JP5196486B2 - Method for producing composite titanium oxide - Google Patents

Method for producing composite titanium oxide Download PDF

Info

Publication number
JP5196486B2
JP5196486B2 JP2008296612A JP2008296612A JP5196486B2 JP 5196486 B2 JP5196486 B2 JP 5196486B2 JP 2008296612 A JP2008296612 A JP 2008296612A JP 2008296612 A JP2008296612 A JP 2008296612A JP 5196486 B2 JP5196486 B2 JP 5196486B2
Authority
JP
Japan
Prior art keywords
lithium
titanium oxide
composite titanium
producing
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008296612A
Other languages
Japanese (ja)
Other versions
JP2010120817A (en
Inventor
順二 秋本
邦光 片岡
明美 河島
博 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008296612A priority Critical patent/JP5196486B2/en
Publication of JP2010120817A publication Critical patent/JP2010120817A/en
Application granted granted Critical
Publication of JP5196486B2 publication Critical patent/JP5196486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、複合チタン酸化物の製造方法に関する。   The present invention relates to a method for producing a composite titanium oxide.

現在我が国においては、カメラ用、時計用電源としてリチウム一次電池、携帯電話、ノートパソコンなどの携帯型電子機器用のバッテリーとしてリチウム二次電池が使用されており、リチウム電池が重要な蓄電池の一つとなっている。また、リチウム二次電池は、今後ハイブリッドカー、電力負荷平準化システムなどの大型電池としても実用化されるものと予測されており、その重要性はますます高まっている。   Currently, in Japan, lithium primary batteries are used as power sources for cameras and watches, and lithium secondary batteries are used as portable electronic devices such as mobile phones and laptop computers. Lithium batteries are one of the important storage batteries. It has become. In addition, lithium secondary batteries are expected to be put into practical use as large batteries such as hybrid cars and power load leveling systems in the future, and their importance is increasing.

このリチウム電池は、いずれもリチウムを吸蔵・放出することが可能な材料を含有する正極及び負極、さらに非水系電解液を含むセパレータ又は固体電解質を主要構成要素とする。   This lithium battery has a positive electrode and a negative electrode each containing a material capable of inserting and extracting lithium, and a separator or a solid electrolyte containing a non-aqueous electrolyte as main components.

これらの構成要素のうち、電極用の活物質として検討されているのは、二酸化マンガン(MnO)、リチウムコバルト酸化物(LiCoO)、リチウムマンガン酸化物(LiMn)、リチウムチタン酸化物(LiTi12)などの酸化物系、金属リチウム、リチウム合金、スズ合金などの金属系、及び黒鉛、MCMB(メソカーボンマイクロビーズ)などの炭素系材料が挙げられる。 Among these constituent elements, manganese dioxide (MnO 2 ), lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium titanium oxide are considered as active materials for electrodes. Examples thereof include oxides such as products (Li 4 Ti 5 O 12 ), metals such as lithium metal, lithium alloy and tin alloy, and carbon materials such as graphite and MCMB (mesocarbon microbeads).

これらの材料について、それぞれの活物質中のリチウム含有量における、化学ポテンシャルの差によって、電池の電圧が決定されるが、特に組み合わせによって、大きな電位差を形成できることが、リチウム電池の特徴である。   Regarding these materials, the voltage of the battery is determined by the difference in chemical potential in the lithium content in each active material, but it is a feature of the lithium battery that a large potential difference can be formed particularly by combination.

特に、リチウムコバルト酸化物LiCoO活物質と炭素材料を電極とした組み合わせにおいて、4V近い電圧が可能となり、また充放電容量(電極から脱離・挿入可能なリチウム量)も大きく、さらに安全性も高いことから、この電極材料の組み合わせが、現行のリチウム二次電池において広く採用されている。 In particular, in the combination of lithium cobalt oxide LiCoO 2 active material and carbon material as an electrode, a voltage close to 4V is possible, the charge / discharge capacity (the amount of lithium that can be desorbed and inserted from the electrode) is large, and the safety is also high. Due to its high cost, this combination of electrode materials is widely used in current lithium secondary batteries.

今後、リチウム電池やキャパシタ等の化学電池は、自動車用電源や大容量のバックアップ電源、緊急用電源など、大型で長寿命のものが必要となることが予測されることから、前項のような酸化物活物質の組み合わせで、さらに高性能(高容量)な電極活物質が必要とされていた。   In the future, chemical batteries such as lithium batteries and capacitors are expected to be large, long-life, such as automotive power supplies, large-capacity backup power supplies, and emergency power supplies. There has been a need for a higher performance (high capacity) electrode active material in combination with a material active material.

このうち、チタン酸化物系活物質は、対極にリチウム金属を使用した場合、約1〜2V程度の電圧であることから、様々な結晶構造を有する材料が、電極活物質としての可能性について検討されている。   Of these, titanium oxide active materials have a voltage of about 1 to 2 V when lithium metal is used for the counter electrode, so the possibility of materials having various crystal structures as electrode active materials is examined. Has been.

中でも、スピネル型のリチウムチタン酸化物(LiTi12)活物質を含む電極は、リチウム基準で約1.5Vの電位平坦部を有し、理論容量175mAh/g程度の高容量が得られることから、注目され、主としてリチウム二次電池に使用されている。 In particular, an electrode including a spinel-type lithium titanium oxide (Li 4 Ti 5 O 12 ) active material has a potential flat portion of about 1.5 V with respect to lithium, and a high capacity of about 175 mAh / g is obtained. Therefore, it is attracting attention and is mainly used for lithium secondary batteries.

また、300mAh/gを超えるような理論容量が期待されることから、二酸化チタンを主とした各種複合チタン酸化物についても電極材料としての検討がなされている。   In addition, since a theoretical capacity exceeding 300 mAh / g is expected, various composite titanium oxides mainly composed of titanium dioxide have been studied as electrode materials.

このうち、HTi13は、NaTi13型トンネル構造結晶構造を有し、リチウム挿入が可能であること、及び骨格構造が安定であることから、高容量が期待されていた。 Among these, H 2 Ti 6 O 13 has a Na 2 Ti 6 O 13 type tunnel structure crystal structure, is capable of lithium insertion, and has a stable skeletal structure, so that high capacity is expected. It was.

この化合物の有するNaTi13型トンネル構造結晶構造は、3つのTiO八面体が連結したユニットによって、水素が2つ占有できるトンネル空間を有することが特徴である。その骨格構造を図1に示す。図1において八面体はTiO八面体を表し、その中央にチタンが占有している。 The crystal structure of the Na 2 Ti 6 O 13 type tunnel structure of this compound is characterized by having a tunnel space in which two hydrogens can be occupied by a unit in which three TiO 6 octahedrons are connected. The skeleton structure is shown in FIG. In FIG. 1, an octahedron represents a TiO 6 octahedron, and titanium is occupied in the center thereof.

この化合物の製造方法として、これまでにナトリウムチタン酸化物NaTi13のナトリウムをプロトン交換する方法が知られているが、この方法では、ほとんどのナトリウムが交換されずに残ってしまい、生成する化学組成は、Na1.980.02Ti13であることが報告されている。(非特許文献1) As a method for producing this compound, a method for proton exchange of sodium of sodium titanium oxide Na 2 Ti 6 O 13 has been known so far, but in this method, most of the sodium remains without being exchanged, The resulting chemical composition is reported to be Na 1.98 H 0.02 Ti 6 O 13 . (Non-Patent Document 1)

一方、類似した化学組成を有する層状構造ナトリウムチタン酸化物NaTiのプロトン交換体HTiを出発原料として、次式で記述される脱水反応を利用してHTi13を作製する方法が報告されている。(非特許文献2、特許文献1参照) On the other hand, a layered structure sodium titanium oxide Na 2 Ti 3 O 7 proton exchanger H 2 Ti 3 O 7 having a similar chemical composition is used as a starting material, and a dehydration reaction described by the following formula is used to make H 2 Ti. A method for producing 6 O 13 has been reported. (See Non-Patent Document 2 and Patent Document 1)

2HTi → HTi13 + H2H 2 Ti 3 O 7 → H 2 Ti 6 O 13 + H 2 O

しかしながら、脱水反応を厳密に制御することが困難であり、この方法では、生成物中に必ず不純物相が認められた。(非特許文献2)   However, it is difficult to strictly control the dehydration reaction, and in this method, an impurity phase is always observed in the product. (Non-Patent Document 2)

このような不純物相が混在した試料について、電極材料として検討がなされ、283mAh/g程度の高い挿入容量が特許文献1で報告されている。   A sample in which such an impurity phase is mixed is studied as an electrode material, and a high insertion capacity of about 283 mAh / g is reported in Patent Document 1.

このことから、不純物をほとんど含有しないHTi13を電極材料として使用することで、300mAh/gを超える高容量が実現できることが期待された。 From this, it was expected that a high capacity exceeding 300 mAh / g could be realized by using H 2 Ti 6 O 13 containing almost no impurities as an electrode material.

しかしながら、これまで公知の製造工程では、単一相のHTi13の合成は困難であった。
特願2008−039820号 S.Papp,L.Korosl,V.Meynen,P.Cool,E.F.Vansant,I.Dekany,Journal of Solid State Chemsitry,178,1614−1619(2005) T.P.Feist,P.K.Davies,Journal of Solid State Chemistry,101,275−295(1992)
However, it has been difficult to synthesize single-phase H 2 Ti 6 O 13 by known production processes.
Japanese Patent Application No. 2008-039820 S. Papp, L.M. Korosl, V.M. Meyen, P.M. Cool, E .; F. Vansant, I.D. Decany, Journal of Solid State Chemistry, 178, 1614-1619 (2005) T.A. P. Feist, P.M. K. Davids, Journal of Solid State Chemistry, 101, 275-295 (1992)

本発明は、上記のような現状の課題を解決し、高容量が期待できるリチウム電池電極材料として重要な複合チタン酸化物HTi13の単一相を得ることができる製造方法を提供することにある。 The present invention solves the above-described problems and provides a production method capable of obtaining a single phase of composite titanium oxide H 2 Ti 6 O 13 that is important as a lithium battery electrode material that can be expected to have a high capacity. There is to do.

本発明者は鋭意検討した結果、HTi13の製造方法として、NaTi13を出発原料として、はじめにナトリウムをリチウムに交換したリチウム交換体LiTi13を作製し、更にそのリチウムをプロトンと交換する製造方法を明らかにし、得られた生成物がHTi13の単一相であること、その活物質を含有した電極を構成部材として含むリチウム電池を作製し、公知のHTi13と比べて高い挿入容量が確認できたことで、本発明は完成するに至った。 As a result of diligent study, the present inventor has produced a lithium exchanger Li 2 Ti 6 O 13 in which sodium 2 is first exchanged for lithium, using Na 2 Ti 6 O 13 as a starting material, as a method for producing H 2 Ti 6 O 13. Furthermore, a manufacturing method for exchanging the lithium with protons is clarified, and the obtained product is a single phase of H 2 Ti 6 O 13 , and a lithium battery including an electrode containing the active material as a constituent member The present invention was completed by producing and confirming a high insertion capacity as compared with known H 2 Ti 6 O 13 .

すなわち、本発明は、下記に示す複合チタン酸化物HTi13の製造方法を提供する。
(1)ナトリウムチタン酸化物NaTi13をイオン交換する工程によって合成されたLiTi13を出発原料として、プロトン交換する工程を含むことを特徴とする、化学式HTi13で表される複合チタン酸化物の製造方法。
(2)複合チタン酸化物の結晶構造が、単斜晶系のNaTi13型トンネル構造であることを特徴とする(1)に記載の複合チタン酸化物の製造方法。
(3)複合チタン酸化物の単斜晶系の格子定数が、残留するナトリウム量及びリチウム量によって決定され、a軸長は1.46〜1.48nm、b軸長が0.373〜0.375nm、c軸長が0.91〜0.93nm、β角が96〜99°の範囲であることを特徴とする(1)に記載の複合チタン酸化物の製造方法。
(4)上記ナトリウムチタン酸化物NaTi13をイオン交換する工程は、リチウム溶融塩を用いるリチウムイオン交換反応を適用することを特徴とする(1)に記載の複合チタン酸化物の製造方法。
(5)上記リチウム溶融塩を用いるリチウムイオン交換反応における熱処理温度は、30℃から500℃の範囲内にある(4)に記載の複合チタン酸化物の製造方法。
(6)上記プロトン交換する工程は、酸性水溶液を用いるプロトン交換反応を適用することを特徴とする(1)に記載の複合チタン酸化物の製造方法。
(7)上記酸性水溶液を用いるプロトン交換反応における熱処理温度が20℃から100℃の範囲内にある(6)に記載の複合チタン酸化物の製造方法。
That is, the present invention provides a method for producing a composite titanium oxide H 2 Ti 6 O 13 shown below.
(1) The chemical formula H 2 Ti 6 includes a step of proton exchange using Li 2 Ti 6 O 13 synthesized by the step of ion exchange of sodium titanium oxide Na 2 Ti 6 O 13 as a starting material. method for producing a composite titanium oxide represented by O 13.
(2) The method for producing a composite titanium oxide according to (1), wherein the crystal structure of the composite titanium oxide is a monoclinic Na 2 Ti 6 O 13 type tunnel structure.
(3) The monoclinic lattice constant of the composite titanium oxide is determined by the amount of residual sodium and lithium, the a-axis length is 1.46 to 1.48 nm, and the b-axis length is 0.373 to 0.003. 375 nm, method of producing a composite titanium oxide according to the c-axis length 0.91~0.93nm, β corners, characterized in that in the range of 96~99 ° (1).
(4) The step of ion-exchanging the sodium titanium oxide Na 2 Ti 6 O 13 applies a lithium ion exchange reaction using a lithium molten salt, The production of a composite titanium oxide according to (1) Method.
(5) The method for producing a composite titanium oxide according to (4), wherein the heat treatment temperature in the lithium ion exchange reaction using the lithium molten salt is in the range of 30 ° C. to 500 ° C.
(6) The method for producing a composite titanium oxide according to (1), wherein the proton exchange step uses a proton exchange reaction using an acidic aqueous solution.
(7) The method for producing a composite titanium oxide according to (6), wherein the heat treatment temperature in the proton exchange reaction using the acidic aqueous solution is in the range of 20 ° C to 100 ° C.

本発明によれば、複合チタン酸化物HTi13の単一相が製造可能であり、この化合物を活物質として電極材料に使用することによって、高容量のリチウム電池が可能となる。 According to the present invention, a single phase of composite titanium oxide H 2 Ti 6 O 13 can be produced, and a high-capacity lithium battery can be obtained by using this compound as an active material for an electrode material.

本発明の製造方法は、リチウム電池電極活物質として使用できる複合チタン酸化物HTi13の単一相が作製可能な製造工程であり、ナトリウムチタン酸化物NaTi13をイオン交換する工程によって合成されたLiTi13を出発原料として、プロトン交換する工程によることを特徴とする方法である。
また、本発明の製造工程のうち、イオン交換の方法として、リチウム溶融塩を用いるリチウムイオン交換反応を適用することを特徴とする方法である。
さらに、本発明の製造工程のうち、プロトン交換の方法として、酸性水溶液を用いるプロトン交換反応を適用することを特徴とする方法である。
The production method of the present invention is a production process in which a single phase of composite titanium oxide H 2 Ti 6 O 13 that can be used as a lithium battery electrode active material can be produced. Sodium titanium oxide Na 2 Ti 6 O 13 is ionized. The method is characterized by a proton exchange step using Li 2 Ti 6 O 13 synthesized in the exchange step as a starting material.
Further, in the production process of the present invention, a lithium ion exchange reaction using a lithium molten salt is applied as an ion exchange method.
Furthermore, in the production process of the present invention, a proton exchange reaction using an acidic aqueous solution is applied as a proton exchange method.

本発明に係わる製造方法をさらに詳しく説明する。   The production method according to the present invention will be described in more detail.

(出発原料NaTi13の製造方法)
本発明のうち、出発原料であるNa Ti 13 多結晶体は、原料として、ナトリウム化合物の少なくとも1種、及びチタン化合物の少なくとも1種を、NaTi13の化学組成となるように秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって、製造することができる。
(Method for producing starting material Na 2 Ti 6 O 13 )
Of the present invention, the Na 2 Ti 6 O 13 polycrystal as a starting material has a chemical composition of Na 2 Ti 6 O 13 with at least one sodium compound and at least one titanium compound as raw materials. Thus, it can be manufactured by weighing and mixing, and heating in an atmosphere containing oxygen gas such as air.

ナトリウム原料としては、ナトリウム(金属ナトリウム)及びナトリウム化合物の少なくとも1種を用いる。ナトリウム化合物としては、ナトリウムを含有するものであれば特に制限されず、例えばNaO、Na等の酸化物、NaCO、NaNO等の塩類、NaOHなどの水酸化物等が挙げられる。これらの中でも、特にNaCO等が好ましい。 As the sodium raw material, at least one of sodium (metallic sodium) and a sodium compound is used. The sodium compound is not particularly limited as long as it contains sodium. For example, oxides such as Na 2 O and Na 2 O 2 , salts such as Na 2 CO 3 and NaNO 3 , hydroxides such as NaOH, etc. Is mentioned. Among these, Na 2 CO 3 is particularly preferable.

チタン原料としては、チタン(金属チタン)及びチタン化合物の少なくとも1種を用いる。チタン化合物としては、チタンを含有するものであれば特に制限されず、例えばTiO、Ti、TiO等の酸化物、TiCl等の塩類等が挙げられる。これらの中でも、特にTiO等が好ましい。 As the titanium raw material, at least one of titanium (metallic titanium) and a titanium compound is used. The titanium compound is not particularly limited as long as it contains titanium, and examples thereof include oxides such as TiO, Ti 2 O 3 and TiO 2 , salts such as TiCl 4 and the like. Among these, TiO 2 is particularly preferable.

はじめに、これらを含む混合物を調整する。ナトリウム原料とチタン原料の混合割合は、NaTi13の化学組成となるように混合することが好ましい。また、加熱時にナトリウムは揮発しやすいので、ナトリウム量は上記化学式における2よりも若干過剰な仕込み量とした方がよく、好ましくは、2.0〜2.1の範囲とすればよい。また、混合方法は、これらを均一に混合できる限り特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式又は乾式で混合すればよい。 First, a mixture containing these is prepared. The mixing ratio of sodium raw material and titanium material is preferably mixed such that the chemical composition of Na 2 Ti 6 O 13. In addition, since sodium easily volatilizes during heating, the amount of sodium should be slightly more excessive than 2 in the above chemical formula, and preferably in the range of 2.0 to 2.1. Moreover, a mixing method is not specifically limited as long as these can be mixed uniformly, For example, what is necessary is just to mix by a wet type or a dry type using well-known mixers, such as a mixer.

次いで、混合物を焼成する。焼成温度は、原料によって適宜設定することができるが、通常は、600℃〜1200℃程度、好ましくは700℃から1050℃とすればよい。また、焼成雰囲気も特に限定されず、通常は酸化性雰囲気又は大気中で実施すればよい。焼成時間は、焼成温度等に応じて適宜変更することができる。冷却方法も特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷とすればよい。   The mixture is then fired. The firing temperature can be appropriately set depending on the raw material, but is usually about 600 ° C to 1200 ° C, preferably 700 ° C to 1050 ° C. Also, the firing atmosphere is not particularly limited, and it is usually performed in an oxidizing atmosphere or air. The firing time can be appropriately changed according to the firing temperature and the like. The cooling method is not particularly limited, but may be natural cooling (cooling in the furnace) or slow cooling.

焼成後は、必要に応じて焼成物を公知の方法で粉砕し、さらに上記の焼成工程を実施してもよい。すなわち、本発明方法では、上記混合物の焼成、冷却及び粉砕を2回以上繰り返して実施することが好ましい。なお、粉砕の程度は、焼成温度などに応じて適宜調節すればよい。   After firing, the fired product may be pulverized by a known method as necessary, and the above firing step may be further performed. That is, in the method of the present invention, it is preferable that the mixture is repeatedly fired, cooled and pulverized twice or more. Note that the degree of pulverization may be adjusted as appropriate according to the firing temperature and the like.

(リチウム交換体LiTi13の製造方法)
次いで、上記により得られたNaTi13を出発原料として、リチウム化合物を含む溶融塩中でリチウムイオン交換反応を適用することにより、出発原料化合物中のナトリウムのほぼすべてがリチウムと交換したリチウムイオン交換体活物質LiTi13が得られる。
(Method for producing lithium exchanger Li 2 Ti 6 O 13 )
Next, using Na 2 Ti 6 O 13 obtained as described above as a starting material, by applying a lithium ion exchange reaction in a molten salt containing a lithium compound, almost all of the sodium in the starting material compound was exchanged for lithium. A lithium ion exchanger active material Li 2 Ti 6 O 13 is obtained.

この場合、リチウム化合物を含む溶融塩中において、粉砕されたNaTi13を分散させながら、イオン交換処理を施すことが好適である。溶融塩としては、硝酸リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等の比較的低温で溶融する塩類のうちで、いずれか1種以上を含む溶融塩を用いることができる。好ましい方法としては、あらかじめリチウム塩を溶融させ、そこにNaTi13粉末を投入するとよい。混合比は、通常、NaTi13の重量に対するリチウム塩全体の重量の割合として、3〜100、好ましくは10〜30である。 In this case, it is preferable to perform the ion exchange treatment while dispersing the pulverized Na 2 Ti 6 O 13 in the molten salt containing the lithium compound. As the molten salt, a molten salt containing any one or more of salts that melt at a relatively low temperature such as lithium nitrate, lithium chloride, lithium bromide, and lithium iodide can be used. As a preferred method, a lithium salt is melted in advance, and Na 2 Ti 6 O 13 powder is added thereto. The mixing ratio is usually 3 to 100, preferably 10 to 30, as a ratio of the weight of the entire lithium salt to the weight of Na 2 Ti 6 O 13 .

イオン交換処理の温度は、30℃〜500℃、好ましくは200℃〜400℃の範囲である。処理時間は、通常2〜72時間、好ましくは5〜50時間である。   The temperature of the ion exchange treatment is in the range of 30 ° C to 500 ° C, preferably 200 ° C to 400 ° C. The treatment time is usually 2 to 72 hours, preferably 5 to 50 hours.

さらに、リチウムイオン交換処理の方法として、リチウム化合物を融解した有機溶剤又は水溶液中で処理する方法も適する。この場合、リチウム化合物を一定濃度溶解させた有機溶剤又は水中に、粉砕されたNaTi13原料を投入し、その有機溶剤又は水の沸点以下の温度で処理する。溶媒の蒸発を避けるために、溶媒を還流させながら、イオン交換することが好ましい。処理温度は通常30℃〜300℃、好ましくは50℃〜180℃で処理する。また、処理時間は特に制限されないが、通常は5〜50時間、好ましくは10〜20時間である。 Furthermore, as a method of the lithium ion exchange treatment, a method of treating in an organic solvent or an aqueous solution in which a lithium compound is melted is also suitable. In this case, the pulverized Na 2 Ti 6 O 13 raw material is put into an organic solvent or water in which a lithium compound is dissolved at a constant concentration, and the mixture is treated at a temperature not higher than the boiling point of the organic solvent or water. In order to avoid evaporation of the solvent, it is preferable to perform ion exchange while refluxing the solvent. The treatment temperature is usually 30 ° C to 300 ° C, preferably 50 ° C to 180 ° C. The treatment time is not particularly limited, but is usually 5 to 50 hours, preferably 10 to 20 hours.

本発明に用いられるリチウム化合物としては、水酸化物、炭酸塩、酢酸塩、硝酸塩、シュウ酸塩、ハロゲン化物、ブチルリチウム等が好ましく、これらを単独又は必要に応じて2種類以上を組み合わせて用いる。また、本発明に用いられる有機溶剤としては、ヘキサノール、エトキシエタノール等の高級アルコール類、ジエチルグルコールモノエチルエーテル等のエーテル類、もしくは沸点が140℃以上の有機溶剤が、作業性が良好である点で好ましい。これらを単独又は必要に応じて2種類以上組み合わせて用いる。   As the lithium compound used in the present invention, hydroxide, carbonate, acetate, nitrate, oxalate, halide, butyllithium and the like are preferable, and these are used alone or in combination of two or more as required. . As the organic solvent used in the present invention, higher alcohols such as hexanol and ethoxyethanol, ethers such as diethyl glycol monoethyl ether, or organic solvents having a boiling point of 140 ° C. or more have good workability. This is preferable. These may be used alone or in combination of two or more as required.

有機溶剤又は水溶液中におけるリチウム化合物の濃度は、通常3〜10モル%、好ましくは5〜8モル%である。また、有機溶剤又は水溶液中でのNaTi13原料の分散濃度は、特に制限されないが、操作性及び経済性の観点から1〜20重量%程度が好ましい。 The density | concentration of the lithium compound in an organic solvent or aqueous solution is 3-10 mol% normally, Preferably it is 5-8 mol%. Further, the dispersion concentration of the Na 2 Ti 6 O 13 raw material in the organic solvent or the aqueous solution is not particularly limited, but is preferably about 1 to 20% by weight from the viewpoint of operability and economy.

イオン交換処理の後、得られた生成物をエタノール等で洗浄後、乾燥させることによって、目的とする化学式LiTi13で表されるリチウムイオン交換体が得られる。洗浄方法、乾燥方法については、特に限定されず、通常の方法が用いられる他、デシケータ内等における自然乾燥でもよい。 After the ion exchange treatment, the obtained product is washed with ethanol or the like and then dried to obtain a target lithium ion exchanger represented by the chemical formula Li 2 Ti 6 O 13 . The washing method and the drying method are not particularly limited, and a normal method may be used, or natural drying in a desiccator or the like may be used.

このようにして得られたLiTi13は、その交換処理の条件を変化させることによって、出発原料に由来して残存するナトリウム量を、有意な量を残す化学組成から、湿式法による化学分析の検出限界以下の化学組成にまで制御することが可能である。 The Li 2 Ti 6 O 13 obtained in this way is obtained by changing the conditions for the exchange treatment so that the amount of sodium remaining from the starting material is changed from the chemical composition leaving a significant amount by the wet method. It is possible to control the chemical composition below the detection limit of chemical analysis.

(プロトン交換体HTi13の製造方法)
次いで、上記により得られたLiTi13を出発原料として、酸性水溶液中でプロトン交換反応を適用することにより、出発原料化合物中のリチウムのほぼすべてが水素と交換したプロトン交換体HTi13が得られる。
(Production method of proton exchanger H 2 Ti 6 O 13 )
Then, as the starting material the Li 2 Ti 6 O 13 obtained by the above, by applying the proton exchange reaction in an acidic aqueous solution, the proton exchange nearly all of the lithium in the starting material compound is replaced with hydrogen body H 2 Ti 6 O 13 is obtained.

この場合、粉砕されたLiTiを、酸性溶液中に分散させ、一定時間保持した後、乾燥することが好適である。使用する酸としては、任意の濃度の塩酸、硫酸、硝酸等のうちで、いずれか1種以上を含む水溶液が適する。このうち、濃度0.1〜1.0Nの希塩酸の使用が好ましい。処理時間としては、10時間〜10日間、好ましくは、1日〜7日間である。また、処理時間を短縮するために、適宜溶液を新しいものと交換することが好ましい。さらに、交換反応を進行しやすくするために、処理温度を室温よりも高く、30℃から100℃とすることが好ましい。乾燥は、公知の乾燥方法が適用可能であるが、真空乾燥などがより好ましい。 In this case, it is preferable to disperse the pulverized Li 2 Ti 3 O 7 in an acidic solution, hold it for a certain time, and then dry it. As the acid to be used, an aqueous solution containing any one or more of hydrochloric acid, sulfuric acid, nitric acid and the like having any concentration is suitable. Of these, use of dilute hydrochloric acid having a concentration of 0.1 to 1.0 N is preferable. The treatment time is 10 hours to 10 days, preferably 1 day to 7 days. In order to shorten the processing time, it is preferable to replace the solution with a new one as appropriate. Furthermore, in order to facilitate the exchange reaction, the treatment temperature is preferably higher than room temperature and 30 ° C. to 100 ° C. A known drying method can be applied to the drying, but vacuum drying or the like is more preferable.

このようにして得られたHTi13は、その交換処理の条件を最適化することにより、出発原料に由来して残存するナトリウム量及びリチウム量を、湿式法による化学分析の検出限界以下にまで低減することが可能である。 The H 2 Ti 6 O 13 obtained in this way is optimized for the conditions of the exchange treatment, so that the amount of sodium and lithium remaining from the starting material can be detected by the detection limit of chemical analysis by a wet method. It is possible to reduce to the following.

以下に、実施例を示し、本発明の特徴とするところをより一層明確にする。本発明は、これら実施例に限定されるものではない。   Hereinafter, examples will be shown to further clarify the features of the present invention. The present invention is not limited to these examples.

[実施例1]
(出発原料NaTi13の製造方法)
純度99%以上の炭酸ナトリウム(NaCO)粉末と純度99.99%以上の二酸化チタン(TiO)粉末をモル比でNa:Ti=2.02:6となるように秤量した。これらを乳鉢中で混合したのち、JIS規格白金製るつぼに充填し、電気炉を用いて、空気中、高温条件下で加熱した。焼成温度は、800℃で、焼成時間は20時間とした。その後、電気炉中で自然放冷した後、再度、乳鉢中で粉砕・混合を行い、800℃で20時間再焼成を行い、出発原料であるNaTi13多結晶体を得た。
[Example 1]
(Method for producing starting material Na 2 Ti 6 O 13 )
Sodium carbonate (Na 2 CO 3 ) powder with a purity of 99% or more and titanium dioxide (TiO 2 ) powder with a purity of 99.99% or more were weighed so that the molar ratio was Na: Ti = 2.02: 6. After mixing these in a mortar, they were filled in a JIS standard platinum crucible and heated in an air at high temperature using an electric furnace. The firing temperature was 800 ° C. and the firing time was 20 hours. Then, after naturally cooling in an electric furnace, it was again pulverized and mixed in a mortar and refired at 800 ° C. for 20 hours to obtain a Na 2 Ti 6 O 13 polycrystal as a starting material.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Ti=2.0:6(各元素の分析誤差:0.04以内)となり、NaTi13の化学式で妥当であった。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mの結晶構造の単一相であることが明らかとなった。NaTi13の粉末X線回折図形を図2に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のNaTi13の値と良く一致していた。
a=1.5072nm(誤差:0.0005nm以内)
b=0.3738nm(誤差:0.0001nm以内)
c=0.9154nm(誤差:0.0003nm以内)
β=99.00°(誤差:0.02°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission analysis, Na: Ti = 2.0: 6 (analysis error of each element: within 0.04), and the chemical formula of Na 2 Ti 6 O 13 It was reasonable. Furthermore, it was revealed by an X-ray powder diffractometer that the crystal has a monoclinic system and a single phase having a crystal structure of space group C2 / m having good crystallinity. The powder X-ray diffraction pattern of Na 2 Ti 6 O 13 is shown in FIG. Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following values were obtained, which were in good agreement with the known Na 2 Ti 6 O 13 value.
a = 1.5072 nm (error: within 0.0005 nm)
b = 0.3738 nm (error: within 0.0001 nm)
c = 0.9154 nm (error: within 0.0003 nm)
β = 99.00 ° (error: within 0.02 °)

このようにして得られたNaTi13多結晶体の粒子形状を走査型電子顕微鏡(SEM)により調べたところ、多結晶体は、約1ミクロン角の等方的な形状を有する一次粒子から構成されていることが明らかとなった。 When the particle shape of the Na 2 Ti 6 O 13 polycrystal thus obtained was examined by a scanning electron microscope (SEM), the polycrystal was a primary having an isotropic shape of about 1 micron square. It was revealed that it was composed of particles.

(イオン交換体LiTi13の製造方法)
上記で合成されたNaTi13多結晶体の粉砕物を出発原料として、純度99%以上の無水硝酸リチウム(LiNO)粉末と、重量比でNaTi13:LiNO=1:20となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中、380℃で10時間保持することによって、リチウムイオン交換処理を行った。その後、純水、及びエタノールでよく洗浄し、自然乾燥することによって、LiTi13を得た。
(Method for producing ion exchanger Li 2 Ti 6 O 13 )
Using the pulverized product of Na 2 Ti 6 O 13 synthesized as described above as a starting material, anhydrous lithium nitrate (LiNO 3 ) powder with a purity of 99% or more and Na 2 Ti 6 O 13 : LiNO 3 = by weight ratio = Weighed to be 1:20. These were mixed in a mortar, then filled in an alumina crucible, and held in air at 380 ° C. for 10 hours using an electric furnace to perform lithium ion exchange treatment. Thereafter, pure water, and it was washed well with ethanol, by air drying, to obtain a Li 2 Ti 6 O 13.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Li:Ti=0.03:1.97:6(各元素の分析誤差:0.04以内)であり、残留するナトリウム量は、分析誤差以下であり、ほぼナトリウムが含有しない組成を有することが明らかとなった。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mのNaTi13型のトンネル構造を有するLiTi13の単一相であることが明らかとなった。LiTi13の粉末X線回折図形を図3に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のLiTi13の値と良く一致していた。
a=1.5334nm(誤差:0.0003nm以内)
b=0.3751nm(誤差:0.0001nm以内)
c=0.9148nm(誤差:0.0002nm以内)
β=99.44°(誤差:0.01°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission spectrometry, Na: Li: Ti = 0.03: 1.97: 6 (analysis error of each element: within 0.04) It was clarified that the amount of sodium to be contained is less than the analysis error and has a composition that does not contain sodium. Furthermore, with an X-ray powder diffractometer, a single phase of Li 2 Ti 6 O 13 having a monoclinic system, a space group C2 / m of a Na 2 Ti 6 O 13 type tunnel structure having good crystallinity It became clear that there was. The powder X-ray diffraction pattern of Li 2 Ti 6 O 13 is shown in FIG. Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following values were obtained, which were in good agreement with the values of known Li 2 Ti 6 O 13 .
a = 1.5334 nm (error: within 0.0003 nm)
b = 0.3751 nm (error: within 0.0001 nm)
c = 0.9148 nm (error: within 0.0002 nm)
β = 99.44 ° (error: within 0.01 °)

このようにして得られたLiTi13の粒子形状を走査型電子顕微鏡(SEM)により調べたところ、多結晶体は、出発原料であるNaTi13の形状が保持され、約1ミクロン角の等方的な形状を有する一次粒子から構成されていることが明らかとなった。 When the particle shape of Li 2 Ti 6 O 13 obtained in this way was examined with a scanning electron microscope (SEM), the polycrystalline body retained the shape of Na 2 Ti 6 O 13 as a starting material, It was revealed that the particles were composed of primary particles having an isotropic shape of about 1 micron square.

(プロトン交換体HTi13の製造方法)
上記で合成されたLiTi13の粉砕物を出発原料として、0.5Nの塩酸溶液に浸漬し、70℃条件下で5日間保持して、プロトン交換処理を行った。交換処理速度を速めるために、12時間毎に溶液を交換して行った。その後、水洗し、空気中70℃で24時間乾燥を行い、目的物であるプロトン交換体HTi13を得た。
(Production method of proton exchanger H 2 Ti 6 O 13 )
The pulverized product of Li 2 Ti 6 O 13 synthesized above was used as a starting material, immersed in a 0.5N hydrochloric acid solution, and kept at 70 ° C. for 5 days to perform proton exchange treatment. In order to increase the exchange processing speed, the solution was changed every 12 hours. Thereafter, it was washed with water and dried in air at 70 ° C. for 24 hours to obtain a target proton exchanger H 2 Ti 6 O 13 .

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Li:Ti=0.03:0.08:6(各元素の分析誤差:0.04以内)であり、有意の量の残留するリチウムが確認されたものの、ナトリウムとリチウムの残分をプロトンと仮定すると、H1.89Li0.08Na0.03Ti13なる化学組成であり、ほぼHTi13に近い組成で合成できることが明らかとなった。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mのNaTi13型のトンネル構造を有するHTi13の単一相であることが明らかとなった。HTi13の粉末X線回折図形を図4に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のHTi13の値と良く一致していた。
a=1.4680nm(誤差:0.0003nm以内)
b=0.3746nm(誤差:0.0001nm以内)
c=0.9261nm(誤差:0.0001nm以内)
β=96.97°(誤差:0.02°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission spectrometry, Na: Li: Ti = 0.03: 0.08: 6 (analysis error of each element: within 0.04), significant However, when the remaining amount of sodium and lithium is assumed to be protons, the chemical composition is H 1.89 Li 0.08 Na 0.03 Ti 6 O 13 , and almost H 2 Ti. It was revealed that the composition can be synthesized with a composition close to 6 O 13 . Furthermore, with an X-ray powder diffractometer, a single phase of H 2 Ti 6 O 13 having a monoclinic, space group C2 / m Na 2 Ti 6 O 13 type tunnel structure with good crystallinity It became clear that there was. FIG. 4 shows a powder X-ray diffraction pattern of H 2 Ti 6 O 13 . Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following values were obtained, which were in good agreement with the known values of H 2 Ti 6 O 13 .
a = 1.4680 nm (error: within 0.0003 nm)
b = 0.3746 nm (error: within 0.0001 nm)
c = 0.9261 nm (error: within 0.0001 nm)
β = 96.97 ° (error: within 0.02 °)

このようにして得られたHTi13多結晶体の粒子形状を走査型電子顕微鏡(SEM)により調べたところ、多結晶体は、出発原料であるNaTi13やそのリチウムイオン交換体LiTi13の形状が保持され、約1ミクロン角の等方的な形状を有する一次粒子から構成されていることが明らかとなった。 When the particle shape of the H 2 Ti 6 O 13 polycrystal obtained in this way was examined by a scanning electron microscope (SEM), the polycrystal was found to be Na 2 Ti 6 O 13 as a starting material and its lithium. It was revealed that the shape of the ion exchanger Li 2 Ti 6 O 13 was maintained and composed of primary particles having an isotropic shape of about 1 micron square.

また、化学組成の妥当性について、熱分析(TGA)の結果、600℃までの加熱により、3.7wt%の重量減少が確認された。このことは、以下の分解反応(計算値3.6wt%)で説明され、HTi13の化学組成で妥当であることが確認された。
Ti13 → HO↑ + 6TiO
Moreover, about the validity of a chemical composition, as a result of the thermal analysis (TGA), the weight reduction of 3.7 wt% was confirmed by the heating to 600 degreeC. This was explained by the following decomposition reaction (calculated value 3.6 wt%), and it was confirmed that the chemical composition of H 2 Ti 6 O 13 was appropriate.
H 2 Ti 6 O 13 → H 2 O ↑ + 6TiO 2

(リチウム電池)
このようにして得られたHTi13を活物質とし、導電剤としてアセチレンブラック、結着剤としてテトラフルオロエチレンを、重量比で10:5:1となるように配合し電極を作製し、対極にリチウム金属を用いて、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒(体積比1:1)に溶解させた1M溶液を電解液とする、図5に示す構造のボタン型リチウム電池を作製し、その電気化学的リチウム挿入・脱離挙動を測定した。電池の作製は、公知のセルの構成・組み立て方法に従って行った。
(Lithium battery)
The H 2 Ti 6 O 13 thus obtained was used as an active material, acetylene black as a conductive agent, and tetrafluoroethylene as a binder were blended in a weight ratio of 10: 5: 1 to produce an electrode. Then, using lithium metal as a counter electrode, a 1M solution in which lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) is used as an electrolytic solution. A button-type lithium battery having the structure shown in FIG. 5 was prepared, and its electrochemical lithium insertion / extraction behavior was measured. The battery was produced according to a known cell configuration / assembly method.

作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、1.0Vのカットオフ電位まで電気化学的リチウム挿入試験を行ったところ、初期の挿入反応は、電圧1.5V付近に電圧平坦部を有し、容量は327mAh/gという高容量が得られることが判明した。(図6)また、その後、3.0−1.0Vのカットオフ電位で、リチウム脱離・挿入試験を行ったところ、2サイクル目以降は、1.8V付近の電位でなだらかな電圧変化をしながら、容量150−155mAh/g程度で、可逆的なリチウム挿入・脱離が可能であることが判明した。以上から、本発明の製造方法によって作製されたHTi13は、不純物のない単一相が合成されていることから、この材料を活物質とする電極を用いたリチウム電池において、過去の報告(283mAh/g)と比べてもより高容量が得られることが明らかとなり、本発明の製造方法の特徴が明確となった。 The fabricated lithium secondary battery was subjected to an electrochemical lithium insertion test at a current density of 10 mA / g and a cut-off potential of 1.0 V under a temperature condition of 25 ° C. It has been found that a high voltage capacity of 327 mAh / g is obtained with a voltage flat portion in the vicinity of 0.5 V. (FIG. 6) After that, when a lithium desorption / insertion test was performed at a cut-off potential of 3.0 to 1.0 V, a gentle voltage change was observed at a potential near 1.8 V after the second cycle. However, it has been found that reversible lithium insertion / extraction is possible at a capacity of about 150 to 155 mAh / g. From the above, the H 2 Ti 6 O 13 produced by the production method of the present invention is synthesized in a single phase without impurities, so in the past, in lithium batteries using electrodes using this material as an active material, As compared with the report (283 mAh / g), it became clear that a higher capacity was obtained, and the characteristics of the production method of the present invention became clear.

[実施例2]
(イオン交換体LiTi13の製造方法)
実施例1で合成されたNaTi13多結晶体の粉砕物を出発原料として、純度99%以上の無水硝酸リチウム(LiNO)粉末と、重量比でNaTi13:LiNO=1:20となるように秤量した。これらを乳鉢中で混合したのち、アルミナ製るつぼに充填し、電気炉を用いて、空気中、320℃で10時間保持することによって、リチウムイオン交換処理を行った。その後、純水、及びエタノールでよく洗浄し、自然乾燥することによって、LiTi13活物質を得た。
[Example 2]
(Method for producing ion exchanger Li 2 Ti 6 O 13 )
Using the pulverized Na 2 Ti 6 O 13 polycrystal synthesized in Example 1 as a starting material, anhydrous lithium nitrate (LiNO 3 ) powder having a purity of 99% or more and Na 2 Ti 6 O 13 : LiNO in a weight ratio It measured so that it might become 3 = 1: 20. These were mixed in a mortar, then filled in an alumina crucible, and held in air at 320 ° C. for 10 hours using an electric furnace to perform lithium ion exchange treatment. Thereafter, pure water, and it was washed well with ethanol, by air drying, to obtain a Li 2 Ti 6 O 13 active material.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Li:Ti=0.10:1.90:6(各元素の分析誤差:0.04以内)であり、有意の量の残留するナトリウムが確認されたが、実施例1と比較すると、イオン交換処理温度が高いことから、残留量は減少する傾向が見られた。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mのNaTi13型のトンネル構造を有するLiTi13の単一相であることが明らかとなった。LiTi13の粉末X線回折図形を図7に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のLiTi13の値と良く一致していた。
a=1.5324nm(誤差:0.0004nm以内)
b=0.3750nm(誤差:0.0001nm以内)
c=0.9146nm(誤差:0.0002nm以内)
β=99.41°(誤差:0.01°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission analysis, it was Na: Li: Ti = 0.10: 1.90: 6 (analysis error of each element: within 0.04), significant The amount of residual sodium was confirmed, but when compared with Example 1, since the ion exchange treatment temperature was higher, the residual amount tended to decrease. Furthermore, with an X-ray powder diffractometer, a single phase of Li 2 Ti 6 O 13 having a monoclinic system, a space group C2 / m of a Na 2 Ti 6 O 13 type tunnel structure having good crystallinity It became clear that there was. FIG. 7 shows a powder X-ray diffraction pattern of Li 2 Ti 6 O 13 . Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following values were obtained, which were in good agreement with the values of known Li 2 Ti 6 O 13 .
a = 1.5324 nm (error: within 0.0004 nm)
b = 0.3750 nm (error: within 0.0001 nm)
c = 0.9146 nm (error: within 0.0002 nm)
β = 99.41 ° (error: within 0.01 °)

このようにして得られたLiTi13の粒子形状を走査型電子顕微鏡(SEM)により調べたところ、多結晶体は、出発原料であるNaTi13の形状が保持され、約1ミクロン角の等方的な形状を有する一次粒子から構成されていることが明らかとなった。 When the particle shape of Li 2 Ti 6 O 13 obtained in this way was examined with a scanning electron microscope (SEM), the polycrystalline body retained the shape of Na 2 Ti 6 O 13 as a starting material, It was revealed that the particles were composed of primary particles having an isotropic shape of about 1 micron square.

(プロトン交換体HTi13の製造方法)
上記で合成されたLiTi13の粉砕物を出発原料として、0.5Nの塩酸溶液に浸漬し、70℃条件下で5日間保持して、プロトン交換処理を行った。交換処理速度を速めるために、12時間毎に溶液を交換して行った。その後、水洗し、空気中70℃で24時間乾燥を行い、目的物であるプロトン交換体HTi13を得た。
(Production method of proton exchanger H 2 Ti 6 O 13 )
The pulverized product of Li 2 Ti 6 O 13 synthesized above was used as a starting material, immersed in a 0.5N hydrochloric acid solution, and kept at 70 ° C. for 5 days to perform proton exchange treatment. In order to increase the exchange processing speed, the solution was changed every 12 hours. Thereafter, it was washed with water and dried in air at 70 ° C. for 24 hours to obtain a target proton exchanger H 2 Ti 6 O 13 .

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Li:Ti=0.09:0.11:6(各元素の分析誤差:0.04以内)であり、有意の量の残留するナトリウム及びリチウムが確認された。実施例1と比較すると、リチウムイオン交換処理温度が低いことが、残留するナトリウム量の増加に影響することが明らかとなった。この結果、化学分析式としては、H1.80Li0.11Na0.09Ti13であった。一方、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mのNaTi13型のトンネル構造を有するHTi13の単一相であることが明らかとなった。その粉末X線回折図形を図8に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、実施例1と比べて、a軸長がやや長く、またc軸長がやや短いことから、残留したナトリウム、リチウムの影響で、格子定数が変化していることが明らかとなった。
a=1.4694nm(誤差:0.0003nm以内)
b=0.3746nm(誤差:0.0001nm以内)
c=0.9252nm(誤差:0.0002nm以内)
β=97.05°(誤差:0.02°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission spectrometry, Na: Li: Ti = 0.09: 0.11: 6 (analysis error of each element: within 0.04), significant Of residual sodium and lithium were identified. Compared to Example 1, it was revealed that the lower lithium ion exchange treatment temperature affects the increase in the amount of residual sodium. As a result, the chemical analysis formula was H 1.80 Li 0.11 Na 0.09 Ti 6 O 13 . On the other hand, with an X-ray powder diffractometer, a single phase of H 2 Ti 6 O 13 having a monoclinic system and a space group C2 / m of Na 2 Ti 6 O 13 type tunnel structure having a good crystallinity. It became clear that there was. The powder X-ray diffraction pattern is shown in FIG. Further, when the lattice constant was obtained by the least square method using each index and its surface spacing, the following values were obtained, and the a-axis length was slightly longer and the c-axis length was slightly shorter than in Example 1. From the above, it was clarified that the lattice constant was changed by the influence of residual sodium and lithium.
a = 1.4694 nm (error: within 0.0003 nm)
b = 0.3746 nm (error: within 0.0001 nm)
c = 0.9252 nm (error: within 0.0002 nm)
β = 97.05 ° (error: within 0.02 °)

(リチウム電池)
このようにして得られたHTi13を活物質とし、実施例1と同様のリチウム電池を作製し、25℃の温度条件下で、電流密度10mA/g、1.0Vのカットオフ電位まで電気化学的リチウム挿入試験を行ったところ、初期の挿入反応は、電圧1.5V付近に電圧平坦部を有し、容量は315mAh/gという高容量が得られることが判明した。(図9)また、その後、3.0−1.0Vのカットオフ電位で、リチウム脱離・挿入試験を行ったところ、2サイクル目以降は、1.8V付近の電位でなだらかな電圧変化をしながら、容量140−150mAh/g程度で、可逆的なリチウム挿入・脱離が可能であることが判明した。以上から、本発明の製造工程におけるリチウムイオン交換の処理温度を380℃よりも低くすると、残留するナトリウム量、及びリチウム量が多くなり、電池容量も減少する傾向が明らかとなった。
(Lithium battery)
Using the thus obtained H 2 Ti 6 O 13 as an active material, a lithium battery similar to that of Example 1 was produced, and the current density was 10 mA / g and the cutoff was 1.0 V under the temperature condition of 25 ° C. When an electrochemical lithium insertion test was conducted up to the potential, it was found that the initial insertion reaction had a voltage flat portion around a voltage of 1.5 V, and a high capacity of 315 mAh / g was obtained. (FIG. 9) After that, when a lithium desorption / insertion test was performed at a cutoff potential of 3.0 to 1.0 V, a gentle voltage change was observed at a potential near 1.8 V after the second cycle. However, it has been found that reversible lithium insertion / extraction is possible at a capacity of about 140-150 mAh / g. From the above, it has been clarified that when the treatment temperature for lithium ion exchange in the production process of the present invention is lower than 380 ° C., the amount of residual sodium and lithium increases, and the battery capacity also decreases.

[比較例1]
(HTi13の製造方法)
実施例1で合成されたNaTi13多結晶体の粉砕物を出発原料として、リチウムイオン交換処理を施さず、そのまま、0.5Nの塩酸溶液に浸漬し、70℃条件下で5日間保持して、プロトン交換処理を試みた。直接プロトン交換処理を行った。
[Comparative Example 1]
(Method for producing H 2 Ti 6 O 13 )
Using the pulverized product of Na 2 Ti 6 O 13 polycrystal synthesized in Example 1 as a starting material, it was immersed in a 0.5N hydrochloric acid solution as it was without being subjected to lithium ion exchange treatment. Proton exchange treatment was attempted by holding for one day. Direct proton exchange treatment was performed.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Ti=1.99:6(各元素の分析誤差:0.04以内)であり、ほとんどのナトリウムが残存し、プロトン交換反応はほとんど進行しないことが明らかとなった。この結果は、非特許文献1の報告と良く一致している。   When the chemical composition of the obtained sample was analyzed by ICP emission spectrometry, Na: Ti = 1.99: 6 (analysis error of each element: within 0.04), most of the sodium remained, It was revealed that the proton exchange reaction hardly progressed. This result is in good agreement with the report of Non-Patent Document 1.

以上から、本発明の製造工程のうち、リチウムイオン交換処理が、最終生成物としてHTi13を得るために必要不可欠であることが明らかとなった。 In the manufacturing process from the present invention described above, the lithium ion exchange treatment, was found to be essential in order to obtain H 2 Ti 6 O 13 as a final product.

[比較例2]
(NaTiの製造方法)
純度99%以上の炭酸ナトリウム(NaCO)粉末と純度99.99%以上の二酸化チタン(TiO)粉末をモル比でNa:Ti=2:3となるように秤量した。これらを乳鉢中で混合したのち、JIS規格白金製るつぼに充填し、電気炉を用いて、空気中、高温条件下で加熱した。焼成温度は、800℃で、焼成時間は20時間とした。その後、電気炉中で自然放冷した後、再度、乳鉢中で粉砕・混合を行い、800℃で20時間再焼成を行い、出発原料であるNaTiを得た。
[Comparative Example 2]
(Manufacturing method of Na 2 Ti 3 O 7)
Sodium carbonate (Na 2 CO 3 ) powder with a purity of 99% or more and titanium dioxide (TiO 2 ) powder with a purity of 99.99% or more were weighed so that the molar ratio was Na: Ti = 2: 3. After mixing these in a mortar, they were filled in a JIS standard platinum crucible and heated in an air at high temperature using an electric furnace. The firing temperature was 800 ° C. and the firing time was 20 hours. Then, after naturally cooling in an electric furnace, it was pulverized and mixed again in a mortar and refired at 800 ° C. for 20 hours to obtain Na 2 Ti 3 O 7 as a starting material.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、Na:Ti=2.01:3.00(各元素の分析誤差:0.04以内)となり、NaTiの化学式で妥当であった。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群P2/mの結晶構造の単一相であることが明らかとなった。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のNaTiの値と良く一致していた。
a=0.9131nm(誤差:0.0001nm以内)
b=0.3804nm(誤差:0.0001nm以内)
c=0.8569nm(誤差:0.0001nm以内)
β=101.60°(誤差:0.01°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission analysis, Na: Ti = 2.01: 3.00 (analysis error of each element: within 0.04), and Na 2 Ti 3 O 7 The chemical formula was reasonable. Further, it was revealed by an X-ray powder diffractometer that the crystal has a monoclinic system and a single phase having a crystal structure of the space group P2 1 / m having good crystallinity. Further, when the lattice constant was obtained by the least square method using each index and its surface spacing, the following value was obtained, which was in good agreement with the known Na 2 Ti 3 O 7 value.
a = 0.9131 nm (error: within 0.0001 nm)
b = 0.3804 nm (error: within 0.0001 nm)
c = 0.8569 nm (error: within 0.0001 nm)
β = 101.60 ° (error: within 0.01 °)

(HTiの製造方法)
上記で合成されたNaTi多結晶体の粉砕物を出発原料として、0.5Nの塩酸溶液に浸漬し、70℃の条件下で5日間保持して、プロトン交換処理を行った。交換処理速度を速めるために、12時間毎に溶液を交換して行った。その後、水洗し、空気中70℃で24時間乾燥を行い、プロトン交換体HTiを得た。
(Method for producing H 2 Ti 3 O 7 )
The pulverized product of Na 2 Ti 3 O 7 synthesized as described above was used as a starting material, immersed in a 0.5N hydrochloric acid solution, and kept at 70 ° C. for 5 days to perform proton exchange treatment. . In order to increase the exchange processing speed, the solution was changed every 12 hours. Thereafter, it was washed with water and dried in air at 70 ° C. for 24 hours to obtain a proton exchanger H 2 Ti 3 O 7 .

得られた試料について、ICP発光分析法により、化学組成を分析したところ、ナトリウムは検出されず、ほぼ完全にプロトン交換されたHTiの化学式で妥当であった。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mの結晶構造のHTiの単一相であることが明らかとなった。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のHTiの値と良く一致していた。
a=1.6510nm(誤差:0.0001nm以内)
b=0.3861nm(誤差:0.0001nm以内)
c=0.9466nm(誤差:0.0001nm以内)
β=101.45°(誤差:0.01°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission spectrometry, sodium was not detected, and the chemical formula of H 2 Ti 3 O 7 which was almost completely proton-exchanged was appropriate. Furthermore, it was revealed by an X-ray powder diffractometer that the crystal has a monoclinic system and a single phase of H 2 Ti 3 O 7 having a crystal structure of the space group C2 / m having good crystallinity. Further, when the lattice constant was obtained by the least square method using each index and its surface spacing, the following value was obtained, which was in good agreement with the known value of H 2 Ti 3 O 7 .
a = 1.61010 nm (error: within 0.0001 nm)
b = 0.3861 nm (error: within 0.0001 nm)
c = 0.9466 nm (error: within 0.0001 nm)
β = 101.45 ° (error: within 0.01 °)

このようにして得られたHTiの粒子形状を走査型電子顕微鏡(SEM)により調べたところ、多結晶体は、出発原料であるNaTiの形状が保持され、約1ミクロン角の等方的な形状を有する一次粒子から構成されていることが明らかとなった。 When the particle shape of H 2 Ti 3 O 7 obtained in this way was examined by a scanning electron microscope (SEM), the polycrystalline body retained the shape of Na 2 Ti 3 O 7 as a starting material, It was revealed that the particles were composed of primary particles having an isotropic shape of about 1 micron square.

得られたHTiを、空気中140℃で48時間熱処理することによって、HTi13を得た。 The obtained H 2 Ti 3 O 7 was heat-treated at 140 ° C. for 48 hours in air to obtain H 2 Ti 6 O 13 .

得られた試料について、X線粉末回折装置により、X線回折データを測定し、単斜晶系、空間群C2/mの構造モデルで説明できる相がメインであることを確認した。しかしながら、実施例1及び2で作製された本発明の製造方法によるHTi13と比較すると、ピーク幅が広く、また、2θ=13°付近の肩ピークをはじめとして、同定できないピークが多数存在することが明らかとなった。この時の粉末X線回折図形を図10に示す。同定可能なピークの各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となった。
a=1.4614nm(誤差:0.0002nm以内)
b=0.3729nm(誤差:0.0001nm以内)
c=0.9231nm(誤差:0.0002nm以内)
β=97.04°(誤差:0.01°以内)
About the obtained sample, X-ray-diffraction data was measured with the X-ray powder diffractometer, and it was confirmed that the phase which can be explained by the monoclinic system and the structural model of the space group C2 / m is main. However, compared with H 2 Ti 6 O 13 produced by the manufacturing method of the present invention produced in Examples 1 and 2, the peak width is wide, and there are peaks that cannot be identified including shoulder peaks around 2θ = 13 °. It became clear that there were many. The powder X-ray diffraction pattern at this time is shown in FIG. When the lattice constant was obtained by the least square method using each index of the identifiable peak and its surface spacing, the following values were obtained.
a = 1.4614 nm (error: within 0.0002 nm)
b = 0.3729 nm (error: within 0.0001 nm)
c = 0.9231 nm (error: within 0.0002 nm)
β = 97.04 ° (error: within 0.01 °)

(リチウム電池)
このようにして得られたHTi13を活物質とし、実施例1及び2と同様にして電極を作製し、実施例1及び2と同様のリチウム電池を作製した。このリチウム電池について、実施例1と同条件で電気化学的リチウム挿入試験を行ったところ、1.6V付近に電圧平坦部を有し、リチウム挿入容量は283mAh/gであった。(図11)このことから、HTiを出発原料とする製造方法では、不純物相が存在することから、電気化学反応に寄与する複合チタン酸化物の量が少ないことが明らかとなった。
(Lithium battery)
Using the thus obtained H 2 Ti 6 O 13 as an active material, electrodes were produced in the same manner as in Examples 1 and 2, and lithium batteries similar to those in Examples 1 and 2 were produced. The lithium battery was subjected to an electrochemical lithium insertion test under the same conditions as in Example 1. As a result, the lithium battery had a flat voltage portion around 1.6 V and the lithium insertion capacity was 283 mAh / g. (FIG. 11) From this, in the manufacturing method using H 2 Ti 3 O 7 as the starting material, it is clear that the amount of the composite titanium oxide contributing to the electrochemical reaction is small because the impurity phase exists. It was.

本発明の複合チタン酸化物HTi13の製造方法は、良質な単一相試料を得ることができる製造工程であり、この複合チタン酸化物を活物質として含有する電極を用いたリチウム電池が、300mAh/gを超える高容量であることから、リチウム電池電極材料酸化物の製造方法として実用的価値の高いものである。 The manufacturing method of the composite titanium oxide H 2 Ti 6 O 13 of the present invention is a manufacturing process capable of obtaining a high-quality single-phase sample, and lithium using an electrode containing the composite titanium oxide as an active material. Since the battery has a high capacity exceeding 300 mAh / g, it has a high practical value as a method for producing a lithium battery electrode material oxide.

また、その製造方法も、特別な装置を必要とせず、また、使用する原料も低価格であることから、低コストで高付加価値の材料を製造可能である。   Also, the manufacturing method does not require a special apparatus, and the raw material to be used is low in price, so that a high value-added material can be manufactured at a low cost.

本発明の製造方法で作製されるHTi13が有するNaTi13型トンネル構造を示す模式図である。Is a schematic diagram showing an Na 2 Ti 6 O 13 type tunnel structure H 2 Ti 6 O 13 is produced having the production method of the present invention. 実施例1で得られた本発明の出発原料であるNaTi13のX線粉末回折図形である。 2 is an X-ray powder diffraction pattern of Na 2 Ti 6 O 13 which is the starting material of the present invention obtained in Example 1. FIG. 実施例1でイオン交換処理温度380℃の条件で得られた本発明の出発原料であるリチウムイオン交換体LiTi13のX線粉末回折図形である。 2 is an X-ray powder diffraction pattern of a lithium ion exchanger Li 2 Ti 6 O 13 which is a starting material of the present invention obtained in Example 1 under the condition of an ion exchange treatment temperature of 380 ° C. FIG. 実施例1で得られた本発明のプロトン交換体HTi13のX線粉末回折図形である。 2 is an X-ray powder diffraction pattern of the proton exchanger H 2 Ti 6 O 13 of the present invention obtained in Example 1. FIG. リチウム電池の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of a lithium battery. 実施例1で得られた本発明のプロトン交換体HTi13を電極として用いた電池のリチウム挿入反応に伴う電圧変化を示す図である。It is a diagram illustrating a voltage change due to the lithium insertion reaction cell using a proton exchange material H 2 Ti 6 O 13 of the present invention obtained in Example 1 as an electrode. 実施例2でイオン交換処理温度320℃の条件で得られた本発明の出発原料であるリチウムイオン交換体LiTi13のX線粉末回折図形である。2 is an X-ray powder diffraction pattern of a lithium ion exchanger Li 2 Ti 6 O 13 which is a starting material of the present invention obtained in Example 2 under conditions of an ion exchange treatment temperature of 320 ° C. FIG. 実施例2で得られた本発明のプロトン交換体HTi13のX線粉末回折図形である。3 is an X-ray powder diffraction pattern of the proton exchanger H 2 Ti 6 O 13 of the present invention obtained in Example 2. FIG. 実施例2で得られた本発明のプロトン交換体HTi13を電極として用いた電池のリチウム挿入反応に伴う電圧変化を示す図である。It is a diagram illustrating a voltage change due to the lithium insertion reaction cell using a proton exchange material H 2 Ti 6 O 13 of the present invention obtained in Example 2 as an electrode. 比較例2でHTiを出発原料として作製されたHTi13のX線粉末回折図形である。4 is an X-ray powder diffraction pattern of H 2 Ti 6 O 13 produced using H 2 Ti 3 O 7 as a starting material in Comparative Example 2. FIG. 比較例2でHTiを出発原料として作製されたHTi13を電極として用いた電池のリチウム挿入反応に伴う電圧変化を示す図である。The H 2 Ti 3 O 7 in Comparative Example 2 is a diagram illustrating a voltage change due to the lithium insertion reaction of the battery using the H 2 Ti 6 O 13 which are produced as a starting material as an electrode.

符号の説明Explanation of symbols

1 ボタン型リチウム電池
2 負極端子
3 負極
4 セパレータ+電解液
5 絶縁パッキング
6 正極
7 正極缶
DESCRIPTION OF SYMBOLS 1 Button type lithium battery 2 Negative electrode terminal 3 Negative electrode 4 Separator + Electrolyte 5 Insulation packing 6 Positive electrode 7 Positive electrode can

Claims (7)

ナトリウムチタン酸化物NaTi13をイオン交換する工程によって合成されたLiTi13を出発原料として、プロトン交換する工程を含むことを特徴とする、化学式HTi13で表される複合チタン酸化物の製造方法。 The chemical formula H 2 Ti 6 O 13 includes a step of proton exchange using Li 2 Ti 6 O 13 synthesized by the step of ion exchange of sodium titanium oxide Na 2 Ti 6 O 13 as a starting material. The manufacturing method of the composite titanium oxide represented. 複合チタン酸化物の結晶構造が、単斜晶系のNaTi13型トンネル構造であることを特徴とする請求項1に記載の複合チタン酸化物の製造方法。 The method for producing a composite titanium oxide according to claim 1, wherein the crystal structure of the composite titanium oxide is a monoclinic Na 2 Ti 6 O 13 type tunnel structure. 複合チタン酸化物の単斜晶系の格子定数が、残留するナトリウム量及びリチウム量によって決定され、a軸長は1.46〜1.48nm、b軸長が0.373〜0.375nm、c軸長が0.91〜0.93nm、β角が96〜99°の範囲であることを特徴とする請求項1に記載の複合チタン酸化物の製造方法。 The monoclinic lattice constant of the composite titanium oxide is determined by the amount of residual sodium and lithium, the a-axis length is 1.46 to 1.48 nm, the b-axis length is 0.373 to 0.375 nm, c 2. The method for producing a composite titanium oxide according to claim 1, wherein the axial length is 0.91 to 0.93 nm and the β angle is in the range of 96 to 99 °. 上記ナトリウムチタン酸化物NaTi13をイオン交換する工程は、リチウム溶融塩を用いるリチウムイオン交換反応を適用することを特徴とする請求項1に記載の複合チタン酸化物の製造方法。 2. The method for producing a composite titanium oxide according to claim 1, wherein the step of ion exchange of the sodium titanium oxide Na 2 Ti 6 O 13 applies a lithium ion exchange reaction using a lithium molten salt. 上記リチウム溶融塩を用いるリチウムイオン交換反応における熱処理温度は、30℃から500℃の範囲内にある請求項4に記載の複合チタン酸化物の製造方法。 The method for producing a composite titanium oxide according to claim 4, wherein a heat treatment temperature in the lithium ion exchange reaction using the lithium molten salt is in a range of 30 ° C to 500 ° C. 上記プロトン交換する工程は、酸性水溶液を用いるプロトン交換反応を適用することを特徴とする請求項1に記載の複合チタン酸化物の製造方法。 The method for producing a composite titanium oxide according to claim 1, wherein the proton exchange step uses a proton exchange reaction using an acidic aqueous solution. 上記酸性水溶液を用いるプロトン交換反応における熱処理温度が20℃から100℃の範囲内にある請求項6に記載の複合チタン酸化物の製造方法。 The method for producing a composite titanium oxide according to claim 6, wherein the heat treatment temperature in the proton exchange reaction using the acidic aqueous solution is in the range of 20 ° C to 100 ° C.
JP2008296612A 2008-11-20 2008-11-20 Method for producing composite titanium oxide Active JP5196486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008296612A JP5196486B2 (en) 2008-11-20 2008-11-20 Method for producing composite titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296612A JP5196486B2 (en) 2008-11-20 2008-11-20 Method for producing composite titanium oxide

Publications (2)

Publication Number Publication Date
JP2010120817A JP2010120817A (en) 2010-06-03
JP5196486B2 true JP5196486B2 (en) 2013-05-15

Family

ID=42322492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296612A Active JP5196486B2 (en) 2008-11-20 2008-11-20 Method for producing composite titanium oxide

Country Status (1)

Country Link
JP (1) JP5196486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663798A (en) * 2014-11-27 2017-05-10 株式会社东芝 Active material for batteries, nonaqueous electrolyte battery, assembled battery, battery pack and automobile

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078655B (en) * 2014-06-30 2016-03-09 天津巴莫科技股份有限公司 A kind of preparation method of cladded type titanium oxygen compound
JP6455787B2 (en) * 2015-05-20 2019-01-23 本田技研工業株式会社 Titanium oxide and manufacturing method thereof, active material for secondary battery and manufacturing method thereof, and secondary battery using titanium oxide as active material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093643B2 (en) * 2006-11-02 2012-12-12 独立行政法人産業技術総合研究所 Lithium secondary battery active material, method for producing the same, and lithium secondary battery using the same
WO2008111465A1 (en) * 2007-03-13 2008-09-18 National Institute Of Advanced Industrial Science And Technology New titanium oxide, process for producing the titanium oxide, and lithium rechargeable battery using the titanium oxide as active material
JP5158787B2 (en) * 2007-03-13 2013-03-06 独立行政法人産業技術総合研究所 NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663798A (en) * 2014-11-27 2017-05-10 株式会社东芝 Active material for batteries, nonaqueous electrolyte battery, assembled battery, battery pack and automobile
CN106663798B (en) * 2014-11-27 2019-05-14 株式会社东芝 Active material for battery, nonaqueous electrolyte battery, group battery, battery pack and automobile

Also Published As

Publication number Publication date
JP2010120817A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5158787B2 (en) NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL
JP5164131B2 (en) Active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5177672B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the same
JP5093643B2 (en) Lithium secondary battery active material, method for producing the same, and lithium secondary battery using the same
JP4474534B1 (en) Titanium oxide and method for producing the same
JP5644273B2 (en) Titanium oxide, method for producing the same, and electrochemical device using the same as member
JP6830120B2 (en) Lithium sodium composite oxide, positive electrode active material for secondary batteries and secondary batteries
JP2007112674A (en) Alkali-manganese multiple oxide and its producing method
JP4257426B2 (en) Alkali transition metal oxide crystal material and method for producing the same
JP5880928B2 (en) Lithium manganese titanium nickel composite oxide, method for producing the same, and lithium secondary battery using the same as a member
JP5207360B2 (en) Lithium manganese oxide powder particles, production method thereof, and lithium secondary battery using the same as a positive electrode active material
JP5920782B2 (en) Titanium oxide single crystal particles, method for producing the same, electrode active material containing the titanium oxide single crystal particles, and electricity storage device using the electrode active material
JP4431786B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5196486B2 (en) Method for producing composite titanium oxide
JP6460511B2 (en) Active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
WO2007007581A1 (en) Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same
JP6395052B2 (en) Titanium oxide and manufacturing method thereof, active material for secondary battery and manufacturing method thereof, and secondary battery using titanium oxide as active material
JP6455787B2 (en) Titanium oxide and manufacturing method thereof, active material for secondary battery and manufacturing method thereof, and secondary battery using titanium oxide as active material
JP5120919B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the active material
JP6399290B2 (en) Titanium oxide and manufacturing method thereof, active material for secondary battery and manufacturing method thereof, and secondary battery using titanium oxide as active material
JP5004239B2 (en) Manganese oxide, secondary battery electrode active material, production method thereof, and lithium secondary battery using secondary battery electrode active material
JP2016064967A (en) Lithium composite oxide, manufacturing method of lithium composite oxide, cathode active material for lithium secondary battery and lithium secondary battery
WO2016080471A1 (en) Lithium sodium complex oxide, method for manufacturing lithium sodium complex oxide, cathode active material for secondary battery and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250