JP2005268127A - Positive electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery using it - Google Patents

Positive electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery using it Download PDF

Info

Publication number
JP2005268127A
JP2005268127A JP2004080971A JP2004080971A JP2005268127A JP 2005268127 A JP2005268127 A JP 2005268127A JP 2004080971 A JP2004080971 A JP 2004080971A JP 2004080971 A JP2004080971 A JP 2004080971A JP 2005268127 A JP2005268127 A JP 2005268127A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
lithium secondary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004080971A
Other languages
Japanese (ja)
Other versions
JP4431786B2 (en
Inventor
Junji Akimoto
順二 秋本
Yasuhiko Takahashi
靖彦 高橋
Michihito Kijima
倫人 木嶋
Mitsuharu Tabuchi
光春 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004080971A priority Critical patent/JP4431786B2/en
Publication of JP2005268127A publication Critical patent/JP2005268127A/en
Application granted granted Critical
Publication of JP4431786B2 publication Critical patent/JP4431786B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new positive electrode material with large charging/discharging capacity at high voltage and a good cycle property to reduce the weight of a lithium secondary battery and its manufacturing method, and to provide the lithium secondary battery using the positive electrode material. <P>SOLUTION: This positive electrode material for the lithium secondary battery has a chemical composition represented by Li<SB>x</SB>Mn<SB>1-y</SB>Ti<SB>y</SB>O<SB>2</SB>(0.40< x<0.50, 0< y<0.56) and a crystal structure belonging to a rhombic system, and consists of lithium, manganese, titanium and oxygen which have a tunnel structure which lithium occupies. The sodium content is 0.05 or less in a molar ratio of Na/Li. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウム二次電池用正極材料及びその製造方法、ならびにその材料を正極活物質として含むリチウム二次電池に関する。   The present invention relates to a positive electrode material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery containing the material as a positive electrode active material.

現在我が国においては、携帯電話、ノートパソコンなどの携帯型電子機器に搭載されている二次電池のほとんどは、リチウム二次電池である。また、リチウム二次電池は、今後電気自動車、電力負荷平準化システムなどの大型電池としても実用化されるものと予測されており、その重要性はますます高まっている。   Currently, in Japan, most of the secondary batteries installed in portable electronic devices such as mobile phones and notebook computers are lithium secondary batteries. In addition, lithium secondary batteries are expected to be put into practical use as large batteries for electric vehicles and power load leveling systems in the future, and their importance is increasing.

このリチウム二次電池は、リチウム含有遷移金属複合酸化物を活物質とする正極と、リチウム金属、リチウム合金、金属酸化物あるいはカーボンのような、リチウムを吸蔵・放出することが可能な材料を活物質とする負極と、非水系電解液を含むセパレータまたは固体電解質を主要構成要素とする。   This lithium secondary battery uses a positive electrode having a lithium-containing transition metal composite oxide as an active material and a material capable of inserting and extracting lithium, such as lithium metal, lithium alloy, metal oxide, or carbon. A main component is a negative electrode as a substance and a separator or solid electrolyte containing a non-aqueous electrolyte.

これらの構成要素のうち、正極活物質として検討されているものには、層状岩塩型リチウムコバルト酸化物(LiCoO)、層状岩塩型リチウムニッケル酸化物(LiNiO)、スピネル型リチウムマンガン酸化物(LiMn)等が挙げられる。 Among these components, those studied as positive electrode active materials include layered rock salt type lithium cobalt oxide (LiCoO 2 ), layered rock salt type lithium nickel oxide (LiNiO 2 ), spinel type lithium manganese oxide ( LiMn 2 O 4 ) and the like.

特に、層状岩塩型リチウムコバルト酸化物LiCoOは、電池の作動電圧(正極中の遷移金属の酸化還元電位と負極元素の酸化還元電位との差)、充放電容量(正極から脱離・挿入可能なリチウム量)などの電池性能に優れ、リチウム二次電池の正極構成材料として今後の需要が一層増大するものと予測されている。
しかしながら、この化合物は、稀少金属であるコバルトを主成分として含むために、リチウム二次電池の高コストの要因の一つとなっている。さらに、現在すでに全世界のコバルト生産量の約20%が電池産業において用いられていることを考慮すれば、LiCoOからなる正極材料のみでは、今後の需要拡大に対応可能かどうかは、不明である。
In particular, the layered rock salt type lithium cobalt oxide LiCoO 2 has a battery operating voltage (difference between the redox potential of the transition metal in the positive electrode and the redox potential of the negative electrode element), charge / discharge capacity (can be desorbed and inserted from the positive electrode). It is expected that the future demand will increase further as a positive electrode constituent material of a lithium secondary battery.
However, since this compound contains cobalt, which is a rare metal, as a main component, it is one of the high-cost factors for lithium secondary batteries. Furthermore, considering that about 20% of the world's cobalt production is already used in the battery industry, it is unclear whether only the cathode material made of LiCoO 2 can meet future demand growth. is there.

また、コバルトよりも安価なニッケルを用いた層状岩塩型リチウムニッケル酸化物LiNiOは、コスト的にも容量的にも有利であり、リチウムコバルト酸化物の有力な代替材料として開発が進められている。しかしながら、このリチウムニッケル酸化物を正極活物質に用いたリチウム二次電池は、充電状態での正極活物質の不安定性から、高温に保持すると分解、発熱、発火などの危険性を有しており、安全性に関して解決しなければならない問題が多く残っている。 Further, the layered rock salt type lithium nickel oxide LiNiO 2 using nickel cheaper than cobalt is advantageous in terms of cost and capacity, and is being developed as a promising alternative material for lithium cobalt oxide. . However, the lithium secondary battery using this lithium nickel oxide as the positive electrode active material has the risk of decomposition, heat generation, ignition, etc. if kept at a high temperature due to the instability of the positive electrode active material in the charged state. There are still many issues that need to be resolved regarding safety.

また、スピネル型リチウムマンガン酸化物LiMnは、コバルトやニッケルよりもさらに安価なマンガンを用いており、かつ充電状態での安全性にも優れていることから、一部はLiCoOに代替して実用化されている。
しかしながら、LiCoOやLiNiOと比べて容量が小さいことが問題となっている。また、50℃以上におけるマンガンの電解液への溶解に起因する顕著な特性劣化という問題点も有しているので、この材料によるLiCoOの代替は、予期された程には進展していない。
Furthermore, the spinel-type lithium manganese oxide LiMn 2 O 4 is used less expensive manganese than cobalt and nickel, and since it is excellent in safety in the charged state, some alternative to LiCoO 2 Has been put to practical use.
However, there is a problem that the capacity is small compared to LiCoO 2 and LiNiO 2 . Further, since there is a problem of remarkable characteristic deterioration due to dissolution of manganese in an electrolytic solution at 50 ° C. or higher, substitution of LiCoO 2 by this material has not progressed as expected.

一方、結晶構造の特徴として、一次元のトンネル構造をとるNa0.44MnOを出発原料として、イオン交換法によってLi0.44MnOを合成する研究も行われている。(非特許文献1参照) On the other hand, as a feature of the crystal structure, research has been conducted to synthesize Li 0.44 MnO 2 by an ion exchange method using Na 0.44 MnO 2 having a one-dimensional tunnel structure as a starting material. (See Non-Patent Document 1)

M.M.Doeff,K−T.Hwang,A.Anapolsky,T.J.Richardson,Electrochem.Soc.Proceedings Volume,99−24,48−56(2000).M.M. M.M. Doeff, KT. Hwang, A .; Anapolsky, T .; J. et al. Richardson, Electrochem. Soc. Proceedings Volume, 99-24, 48-56 (2000).

このLi0.44MnO型のトンネル構造を有する材料は、前記コバルト系酸化物代替の材料という観点からは、資源的な制約が少なくかつ安価なマンガン酸化物を原料として使用し、さらに、Mn3+とMn4+の酸化還元反応に伴うマンガンと酸素の化学結合の変化に耐え、かつ、充放電に伴ってスピネル構造へ変化しないような構造の安定性の観点から、有望な材料である。 The material having a tunnel structure of Li 0.44 MnO 2 uses manganese oxide as a raw material, which is less resource-constrained and inexpensive from the viewpoint of the cobalt-based oxide substitute material. It is a promising material from the viewpoint of structural stability that can withstand changes in the chemical bond between manganese and oxygen associated with the oxidation-reduction reaction of 3+ and Mn 4+ and that does not change into a spinel structure due to charge / discharge.

しかしながら、非特許文献1では、原料とするナトリウム化合物の結晶性が低く、イオン交換処理の反応温度が200℃以上に上げることができず、その結果、出発原料に含まれるナトリウムがイオン交換処理で完全に取り除くことができず、期待される性能が実現できていなかった。報告されている残留するナトリウム量は、Na/Liのモル比で0.057程度であり、有意の残留したナトリウムが、トンネル内でのリチウムイオン伝導を阻害し、さらには理論容量の実現を困難なものとしている。   However, in Non-Patent Document 1, the crystallinity of the sodium compound used as a raw material is low, and the reaction temperature of the ion exchange treatment cannot be increased to 200 ° C. or higher. It could not be completely removed and the expected performance could not be realized. The reported amount of residual sodium is about 0.057 in terms of Na / Li molar ratio. Significant residual sodium hinders lithium ion conduction in the tunnel and makes it difficult to realize the theoretical capacity. It is supposed to be.

したがって、本発明は、上記のような現状の課題を解決し、上述のようなLi0.44MnO型のトンネル構造を有し、かつ、リチウム二次電池のより軽量化を図るためにMnの一部をTiで置き換え、かつ、充放電容量が大きく、サイクル特性が良好な新規な正極材料、及びその製造方法、ならびに該正極材料を使用したリチウム二次電池を提供することにある。 Therefore, the present invention solves the above-mentioned problems as described above, has a Li 0.44 MnO 2 type tunnel structure as described above, and further reduces the weight of the lithium secondary battery. And a lithium secondary battery using the positive electrode material, a method for producing the same, and a lithium secondary battery using the positive electrode material.

本発明者は出発物質、合成条件等を鋭意検討した結果、非特許文献1の焼成温度よりも高い900℃〜1400℃での焼成によって、高い結晶性の原料結晶材料が合成可能であり、かつ、高温で焼成したNa0.44Mn1−yTi結晶材料を原料とすれば、より高温でのイオン交換処理が可能となり、結果的に残留するナトリウム量を著しく低減させることが可能となること、さらにその結果得られた、イオン交換処理を施したリチウム化合物を、リチウムイオン二次電池の正極材料として使用する場合には、これまで発現されていなかった4V領域でも安定に充放電可能で、しかも充放電容量が大きく、サイクル特性も良好であることを見出し、本発明を完成するに至った。 As a result of intensive studies on starting materials, synthesis conditions, etc., the present inventor can synthesize a highly crystalline raw crystal material by firing at 900 ° C. to 1400 ° C., which is higher than the firing temperature of Non-Patent Document 1, and , Na 0.44 Mn 1-y Ti y O 2 crystal material fired at high temperature can be used as a raw material, ion exchange treatment at higher temperature becomes possible, and as a result, the amount of residual sodium can be significantly reduced In addition, when the resulting lithium compound subjected to the ion exchange treatment is used as a positive electrode material for a lithium ion secondary battery, it is possible to charge and discharge stably even in the 4 V region that has not been developed so far. The present inventors have found that it is possible, has a large charge / discharge capacity, and good cycle characteristics, and has completed the present invention.

すなわち、本発明は、下記に示す1〜6の構成をとるものである。
1.化学組成式としてLiMn1−yTi(0.40<x<0.50、0<y<0.56)で表記され、結晶構造として斜方晶系に属し、リチウムが占有するトンネル構造を有するリチウム、マンガン、チタン、酸素から構成され、ナトリウムの含有量がNa/Liのモル比で0.05以下であることを特徴とするリチウム二次電池正極材料。
2.化学組成式としてNaMn1−yTi(0.40<x<0.50、0<y<0.56)で表記され、結晶構造として斜方晶系に属し、ナトリウムが占有するトンネル構造を有するナトリウム、マンガン、チタン、酸素から構成される化合物を出発物質として、イオン交換処理によって製造することを特徴とする1に記載の正極材料の製造方法。
3.イオン交換処理を、リチウム化合物を含有する溶融塩中において行うことを特徴とする2に記載の正極材料の製造方法。
4.イオン交換処理を、リチウム化合物を溶解した有機溶剤または水溶液中において行うことを特徴とする請求項2に記載の正極材料の製造方法。
5.正極、負極及び電解質物質を有するリチウム二次電池の正極を1に記載の正極材料により構成したことを特徴とするリチウム二次電池。
6.電池の作動電圧として、4V以上の領域で安定に充放電が可能であることを特徴とする5に記載のリチウム二次電池。
That is, this invention takes the structure of 1-6 shown below.
1. It is expressed as Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56) as the chemical composition formula, belongs to the orthorhombic system as the crystal structure, and is occupied by lithium A lithium secondary battery positive electrode material comprising lithium, manganese, titanium, and oxygen having a tunnel structure that has a sodium content of 0.05 or less in terms of a Na / Li molar ratio.
2. The chemical composition is expressed as Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56), and the crystal structure belongs to the orthorhombic system and is occupied by sodium. 2. The method for producing a positive electrode material according to 1, wherein the compound is produced by ion exchange treatment using a compound composed of sodium, manganese, titanium and oxygen having a tunnel structure as a starting material.
3. 3. The method for producing a positive electrode material according to 2, wherein the ion exchange treatment is performed in a molten salt containing a lithium compound.
4). The method for producing a positive electrode material according to claim 2, wherein the ion exchange treatment is performed in an organic solvent or an aqueous solution in which a lithium compound is dissolved.
5). A lithium secondary battery, wherein the positive electrode of the lithium secondary battery having a positive electrode, a negative electrode, and an electrolyte material is composed of the positive electrode material described in 1.
6). 6. The lithium secondary battery according to 5, wherein the battery can be stably charged and discharged in an area of 4 V or more as an operating voltage of the battery.

本発明によれば、安価な原料を使用して、高い作動電圧領域(4V以上)において安定に充放電させることができる新規なリチウムマンガンチタン酸化物正極材料を得ることができる。
この正極材料を使用した本発明のリチウム二次電池は、高電圧・高容量で、優れた充放電サイクル特性をも発揮することができ、実用性の高いものである。
ADVANTAGE OF THE INVENTION According to this invention, the novel lithium manganese titanium oxide positive electrode material which can be charged / discharged stably in a high operating voltage area | region (4V or more) can be obtained using an inexpensive raw material.
The lithium secondary battery of the present invention using this positive electrode material has high voltage and high capacity, can exhibit excellent charge / discharge cycle characteristics, and is highly practical.

1)ナトリウム遷移金属酸化物結晶材料及びその製造方法
本発明の正極材料の原料となるNaMn1−yTi(0.40<x<0.50、0<y<0.56)化合物は、ナトリウム化合物、マンガン化合物、チタン化合物を出発原料として作製され、公知のNa0.44MnO、或いはNaMnTi18(=Na0.44Mn0.44Ti0.56)と同様のトンネル構造をとり、マンガンとチタンの割合を上記の組成範囲内で自由に選択できることを特徴とする化合物である。
1) Sodium Transition Metal Oxide Crystal Material and Method for Producing the Same Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56) used as a raw material for the positive electrode material of the present invention ) Compounds are prepared using sodium compounds, manganese compounds and titanium compounds as starting materials, and known Na 0.44 MnO 2 or Na 4 Mn 4 Ti 5 O 18 (= Na 0.44 Mn 0.44 Ti 0. 56 O 2 ), a compound having a tunnel structure, and the ratio of manganese and titanium can be freely selected within the above composition range.

この化合物は、例えば(1)ナトリウム及びナトリウム化合物の少なくとも1種、(2)マンガン及びマンガン化合物の少なくとも1種、(3)チタン及びチタン化合物の少なくとも1種を含有する混合物を焼成することによって製造することができる。   This compound is produced, for example, by firing a mixture containing (1) at least one of sodium and a sodium compound, (2) at least one of manganese and a manganese compound, and (3) titanium and at least one of a titanium compound. can do.

ナトリウム原料としては、ナトリウム(金属ナトリウム)およびナトリウム化合物の少なくとも1種を用いる。ナトリウム化合物としては、ナトリウムを含有するものであれば特に制限されず、例えばNaO、Na等の酸化物、NaCO、NaNO等の塩類、NaOHなどの水酸化物等が挙げられる。これらの中でも、特にNaCO等が好ましい。 As the sodium raw material, at least one of sodium (metallic sodium) and a sodium compound is used. The sodium compound is not particularly limited as long as it contains sodium. For example, oxides such as Na 2 O and Na 2 O 2 , salts such as Na 2 CO 3 and NaNO 3 , hydroxides such as NaOH, etc. Is mentioned. Among these, Na 2 CO 3 is particularly preferable.

マンガン原料としては、マンガン(金属マンガン)及びマンガン化合物の少なくとも1種を用いる。マンガン化合物としては、マンガンを含有するものであれば特に制限されず、例えばMn、Mn、MnO等の酸化物、MnCO、MnCl等の塩類、Mn(OH)等の水酸化物、MnOOH等の酸化水酸化物等が挙げられる。これらの中でも、特にMn、MnO等が好ましい。 As the manganese raw material, at least one of manganese (metallic manganese) and a manganese compound is used. The manganese compound is not particularly limited as long as it contains manganese. For example, oxides such as Mn 3 O 4 , Mn 2 O 3 and MnO 2 , salts such as MnCO 3 and MnCl 2 , Mn (OH) 2 And hydroxides such as MnOOH and the like. Among these, Mn 2 O 3 , MnO 2 and the like are particularly preferable.

チタン原料としては、チタン(金属チタン)及びチタン化合物の少なくとも1種を用いる。チタン化合物としては、チタンを含有するものであれば特に制限されず、例えばTiO、Ti、TiO等の酸化物、TiCl等の塩類等が挙げられる。これらの中でも、特にTiO等が好ましい。 As the titanium raw material, at least one of titanium (metallic titanium) and a titanium compound is used. The titanium compound is not particularly limited as long as it contains titanium, and examples thereof include oxides such as TiO, Ti 2 O 3 and TiO 2 , salts such as TiCl 4 and the like. Among these, TiO 2 is particularly preferable.

はじめに、これらを含む混合物を調整する。ナトリウム原料とマンガン原料及びチタン原料の混合割合は、前記トンネル構造が生成するような割合で混合することが好ましい。具体的には、NaMn1−yTi(0.40<x<0.50、0<y<0.56)の化学組成式となるようにすれば良い。例えば、モル比でNa/(Mn+Ti)が0.4〜0.7程度、好ましくは0.43〜0.55となるように混合すればよい。通常、高温で焼成を行った場合、含有するナトリウムが揮発しやすく、生成物中のナトリウム量が仕込み組成よりも少なくなる場合が多いことから、モル%で数%〜10数%程度、ナトリウムの仕込み量を増やした方が好ましい。また、マンガンとチタンの割合は、(0<y<0.56)の範囲で任意に選択すればよい。 First, a mixture containing these is prepared. The mixing ratio of the sodium raw material, the manganese raw material, and the titanium raw material is preferably mixed so that the tunnel structure is generated. Specifically, the chemical composition formula may be Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56). For example, mixing may be performed so that Na / (Mn + Ti) is about 0.4 to 0.7, preferably 0.43 to 0.55 in terms of molar ratio. Usually, when firing at a high temperature, the contained sodium is likely to volatilize, and the amount of sodium in the product is often less than the charged composition. It is preferable to increase the amount charged. Further, the ratio between manganese and titanium may be arbitrarily selected within the range of (0 <y <0.56).

また、混合方法は、これらを均一に混合できる限り特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式又は乾式で混合すれば良い。   Moreover, a mixing method is not specifically limited as long as these can be mixed uniformly, For example, what is necessary is just to mix by a wet type or a dry type using well-known mixers, such as a mixer.

次いで、混合物を焼成する。焼成温度は、混合物の組成等に応じて適宜設定することができるが、通常は600〜1400℃程度、好ましくは900〜1200℃とすればよい。また、焼成雰囲気も特に限定的ではないが、通常は酸化性雰囲気又は大気中で実施すれば良い。焼成時間は、焼成温度等に応じて適宜変更することができる。冷却方法は特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷すれば良い。   The mixture is then fired. The firing temperature can be appropriately set according to the composition of the mixture, but is usually about 600 to 1400 ° C., preferably 900 to 1200 ° C. Also, the firing atmosphere is not particularly limited, but usually it may be carried out in an oxidizing atmosphere or air. The firing time can be appropriately changed according to the firing temperature and the like. Although the cooling method is not particularly limited, it may be naturally cooled (cooled in the furnace) or gradually cooled.

焼成後は、必要に応じて焼成物を公知の方法で粉砕し、さらに上記の焼成工程を実施しても良い。すなわち、本発明方法では、上記混合物の焼成、徐冷及び粉砕を2回以上繰り返して実施することが好ましい。なお、粉砕の程度は、焼成温度などに応じて適宜調節すれば良い。   After firing, the fired product may be pulverized by a known method as necessary, and the above firing step may be further performed. That is, in the method of the present invention, it is preferable that the mixture is repeatedly fired, gradually cooled and pulverized twice or more. Note that the degree of pulverization may be appropriately adjusted according to the firing temperature and the like.

上記の工程により、目的とする化学組成式NaMn1−yTi(0.40<x<0.50、0<y<0.56)で表される、針状或いは繊維状結晶粒子(典型的なサイズ:10×10×1μm)、又は薄片状結晶粒子(典型的なサイズ:3×1×0.5μm)で、針状の場合は10×2×1μm程度、薄片状の場合は3×3×1μm程度が好ましく、さらに好適な20×3×1μm程度のサイズを有する結晶材料を得ることができる。 Through the above-described steps, the target chemical composition formula Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56), needle-like or fibrous form Crystal particles (typical size: 10 × 10 × 1 μm) or flaky crystal particles (typical size: 3 × 1 × 0.5 μm), in the case of needles, about 10 × 2 × 1 μm, flaky In this case, about 3 × 3 × 1 μm is preferable, and a more preferable crystal material having a size of about 20 × 3 × 1 μm can be obtained.

非特許文献1は、できるだけ小さい粒子のナトリウム遷移金属酸化物を得ようとするものであるが、得られるナトリウム化合物の結晶性が低く、所望の特性を有するリチウム二次電池用正極材料を製造する原料としては、不適当なものであった。これに対して、本発明によれば、逆に大きなサイズを有する結晶材料とすることによって、所望の特性を有するリチウム二次電池用正極材料を製造する原料として有用な、ナトリウム遷移金属酸化物結晶材料を得るものである。   Non-Patent Document 1 attempts to obtain a sodium transition metal oxide having as small a particle as possible, but produces a positive electrode material for a lithium secondary battery in which the obtained sodium compound has low crystallinity and has desired characteristics. As a raw material, it was unsuitable. On the other hand, according to the present invention, a sodium transition metal oxide crystal useful as a raw material for producing a positive electrode material for a lithium secondary battery having desired characteristics by using a crystal material having a large size. Get material.

2)リチウム二次電池用正極材料及びその製造方法
本発明では、上記で得られる化学組成式NaMn1−yTi(0.40<x<0.50、0<y<0.56)で表される結晶材料をイオン交換処理することによって、該結晶材料と同様のトンネル構造を有するLiMn1−yTi(0.40<x<0.50、0<y<0.56)正極材料を作製することができる。
2) Positive electrode material for lithium secondary battery and method for producing the same In the present invention, the chemical composition formula Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0) obtained above. .56) is subjected to an ion exchange treatment to form Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <0) having a tunnel structure similar to that of the crystalline material. y <0.56) A positive electrode material can be produced.

本製造方法は、結晶構造の特徴から、トンネル内に規則的に配列したナトリウムを、イオン交換処理によって、ほぼ完全にリチウムに置き換えることが可能であることを特徴とする。
すなわち、本発明で得られれる化学組成式LiMn1−yTi(0.40<x<0.50、0<y<0.56)で表される正極材料は、リチウム、マンガン、チタン、及び酸素を主要構成元素とすることを特徴とするが、本発明の効果を妨げない範囲内での不純物元素が一部含まれていても良い。
This manufacturing method is characterized in that sodium regularly arranged in a tunnel can be almost completely replaced with lithium by ion exchange treatment due to the characteristics of the crystal structure.
That is, the positive electrode material represented by the chemical composition formula Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56) obtained in the present invention is lithium, Although manganese, titanium, and oxygen are the main constituent elements, a part of impurity elements within a range that does not hinder the effects of the present invention may be included.

このLiMn1−yTi(0.40<x<0.50、0<y<0.56)正極材料は、その全体がLi0.44MnO型のトンネル構造を有することが望ましいが、その効果を妨げない範囲内で他の結晶構造が一部含まれていても良い。 This Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56) positive electrode material has a Li 0.44 MnO 2 type tunnel structure as a whole. However, a part of the other crystal structure may be included within a range not hindering the effect.

(正極材料の製造方法)
上記、1)で得られたNaMn1−yTi(0.40<x<0.50、0<y<0.56)に、(1)リチウム化合物を含む溶融塩中でイオン交換処理を施すか、或いは(2)有機溶剤または水溶液中でイオン交換処理を施すことにより、Li0.44MnO型の結晶構造を有し、化学組成式LiMn1−yTi(0.40<x<0.50、0<y<0.56)で表される化合物が得られる。
(Method for producing positive electrode material)
In Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56) obtained in 1) above, (1) in a molten salt containing a lithium compound By performing ion exchange treatment or (2) performing ion exchange treatment in an organic solvent or aqueous solution, it has a crystal structure of Li 0.44 MnO 2 type and has a chemical composition formula Li x Mn 1-y Ti y A compound represented by O 2 (0.40 <x <0.50, 0 <y <0.56) is obtained.

この場合に、(1)リチウム含有化合物を含む溶融塩中において、粉砕されたNaMn1−yTi(0.40<x<0.50、0<y<0.56)を分散させながら、イオン交換処理を施すことが好適である。溶融塩としては、硝酸リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等の低温で溶融する塩類のうちで、いずれか1種以上を含む溶融塩を用いることができる。好ましい方法としては、リチウム化合物とNaMn1−yTi焼成物の粉末をよく混合しておく。混合比は、通常、溶融塩中のLi/NaMn1−yTi中のNaのモル比で2〜40、好ましくは10〜30である。 In this case, (1) pulverized Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56) in a molten salt containing a lithium-containing compound. It is preferable to perform ion exchange treatment while dispersing. As the molten salt, a molten salt containing any one or more of salts that melt at a low temperature such as lithium nitrate, lithium chloride, lithium bromide, and lithium iodide can be used. As a preferred method, a lithium compound and a powder of Na x Mn 1-y Ti y O 2 fired product are mixed well. The mixing ratio is usually 2 to 40, preferably 10 to 30, in terms of the molar ratio of Na in Li / Na x Mn 1-y Ti y O 2 in the molten salt.

イオン交換の温度は、260℃〜330℃である。イオン交換の温度が260℃よりも低い場合は、NaMn1−yTi(0.40<x<0.50、0<y<0.56)中のナトリウムがリチウムに完全に交換されず、相当量のナトリウムが生成物中に残存する。一方、イオン交換温度が330℃よりも高い場合は、一部がスピネル構造に変化するため、均一な結晶構造を得ることができない。処理時間は、通常2〜20時間、好ましくは5〜15時間である。 The ion exchange temperature is 260 ° C to 330 ° C. When the ion exchange temperature is lower than 260 ° C., sodium in Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56) is completely converted into lithium. A substantial amount of sodium remains in the product without being exchanged. On the other hand, when the ion exchange temperature is higher than 330 ° C., a part of the ion exchange temperature changes to a spinel structure, so that a uniform crystal structure cannot be obtained. The treatment time is usually 2 to 20 hours, preferably 5 to 15 hours.

また、イオン交換処理の方法として、(2)リチウム化合物を溶解した有機溶剤または水溶液中で処理する方法も適する。この場合、リチウム含有化合物を溶解させた有機溶剤中に、粉砕されたNaMn1−yTi(0.40<x<0.50、0<y<0.56)を投入し、その有機溶剤の沸点以下の温度で処理する。イオン交換速度を高めるため、有機溶剤の沸点付近で、溶媒を還流させながら、イオン交換することが好ましい。処理温度は通常100℃〜200℃、好ましくは140℃〜180℃で処理される。また、処理時間は、特に制限されないが、低温であると反応時間が必要であることから、通常5〜50時間、好ましくは10〜20時間である。 Further, as a method of ion exchange treatment, (2) a method of treating in an organic solvent or aqueous solution in which a lithium compound is dissolved is also suitable. In this case, pulverized Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56) is put into the organic solvent in which the lithium-containing compound is dissolved. And processing at a temperature below the boiling point of the organic solvent. In order to increase the ion exchange rate, it is preferable to perform ion exchange while refluxing the solvent near the boiling point of the organic solvent. The treatment temperature is usually 100 ° C to 200 ° C, preferably 140 ° C to 180 ° C. Further, the treatment time is not particularly limited, but it is usually 5 to 50 hours, preferably 10 to 20 hours, because a reaction time is required at a low temperature.

本発明に用いられるリチウム含有化合物としては、炭酸塩、酢酸塩、硝酸塩、シュウ酸塩、ハロゲン化物、ブチルリチウム等が好ましく、これらは単独または必要に応じて2種以上を組み合わせて用いられる。また、本発明に用いられる有機溶剤としては、ヘキサノール、エトキシエタノール等の高級アルコール、ジエチレングルコールモノエチルエーテル等のエーテル、もしくは沸点が140℃以上の有機溶剤が、作業性が良好である点で好ましい。これらは単独または必要に応じて2種以上組み合わせて用いられる。   As the lithium-containing compound used in the present invention, carbonates, acetates, nitrates, oxalates, halides, butyllithium and the like are preferable, and these may be used alone or in combination of two or more as required. Further, as the organic solvent used in the present invention, higher alcohols such as hexanol and ethoxyethanol, ethers such as diethylene glycol monoethyl ether, or organic solvents having a boiling point of 140 ° C. or more are good in workability. preferable. These may be used alone or in combination of two or more as required.

有機溶剤または水溶液中におけるリチウム含有化合物の濃度は、通常3〜10モル%、好ましくは4〜6モル%である。また、有機溶剤または水溶液中でのNaMn1−yTiの分散濃度は、特に制限されないが、操作性及び経済性の観点から1〜20重量%が好ましい。 The density | concentration of the lithium containing compound in an organic solvent or aqueous solution is 3-10 mol% normally, Preferably it is 4-6 mol%. The dispersion concentration of Na x Mn 1-y Ti y O 2 in the organic solvent or aqueous solution is not particularly limited, but is preferably 1 to 20% by weight from the viewpoints of operability and economy.

イオン交換処理の後、得られた生成物を、蒸留水でよく洗浄した後、メタノール、エタノールで洗浄後、乾燥させることによって、目的とするLiMn1−yTi(0.40<x<0.50、0<y<0.56)が得られる。洗浄方法、乾燥方法については、特に制限されず、通常の方法が用いられる他、デシケーター内における自然乾燥でも良い。 After the ion exchange treatment, the obtained product is thoroughly washed with distilled water, then washed with methanol and ethanol, and dried to obtain the target Li x Mn 1-y Ti y O 2 (0.40). <X <0.50, 0 <y <0.56). The washing method and the drying method are not particularly limited, and a normal method may be used, or natural drying in a desiccator may be used.

3)リチウム二次電池
本発明のリチウム二次電池は、前記リチウム二次電池用正極材料を用いることを特徴とするものである。すなわち、正極材料として本発明のリチウムマンガンチタン酸化物を用いる以外は、公知のリチウム二次電池(コイン型、ボタン型、円筒型等)の電池要素をそのまま採用することができる。
3) Lithium secondary battery The lithium secondary battery of the present invention is characterized by using the positive electrode material for a lithium secondary battery. That is, a battery element of a known lithium secondary battery (coin type, button type, cylindrical type, etc.) can be used as it is except that the lithium manganese titanium oxide of the present invention is used as the positive electrode material.

従って、例えば本発明のリチウムマンガンチタン酸化物に必要に応じて導電剤、結着剤等を配合してなる正極合材を調整し、これを集電体に圧着することにより正極を作製できる。集電体としては、好ましくはステンレスメッシュ、アルミ箔等を用いることができる。導電剤としては、好ましくはアセチレンブラック、ケッチェンブラック等を用いることができる。結着剤としては、好ましくはテトラフルオロエチレン、ポリフッ化ビニリデン等を用いることができる。   Therefore, for example, a positive electrode mixture obtained by blending a lithium manganese titanium oxide of the present invention with a conductive agent, a binder and the like as necessary can be prepared, and a positive electrode can be produced by pressure-bonding it to a current collector. As the current collector, a stainless mesh, aluminum foil or the like can be preferably used. As the conductive agent, acetylene black, ketjen black or the like can be preferably used. As the binder, tetrafluoroethylene, polyvinylidene fluoride, or the like can be preferably used.

正極合材におけるリチウムマンガンチタン酸化物、導電剤、結着剤等の配合も特に限定的でなく、公知の配合比とすれば良い。   The composition of the lithium manganese titanium oxide, the conductive agent, the binder and the like in the positive electrode mixture is not particularly limited, and may be a known composition ratio.

本発明のリチウム二次電池において、上記正極に対する対極としては、例えば金属リチウム、カーボン系材料、合金系材料等の公知のものを採用することができる。また、セパレータ、電池容器等も公知の電池要素を採用すれば良い。   In the lithium secondary battery of the present invention, as the counter electrode with respect to the positive electrode, known ones such as metallic lithium, a carbon-based material, an alloy-based material can be employed. Moreover, a well-known battery element should just be employ | adopted for a separator, a battery container, etc.

また、電解液としても公知のものが適用できる。例えば、過塩素酸リチウム、6フッ化リン酸リチウム等の電解質を、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC),ジエチルカーボネート(DEC)等の溶媒に溶解させたものを電解液として使用できる。   Moreover, a well-known thing is applicable also as electrolyte solution. For example, an electrolyte such as lithium perchlorate or lithium hexafluorophosphate dissolved in a solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), or diethyl carbonate (DEC) It can be used as an electrolyte.

以下に、実施例を示し、本発明の特徴とするところをより一層明確にするが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Examples will be shown below to further clarify the features of the present invention, but the present invention is not limited to these examples.

(実施例1)
[ナトリウム遷移金属酸化物の製造]
炭酸ナトリウム(NaCO)、酸化マンガン(Mn)、酸化チタン(TO)をモル比で1:1:2の割合で均一に混合した。混合物を空気中1000℃で15時間焼成した後、炉内で徐冷した。得られた焼成体を粉砕するという一連の操作(焼成、徐冷及び粉砕)を再度繰り返し、ほぼ単一相の目的とするLi0.44MnO型の結晶構造を有する出発原料を得た。得られた生成物のX線粉末回折図形を図1に示す。また、この結晶の横断面を示す模式図を図3に示す。図3において、黒丸はリチウムを表す。長方形で囲まれた部分の中央には、紙面に垂直方向にS字形の大きなトンネル構造が、またその上下には歪んだ六角形の小さなトンネル構造が認められる。
Li0.44MnO型の結晶構造を仮定して、斜方晶系の格子定数を求めると、a=9.2329(6)A(図3の長方形で囲まれた部分の横の長さ)、b=26.3938(19)A(図3の長方形で囲まれた部分の縦の長さ)、c=2.8928(3)Aである。この試料をICP発光分析法により、化学組成を分析した結果、Na0.44Mn0.5Ti0.5で妥当であることが確認された。
(Example 1)
[Production of sodium transition metal oxide]
Sodium carbonate (Na 2 CO 3 ), manganese oxide (Mn 2 O 3 ), and titanium oxide (TO 2 ) were uniformly mixed at a molar ratio of 1: 1: 2. The mixture was calcined in air at 1000 ° C. for 15 hours and then gradually cooled in a furnace. A series of operations (calcination, slow cooling and pulverization) of pulverizing the obtained fired body were repeated again to obtain a starting material having a target Li 0.44 MnO 2 type crystal structure of a substantially single phase. The X-ray powder diffraction pattern of the obtained product is shown in FIG. Moreover, the schematic diagram which shows the cross section of this crystal | crystallization is shown in FIG. In FIG. 3, black circles represent lithium. A large S-shaped tunnel structure in the direction perpendicular to the paper surface is observed at the center of the portion surrounded by the rectangle, and a distorted hexagonal small tunnel structure is observed above and below the tunnel structure.
Assuming a Li 0.44 MnO 2 type crystal structure, the orthorhombic lattice constant is obtained, and a = 9.2329 (6) A (the horizontal length of the portion surrounded by the rectangle in FIG. 3) ), B = 26.3938 (19) A (the vertical length of the portion surrounded by the rectangle in FIG. 3), and c = 2.8828 (3) A. As a result of analyzing the chemical composition of this sample by ICP emission analysis, it was confirmed that Na 0.44 Mn 0.5 Ti 0.5 O 2 was appropriate.

[正極材料の製造]
次に、上記で得られた試料を、硝酸リチウムと塩化リチウムを88:12のモル比で混合した溶融塩中でイオン交換処理を行った。Na0.44Mn0.5Ti0.5の溶融塩中における量は、モル比で、溶融塩中のLi:試料中のNa=20:1とし、溶融塩の温度は300℃とした。処理時間10時間で、イオン交換処理を行い、得られた固体を蒸留水、メタノール、エタノール等で洗浄、乾燥して試料を得た。この試料をICP発光分析法により、化学組成を分析した結果、Li0.44Mn0.5Ti0.5の化学式で妥当であり、残存して含有するナトリウム量は、モル比でNa/Liのモル比で0.005であった。また、得られた試料のX線粉末回折図形を図2に示す。出発物質としたNa0.44Mn0.5Ti0.5と同構造であると仮定して、斜方晶系の格子定数(a=9.0313(10)A、b=24.681(4)A、c=2.8863(5)A)を有するほぼ単一相であることが確認された。
[Manufacture of positive electrode materials]
Next, the sample obtained above was subjected to ion exchange treatment in a molten salt in which lithium nitrate and lithium chloride were mixed at a molar ratio of 88:12. The amount of Na 0.44 Mn 0.5 Ti 0.5 O 2 in the molten salt is a molar ratio, Li in the molten salt: Na in the sample = 20: 1, and the temperature of the molten salt is 300 ° C. did. An ion exchange treatment was performed for a treatment time of 10 hours, and the obtained solid was washed with distilled water, methanol, ethanol, etc. and dried to obtain a sample. As a result of analyzing the chemical composition of this sample by ICP emission spectrometry, the chemical formula of Li 0.44 Mn 0.5 Ti 0.5 O 2 is reasonable, and the remaining sodium content is Na in terms of molar ratio. The molar ratio of / Li was 0.005. Moreover, the X-ray powder diffraction pattern of the obtained sample is shown in FIG. Assuming the same structure as the starting material Na 0.44 Mn 0.5 Ti 0.5 O 2 , the orthorhombic lattice constant (a = 9.0313 (10) A, b = 24. 681 (4) A, c = 2.8863 (5) A) was confirmed to be nearly single phase.

[リチウム二次電池]
得られたLi0.44Mn0.5Ti0.5試料を正極材料1とし、金属リチウムを負極材料3、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒に溶解させた1M溶液を電解液2とする、図4に示すようなリチウム二次電池(電気化学セル)を作製し、その充放電特性を測定した。電池の作製は、公知の電気化学セルの構成・組み立て方法に従って行った。
[Lithium secondary battery]
The obtained Li 0.44 Mn 0.5 Ti 0.5 O 2 sample was used as the positive electrode material 1, metal lithium as the negative electrode material 3, lithium hexafluorophosphate as ethylene carbonate (EC) and diethyl carbonate (DEC). A lithium secondary battery (electrochemical cell) as shown in FIG. 4 was prepared using the 1M solution dissolved in the above mixed solvent as the electrolyte solution 2, and its charge / discharge characteristics were measured. The battery was produced according to a known electrochemical cell configuration / assembly method.

このリチウム二次電池について、室温で、電流密度0.057mA/cm、4.8V−2.5Vのカットオフ電位で充放電試験を行ったところ、平均放電電圧3.48V、初期放電容量163mAh/gで安定に充放電可能なことが判明した。10サイクル後の放電容量も150mAh/g程度を維持しており、サイクル特性も良好であった。10サイクルまでの充放電特性および充放電容量を図5及び図6に示す。 When this lithium secondary battery was subjected to a charge / discharge test at room temperature with a current density of 0.057 mA / cm 2 and a cut-off potential of 4.8 V-2.5 V, the average discharge voltage was 3.48 V and the initial discharge capacity was 163 mAh. It was found that charging / discharging can be stably performed at / g. The discharge capacity after 10 cycles was maintained at about 150 mAh / g, and the cycle characteristics were also good. The charge / discharge characteristics and the charge / discharge capacity up to 10 cycles are shown in FIGS.

(実施例2)
[ナトリウム遷移金属酸化物の製造]
上記、実施例1と同様の条件で、出発原料である酸化マンガン(Mn)と酸化チタン(TiO)のモル比を変化させ、実施例1と同様に処理して得られたNa0.44Mn1−yTi焼成体(y=0、0.1、0.2、0.3、0.4、0.5、0.56)の格子定数を求めたところ、図7に示すような、チタン量yに依存した系統的な格子体積の変化が確認され、固溶体組成を有する系であることが確認された。
(Example 2)
[Production of sodium transition metal oxide]
Na obtained by treating in the same manner as in Example 1 while changing the molar ratio of manganese oxide (Mn 2 O 3 ) and titanium oxide (TiO 2 ) as starting materials under the same conditions as in Example 1 above. When the lattice constant of 0.44 Mn 1-y Ti y O 2 fired body (y = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.56) was determined, As shown in FIG. 7, a systematic change in lattice volume depending on the amount of titanium y was confirmed, confirming that the system had a solid solution composition.

[正極材料の製造]
実施例1と同様にして、イオン交換処理を各試料について行い、Li0.44Mn1−yTi試料を作製した。それぞれの格子定数は、図8に示すようにナトリウム化合物の場合と同様に、チタン量yに依存して系統的な変化を示すことが確認された。
[Manufacture of positive electrode materials]
In the same manner as in Example 1, each sample was subjected to ion exchange treatment to produce a Li 0.44 Mn 1-y Ti y O 2 sample. As shown in FIG. 8, each lattice constant was confirmed to show a systematic change depending on the amount of titanium y as in the case of the sodium compound.

[リチウム二次電池]
このようにして得られたLi0.44Mn1−yTi焼成体(y=0、0.1、0.2、0.3、0.4、0.5、0.56)の各試料を正極材料として、前項と同様にリチウム二次電池を作製し、同条件で充放電試験を行ったところ、いずれも平均放電電圧約3.5V、初期放電容量150〜180mAh/gで安定に充放電可能であることが確認された。図9に、化学組成(チタン含有量)に依存した初期放電容量の変化を示す。
[Lithium secondary battery]
Li 0.44 Mn 1-y Ti y O 2 fired body thus obtained (y = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.56) A lithium secondary battery was prepared in the same manner as in the previous section using each of the above samples as a positive electrode material, and a charge / discharge test was performed under the same conditions. In each case, the average discharge voltage was about 3.5 V and the initial discharge capacity was 150 to 180 mAh / g. It was confirmed that charging / discharging was possible stably. FIG. 9 shows changes in the initial discharge capacity depending on the chemical composition (titanium content).

本発明によれば、高い作動電圧領域(4V以上)において安定に充放電させることができるリチウムマンガンチタン酸化物正極材料の原料などとして有用な、化学組成式としてNaMn1−yTi(0.40<x<0.50、0<y<0.56)で表記され、結晶構造として斜方晶系に属し、ナトリウムが占有するトンネル構造を有する結晶材料を得ることができる。 According to the present invention, as a chemical composition formula, Na x Mn 1-y Ti y O useful as a raw material of a lithium manganese titanium oxide positive electrode material that can be stably charged and discharged in a high operating voltage region (4 V or higher). 2 (0.40 <x <0.50, 0 <y <0.56), a crystal material belonging to the orthorhombic system as a crystal structure and having a tunnel structure occupied by sodium can be obtained.

また、この結晶材料から得られる本発明の化学組成式としてLiMn1−yTi(0.40<x<0.50、0<y<0.56)で表記されリチウムマンガンチタン酸化物は、高電圧かつ高容量で、サイクル劣化の少ない、かつ、低コストで、さらには軽量のリチウム二次電池正極材料として有用である。
また、上記リチウムマンガンチタン酸化物材料を正極材料(正極活物質)とする本発明のリチウム二次電池は、高電圧かつ高容量で、優れた充放電サイクル特性をも発揮することができ、実用性の高いものである。
In addition, Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56) expressed as a chemical composition formula of the present invention obtained from this crystalline material is lithium manganese titanium. The oxide is useful as a positive electrode material for a lithium secondary battery having a high voltage, a high capacity, little cycle deterioration, low cost, and light weight.
Moreover, the lithium secondary battery of the present invention using the above lithium manganese titanium oxide material as a positive electrode material (positive electrode active material) can exhibit high charge and discharge cycle characteristics at high voltage and high capacity, and can be practically used. It is highly probable.

本発明は、平成15年度「燃料電池自動車等用リチウム電池技術開発」(NEDO受託研究)、高性能リチウム電池要素技術開発『ベースメタル元素を活用した新規化合物正極材料開発』の成果である。   The present invention is the result of “Development of lithium battery technology for fuel cell vehicles” (NEDO contract research), “Development of high-performance lithium battery element technology“ Development of new positive electrode material using base metal element ”in 2003.

本発明により得られるリチウムマンガンチタン酸化物は、高電圧かつ高容量で、かつ、サイクル劣化の少ない、低コストのリチウム二次電池正極材料として有用である。
また、上記リチウムマンガン酸化物材料を正極材料(正極活物質)とする本発明のリチウム二次電池は、高電圧かつ高容量で、優れた充放電サイクル特性をも発揮することができ、実用性の高いものである。
The lithium manganese titanium oxide obtained by the present invention is useful as a positive electrode material for a low-cost lithium secondary battery having a high voltage, a high capacity, and little cycle deterioration.
Moreover, the lithium secondary battery of the present invention using the lithium manganese oxide material as a positive electrode material (positive electrode active material) can exhibit excellent charge / discharge cycle characteristics at a high voltage and a high capacity, and is practical. Is high.

実施例1で得られたNa0.44Mn0.5Ti0.5のX線粉末回折図である。 2 is an X-ray powder diffractogram of Na 0.44 Mn 0.5 Ti 0.5 O 2 obtained in Example 1. FIG. 実施例1で得られたLi0.44Mn0.5Ti0.5のX線粉末回折図である。1 is an X-ray powder diffraction diagram of Li 0.44 Mn 0.5 Ti 0.5 O 2 obtained in Example 1. FIG. 本発明の結晶材料の、Li0.44MnO型のトンネル構造を説明するための模式図である。Of the crystal material of the present invention, it is a schematic diagram for explaining a Li 0.44 MnO 2 type tunnel structure. 本発明のリチウム二次電池(電気化学セル)の1例を示す模式図である。It is a schematic diagram which shows one example of the lithium secondary battery (electrochemical cell) of this invention. 実施例1のリチウム二次電池の10サイクルまでの充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic to 10 cycles of the lithium secondary battery of Example 1. FIG. 実施例1のリチウム二次電池の10サイクルまでの充放電容量を示す図である。FIG. 3 is a diagram showing a charge / discharge capacity of up to 10 cycles of the lithium secondary battery of Example 1. 実施例2で得られたNa0.44Mn1−yTiのチタン量yに依存した格子体積の変化を示す図である。Is a graph showing changes in resulting Na 0.44 Mn 1-y Ti y lattice volume that depends on the amount of titanium y of O 2 in Example 2. 実施例2で得られたLi0.44Mn1−yTiのチタン量yに依存した格子体積の変化を示す図である。Is a graph showing changes in the obtained Li 0.44 Mn 1-y Ti y lattice volume that depends on the amount of titanium y of O 2 in Example 2. 実施例2で得られたLi0.44Mn1−yTiを正極材料とし、金属リチウムを負極材料としたリチウム二次電池の初期放電容量のチタン量依存性を示す図である。The Li 0.44 Mn 1-y Ti y O 2 obtained in Example 2 as a positive electrode material is a diagram showing the amount of titanium dependence of the initial discharge capacity of the lithium secondary battery in which the metal lithium as a negative electrode material.

符号の説明Explanation of symbols

1 正極材料
2 電解液
3 負極材料
1 Positive electrode material 2 Electrolyte 3 Negative electrode material

Claims (6)

化学組成式としてLiMn1−yTi(0.40<x<0.50、0<y<0.56)で表記され、結晶構造として斜方晶系に属し、リチウムが占有するトンネル構造を有するリチウム、マンガン、チタン、酸素から構成され、ナトリウムの含有量がNa/Liのモル比で0.05以下であることを特徴とするリチウム二次電池正極材料。 It is expressed as Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56) as the chemical composition formula, belongs to the orthorhombic system as the crystal structure, and is occupied by lithium A lithium secondary battery positive electrode material comprising lithium, manganese, titanium, and oxygen having a tunnel structure that has a sodium content of 0.05 or less in terms of a Na / Li molar ratio. 化学組成式としてNaMn1−yTi(0.40<x<0.50、0<y<0.56)で表記され、結晶構造として斜方晶系に属し、ナトリウムが占有するトンネル構造を有するナトリウム、マンガン、チタン、酸素から構成される化合物を出発物質として、イオン交換処理によって製造することを特徴とする請求項1に記載の正極材料の製造方法。 The chemical composition is expressed as Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 <y <0.56), and the crystal structure belongs to the orthorhombic system and is occupied by sodium. 2. The method for producing a positive electrode material according to claim 1, wherein the compound is produced by ion exchange treatment using a compound composed of sodium, manganese, titanium, and oxygen having a tunnel structure as a starting material. イオン交換処理を、リチウム化合物を含有する溶融塩中において行うことを特徴とする請求項2に記載の正極材料の製造方法。   The method for producing a positive electrode material according to claim 2, wherein the ion exchange treatment is performed in a molten salt containing a lithium compound. イオン交換処理を、リチウム化合物を溶解した有機溶剤または水溶液中において行うことを特徴とする請求項2に記載の正極材料の製造方法。   The method for producing a positive electrode material according to claim 2, wherein the ion exchange treatment is performed in an organic solvent or an aqueous solution in which a lithium compound is dissolved. 正極、負極及び電解質物質を有するリチウム二次電池の正極を請求項1に記載の正極材料により構成したことを特徴とするリチウム二次電池。   A lithium secondary battery comprising the positive electrode material according to claim 1, wherein a positive electrode of a lithium secondary battery having a positive electrode, a negative electrode, and an electrolyte substance. 電池の作動電圧として、4V以上の領域で安定に充放電が可能であることを特徴とする請求項5に記載のリチウム二次電池。



The lithium secondary battery according to claim 5, wherein the battery can be stably charged and discharged in an area of 4 V or more as an operating voltage of the battery.



JP2004080971A 2004-03-19 2004-03-19 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same Expired - Lifetime JP4431786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004080971A JP4431786B2 (en) 2004-03-19 2004-03-19 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004080971A JP4431786B2 (en) 2004-03-19 2004-03-19 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005268127A true JP2005268127A (en) 2005-09-29
JP4431786B2 JP4431786B2 (en) 2010-03-17

Family

ID=35092437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080971A Expired - Lifetime JP4431786B2 (en) 2004-03-19 2004-03-19 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4431786B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007581A1 (en) * 2005-07-08 2007-01-18 National Institute Of Advanced Industrial Science And Technology Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same
EP1837937A1 (en) * 2006-03-20 2007-09-26 National Institute of Advanced Industrial Science and Technology Lithium manganese-based composite oxide and method and method forpreparing the same
JP2008127233A (en) * 2006-11-20 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium-manganese compound oxide containing titanium and nickel
JP2008226798A (en) * 2007-03-16 2008-09-25 National Institute Of Advanced Industrial & Technology Method of manufacturing single crystal manganate sodium (na0.44mno2) nanowire, and lithium ion electrochemical cell for high rate using it
JP2009059656A (en) * 2007-09-03 2009-03-19 Panasonic Corp Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP2009117259A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Electrode material and electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using them
JP2009227505A (en) * 2008-03-21 2009-10-08 National Institute Of Advanced Industrial & Technology Manganese oxide, electrode active material for battery, those producing methods and secondary battery using electrode active material for battery
JP2009227506A (en) * 2008-03-21 2009-10-08 National Institute Of Advanced Industrial & Technology Manganese oxide, electrode active material for secondary battery, those producing methods and lithium secondary battery using electrode active material for secondary battery
JP2009242121A (en) * 2008-03-28 2009-10-22 National Institute Of Advanced Industrial & Technology Lithium manganese oxide powder particle and production method of the same, and lithium secondary battery using the same as positive active material
JP2010123424A (en) * 2008-11-20 2010-06-03 National Institute Of Advanced Industrial Science & Technology Active material for lithium battery, manufacturing method thereof, and lithium battery using the same
JP2012209242A (en) * 2011-03-14 2012-10-25 National Institute Of Advanced Industrial & Technology Lithium manganese titanium nickel composite oxide and production method therefor, and lithium secondary battery using the same as member

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007581A1 (en) * 2005-07-08 2007-01-18 National Institute Of Advanced Industrial Science And Technology Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same
EP1837937A1 (en) * 2006-03-20 2007-09-26 National Institute of Advanced Industrial Science and Technology Lithium manganese-based composite oxide and method and method forpreparing the same
US8021783B2 (en) 2006-03-20 2011-09-20 National Institute Of Advanced Industrial Science And Technology Lithium manganese-based composite oxide and method for preparing the same
JP2008127233A (en) * 2006-11-20 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium-manganese compound oxide containing titanium and nickel
JP2008226798A (en) * 2007-03-16 2008-09-25 National Institute Of Advanced Industrial & Technology Method of manufacturing single crystal manganate sodium (na0.44mno2) nanowire, and lithium ion electrochemical cell for high rate using it
JP2009059656A (en) * 2007-09-03 2009-03-19 Panasonic Corp Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP2009117259A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Electrode material and electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using them
JP2009227505A (en) * 2008-03-21 2009-10-08 National Institute Of Advanced Industrial & Technology Manganese oxide, electrode active material for battery, those producing methods and secondary battery using electrode active material for battery
JP2009227506A (en) * 2008-03-21 2009-10-08 National Institute Of Advanced Industrial & Technology Manganese oxide, electrode active material for secondary battery, those producing methods and lithium secondary battery using electrode active material for secondary battery
JP2009242121A (en) * 2008-03-28 2009-10-22 National Institute Of Advanced Industrial & Technology Lithium manganese oxide powder particle and production method of the same, and lithium secondary battery using the same as positive active material
JP2010123424A (en) * 2008-11-20 2010-06-03 National Institute Of Advanced Industrial Science & Technology Active material for lithium battery, manufacturing method thereof, and lithium battery using the same
JP2012209242A (en) * 2011-03-14 2012-10-25 National Institute Of Advanced Industrial & Technology Lithium manganese titanium nickel composite oxide and production method therefor, and lithium secondary battery using the same as member

Also Published As

Publication number Publication date
JP4431786B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP5158787B2 (en) NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL
JP5093643B2 (en) Lithium secondary battery active material, method for producing the same, and lithium secondary battery using the same
JP4082214B2 (en) Nonaqueous electrolyte secondary battery and its positive electrode active material
JP5164131B2 (en) Active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP5177672B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the same
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP4257426B2 (en) Alkali transition metal oxide crystal material and method for producing the same
JP5644273B2 (en) Titanium oxide, method for producing the same, and electrochemical device using the same as member
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
JP4431786B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5880928B2 (en) Lithium manganese titanium nickel composite oxide, method for producing the same, and lithium secondary battery using the same as a member
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5207360B2 (en) Lithium manganese oxide powder particles, production method thereof, and lithium secondary battery using the same as a positive electrode active material
CN103413928A (en) High-capacity high-compaction metal oxide anode material and preparation method thereof
JP4431785B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2004059417A (en) Layered rock salt-type lithium nickelate powder and its manufacturing method
JP3702481B2 (en) Acicular manganese complex oxide, method for producing the same, and use thereof
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP2000154022A (en) Lithium manganese double oxide, its production and its use
JP5120919B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the active material
JP6395051B2 (en) Lithium composite oxide, method for producing lithium composite oxide, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2000154021A (en) New lithium manganese oxide, its production and its use
JP5004239B2 (en) Manganese oxide, secondary battery electrode active material, production method thereof, and lithium secondary battery using secondary battery electrode active material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350