly limited, but is preferably about 1 to 20% by weight from the viewpoint of operability and economy.

イオン交換処理の後、得られた生成物をエタノール等で洗浄後、乾燥させることによって、目的とする化学式LiTi13で表されるリチウムイオン交換体活物質が得られる。洗浄方法、乾燥方法については、特に限定されず、通常の方法が用いられる他、デシケータ内等における自然乾燥でもよい。 After the ion exchange treatment, the obtained product is washed with ethanol or the like and then dried to obtain a target lithium ion exchanger active material represented by the chemical formula Li 2 Ti 6 O 13 . The washing method and the drying method are not particularly limited, and a normal method may be used, or natural drying in a desiccator or the like may be used.

このようにして得られたLiTi13活物質は、その交換処理の条件を変化させることによって、出発原料に由来して残存するナトリウム量を、有意な量を残す化学組成から、湿式法による化学分析の検出限界以下の化学組成にまで制御することが可能である。 The Li 2 Ti 6 O 13 active material thus obtained can be obtained by changing the conditions for the exchange treatment so that the amount of sodium remaining from the starting material is reduced from the chemical composition leaving a significant amount to the wet state. It is possible to control the chemical composition below the detection limit of chemical analysis by the method.

(リチウム電池)
本発明のリチウム二次電池は、前記LiTi13を活物質として含有する電極を構成部材として用いるものである。すなわち、電極材料活物質として本発明のLiTi13を用いる以外は、公知のリチウム電池(コイン型、ボタン型、円筒型、全固体型等)の電池要素をそのまま採用することができる。図2は、本発明のリチウム電池を、コイン型リチウム二次電池に適用した1例を示す模式図である。このコイン型電池1は、負極端子2、負極3、(セパレータ+電解液)4、絶縁パッキング5、正極6、正極缶7により構成される。
(Lithium battery)
The lithium secondary battery of the present invention uses an electrode containing the Li 2 Ti 6 O 13 as an active material as a constituent member. That is, a battery element of a known lithium battery (coin type, button type, cylindrical type, all solid type, etc.) can be used as it is, except that Li 2 Ti 6 O 13 of the present invention is used as the electrode material active material. . FIG. 2 is a schematic view showing an example in which the lithium battery of the present invention is applied to a coin-type lithium secondary battery. The coin-type battery 1 includes a negative electrode terminal 2, a negative electrode 3, a (separator + electrolyte) 4, an insulating packing 5, a positive electrode 6, and a positive electrode can 7.

本発明では、上記本発明のLiTi13活物質に、必要に応じて導電剤、結着剤等を配合して電極合材を調整し、これを集電体に圧着することにより電極が作製できる。集電体としては、好ましくはステンレスメッシュ、アルミ箔等を用いることができる。導電剤としては、好ましくはアセチレンブラック、ケッチェンブラック等を用いることができる。結着剤としては、好ましくはテトラフルオロエチレン、ポリフッ化ビニリデン等を用いることができる。 In the present invention, the Li 2 Ti 6 O 13 active material of the present invention is mixed with a conductive agent, a binder or the like as necessary to adjust the electrode mixture, and this is crimped to the current collector. An electrode can be produced. As the current collector, a stainless mesh, aluminum foil or the like can be preferably used. As the conductive agent, acetylene black, ketjen black or the like can be preferably used. As the binder, tetrafluoroethylene, polyvinylidene fluoride, or the like can be preferably used.

電極合材におけるLiTi13活物質、導電剤、結着剤等の配合も特に限定的ではないが、通常は導電剤が1〜30重量%程度(好ましくは5〜25重量%)、結着剤が0〜30重量%(好ましくは3〜10重量%)とし、残部をLiTi13活物質となるようにすればよい。 The composition of the Li 2 Ti 6 O 13 active material, the conductive agent, the binder and the like in the electrode mixture is not particularly limited, but usually the conductive agent is about 1 to 30% by weight (preferably 5 to 25% by weight). The binder may be 0 to 30% by weight (preferably 3 to 10% by weight), and the balance may be Li 2 Ti 6 O 13 active material.

本発明のリチウム電池において、上記電極に対する対極としては、例えば金属リチウム、リチウム合金など、負極として機能し、リチウムを吸蔵している公知のものを採用することができる。或いは、対極として、リチウムコバルト酸化物(LiCoO)やスピネル型リチウムマンガン酸化物(LiMn)などの、正極として機能し、かつリチウムを吸蔵している公知のものも採用することもできる。すなわち、組み合わせる電極構成材料によって、本発明の活物質を含有する電極は、正極としても、負極としても機能できる。 In the lithium battery of the present invention, as the counter electrode with respect to the electrode, for example, a known one that functions as a negative electrode and occludes lithium, such as metal lithium and a lithium alloy, can be adopted. Alternatively, as the counter electrode, a known one that functions as a positive electrode and occludes lithium, such as lithium cobalt oxide (LiCoO 2 ) or spinel type lithium manganese oxide (LiMn 2 O 4 ), can also be used. . That is, the electrode containing the active material of the present invention can function as a positive electrode or a negative electrode depending on the electrode constituent material to be combined.

また、本発明のリチウム二次電池において、セパレータ、電池容器等も公知の電池要素を採用すればよい。   In the lithium secondary battery of the present invention, a known battery element may be adopted for the separator, the battery container, and the like.

さらに、電解質としても公知の電解液、固体電解質等が適用できる。例えば、電解液としては、過塩素酸リチウム、6フッ化リン酸リチウム等の電解質を、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)等の溶媒に溶解させたものが使用できる。   Furthermore, known electrolyte solutions, solid electrolytes, and the like can be applied as the electrolyte. For example, as an electrolytic solution, an electrolyte such as lithium perchlorate or lithium hexafluorophosphate is used in a solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), or diethyl carbonate (DEC). What was dissolved can be used.

以下に、実施例を示し、本発明の特徴とするところをより一層明確にする。本発明は、これら実施例に限定されるものではない。   Hereinafter, examples will be shown to further clarify the features of the present invention. The present invention is not limited to these examples.

[実施例1]
(出発原料NaTi13の製造)
純度99%以上の炭酸ナトリウム(NaCO)粉末と純度99.99%以上の二酸化チタン(TiO)粉末をモル比でNa:Ti=2.02:6となるように秤量した。これらを乳鉢中で混合したのち、JIS規格白金製るつぼに充填し、電気炉を用いて、空気中、高温条件下で加熱した。焼成温度は、800℃で、焼成時間は20時間とした。その後、電気炉中で自然放冷した後、再度、乳鉢中で粉砕・混合を行い、800℃で20時間再焼成を行い、出発原料であるNaTi13多結晶体を得た。
[Example 1]
(Production of starting material Na 2 Ti 6 O 13 )
Sodium carbonate (Na 2 CO 3 ) powder with a purity of 99% or more and titanium dioxide (TiO 2 ) powder with a purity of 99.99% or more were weighed so that the molar ratio was Na: Ti = 2.02: 6. After mixing these in a mortar, they were filled in a JIS standard platinum crucible and heated in an air at high temperature using an electric furnace. The firing temperature was 800 ° C. and the firing time was 20 hours. Then, after naturally cooling in an electric furnace, it was again pulverized and mixed in a mortar and refired at 800 ° C. for 20 hours to obtain a Na 2 Ti 6 O 13 polycrystal as a starting material.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Ti=2.0:6(各元素の分析誤差:0.04以内)となり、NaTi13の化学式で妥当であった。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mの結晶構造の単一相であることが明らかとなった。NaTi13の粉末X線回折図形を図3に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のNaTi13の値と良く一致していた。
a=1.5072nm(誤差:0.0005nm以内)
b=0.3738nm(誤差:0.0001nm以内)
c=0.9154nm(誤差:0.0003nm以内)
β=99.00°(誤差:0.02°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission analysis, Na: Ti = 2.0: 6 (analysis error of each element: within 0.04), and the chemical formula of Na 2 Ti 6 O 13 It was reasonable. Furthermore, it was revealed by an X-ray powder diffractometer that the crystal has a monoclinic system and a single phase having a crystal structure of space group C2 / m having good crystallinity. The powder X-ray diffraction pattern of Na 2 Ti 6 O 13 is shown in FIG. Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following values were obtained, which were in good agreement with the known Na 2 Ti 6 O 13 value.
a = 1.5072 nm (error: within 0.0005 nm)
b = 0.3738 nm (error: within 0.0001 nm)
c = 0.9154 nm (error: within 0.0003 nm)
β = 99.00 ° (error: within 0.02 °)

このようにして得られたNaTi13多結晶体の粒子形状を走査型電子顕微鏡(SEM)により調べたところ、多結晶体は、約1ミクロン角の等方的な形状を有する一次粒子から構成されていることが明らかとなった。 When the particle shape of the Na 2 Ti 6 O 13 polycrystal thus obtained was examined by a scanning electron microscope (SEM), the polycrystal was a primary having an isotropic shape of about 1 micron square. It was revealed that it was composed of particles.

(LiTi13活物質の製造)
上記で合成されたNaTi13多結晶体の粉砕物を出発原料として、純度99%以上の無水硝酸リチウム(LiNO)粉末と、重量比でNaTi13:LiNO=1:20となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中、290℃で10時間保持することによって、リチウムイオン交換処理を行った。その後、純水、及びエタノールでよく洗浄し、自然乾燥することによって、LiTi13活物質を得た。
(Production of Li 2 Ti 6 O 13 active material)
Using the pulverized product of Na 2 Ti 6 O 13 synthesized as described above as a starting material, anhydrous lithium nitrate (LiNO 3 ) powder with a purity of 99% or more and Na 2 Ti 6 O 13 : LiNO 3 = by weight ratio = Weighed to be 1:20. These were mixed in a mortar, then filled in an alumina crucible, and held in air at 290 ° C. for 10 hours using an electric furnace to perform lithium ion exchange treatment. Thereafter, pure water, and it was washed well with ethanol, by air drying, to obtain a Li 2 Ti 6 O 13 active material.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Li:Ti=0.13:1.87:6(各元素の分析誤差:0.04以内)であり、有意の量の残留するナトリウムが確認された。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mのNaTi13型のトンネル構造を有するLiTi13の単一相であることが明らかとなった。LiTi13の粉末X線回折図形を図4に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のLiTi13の値と良く一致しており、残留するナトリウム量は、格子定数にはほとんど差異を生じないことが明らかとなった。
a=1.5310nm(誤差:0.0004nm以内)
b=0.3746nm(誤差:0.0001nm以内)
c=0.9142nm(誤差:0.0002nm以内)
β=99.37°(誤差:0.02°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission spectrometry, Na: Li: Ti = 0.13: 1.87: 6 (analysis error of each element: within 0.04), significant Of residual sodium was observed. Furthermore, with an X-ray powder diffractometer, a single phase of Li 2 Ti 6 O 13 having a monoclinic system, a space group C2 / m of a Na 2 Ti 6 O 13 type tunnel structure having good crystallinity It became clear that there was. FIG. 4 shows a powder X-ray diffraction pattern of Li 2 Ti 6 O 13 . Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following value was obtained, which was in good agreement with the value of the known Li 2 Ti 6 O 13 , and the residual sodium amount was It became clear that there was almost no difference in the lattice constant.
a = 1.5310 nm (error: within 0.0004 nm)
b = 0.3746 nm (error: within 0.0001 nm)
c = 0.9142 nm (error: within 0.0002 nm)
β = 99.37 ° (error: within 0.02 °)

このようにして得られたLiTi13多結晶体の粒子形状を走査型電子顕微鏡(SEM)により調べたところ、多結晶体は、出発原料であるNaTi13の形状が保持され、約1ミクロン角の等方的な形状を有する一次粒子から構成されていることが明らかとなった。 When the particle shape of the Li 2 Ti 6 O 13 polycrystal obtained in this way was examined with a scanning electron microscope (SEM), the polycrystal had a shape of Na 2 Ti 6 O 13 as a starting material. It was revealed that the particles were composed of primary particles having an isotropic shape of about 1 micron square.

(リチウム電池)
このようにして得られたLiTi13を活物質とし、導電剤としてアセチレンブラック、結着剤としてテトラフルオロエチレンを、重量比で10:5:1となるように配合し電極を作製し、対極にリチウム金属を用いて、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒(体積比1:1)に溶解させた1M溶液を電解液とする、図2に示す構造のリチウム電池(コイン型リチウム二次電池)を作製し、その電気化学的リチウム挿入・脱離挙動を測定した。電池の作製は、公知のセルの構成・組み立て方法に従って行った。
(Lithium battery)
An electrode was prepared by using Li 2 Ti 6 O 13 thus obtained as an active material, acetylene black as a conductive agent, and tetrafluoroethylene as a binder in a weight ratio of 10: 5: 1. Then, using lithium metal as a counter electrode, a 1M solution in which lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) is used as an electrolytic solution. A lithium battery (coin-type lithium secondary battery) having the structure shown in FIG. 2 was prepared, and its electrochemical lithium insertion / extraction behavior was measured. The battery was produced according to a known cell configuration / assembly method.

作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、1.0Vのカットオフ電位まで電気化学的リチウム挿入試験を行ったところ、初期の挿入反応は、電圧1.5V付近に電圧平坦部を有し、容量は217mAh/gという高容量が得られることが判明した。また、その後、3.0−1.0Vのカットオフ電位で、リチウム脱離・挿入試験を行ったところ、2サイクル目以降は、1.8V付近の電位でなだらかな電圧変化をしながら、容量90−100mAh/g程度で、可逆的なリチウム挿入・脱離が可能であることが判明した。リチウム挿入・脱離反応に伴う電圧変化を、図5に示す。以上から、本発明のLiTi13活物質が、リチウム基準の作動電圧1.5V程度の高容量のリチウム一次電池の電極材料として有用であると共に、リチウム基準の作動電圧1.8V程度のリチウム二次電池材料としても有用であることが明らかとなった。 The fabricated lithium secondary battery was subjected to an electrochemical lithium insertion test at a current density of 10 mA / g and a cut-off potential of 1.0 V under a temperature condition of 25 ° C. It has been found that a high voltage of 217 mAh / g is obtained with a voltage flat portion in the vicinity of 0.5 V. After that, when a lithium desorption / insertion test was performed at a cut-off potential of 3.0 to 1.0 V, the second and subsequent cycles showed a gentle voltage change at a potential near 1.8 V, while the capacity was changed. It was found that reversible lithium insertion / extraction was possible at about 90-100 mAh / g. FIG. 5 shows voltage changes associated with lithium insertion / extraction reactions. From the above, the Li 2 Ti 6 O 13 active material of the present invention is useful as an electrode material for a high-capacity lithium primary battery having a lithium-based operating voltage of about 1.5 V and has a lithium-based operating voltage of about 1.8 V. It became clear that it was useful as a lithium secondary battery material.

[実施例2]
(LiTi13活物質の製造)
実施例1で合成されたNaTi13多結晶体の粉砕物を出発原料として、純度99%以上の無水硝酸リチウム(LiNO)粉末と、重量比でNaTi13:LiNO=1:20となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中、320℃で10時間保持することによって、リチウムイオン交換処理を行った。その後、純水、及びエタノールでよく洗浄し、自然乾燥することによって、LiTi13活物質を得た。
[Example 2]
(Production of Li 2 Ti 6 O 13 active material)
Using the pulverized Na 2 Ti 6 O 13 polycrystal synthesized in Example 1 as a starting material, anhydrous lithium nitrate (LiNO 3 ) powder having a purity of 99% or more and Na 2 Ti 6 O 13 : LiNO in a weight ratio It measured so that it might become 3 = 1: 20. These were mixed in a mortar, then filled in an alumina crucible, and held in air at 320 ° C. for 10 hours using an electric furnace to perform lithium ion exchange treatment. Thereafter, pure water, and it was washed well with ethanol, by air drying, to obtain a Li 2 Ti 6 O 13 active material.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Li:Ti=0.10:1.90:6(各元素の分析誤差:0.04以内)であり、有意の量の残留するナトリウムが確認されたが、実施例1と比較すると、イオン交換処理温度が高いことから、残留量は減少する傾向が見られた。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mのNaTi13型のトンネル構造を有するLiTi13の単一相であることが明らかとなった。LiTi13の粉末X線回折図形を図6に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のLiTi13の値と良く一致していた。
a=1.5324nm(誤差:0.0004nm以内)
b=0.3750nm(誤差:0.0001nm以内)
c=0.9146nm(誤差:0.0002nm以内)
β=99.41°(誤差:0.01°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission analysis, it was Na: Li: Ti = 0.10: 1.90: 6 (analysis error of each element: within 0.04), significant The amount of residual sodium was confirmed, but when compared with Example 1, since the ion exchange treatment temperature was higher, the residual amount tended to decrease. Furthermore, with an X-ray powder diffractometer, a single phase of Li 2 Ti 6 O 13 having a monoclinic system, a space group C2 / m of a Na 2 Ti 6 O 13 type tunnel structure having good crystallinity It became clear that there was. The powder X-ray diffraction pattern of Li 2 Ti 6 O 13 is shown in FIG. Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following values were obtained, which were in good agreement with the values of known Li 2 Ti 6 O 13 .
a = 1.5324 nm (error: within 0.0004 nm)
b = 0.3750 nm (error: within 0.0001 nm)
c = 0.9146 nm (error: within 0.0002 nm)
β = 99.41 ° (error: within 0.01 °)

[実施例3]
(LiTi13活物質の製造)
実施例1で合成されたNaTi13多結晶体の粉砕物を出発原料として、純度99%以上の無水硝酸リチウム(LiNO)粉末と、重量比でNaTi13:LiNO=1:20となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中、350℃で10時間保持することによって、リチウムイオン交換処理を行った。その後、純水、及びエタノールでよく洗浄し、自然乾燥することによって、LiTi13活物質を得た。
[Example 3]
(Production of Li 2 Ti 6 O 13 active material)
Using the pulverized Na 2 Ti 6 O 13 polycrystal synthesized in Example 1 as a starting material, anhydrous lithium nitrate (LiNO 3 ) powder having a purity of 99% or more and Na 2 Ti 6 O 13 : LiNO in a weight ratio It measured so that it might become 3 = 1: 20. These were mixed in a mortar, then filled in an alumina crucible, and held in air at 350 ° C. for 10 hours using an electric furnace to perform lithium ion exchange treatment. Thereafter, pure water, and it was washed well with ethanol, by air drying, to obtain a Li 2 Ti 6 O 13 active material.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Li:Ti=0.06:1.94:6(各元素の分析誤差:0.04以内)であり、有意の量の残留するナトリウムが確認されたが、実施例1及び実施例2と比較すると、イオン交換処理温度が高くなるほど、残留するナトリウム量は減少する傾向が見られた。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mのNaTi13型のトンネル構造を有するLiTi13の単一相であることが明らかとなった。LiTi13の粉末X線回折図形を図7に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のLiTi13の値と良く一致していた。
a=1.5303nm(誤差:0.0006nm以内)
b=0.3745nm(誤差:0.0001nm以内)
c=0.9134nm(誤差:0.0003nm以内)
β=99.40°(誤差:0.03°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission analysis, it was Na: Li: Ti = 0.06: 1.94: 6 (analysis error of each element: within 0.04), significant However, when the ion exchange treatment temperature was higher, the residual sodium amount tended to decrease as compared with Example 1 and Example 2. Furthermore, with an X-ray powder diffractometer, a single phase of Li 2 Ti 6 O 13 having a monoclinic system, a space group C2 / m of a Na 2 Ti 6 O 13 type tunnel structure having good crystallinity It became clear that there was. FIG. 7 shows a powder X-ray diffraction pattern of Li 2 Ti 6 O 13 . Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following values were obtained, which were in good agreement with the values of known Li 2 Ti 6 O 13 .
a = 1.5303 nm (error: within 0.0006 nm)
b = 0.3745 nm (error: within 0.0001 nm)
c = 0.9134 nm (error: within 0.0003 nm)
β = 99.40 ° (error: within 0.03 °)

このようにして得られたLiTi13多結晶体の粒子形状を走査型電子顕微鏡(SEM)により調べたところ、多結晶体は、出発原料であるNaTi13の形状が保持され、約1ミクロン角の等方的な形状を有する一次粒子から構成されていることが明らかとなった。 When the particle shape of the Li 2 Ti 6 O 13 polycrystal obtained in this way was examined with a scanning electron microscope (SEM), the polycrystal had a shape of Na 2 Ti 6 O 13 as a starting material. It was revealed that the particles were composed of primary particles having an isotropic shape of about 1 micron square.

(リチウム電池)
このようにして得られたLiTi13を活物質とし、実施例1と同様のリチウム電池を作製し、25℃の温度条件下で、電流密度10mA/g、1.0Vのカットオフ電位まで電気化学的リチウム挿入試験を行ったところ、初期の挿入反応は、電圧1.5V付近に電圧平坦部を有し、容量は215mAh/gという高容量が得られることが判明した。また、その後、3.0−1.0Vのカットオフ電位で、リチウム脱離・挿入試験を行ったところ、2サイクル目以降は、1.8V付近の電位でなだらかな電圧変化をしながら、容量90−100mAh/g程度で、可逆的なリチウム挿入・脱離が可能であることが判明した。リチウム挿入・脱離反応に伴う電圧変化を、図8に示す。以上から、本発明のLiTi13活物質が、リチウム基準の作動電圧1.5V程度の高容量のリチウム一次電池の電極材料として有用であると共に、リチウム基準の作動電圧1.8V程度のリチウム二次電池材料としても有用であることが明らかとなった。また、実施例1と比較すると、残留するナトリウム量の影響は、リチウム挿入・脱離挙動に対して顕著ではないことが明らかとなった。
(Lithium battery)
Using the Li 2 Ti 6 O 13 thus obtained as an active material, a lithium battery similar to that of Example 1 was produced, and the current density was 10 mA / g and the cutoff was 1.0 V under the temperature condition of 25 ° C. When an electrochemical lithium insertion test was conducted up to the potential, it was found that the initial insertion reaction had a voltage flat portion around a voltage of 1.5 V, and a high capacity of 215 mAh / g was obtained. After that, when a lithium desorption / insertion test was performed at a cut-off potential of 3.0 to 1.0 V, the second and subsequent cycles showed a gentle voltage change at a potential near 1.8 V, while the capacity was changed. It was found that reversible lithium insertion / extraction was possible at about 90-100 mAh / g. FIG. 8 shows voltage changes associated with lithium insertion / extraction reactions. From the above, the Li 2 Ti 6 O 13 active material of the present invention is useful as an electrode material for a high-capacity lithium primary battery having a lithium-based operating voltage of about 1.5 V and has a lithium-based operating voltage of about 1.8 V. It became clear that it was useful as a lithium secondary battery material. Moreover, it became clear that the influence of the amount of residual sodium is not remarkable with respect to lithium insertion / extraction behavior compared with Example 1.

[実施例4]
(LiTi13活物質の製造)
実施例1で合成されたNaTi13多結晶体の粉砕物を出発原料として、純度99%以上の無水硝酸リチウム(LiNO)粉末と、重量比でNaTi13:LiNO=1:20となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中、380℃で10時間保持することによって、リチウムイオン交換処理を行った。その後、純水、及びエタノールでよく洗浄し、自然乾燥することによって、LiTi13活物質を得た。
[Example 4]
(Production of Li 2 Ti 6 O 13 active material)
Using the pulverized Na 2 Ti 6 O 13 polycrystal synthesized in Example 1 as a starting material, anhydrous lithium nitrate (LiNO 3 ) powder having a purity of 99% or more and Na 2 Ti 6 O 13 : LiNO in a weight ratio It measured so that it might become 3 = 1: 20. These were mixed in a mortar, then filled in an alumina crucible, and held in air at 380 ° C. for 10 hours using an electric furnace to perform lithium ion exchange treatment. Thereafter, pure water, and it was washed well with ethanol, by air drying, to obtain a Li 2 Ti 6 O 13 active material.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Li:Ti=0.03:1.97:6(各元素の分析誤差:0.04以内)であり、残留するナトリウム量は、分析誤差以下であり、ほぼナトリウムが含有しない組成を有することが明らかとなった。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mのNaTi13型のトンネル構造を有するLiTi13の単一相であることが明らかとなった。LiTi13の粉末X線回折図形を図9に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のLiTi13の値と良く一致していた。
a=1.5334nm(誤差:0.0003nm以内)
b=0.3751nm(誤差:0.0001nm以内)
c=0.9148nm(誤差:0.0002nm以内)
β=99.44°(誤差:0.01°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission spectrometry, Na: Li: Ti = 0.03: 1.97: 6 (analysis error of each element: within 0.04) It was clarified that the amount of sodium to be contained is less than the analysis error and has a composition that does not contain sodium. Furthermore, with an X-ray powder diffractometer, a single phase of Li 2 Ti 6 O 13 having a monoclinic system, a space group C2 / m of a Na 2 Ti 6 O 13 type tunnel structure having good crystallinity It became clear that there was. FIG. 9 shows a powder X-ray diffraction pattern of Li 2 Ti 6 O 13 . Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following values were obtained, which were in good agreement with the values of known Li 2 Ti 6 O 13 .
a = 1.5334 nm (error: within 0.0003 nm)
b = 0.3751 nm (error: within 0.0001 nm)
c = 0.9148 nm (error: within 0.0002 nm)
β = 99.44 ° (error: within 0.01 °)

[比較例1]
実施例1で合成された本発明の出発原料であるNaTi13を活物質とし、実施例1及び3と同様のリチウム電池を作製し、25℃の温度条件下で、電流密度10mA/g、1.0Vのカットオフ電位まで電気化学的リチウム挿入試験を行ったところ、初期の挿入反応は、電圧1.3V付近及び1.1V付近に電圧平坦部を有し、容量は77mAh/g程度しか得られないことが判明した。(図10参照)また、その後、3.0−1.0Vのカットオフ電位で、リチウム脱離・挿入試験を行ったところ、2サイクル目以降は、リチウム挿入反応時は1.3V付近、脱離反応時には約1.4V付近に電位平坦部を有するものの、容量は60−50mAh/g程度であり、過去の報告(非特許文献3)と比べても、著しく容量が小さかった。このことは、過去の報告が、ナノ粒子であることを特徴としているため、挿入・脱離可能なリチウム量が増大できているものと考えられる。このことは、本発明のLiTi13活物質についても、ナノ粒子化することによって、更に高容量が可能となる可能性を示唆しているものと理解される。
[Comparative Example 1]
Using the Na 2 Ti 6 O 13 which is the starting material of the present invention synthesized in Example 1 as an active material, a lithium battery similar to that in Examples 1 and 3 was produced, and under a temperature condition of 25 ° C., a current density of 10 mA. When the electrochemical lithium insertion test was performed up to a cutoff potential of 1.0 V / g, 1.0 V, the initial insertion reaction had a voltage flat portion around 1.3 V and 1.1 V, and the capacity was 77 mAh / It was found that only about g was obtained. (See FIG. 10) After that, when a lithium desorption / insertion test was performed at a cut-off potential of 3.0 to 1.0 V, after the second cycle, the lithium desorption reaction was performed at about 1.3 V. At the time of the separation reaction, although having a potential flat portion in the vicinity of about 1.4 V, the capacity was about 60-50 mAh / g, and the capacity was remarkably small as compared with the past report (Non-Patent Document 3). This is thought to be because the amount of lithium that can be inserted / removed can be increased because past reports are characterized by nanoparticles. It is understood that this also suggests that the Li 2 Ti 6 O 13 active material of the present invention may have a higher capacity by forming nanoparticles.

本発明は、複合チタン酸化物LiTi13活物質は、NaTi13型トンネル構造を有することから、リチウムを大量に吸蔵可能であり、高容量のリチウム電池電極材料として、実用的価値の高いものである。 Since the composite titanium oxide Li 2 Ti 6 O 13 active material has a Na 2 Ti 6 O 13 type tunnel structure, the present invention can occlude a large amount of lithium, and as a high capacity lithium battery electrode material, It has a high practical value.

また、その製造方法も、特別な装置を必要とせず、また、使用する原料も低価格であることから、低コストで高付加価値の材料を製造可能である。   Also, the manufacturing method does not require a special apparatus, and the raw material to be used is low in price, so that a high value-added material can be manufactured at a low cost.

さらに、本発明の複合チタン酸化物LiTi13活物質を電極材料に適用したリチウム電池は、高容量が可能となる電池である。 Furthermore, a lithium battery in which the composite titanium oxide Li 2 Ti 6 O 13 active material of the present invention is applied as an electrode material is a battery capable of high capacity.

本発明のLiTi13活物質が有するNaTi13型トンネル構造を示す模式図である。Is a schematic diagram showing an Na 2 Ti 6 O 13 type tunnel structure having the Li 2 Ti 6 O 13 active material of the present invention. リチウム電池の1例を示す模式図である。It is a schematic diagram which shows one example of a lithium battery. 実施例1で得られた本発明の出発原料であるNaTi13のX線粉末回折図形である。 2 is an X-ray powder diffraction pattern of Na 2 Ti 6 O 13 which is the starting material of the present invention obtained in Example 1. FIG. 実施例1でイオン交換処理温度290℃の条件で得られた本発明のLiTi13活物質のX線粉末回折図形である。 2 is an X-ray powder diffraction pattern of the Li 2 Ti 6 O 13 active material of the present invention obtained in Example 1 under conditions of an ion exchange treatment temperature of 290 ° C. FIG. 実施例1でイオン交換処理温度290℃の条件で得られた本発明のLiTi13活物質を電極として用いた電池のリチウム挿入・脱離反応に伴う電圧変化を示す図である。It is a diagram illustrating a voltage change due to the lithium insertion-elimination reaction of the battery using the Li 2 Ti 6 O 13 active material of the present invention obtained in the conditions of ion exchange treatment temperature 290 ° C. In Example 1 as an electrode. 実施例2でイオン交換処理温度320℃の条件で得られた本発明のLiTi13活物質のX線粉末回折図形である。Is an X-ray powder diffraction pattern of Li 2 Ti 6 O 13 active material of the present invention obtained in the conditions of ion exchange treatment temperature 320 ° C. In Example 2. 実施例3でイオン交換処理温度350℃の条件で得られた本発明のLiTi13活物質のX線粉末回折図形である。4 is an X-ray powder diffraction pattern of the Li 2 Ti 6 O 13 active material of the present invention obtained in Example 3 under conditions of an ion exchange treatment temperature of 350 ° C. FIG. 実施例3でイオン交換処理温度350℃の条件で得られた本発明のLiTi13活物質を電極として用いた電池のリチウム挿入・脱離反応に伴う電圧変化を示す図である。It is a diagram illustrating a voltage change due to the lithium insertion-elimination reaction of the battery using the Li 2 Ti 6 O 13 active material of the present invention obtained in the conditions of ion exchange treatment temperature 350 ° C. In Example 3 as electrodes. 実施例4でイオン交換処理温度380℃の条件で得られた本発明のLiTi13活物質のX線粉末回折図形である。4 is an X-ray powder diffraction pattern of the Li 2 Ti 6 O 13 active material of the present invention obtained in Example 4 under conditions of an ion exchange treatment temperature of 380 ° C. FIG. 比較例1で本発明の出発原料NaTi13を活物質として作製された電極を用いた電池のリチウム挿入・脱離反応に伴う電圧変化を示す図である。In Comparative Example 1 is a diagram illustrating a voltage change due to the lithium insertion-elimination reaction of a battery using the produced electrode starting material Na 2 Ti 6 O 13 as an active material of the present invention.

符号の説明Explanation of symbols

1 コイン型リチウム二次電池
2 負極端子
3 負極
4 セパレータ+電解液
5 絶縁パッキング
6 正極
7 正極缶
DESCRIPTION OF SYMBOLS 1 Coin type lithium secondary battery 2 Negative electrode terminal 3 Negative electrode 4 Separator + Electrolyte 5 Insulation packing 6 Positive electrode 7 Positive electrode can

Claims (7)

化学式LiTi13 (ただし、残留するNa量:Li量=0.13〜0:1.87〜2)で表される複合チタン酸化物を主成分とするリチウム電池用活物質。 Formula Li 2 Ti 6 O 13 (provided that residual Na amount: Li amount = 0.13 to 0: 1.87 to 2) active material for a lithium battery as a main component composite titanium oxide represented by. 結晶構造が単斜晶系のNaTi13型トンネル構造であることを特徴とする請求項1に記載のリチウム電池用活物質。 2. The active material for a lithium battery according to claim 1, wherein the crystal structure is a monoclinic Na 2 Ti 6 O 13 type tunnel structure. 単斜晶系の格子定数が、残留するナトリウム量によって決定され、a軸長は1.507〜1.545nm、b軸長が0.373〜0.376nm、c軸長が0.911〜0.916nm、β角が99.0〜99.8°の範囲であることを特徴とする請求項2に記載のリチウム電池用活物質。   The monoclinic lattice constant is determined by the amount of sodium remaining, the a-axis length is 1.507 to 1.545 nm, the b-axis length is 0.373 to 0.376 nm, and the c-axis length is 0.911 to 0. The active material for a lithium battery according to claim 2, which has a .916 nm and a β angle in the range of 99.0 to 99.8 °. ナトリウム化合物とチタン酸化物から生成されたナトリウムチタン酸化物NaTi13を出発原料として、イオン交換する工程によって合成されることを特徴とする請求項1に記載のリチウム電池用活物質の製造方法。 2. The lithium battery active material according to claim 1, which is synthesized by an ion exchange process using sodium titanium oxide Na 2 Ti 6 O 13 generated from a sodium compound and titanium oxide as a starting material. Production method. 上記イオン交換する工程は、リチウム溶融塩を用いるリチウムイオン交換反応を適用することを特徴とする請求項4に記載のリチウム電池用活物質の製造方法。   5. The method for producing an active material for a lithium battery according to claim 4, wherein the ion exchange step uses a lithium ion exchange reaction using a lithium molten salt. 上記リチウム溶融塩を用いるリチウムイオン交換反応における熱処理温度が290℃から500℃の範囲内にある請求項5に記載のリチウム電池用活物質の製造方法。 The method for producing an active material for a lithium battery according to claim 5, wherein the heat treatment temperature in the lithium ion exchange reaction using the lithium molten salt is in the range of 290 ° C to 500 ° C. 正極及び負極として使用する2つの電極と、電解質からなるリチウム電池において、請求項1ないし3のいずれか1項に記載の活物質を含有する電極を構成部材として用いたリチウム電池。   The lithium battery which uses the electrode containing the active material of any one of Claims 1 thru | or 3 as a structural member in the lithium battery which consists of two electrodes used as a positive electrode and a negative electrode, and electrolyte.
JP2008296604A 2008-11-20 2008-11-20 Active material for lithium battery, method for producing the same, and lithium battery using the same Expired - Fee Related JP5177672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008296604A JP5177672B2 (en) 2008-11-20 2008-11-20 Active material for lithium battery, method for producing the same, and lithium battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296604A JP5177672B2 (en) 2008-11-20 2008-11-20 Active material for lithium battery, method for producing the same, and lithium battery using the same

Publications (2)

Publication Number Publication Date
JP2010123424A JP2010123424A (en) 2010-06-03
JP5177672B2 true JP5177672B2 (en) 2013-04-03

Family

ID=42324588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296604A Expired - Fee Related JP5177672B2 (en) 2008-11-20 2008-11-20 Active material for lithium battery, method for producing the same, and lithium battery using the same

Country Status (1)

Country Link
JP (1) JP5177672B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI518974B (en) * 2010-04-28 2016-01-21 石原產業股份有限公司 Novel lithium titanate, process for producing the lithium titanate, electrode active material comprising the lithium titanate and storage device using the electrode active material
JP5632794B2 (en) * 2010-04-28 2014-11-26 石原産業株式会社 Lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material
JP5535160B2 (en) 2011-09-20 2014-07-02 株式会社東芝 Nonaqueous electrolyte battery and battery pack
JP5716724B2 (en) * 2012-10-09 2015-05-13 トヨタ自動車株式会社 Sodium ion battery system, method of using sodium ion battery, method of manufacturing sodium ion battery
KR101869585B1 (en) * 2014-04-14 2018-06-20 한국기초과학지원연구원 Synthesis method of lithium-titanium oxide using ion exchange method
CN106575754A (en) * 2014-12-02 2017-04-19 株式会社东芝 Negative electrode active material, nonaqueous electrolyte battery and battery pack
EP3147974B1 (en) 2015-01-30 2019-02-27 Kabushiki Kaisha Toshiba Battery module and battery pack
JP6058836B2 (en) 2015-01-30 2017-01-11 株式会社東芝 Active material, non-aqueous electrolyte battery, battery pack, assembled battery, and vehicle
JP6067902B2 (en) 2015-03-13 2017-01-25 株式会社東芝 Active materials, non-aqueous electrolyte batteries, battery packs, assembled batteries, and automobiles
JP6455787B2 (en) * 2015-05-20 2019-01-23 本田技研工業株式会社 Titanium oxide and manufacturing method thereof, active material for secondary battery and manufacturing method thereof, and secondary battery using titanium oxide as active material
JP6594132B2 (en) 2015-09-15 2019-10-23 株式会社東芝 Battery active material, negative electrode, non-aqueous electrolyte battery, battery pack and vehicle
JP6353114B2 (en) * 2017-04-25 2018-07-04 株式会社東芝 Negative electrode
EP4269344A1 (en) * 2020-12-25 2023-11-01 Resonac Corporation Lithium ion-conductive solid electrolyte, and all-solid-state battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040960A (en) * 1996-07-23 1998-02-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001068113A (en) * 1999-08-31 2001-03-16 Nippon Telegr & Teleph Corp <Ntt> Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
JP5030123B2 (en) * 2000-02-29 2012-09-19 株式会社豊田中央研究所 Lithium secondary battery
JP4257426B2 (en) * 2004-03-19 2009-04-22 独立行政法人産業技術総合研究所 Alkali transition metal oxide crystal material and method for producing the same
JP4431786B2 (en) * 2004-03-19 2010-03-17 独立行政法人産業技術総合研究所 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5164131B2 (en) * 2006-02-27 2013-03-13 独立行政法人産業技術総合研究所 Active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4602306B2 (en) * 2006-09-29 2010-12-22 株式会社東芝 Anode active material for non-aqueous electrolyte battery, non-aqueous electrolyte battery, battery pack and automobile
JP5158787B2 (en) * 2007-03-13 2013-03-06 独立行政法人産業技術総合研究所 NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL
WO2008111465A1 (en) * 2007-03-13 2008-09-18 National Institute Of Advanced Industrial Science And Technology New titanium oxide, process for producing the titanium oxide, and lithium rechargeable battery using the titanium oxide as active material

Also Published As

Publication number Publication date
JP2010123424A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5177672B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the same
JP5164131B2 (en) Active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
US8309253B2 (en) Titanium oxide, method for manufacturing the same, and lithium secondary battery using the same as active material
JP5093643B2 (en) Lithium secondary battery active material, method for producing the same, and lithium secondary battery using the same
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP4474534B1 (en) Titanium oxide and method for producing the same
JP5644273B2 (en) Titanium oxide, method for producing the same, and electrochemical device using the same as member
JP6830120B2 (en) Lithium sodium composite oxide, positive electrode active material for secondary batteries and secondary batteries
JP5880928B2 (en) Lithium manganese titanium nickel composite oxide, method for producing the same, and lithium secondary battery using the same as a member
JP6460511B2 (en) Active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5207360B2 (en) Lithium manganese oxide powder particles, production method thereof, and lithium secondary battery using the same as a positive electrode active material
JP2005263583A (en) Crystal material of alkali-transition metal oxide and its producing method
JP4431786B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5920782B2 (en) Titanium oxide single crystal particles, method for producing the same, electrode active material containing the titanium oxide single crystal particles, and electricity storage device using the electrode active material
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5196486B2 (en) Method for producing composite titanium oxide
JP6395052B2 (en) Titanium oxide and manufacturing method thereof, active material for secondary battery and manufacturing method thereof, and secondary battery using titanium oxide as active material
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP5120919B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the active material
JP6455787B2 (en) Titanium oxide and manufacturing method thereof, active material for secondary battery and manufacturing method thereof, and secondary battery using titanium oxide as active material
JP5004239B2 (en) Manganese oxide, secondary battery electrode active material, production method thereof, and lithium secondary battery using secondary battery electrode active material
JP6399290B2 (en) Titanium oxide and manufacturing method thereof, active material for secondary battery and manufacturing method thereof, and secondary battery using titanium oxide as active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5177672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees