JPWO2007007581A1 - Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same - Google Patents

Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same Download PDF

Info

Publication number
JPWO2007007581A1
JPWO2007007581A1 JP2007524578A JP2007524578A JPWO2007007581A1 JP WO2007007581 A1 JPWO2007007581 A1 JP WO2007007581A1 JP 2007524578 A JP2007524578 A JP 2007524578A JP 2007524578 A JP2007524578 A JP 2007524578A JP WO2007007581 A1 JPWO2007007581 A1 JP WO2007007581A1
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
lithium secondary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007524578A
Other languages
Japanese (ja)
Other versions
JP5051770B2 (en
Inventor
秋本 順二
順二 秋本
淳司 阿波加
淳司 阿波加
高橋 靖彦
靖彦 高橋
倫人 木嶋
倫人 木嶋
田渕 光春
光春 田渕
国昭 辰巳
国昭 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007524578A priority Critical patent/JP5051770B2/en
Publication of JPWO2007007581A1 publication Critical patent/JPWO2007007581A1/en
Application granted granted Critical
Publication of JP5051770B2 publication Critical patent/JP5051770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明は、資源的な制約が少なくかつ安価なマンガン酸化物原料を使用して、Li0.44MnO2型のトンネル構造を有し、かつ、既存の実用正極材料と同等の作動電圧領域(約4V)において、高容量で安定に充放電させることができる新規な正極材料、その製造方法、及びこの材料を正極活物質として含み、各種負極材料を用いたリチウム二次電池を提供する。本発明では、化学組成式としてLixMn1−yTiyO2(0.5≦x≦1、0≦y<0.56)で表記され、結晶構造として斜方晶系に属し、リチウムが占有するトンネル構造を有するリチウム、マンガン、チタン、酸素から構成されるリチウム二次電池正極材料を使用してリチウム二次電池を構成する。The present invention has a Li0.44MnO2 type tunnel structure using an inexpensive manganese oxide raw material with few resource constraints, and has an operating voltage range (about 4 V) equivalent to that of an existing practical positive electrode material. Provides a novel positive electrode material that can be stably charged and discharged at a high capacity, a method for producing the same, and a lithium secondary battery that includes this material as a positive electrode active material and uses various negative electrode materials. In the present invention, LixMn1-yTiyO2 (0.5 ≦ x ≦ 1, 0 ≦ y <0.56) is expressed as a chemical composition formula, and the crystal structure belongs to an orthorhombic system and has a tunnel structure occupied by lithium. A lithium secondary battery positive electrode material composed of lithium, manganese, titanium, and oxygen is used to constitute a lithium secondary battery.

Description

本発明は、リチウム二次電池用正極材料及びその製造方法、ならびにその材料を正極活物質として含むリチウム二次電池に関する。   The present invention relates to a positive electrode material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery containing the material as a positive electrode active material.

現在我が国においては、携帯電話、ノートパソコンなどの携帯型電子機器に搭載されている二次電池のほとんどは、リチウム二次電池である。また、リチウム二次電池は、今後電気自動車、電力負荷平準化システムなどの大型電池としても実用化されるものと予測されており、その重要性はますます高まっている。   Currently, in Japan, most of the secondary batteries installed in portable electronic devices such as mobile phones and notebook computers are lithium secondary batteries. In addition, lithium secondary batteries are expected to be put into practical use as large batteries for electric vehicles and power load leveling systems in the future, and their importance is increasing.

このリチウム二次電池は、リチウム含有遷移金属複合酸化物を活物質とする正極と、リチウム金属、リチウム合金、金属酸化物あるいはカーボンのような、リチウムを吸蔵・放出することが可能な材料を活物質とする負極と、非水系電解液を含むセパレータまたは固体電解質を主要構成要素とする。   This lithium secondary battery uses a positive electrode having a lithium-containing transition metal composite oxide as an active material and a material capable of inserting and extracting lithium, such as lithium metal, lithium alloy, metal oxide, or carbon. A main component is a negative electrode as a substance and a separator or solid electrolyte containing a non-aqueous electrolyte.

これらの構成要素のうち、正極活物質として検討されているものには、層状岩塩型リチウムコバルト酸化物(LiCoO)、層状岩塩型リチウムニッケル酸化物(LiNiO)、スピネル型リチウムマンガン酸化物(LiMn)等が挙げられる。Among these components, those studied as positive electrode active materials include layered rock salt type lithium cobalt oxide (LiCoO 2 ), layered rock salt type lithium nickel oxide (LiNiO 2 ), spinel type lithium manganese oxide ( LiMn 2 O 4 ) and the like.

特に、層状岩塩型リチウムコバルト酸化物LiCoOは、これを正極に用いた二次電池の作動電圧(正極中の遷移金属の酸化還元電位と負極元素の酸化還元電位との差)、充放電容量(正極から脱離・挿入可能なリチウム量)などの電池性能に優れ、リチウム二次電池の正極構成材料として今後の需要が一層増大するものと予測されている。
しかしながら、この化合物は、稀少金属であるコバルトを主成分として含むために、リチウム二次電池の高コストの要因の一つとなっている。さらに、現在すでに全世界のコバルト生産量の約20%が電池産業において用いられていることを考慮すれば、LiCoOからなる正極材料のみでは、今後の需要拡大に対応可能かどうかは、不明である。
In particular, the layered rock salt type lithium cobalt oxide LiCoO 2 has a secondary battery operating voltage (difference between the redox potential of the transition metal in the positive electrode and the redox potential of the negative electrode element), charge / discharge capacity. Excellent battery performance such as (amount of lithium that can be desorbed and inserted from the positive electrode) is expected to increase further in the future as a positive electrode constituent material for lithium secondary batteries.
However, since this compound contains cobalt, which is a rare metal, as a main component, it is one of the high-cost factors for lithium secondary batteries. Furthermore, considering that about 20% of the world's cobalt production is already used in the battery industry, it is unclear whether only the cathode material made of LiCoO 2 can meet future demand growth. is there.

また、コバルトよりも安価なニッケルを用いた層状岩塩型リチウムニッケル酸化物LiNiOは、コスト的にも容量的にも有利であり、リチウムコバルト酸化物の有力な代替材料として開発が進められている。しかしながら、このリチウムニッケル酸化物を正極活物質に用いたリチウム二次電池は、充電状態での正極活物質の不安定性から、高温に保持すると分解、発熱、発火などの危険性を有しており、安全性に関して解決しなければならない問題が多く残っている。Further, the layered rock salt type lithium nickel oxide LiNiO 2 using nickel cheaper than cobalt is advantageous in terms of cost and capacity, and is being developed as a promising alternative material for lithium cobalt oxide. . However, the lithium secondary battery using this lithium nickel oxide as the positive electrode active material has the risk of decomposition, heat generation, ignition, etc. if kept at a high temperature due to the instability of the positive electrode active material in the charged state. There are still many issues that need to be resolved regarding safety.

また、前記コバルト系酸化物代替の材料という観点からは、資源的な制約が少なくかつ安価なマンガン酸化物を原料として使用し、さらに、Mn3+とMn4+の酸化還元反応に伴うマンガンと酸素の化学結合の変化に耐えるようなマンガン系正極材料が、有望な材料である。In addition, from the viewpoint of the cobalt-based oxide substitute material, low-cost and low-cost manganese oxide is used as a raw material, and further, manganese and oxygen accompanying oxidation-reduction reaction of Mn 3+ and Mn 4+ are used. Manganese positive electrode materials that can withstand changes in chemical bonding are promising materials.

このうち、スピネル型リチウムマンガン酸化物LiMnは、コバルトやニッケルよりもさらに安価なマンガンを用いており、かつ充電状態での安全性にも優れていることから、一部はLiCoOに代替して実用化されている。しかしながら、LiCoOやLiNiOと比べて容量が小さいことが問題となっている。また、50℃以上におけるマンガンの電解液への溶解に起因する顕著な特性劣化という問題点も有しているので、この材料によるLiCoOの代替は、予期された程には進展していない。Among them, the spinel-type lithium manganese oxide LiMn 2 O 4 is used less expensive manganese than cobalt and nickel, and since it is excellent in safety in the charged state, partly in LiCoO 2 It has been put to practical use instead. However, there is a problem that the capacity is small compared to LiCoO 2 and LiNiO 2 . Further, since there is a problem of remarkable characteristic deterioration due to dissolution of manganese in an electrolytic solution at 50 ° C. or higher, substitution of LiCoO 2 by this material has not progressed as expected.

一方、結晶構造の特徴として、一次元のトンネル構造をとるNa0.44MnOを出発原料として、イオン交換法によってLi0.44MnOを合成する研究も行われている。この化合物は、2種類のサイズの異なるトンネルを有することからイオン拡散が容易と考えられ、例えば高出力(急速な充放電が可能)の正極材料として注目されている。(非特許文献1,2参照)
しかしながら、これまで報告されていた電池電圧は約3V程度であり、電池容量も100mAh/g程度であることから、実用的なレベルには達していなかった。
A.R.Armstrong,H.Huang,R.A.Jennings,P.G.Bruce,J.Mater.Chem.,8,255−259(1998) M.M.Doeff,A.Anapolsky,L.Edman,T.J.Richardson,L.C.De Jonghe,J.Electrochem.Soc.,148,A230−A236(2001)
On the other hand, as a feature of the crystal structure, research has been conducted to synthesize Li 0.44 MnO 2 by an ion exchange method using Na 0.44 MnO 2 having a one-dimensional tunnel structure as a starting material. Since this compound has two types of tunnels having different sizes, it is considered that ion diffusion is easy. For example, the compound has attracted attention as a positive electrode material having high output (capable of rapid charge / discharge). (See Non-Patent Documents 1 and 2)
However, since the battery voltage reported so far is about 3 V and the battery capacity is about 100 mAh / g, it has not reached a practical level.
A. R. Armstrong, H .; Huang, R.A. A. Jennings, P.M. G. Bruce, J. et al. Mater. Chem. 8, 255-259 (1998) M.M. M.M. Doeff, A.M. Anapolsky, L.A. Edman, T .; J. et al. Richardson, L.M. C. De Jonghe, J.A. Electrochem. Soc. , 148, A230-A236 (2001)

したがって、現行のリチウム二次電池において、LiCoOに代替しうる正極材料であるか否かは、4V付近にマンガンの3価−4価の酸化還元反応に伴う電圧平坦部を有し、安定に充放電可能なマンガン酸化物系正極材料であるか否かが、その判断基準となる。
本発明者らは、前記のイオン交換処理の温度を上昇させることで、4V領域においても充放電可能で、かつ高容量である新規リチウムマンガン酸化物、およびそのチタン置換体(LiMn1−yTi(0.4<x<0.5、0≦y<0.56)を見出し、先に提案した。(特許文献1〜3参照)
しかしながら、この材料で実現できている放電容量は、炭素負極を使用した電池で4V領域の充放電容量は、初期放電容量において約60mAh/g程度、リチウム負極を使用した電池で150mAh/g程度であり、理論容量(193mAh/g)の実現のためには、さらに容量の改善が必要であった。
特願2004−065402号 特願2004−080970号 特願2004−080971号
Therefore, in the current lithium secondary battery, whether or not it is a positive electrode material that can be substituted for LiCoO 2 has a voltage flat part accompanying manganese trivalent to tetravalent oxidation-reduction reaction in the vicinity of 4 V, and is stable. Whether or not it is a chargeable / dischargeable manganese oxide-based positive electrode material is the criterion.
The inventors of the present invention have raised the temperature of the above-described ion exchange treatment so that a novel lithium manganese oxide that can be charged and discharged even in a 4 V region and has a high capacity, and a titanium substitution product thereof (Li x Mn 1− y Ti y O 2 found (0.4 <x <0.5,0 ≦ y <0.56), previously proposed. (see Patent documents 1 to 3)
However, the discharge capacity that can be realized with this material is about 4 mA charge / discharge capacity in the battery using the carbon negative electrode, about 60 mAh / g in the initial discharge capacity, and about 150 mAh / g in the battery using the lithium negative electrode. In order to realize the theoretical capacity (193 mAh / g), it was necessary to further improve the capacity.
Japanese Patent Application No. 2004-065452 Japanese Patent Application No. 2004-080970 Japanese Patent Application No. 2004-080971

一方、電池の更なるエネルギー密度向上の観点から、負極材料にリチウム金属、或いはリチウム合金を使用した電池の検討が行われている。例えば、電池の安全性を確保するために、電解質として固体高分子を使用した「リチウムポリマー二次電池」に関する検討などが多くなされている。この目的のために、リチウム負極の使用において、最大限、性能が発揮されるような正極材料が求められており、高電圧かつ高容量の新規材料開発も合わせて進められている。
また、携帯電子機器等の電源として用いるために、電池自体の軽量化を目的として、各種の負極材料と共に使用可能な正極材料酸化物の構成元素をできるだけ原子量の小さい軽元素に置き換える開発も、合わせて進められている。
On the other hand, from the viewpoint of further improving the energy density of the battery, a battery using lithium metal or a lithium alloy as a negative electrode material has been studied. For example, in order to ensure the safety of the battery, many studies have been made on a “lithium polymer secondary battery” using a solid polymer as an electrolyte. For this purpose, there has been a demand for a positive electrode material that exhibits the maximum performance in the use of a lithium negative electrode, and development of a new material having a high voltage and a high capacity is being promoted.
In addition, for the purpose of reducing the weight of the battery itself for use as a power source for portable electronic devices, etc., development that replaces the constituent elements of the positive electrode material oxide that can be used with various negative electrode materials with light elements with as small an atomic weight as possible is also included. It is being advanced.

前述のスピネル型リチウムマンガン酸化物LiMnは、リチウム負極を使用した電池においては、LiMnの化学組成までリチウム挿入が可能であるが、挿入反応が構造変化を伴うために、急速に容量劣化を引き起こすことが知られており、上記の目的には合致しない。In the above-described spinel type lithium manganese oxide LiMn 2 O 4 , in a battery using a lithium negative electrode, lithium insertion is possible up to the chemical composition of Li 2 Mn 2 O 4 , but the insertion reaction involves a structural change. It is known to cause capacity deterioration rapidly and does not meet the above-mentioned purpose.

したがって、本発明は、資源的な制約が少なくかつ安価なマンガン酸化物原料を使用して、上記のような現状の課題を解決し、上述のようなLi0.44MnO型のトンネル構造を有し、かつ、既存の実用正極材料と同等の作動電圧領域(約4V)において、高容量で安定に充放電させることができる新規な正極材料、その製造方法、及びこの材料を正極活物質として含み、各種負極材料を用いたリチウム二次電池を提供することにある。Therefore, the present invention solves the above-mentioned current problems by using an inexpensive manganese oxide raw material with less resource restrictions, and provides a Li 0.44 MnO 2 type tunnel structure as described above. And a new positive electrode material that can be stably charged and discharged with a high capacity in an operating voltage region (about 4 V) equivalent to that of an existing practical positive electrode material, a manufacturing method thereof, and this material as a positive electrode active material And providing a lithium secondary battery using various negative electrode materials.

本発明者は、上記特許文献1〜3に記載された先願発明(以下、これらをまとめて単に「先願発明」という)を含む上記従来技術の問題に鑑みて鋭意検討を重ねてきた。その結果、上記先願発明に係わるリチウムマンガンチタン酸化物LiMn1−yTi(0.4<x<0.5、0≦y<0.56)を原料として、リチウム挿入処理を施すことによって、元の結晶構造を維持したままで、酸化物中のリチウム量を増大させ、ほぼ理論容量に近い値まで、4V領域における容量を大幅に増加させることを見出し、本発明を完成するに至った。The present inventor has intensively studied in view of the problems of the prior art including the prior inventions described in Patent Documents 1 to 3 (hereinafter collectively referred to as “prior application invention”). As a result, lithium insertion treatment using the lithium manganese titanium oxide Li x Mn 1-y Ti y O 2 (0.4 <x <0.5, 0 ≦ y <0.56) according to the invention of the prior application as a raw material. And found that the amount of lithium in the oxide is increased while maintaining the original crystal structure, and the capacity in the 4V region is greatly increased to a value close to the theoretical capacity, and the present invention is completed. It came to do.

すなわち、本発明は、下記1〜6に示すリチウムマンガンチタン酸化物正極材料、その製造方法、およびそれを用いたリチウム二次電池を提供する。
1.化学組成式としてLiMn1−yTi(0.5≦x≦1、0≦y<0.56)で表記され、結晶構造として斜方晶系に属し、リチウムが占有するトンネル構造を有するリチウム、マンガン、チタン、酸素から構成されるリチウム二次電池正極材料。
2.あらかじめ作製されたLiMn1−yTi(0.40<x<0.50、0≦y<0.56)を出発原料として、リチウム挿入処理によって製造することを特徴とする1に記載のリチウム二次電池正極材料の製造方法。
3.前記リチウム挿入処理を、リチウム化合物を含有する溶融塩中、或いはリチウム化合物を溶解した有機溶剤または水溶液中において行うことを特徴とする2に記載の正極材料の製造方法。
4.正極、負極及び電解質物質を有するリチウム二次電池の正極を1に記載の正極材料により構成したことを特徴とするリチウム二次電池。
5.電池の負極としてリチウム又はリチウム合金負極を使用し、4Vの電圧範囲で安定に充放電できることを特徴とする4に記載のリチウム二次電池。
6.電池の負極として炭素負極を使用し、4Vの電圧範囲で安定に充放電できることを特徴とする4に記載のリチウム二次電池。
That is, this invention provides the lithium manganese titanium oxide positive electrode material shown in the following 1-6, its manufacturing method, and a lithium secondary battery using the same.
1. A tunnel represented by Li x Mn 1-y Ti y O 2 (0.5 ≦ x ≦ 1, 0 ≦ y <0.56) as a chemical composition formula, belonging to an orthorhombic system as a crystal structure, and occupied by lithium A lithium secondary battery positive electrode material comprising lithium, manganese, titanium, and oxygen having a structure.
2. 1 manufactured by lithium insertion treatment using Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) prepared in advance as a starting material 1 The manufacturing method of the lithium secondary battery positive electrode material of description.
3. 3. The method for producing a positive electrode material according to 2, wherein the lithium insertion treatment is performed in a molten salt containing a lithium compound, or in an organic solvent or an aqueous solution in which the lithium compound is dissolved.
4). A lithium secondary battery, wherein the positive electrode of the lithium secondary battery having a positive electrode, a negative electrode, and an electrolyte material is composed of the positive electrode material described in 1.
5. 5. The lithium secondary battery according to 4, wherein a lithium or lithium alloy negative electrode is used as the negative electrode of the battery, and charging and discharging can be performed stably in a voltage range of 4V.
6). 5. The lithium secondary battery according to 4, wherein a carbon negative electrode is used as the negative electrode of the battery and can be stably charged and discharged in a voltage range of 4V.

本発明によれば、安価な原料を使用して、リチウム二次電池において、既存のリチウムコバルト酸化物系正極材料と同等の高い作動電圧領域(約4V)において安定に充放電させることができると共に、既存正極リチウムマンガン酸化物スピネルより大きい容量を有する、新規なリチウムマンガンチタン酸化物正極材料を得ることができる。
また、上記リチウムマンガンチタン酸化物正極材料を使用する本発明のリチウム二次電池は、高電圧かつ高容量で、優れた充放電サイクル特性をも発揮することができ、実用性の高いものである。
According to the present invention, an inexpensive raw material can be used to stably charge and discharge a lithium secondary battery in a high operating voltage range (about 4 V) equivalent to an existing lithium cobalt oxide positive electrode material. Thus, a novel lithium manganese titanium oxide cathode material having a capacity larger than that of the existing cathode lithium manganese oxide spinel can be obtained.
In addition, the lithium secondary battery of the present invention using the above lithium manganese titanium oxide positive electrode material has high voltage and high capacity, can exhibit excellent charge / discharge cycle characteristics, and is highly practical. .

本発明のリチウム二次電池の1例を示す模式図である。It is a schematic diagram which shows one example of the lithium secondary battery of this invention. 実施例1及び2で得られた本発明の正極材料のX線粉末回折図形である。2 is an X-ray powder diffraction pattern of the positive electrode material of the present invention obtained in Examples 1 and 2. FIG. 実施例1及び比較例1で得られた電池の初期放電特性を示す図である。It is a figure which shows the initial stage discharge characteristic of the battery obtained in Example 1 and Comparative Example 1. 実施例1及び比較例2で得られた電池の初期放電特性を示す図である。It is a figure which shows the initial stage discharge characteristic of the battery obtained in Example 1 and Comparative Example 2. 実施例3及び比較例3、4で得られた電池の初期放電特性を示す図である。It is a figure which shows the initial stage discharge characteristic of the battery obtained in Example 3 and Comparative Examples 3 and 4. FIG. 実施例4で得られた電池の放電出力特性を示す図である。It is a figure which shows the discharge output characteristic of the battery obtained in Example 4. FIG.

符号の説明Explanation of symbols

1 ボタン型リチウム二次電池
2 負極端子
3 負極
4 セパレータ+電解液
5 絶縁パッキング
6 正極
7 正極缶
DESCRIPTION OF SYMBOLS 1 Button type lithium secondary battery 2 Negative electrode terminal 3 Negative electrode 4 Separator + Electrolyte 5 Insulation packing 6 Positive electrode 7 Positive electrode can

(リチウム二次電池用正極材料及びその製造方法)
本発明の基礎となった上記先願発明に係わるリチウムマンガンチタン酸化物LiMn1−yTi(0.40<x<0.50、0≦y<0.56)正極材料および本発明によるLiMn1−yTi(0.5≦x≦1、0≦y<0.56)正極材料は、出発原料であるNaMn1−yTi(0.40<x<0.50、0≦y<0.56)化合物と同様のトンネル構造を有し、マンガンとチタンの割合を上記の組成範囲内で自由に選択できることを特徴とする。
(Positive electrode material for lithium secondary battery and manufacturing method thereof)
Lithium manganese titanium oxide Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) positive electrode material and The Li x Mn 1-y Ti y O 2 (0.5 ≦ x ≦ 1, 0 ≦ y <0.56) positive electrode material according to the present invention is Na x Mn 1-y Ti y O 2 (0 .40 <x <0.50, 0 ≦ y <0.56) It has a tunnel structure similar to that of the compound, and the ratio of manganese to titanium can be freely selected within the above composition range.

ナトリウム化合物の場合、構造中のナトリウムイオンの静電エネルギーによる反発が原因で、0.40<x<0.50程度しかナトリウムを吸蔵できず、そのことが原因で、ナトリウムをリチウムにイオン交換した先願発明の正極材料においては、必然的にリチウム量は、ナトリウム量とほぼ同じ値であった。しかしながら、ナトリウムと比べて、イオン半径の小さいリチウムの場合、より密にリチウムを吸蔵することが可能となるため、結晶学的に予想される最大リチウム吸蔵量(理論容量)は、x=0.66である。   In the case of a sodium compound, sodium can be occluded only by about 0.40 <x <0.50 due to repulsion due to electrostatic energy of sodium ions in the structure, and thus sodium was ion-exchanged to lithium. In the positive electrode material of the prior invention, the amount of lithium was inevitably the same value as the amount of sodium. However, in the case of lithium having a small ionic radius as compared with sodium, it becomes possible to occlude lithium more densely. Therefore, the maximum lithium occlusion amount (theoretical capacity) predicted crystallographically is x = 0. 66.

また、リチウム挿入処理を施した場合、結晶学的に予測されるリチウム席に比して、より多くのリチウムが吸蔵されることが、インターカレーション化学においては、よく知られており、そのようなリチウムも電池反応に寄与することができれば、電池容量の増大が可能となる。   In addition, it is well known in intercalation chemistry that when lithium insertion treatment is performed, more lithium is occluded compared to the crystallographically predicted lithium site. If lithium can also contribute to the battery reaction, the battery capacity can be increased.

本発明のLiMn1−yTi(0.5≦x≦1、0≦y<0.56)正極材料は、上記先願発明に係わるリチウムマンガンチタン酸化物LiMn1−yTi(0.40<x<0.50、0≦y<0.56)正極材料にリチウム挿入処理を施すことにより、作製可能である。このリチウム挿入処理により、正極材料中の全リチウム量は0.4<x≦1とすることができるが(ただし、xは出発原料中のxよりは大きな値となる)、0.5≦x≦1、特に0.6<x≦1とすることが好ましい。The Li x Mn 1-y Ti y O 2 (0.5 ≦ x ≦ 1, 0 ≦ y <0.56) positive electrode material of the present invention is the lithium manganese titanium oxide Li x Mn 1 — by subjecting the lithium insertion process y Ti y O 2 (0.40 < x <0.50,0 ≦ y <0.56) positive electrode material, it can be made. By this lithium insertion treatment, the total amount of lithium in the positive electrode material can be set to 0.4 <x ≦ 1 (where x is larger than x in the starting material), but 0.5 ≦ x It is preferable that ≦ 1, especially 0.6 <x ≦ 1.

本発明の正極材料は、結晶構造および製造工程の特徴から、出発原料中に含有するナトリウムを、イオン交換処理およびリチウム挿入処理によって、ほぼ完全にリチウムに置き換えることが可能であることを特徴とする。但し、通常このような方法では、有意、或いは不純物程度のナトリウムが残留してしまうことが知られている。   The positive electrode material of the present invention is characterized in that sodium contained in the starting material can be almost completely replaced with lithium by ion exchange treatment and lithium insertion treatment due to the characteristics of the crystal structure and the production process. . However, it is generally known that such a method leaves significant or impurity-grade sodium.

すなわち、本発明のLiMn1−yTi(0.5≦x≦1、0≦y<0.56)正極材料は、リチウム、マンガン、チタン、及び酸素を主要構成元素として含有することを特徴とするが、本発明の効果を妨げない範囲内でナトリウム等の不純物元素を含有していてもよい。That is, the Li x Mn 1-y Ti y O 2 (0.5 ≦ x ≦ 1, 0 ≦ y <0.56) positive electrode material of the present invention contains lithium, manganese, titanium, and oxygen as main constituent elements. However, it may contain an impurity element such as sodium as long as the effect of the present invention is not hindered.

本発明のLiMn1−yTi(0.5≦x≦1、0≦y<0.56)正極材料は、マンガンとチタンの量を0≦y<0.56の範囲内で自由に選択できることを特徴とする。チタンを置換することは、結晶構造の安定性を高めると共に、充放電反応に寄与する3価のマンガンを増大させる効果があることが先願発明において確認されている。好ましいチタン量は、構造中のリチウム量と相関があるが、0≦y<0.56、より好ましくは0≦y<0.4の範囲内にある。The Li x Mn 1-y Ti y O 2 (0.5 ≦ x ≦ 1, 0 ≦ y <0.56) positive electrode material of the present invention has an amount of manganese and titanium within the range of 0 ≦ y <0.56. It is characterized by being able to select freely. Substituting titanium has been confirmed in the prior application invention to increase the stability of the crystal structure and to increase trivalent manganese that contributes to the charge / discharge reaction. The preferable amount of titanium is correlated with the amount of lithium in the structure, but is in the range of 0 ≦ y <0.56, more preferably 0 ≦ y <0.4.

また、本発明のLiMn1−yTi(0.5≦x≦1、0≦y<0.56)正極材料は、その全体がLi0.44MnO型のトンネル構造を有することが望ましいが、本発明の効果を妨げない範囲内で他の結晶構造が一部含まれていても良い。Moreover, the Li x Mn 1-y Ti y O 2 (0.5 ≦ x ≦ 1, 0 ≦ y <0.56) positive electrode material of the present invention has a Li 0.44 MnO 2 type tunnel structure as a whole. Although it is desirable to have it, other crystal structures may be partially included within a range that does not hinder the effects of the present invention.

つぎに、本発明の製造方法をさらに詳しく説明する。
本発明のLiMn1−yTi(0.5≦x≦1、0≦y<0.56)正極材料は、上記先願発明に係わるリチウムマンガンチタン酸化物LiMn1−yTi(0.40<x<0.50、0≦y<0.56)正極材料を出発原料として作製される。
また、出発原料となるリチウムマンガンチタン酸化物LiMn1−yTi(0.40<x<0.50、0≦y<0.56)正極材料は、ナトリウムマンガンチタン酸化物NaMn1−yTi(0.40<x<0.50、0≦y<0.56)を原料として作製される。
Next, the production method of the present invention will be described in more detail.
The Li x Mn 1-y Ti y O 2 (0.5 ≦ x ≦ 1, 0 ≦ y <0.56) positive electrode material of the present invention is the lithium manganese titanium oxide Li x Mn 1 — the y Ti y O 2 (0.40 < x <0.50,0 ≦ y <0.56) positive electrode material is prepared as a starting material.
Further, the lithium manganese-titanium oxide as a starting material Li x Mn 1-y Ti y O 2 (0.40 <x <0.50,0 ≦ y <0.56) positive electrode material, sodium manganese titanium oxide Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) is used as a raw material.

NaMn1−yTi(0.40<x<0.50、0≦y<0.56)化合物は、例えば(1)ナトリウム及びナトリウム化合物の少なくとも1種、(2)マンガン及びマンガン化合物の少なくとも1種、(3)チタン及びチタン化合物の少なくとも1種を含有する混合物を焼成することによって製造することができる。The Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) compound is, for example, (1) at least one of sodium and sodium compounds, (2) manganese and It can be produced by firing a mixture containing at least one manganese compound, (3) titanium and at least one titanium compound.

ナトリウム原料としては、ナトリウム(金属ナトリウム)およびナトリウム化合物の少なくとも1種を用いる。ナトリウム化合物としては、ナトリウムを含有するものであれば特に制限されず、例えばNaO、Na等の酸化物、NaCO、NaNO等の塩類、NaOHなどの水酸化物等が挙げられる。これらの中でも、特にNaCO等が好ましい。As the sodium raw material, at least one of sodium (metallic sodium) and a sodium compound is used. The sodium compound is not particularly limited as long as it contains sodium. For example, oxides such as Na 2 O and Na 2 O 2 , salts such as Na 2 CO 3 and NaNO 3 , hydroxides such as NaOH, etc. Is mentioned. Among these, Na 2 CO 3 is particularly preferable.

マンガン原料としては、マンガン(金属マンガン)及びマンガン化合物の少なくとも1種を用いる。マンガン化合物としては、マンガンを含有するものであれば特に制限されず、例えばMn、Mn、MnO等の酸化物、MnCO、MnCl等の塩類、Mn(OH)等の水酸化物、MnOOH等の酸化水酸化物等が挙げられる。これらの中でも、特にMn、MnO等が好ましい。As the manganese raw material, at least one of manganese (metallic manganese) and a manganese compound is used. The manganese compound is not particularly limited as long as it contains manganese. For example, Mn 3 O 4 , Mn 2 O 3 , MnO 2 and other oxides, MnCO 3 , MnCl 2 and other salts, Mn (OH) 2 And hydroxides such as MnOOH and the like. Among these, Mn 2 O 3 , MnO 2 and the like are particularly preferable.

チタン原料としては、チタン(金属チタン)及びチタン化合物の少なくとも1種を用いる。チタン化合物としては、チタンを含有するものであれば特に制限されず、例えばTiO、Ti、TiO等の酸化物、TiCl等の塩類等が挙げられる。これらの中でも、特にTiO等が好ましい。As the titanium raw material, at least one of titanium (metallic titanium) and a titanium compound is used. The titanium compound is not particularly limited as long as it contains titanium, and examples thereof include oxides such as TiO, Ti 2 O 3 and TiO 2 , salts such as TiCl 4 and the like. Among these, TiO 2 is particularly preferable.

はじめに、これらを含む混合物を調整する。ナトリウム原料とマンガン原料及びチタン原料の混合割合は、前記トンネル構造が生成するような割合で混合することが好ましい。具体的には、NaMn1−yTi(0.40<x<0.50、0≦y<0.56)の化学組成式となるようにすれば良い。例えば、モル比でNa/(Mn+Ti)が0.4〜0.7程度、好ましくは0.43〜0.55となるように混合すればよい。通常、高温で焼成を行った場合、含有するナトリウムが揮発しやすく、生成物中のナトリウム量が仕込み組成よりも少なくなる場合が多いことから、モル%で数%〜10数%程度、ナトリウムの仕込み量を増やした方が好ましい。また、マンガンとチタンの割合は、(0≦y<0.56)の範囲で任意に選択すればよい。First, a mixture containing these is prepared. The mixing ratio of the sodium raw material, the manganese raw material, and the titanium raw material is preferably mixed so that the tunnel structure is generated. Specifically, the chemical composition formula may be Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56). For example, mixing may be performed so that Na / (Mn + Ti) is about 0.4 to 0.7, preferably 0.43 to 0.55 in terms of molar ratio. Usually, when baking is performed at a high temperature, the contained sodium tends to volatilize, and the amount of sodium in the product is often less than the charged composition. It is preferable to increase the amount charged. Further, the ratio between manganese and titanium may be arbitrarily selected within the range of (0 ≦ y <0.56).

また、混合方法は、これらを均一に混合できる限り特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式又は乾式で混合すれば良い。   Moreover, a mixing method is not specifically limited as long as these can be mixed uniformly, For example, what is necessary is just to mix by a wet type or a dry type using well-known mixers, such as a mixer.

次いで、混合物を焼成する。焼成温度は、混合物の組成等に応じて適宜設定することができるが、通常は600〜1200℃程度、好ましくは800〜1050℃とすればよい。また、焼成雰囲気も特に限定的ではないが、通常は酸化性雰囲気又は大気中で実施すれば良い。焼成時間は、焼成温度等に応じて適宜変更することができる。冷却方法は特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷すれば良い。   The mixture is then fired. The firing temperature can be appropriately set according to the composition of the mixture, etc., but is usually about 600 to 1200 ° C., preferably 800 to 1050 ° C. Also, the firing atmosphere is not particularly limited, but usually it may be carried out in an oxidizing atmosphere or air. The firing time can be appropriately changed according to the firing temperature and the like. The cooling method is not particularly limited, but it may be naturally cooled (cooled in the furnace) or gradually cooled.

焼成後は、必要に応じて焼成物を公知の方法で粉砕し、さらに上記の焼成工程を実施しても良い。すなわち、本発明方法では、上記混合物の焼成、徐冷及び粉砕を2回以上繰り返して実施することが好ましい。なお、粉砕の程度は、焼成温度などに応じて適宜調節すれば良い。   After firing, the fired product may be pulverized by a known method as necessary, and the above firing step may be further performed. That is, in the method of the present invention, it is preferable that the mixture is repeatedly fired, gradually cooled and pulverized twice or more. Note that the degree of pulverization may be appropriately adjusted according to the firing temperature and the like.

次いで、焼成されたNaMn1−yTi(0.40<x<0.50、0≦y<0.56)に、リチウム化合物を含む溶融塩中、或いは有機溶剤または水溶液中でイオン交換処理を施すことにより、Li0.44MnO型の結晶構造を有し、化学組成式LiMn1−yTi(0.40<x<0.50、0≦y<0.56)で表される化合物が得られる。Next, the calcined Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) in a molten salt containing a lithium compound, or in an organic solvent or aqueous solution By carrying out the ion exchange treatment, the crystal structure of Li 0.44 MnO 2 type is obtained, and the chemical composition formula Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) is obtained.

この場合に、リチウム含有化合物を含む溶融塩中において、粉砕されたNaMn1−yTi(0.40<x<0.50、0≦y<0.56)を分散させながら、イオン交換処理を施すことが好適である。溶融塩としては、硝酸リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等の低温で溶融する塩類のうちで、いずれか1種以上を含む溶融塩を用いることができる。好ましい方法としては、リチウム化合物とNaMn1−yTi焼成物の粉末をよく混合しておく。混合比は、通常、溶融塩中のLi/NaMn1−yTi中のNaのモル比で2〜40、好ましくは10〜30である。In this case, while pulverized Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) is dispersed in the molten salt containing the lithium-containing compound. It is preferable to perform an ion exchange treatment. As the molten salt, a molten salt containing any one or more of salts that melt at a low temperature such as lithium nitrate, lithium chloride, lithium bromide, and lithium iodide can be used. As a preferred method, a lithium compound and a powder of Na x Mn 1-y Ti y O 2 fired product are mixed well. The mixing ratio is usually 2 to 40, preferably 10 to 30, in terms of the molar ratio of Na in Li / Na x Mn 1-y Ti y O 2 in the molten salt.

イオン交換の温度は、260℃〜330℃である。イオン交換の温度が260℃よりも低い場合は、NaMn1−yTi(0.40<x<0.50、0≦y<0.56)中のナトリウムがリチウムに完全に交換されず、相当量のナトリウムが生成物中に残存する。一方、イオン交換温度が330℃よりも高い場合は、一部がスピネル構造に変化するため、均一な結晶構造を得ることができない。処理時間は、通常2〜20時間、好ましくは5〜15時間である。The ion exchange temperature is 260 ° C to 330 ° C. When the ion exchange temperature is lower than 260 ° C., sodium in Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) is completely transferred to lithium. A substantial amount of sodium remains in the product without being exchanged. On the other hand, when the ion exchange temperature is higher than 330 ° C., a part of the ion exchange temperature changes to a spinel structure, so that a uniform crystal structure cannot be obtained. The treatment time is usually 2 to 20 hours, preferably 5 to 15 hours.

さらに、イオン交換処理の方法として、リチウム化合物を溶解した有機溶剤または水溶液中で処理する方法も適する。この場合、リチウム含有化合物を溶解させた有機溶剤中に、粉砕されたNaMn1−yTi(0.40<x<0.50、0≦y<0.56)を投入し、その有機溶剤の沸点以下の温度で処理する。イオン交換速度を高めるため、水または有機溶剤の沸点付近で、溶媒を還流させながら、イオン交換することが好ましい。処理温度は通常30℃〜200℃、好ましくは60℃〜180℃で処理される。また、処理時間は、特に制限されないが、低温であると反応時間が必要であることから、通常5〜50時間、好ましくは10〜20時間である。Furthermore, as a method of ion exchange treatment, a method of treating in an organic solvent or an aqueous solution in which a lithium compound is dissolved is also suitable. In this case, pulverized Na x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) is put into the organic solvent in which the lithium-containing compound is dissolved. The treatment is performed at a temperature below the boiling point of the organic solvent. In order to increase the ion exchange rate, it is preferable to perform ion exchange while refluxing the solvent near the boiling point of water or an organic solvent. The treatment temperature is usually 30 ° C to 200 ° C, preferably 60 ° C to 180 ° C. Further, the treatment time is not particularly limited, but it is usually 5 to 50 hours, preferably 10 to 20 hours, because a reaction time is required at a low temperature.

本発明に用いられるリチウム含有化合物としては、水酸化物、炭酸塩、酢酸塩、硝酸塩、シュウ酸塩、ハロゲン化物、ブチルリチウム等が好ましく、これらは単独または必要に応じて2種以上を組み合わせて用いられる。また、本発明に用いられる有機溶剤としては、ヘキサノール、エトキシエタノール等の高級アルコール、ジエチレングルコールモノエチルエーテル等のエーテル、もしくは沸点が140℃以上の有機溶剤が、作業性が良好である点で好ましい。これらは単独または必要に応じて2種以上組み合わせて用いられる。   The lithium-containing compound used in the present invention is preferably a hydroxide, carbonate, acetate, nitrate, oxalate, halide, butyllithium, etc., and these may be used alone or in combination of two or more as required. Used. Further, as the organic solvent used in the present invention, higher alcohols such as hexanol and ethoxyethanol, ethers such as diethylene glycol monoethyl ether, or organic solvents having a boiling point of 140 ° C. or higher are good in workability. preferable. These may be used alone or in combination of two or more as required.

有機溶剤または水溶液中におけるリチウム含有化合物の濃度は、通常3〜10モル%、好ましくは5〜8モル%である。また、有機溶剤または水溶液中でのNaMn1−yTiの分散濃度は、特に制限されないが、操作性及び経済性の観点から1〜20重量%が好ましい。The density | concentration of the lithium containing compound in an organic solvent or aqueous solution is 3-10 mol% normally, Preferably it is 5-8 mol%. The dispersion concentration of Na x Mn 1-y Ti y O 2 in the organic solvent or aqueous solution is not particularly limited, but is preferably 1 to 20% by weight from the viewpoints of operability and economy.

イオン交換処理の後、得られた生成物を、蒸留水でよく洗浄した後、メタノール、エタノールで洗浄後、乾燥させることによって、目的とするLiMn1−yTi(0.40<x<0.50、0≦y<0.56)が得られる。洗浄方法、乾燥方法については、特に制限されず、通常の方法が用いられる他、デシケーター内における自然乾燥でも良い。After the ion exchange treatment, the obtained product is thoroughly washed with distilled water, then washed with methanol and ethanol, and dried to obtain the target Li x Mn 1-y Ti y O 2 (0.40). <X <0.50, 0 ≦ y <0.56). The washing method and the drying method are not particularly limited, and a normal method may be used, or natural drying in a desiccator may be used.

次いで、イオン交換処理で作製されたLiMn1−yTi(0.40<x<0.50、0≦y<0.56)に、さらに、リチウム化合物を含む溶融塩中、或いは有機溶剤または水溶液中でイオン挿入処理を施すことにより、Li0.44MnO型の結晶構造を有し、化学組成式LiMn1−yTi(0.5≦x≦1、0≦y<0.56)で表される化合物が得られる。Next, in Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) prepared by ion exchange treatment, in a molten salt containing a lithium compound, Alternatively, by performing an ion insertion treatment in an organic solvent or an aqueous solution, it has a crystal structure of Li 0.44 MnO 2 type and has a chemical composition formula Li x Mn 1-y Ti y O 2 (0.5 ≦ x ≦ 1 , 0 ≦ y <0.56).

この場合に、リチウム含有化合物を含む溶融塩中において、あらかじめ作製されたLiMn1−yTi(0.40<x<0.50、0≦y<0.56)を分散させながら、リチウム挿入処理を施すことが好適である。溶融塩としては、硝酸リチウムを使用し、さらに添加剤として水酸化リチウム、ヨウ化リチウム、臭化リチウム、酸化リチウム、過酸化リチウム、炭酸リチウム、塩化リチウム等の塩類のうちで、いずれか1種以上を加える。好ましい方法としては、添加剤とLiMn1−yTi粉末をよく混合しておく。混合比は、通常、溶融塩中の添加剤/LiMn1−yTiのモル比で0.01〜10、好ましくは0.1〜3である。In this case, Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) prepared in advance is dispersed in the molten salt containing the lithium-containing compound. However, it is preferable to perform a lithium insertion process. As the molten salt, lithium nitrate is used, and as an additive, any one of salts such as lithium hydroxide, lithium iodide, lithium bromide, lithium oxide, lithium peroxide, lithium carbonate, and lithium chloride is used. Add more. As a preferred method, the additive and Li x Mn 1-y Ti y O 2 powder are mixed well. The mixing ratio is usually 0.01 to 10, preferably 0.1 to 3 in terms of a molar ratio of additive / Li x Mn 1-y Ti y O 2 in the molten salt.

リチウム挿入処理の温度は、260℃〜330℃である。処理温度が330℃よりも高い場合は、一部がスピネル構造に変化するため、均一な結晶構造を得ることができない。処理時間は、通常2〜20時間、好ましくは5〜15時間である。挿入処理は、数回、好ましくは2〜3回繰り返した方が効果的である。   The temperature of the lithium insertion process is 260 ° C to 330 ° C. When the processing temperature is higher than 330 ° C., a part of the processing temperature changes to a spinel structure, so that a uniform crystal structure cannot be obtained. The treatment time is usually 2 to 20 hours, preferably 5 to 15 hours. The insertion process is more effective if it is repeated several times, preferably 2-3 times.

さらに、リチウム挿入処理の方法として、リチウム化合物を溶解した有機溶剤または水溶液中で処理する方法も適する。この場合、リチウム含有化合物を溶解させた有機溶剤中に、あらかじめイオン交換されたLiMn1−yTi(0.40<x<0.50、0≦y<0.56)を投入し、その有機溶剤の沸点以下の温度で処理する。リチウム挿入速度を高めるため、有機溶剤の沸点付近で、溶媒を還流させながら、挿入処理することが好ましい。処理温度は通常30℃〜200℃、好ましくは60℃〜180℃で処理される。また、処理時間は、特に制限されないが、低温であると反応時間が必要であることから、通常5〜50時間、好ましくは10〜20時間である。Furthermore, as a method for the lithium insertion treatment, a treatment method in an organic solvent or an aqueous solution in which a lithium compound is dissolved is also suitable. In this case, Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) ion-exchanged in advance in an organic solvent in which the lithium-containing compound is dissolved. It is charged and treated at a temperature below the boiling point of the organic solvent. In order to increase the lithium insertion rate, it is preferable to perform the insertion treatment while refluxing the solvent near the boiling point of the organic solvent. The treatment temperature is usually 30 ° C to 200 ° C, preferably 60 ° C to 180 ° C. Further, the treatment time is not particularly limited, but it is usually 5 to 50 hours, preferably 10 to 20 hours, because a reaction time is required at a low temperature.

本発明に用いられるリチウム含有化合物としては、水酸化物、酸化物、過酸化物、炭酸塩、酢酸塩、硝酸塩、シュウ酸塩、ハロゲン化物、ブチルリチウム等が好ましく、これらは単独または必要に応じて2種以上を組み合わせて用いられる。また、本発明に用いられる有機溶剤としては、ヘキサノール、エトキシエタノール等の高級アルコール、ジエチレングルコールモノエチルエーテル等のエーテル、もしくは沸点が140℃以上の有機溶剤が、作業性が良好である点で好ましい。これらは単独または必要に応じて2種以上組み合わせて用いられる。   As the lithium-containing compound used in the present invention, hydroxide, oxide, peroxide, carbonate, acetate, nitrate, oxalate, halide, butyllithium and the like are preferable. Are used in combination of two or more. Further, as the organic solvent used in the present invention, higher alcohols such as hexanol and ethoxyethanol, ethers such as diethylene glycol monoethyl ether, or organic solvents having a boiling point of 140 ° C. or higher are good in workability. preferable. These may be used alone or in combination of two or more as required.

有機溶剤または水溶液中におけるリチウム含有化合物の濃度は、通常3〜10モル%、好ましくは5〜8モル%である。また、有機溶剤または水溶液中でのLiMn1−yTiの分散濃度は、特に制限されないが、操作性及び経済性の観点から1〜20重量%が好ましい。The density | concentration of the lithium containing compound in an organic solvent or aqueous solution is 3-10 mol% normally, Preferably it is 5-8 mol%. The dispersion concentration of Li x Mn 1-y Ti y O 2 in the organic solvent or aqueous solution is not particularly limited, but is preferably 1 to 20% by weight from the viewpoints of operability and economy.

リチウム挿入処理の後、得られた生成物を、蒸留水でよく洗浄した後、メタノール、エタノールで洗浄後、乾燥させることによって、目的とするLiMn1−yTi(0.5≦x≦1、0≦y<0.56)が得られる。洗浄方法、乾燥方法については、特に制限されず、通常の方法が用いられる他、デシケーター内における自然乾燥でも良い。After the lithium insertion treatment, the obtained product is washed thoroughly with distilled water, then washed with methanol and ethanol, and dried to obtain the intended Li x Mn 1-y Ti y O 2 (0.5 ≦ x ≦ 1, 0 ≦ y <0.56). The washing method and the drying method are not particularly limited, and a normal method may be used, or natural drying in a desiccator may be used.

(リチウム二次電池)
本発明のリチウム二次電池は、前記リチウム二次電池用正極材料を用いるものである。すなわち、正極材料として本発明のリチウムマンガンチタン酸化物を用いる以外は、公知のリチウム二次電池(コイン型、ボタン型、円筒型等)の電池要素をそのまま採用することができる。
図1は、本発明のリチウム二次電池を、ボタン型電池に適用した1例を示す模式図である。このボタン型電池1は、負極端子2、負極3、(セパレータ+電解液)4、絶縁パッキング5、正極6及び正極缶7により構成される。
(Lithium secondary battery)
The lithium secondary battery of the present invention uses the positive electrode material for a lithium secondary battery. That is, a battery element of a known lithium secondary battery (coin type, button type, cylindrical type, etc.) can be used as it is except that the lithium manganese titanium oxide of the present invention is used as the positive electrode material.
FIG. 1 is a schematic view showing an example in which the lithium secondary battery of the present invention is applied to a button type battery. The button-type battery 1 includes a negative electrode terminal 2, a negative electrode 3, a (separator + electrolyte) 4, an insulating packing 5, a positive electrode 6, and a positive electrode can 7.

本発明では、上記した本発明のリチウムマンガンチタン酸化物に、必要に応じて導電剤、結着剤等を配合して正極合材を調製し、これを集電体に圧着することにより正極を作製できる。集電体としては、好ましくはステンレスメッシュ、アルミ箔等を用いることができる。導電剤としては、好ましくはアセチレンブラック、ケッチェンブラック等を用いることができる。結着剤としては、好ましくはテトラフルオロエチレン、ポリフッ化ビニリデン等を用いることができる。   In the present invention, the above-described lithium manganese titanium oxide of the present invention is mixed with a conductive agent, a binder or the like as necessary to prepare a positive electrode mixture, and this is bonded to a current collector to bond the positive electrode. Can be made. As the current collector, a stainless mesh, aluminum foil or the like can be preferably used. As the conductive agent, acetylene black, ketjen black or the like can be preferably used. As the binder, tetrafluoroethylene, polyvinylidene fluoride, or the like can be preferably used.

正極合材におけるリチウムマンガンチタン酸化物、導電剤、結着剤等の配合も特に限定的でないが、通常は導電剤が1〜30重量%程度(好ましくは5〜25重量%)、結着剤が0〜30重量%程度(好ましくは3〜10重量%)とし、残部をリチウムマンガンチタン酸化物となるようにすれば良い。   The compounding of lithium manganese titanium oxide, conductive agent, binder and the like in the positive electrode mixture is not particularly limited, but usually the conductive agent is about 1 to 30% by weight (preferably 5 to 25% by weight), and the binder. May be about 0 to 30% by weight (preferably 3 to 10% by weight), and the balance may be lithium manganese titanium oxide.

本発明のリチウム二次電池において、上記正極に対する対極としては、例えば黒鉛、MCMB(メソカーボンマイクロビーズ)等の炭素系材料、スズ系材料等の合金系材料、リチウム金属、リチウム合金などのリチウムを吸蔵可能な公知のものを採用することができる。また、セパレータ、電池容器等も公知の電池要素を採用すれば良い。   In the lithium secondary battery of the present invention, as the counter electrode with respect to the positive electrode, for example, carbon-based materials such as graphite and MCMB (mesocarbon microbeads), alloy-based materials such as tin-based materials, lithium such as lithium metal and lithium alloy are used. A known material that can be occluded can be used. Moreover, a well-known battery element should just be employ | adopted for a separator, a battery container, etc.

また、電解液としても公知のものが適用できる。例えば、過塩素酸リチウム、6フッ化リン酸リチウム等の電解質を、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC),ジエチルカーボネート(DEC)等の溶媒に溶解させたものを電解液として使用できる。   Moreover, a well-known thing is applicable also as electrolyte solution. For example, an electrolyte such as lithium perchlorate or lithium hexafluorophosphate dissolved in a solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), or diethyl carbonate (DEC) It can be used as an electrolyte.

次に、実施例により本発明の特徴とするところをさらに説明するが、以下の具体例は本発明を限定するものではない   Next, the features of the present invention will be further described with reference to examples. However, the following specific examples do not limit the present invention.

(実施例1)
[正極材料の製造]
炭酸ナトリウム(NaCO)、酸化マンガン(Mn)、酸化チタン(TiO)をモル比でNaMn1−yTi(x=0.5;y=0、0.055、0.11、0.22)の各組成割合で均一に混合した。混合物を空気中900℃〜1000℃で12時間焼成した後、炉内で徐冷した。得られた焼成体を粉砕するという一連の操作(焼成、徐冷及び粉砕)を再度繰り返し、ほぼ単一相の目的とするLi0.44MnO型の結晶構造を有する出発原料Na0.44Mn1−yTiを得た。
Example 1
[Manufacture of positive electrode materials]
Sodium carbonate (Na 2 CO 3 ), manganese oxide (Mn 2 O 3 ), and titanium oxide (TiO 2 ) in a molar ratio of Na x Mn 1-y Ti y O 2 (x = 0.5; y = 0, 0) 0.055, 0.11, 0.22) were uniformly mixed. The mixture was calcined in air at 900 ° C. to 1000 ° C. for 12 hours and then gradually cooled in a furnace. A series of operations (firing, gradual cooling, and pulverization) of pulverizing the obtained fired body are repeated again, and the starting material Na 0.44 having a target crystal structure of Li 0.44 MnO 2 of almost single phase. Mn 1-y Ti y O 2 was obtained.

次に、これらの試料を、硝酸リチウムと塩化リチウムを88:12のモル比で混合した溶融塩中でイオン交換処理を行った。Na0.44Mn1−yTiの溶融塩中における量は、モル比で、溶融塩中のLi:試料中のNa=20:1とし、溶融塩の温度は300℃とした。処理時間10時間で、イオン交換処理を行い、得られた固体を蒸留水、メタノール、エタノール等で洗浄、乾燥して試料を得た。この試料をICP発光分析法により、化学組成を分析した結果、LiMn1−yTi(0.43≦x≦0.44;y=0、0.055、0.11、0.22)の化学式で妥当であり、残存して含有するナトリウム量は、Na/Liのモル比で0.005であった。さらに、X線粉末回折法により、Li0.44MnO型の斜方晶系のトンネル構造を有するほぼ単一相であることが明らかとなり、各試料の格子定数は表1のとおりであった。また、作製された試料のうち、Li0.44MnO(y=0)のX線粉末回折図形を図2(a)に示す。Next, these samples were subjected to ion exchange treatment in a molten salt in which lithium nitrate and lithium chloride were mixed at a molar ratio of 88:12. The amount of Na 0.44 Mn 1-y Ti y O 2 in the molten salt was a molar ratio, Li in the molten salt: Na in the sample = 20: 1, and the temperature of the molten salt was 300 ° C. An ion exchange treatment was performed for a treatment time of 10 hours, and the obtained solid was washed with distilled water, methanol, ethanol, etc. and dried to obtain a sample. As a result of analyzing the chemical composition of this sample by ICP emission spectrometry, Li x Mn 1-y Ti y O 2 (0.43 ≦ x ≦ 0.44; y = 0, 0.055, 0.11, 0 .22) which is reasonable and the remaining sodium content was 0.005 in Na / Li molar ratio. Furthermore, the X-ray powder diffractometry revealed that the Li 0.44 MnO 2 type orthorhombic tunnel structure was almost a single phase, and the lattice constants of each sample were as shown in Table 1. . Further, among the prepared samples, an X-ray powder diffraction pattern of Li 0.44 MnO 2 (y = 0) is shown in FIG.

Figure 2007007581
Figure 2007007581

次に、表1に記載された各試料各1gを、硝酸リチウム22gと水酸化リチウム1gとよく混合した後、空気中、300℃で10時間加熱し、リチウム挿入処理を行った。得られた固体を蒸留水、メタノール、エタノール等で洗浄、乾燥して試料を得た。この試料をICP発光分析法により、化学組成を分析した結果、リチウム量xは0.59≦x≦0.72程度となり、挿入反応を確認した。また、残存して含有するナトリウム量は、ICPの検出限界(0.01wt%)以下であり、リチウム挿入処理は、残存するナトリウム量のさらなる低減にも有効であることが確認された。さらに、作製された試料のうち、Li0.63MnO(y=0)のX線粉末回折図形を図2(b)に示す。出発原料としたLi0.44MnOと同構造であると仮定して、計算された格子定数を表2に示す。リチウム挿入処理により、元のLiMn1−yTi(0.43≦x≦0.44)と比べて、格子定数の変化が明らかとなった。Next, 1 g of each sample described in Table 1 was mixed well with 22 g of lithium nitrate and 1 g of lithium hydroxide, and then heated in air at 300 ° C. for 10 hours to perform lithium insertion treatment. The obtained solid was washed with distilled water, methanol, ethanol or the like and dried to obtain a sample. As a result of analyzing the chemical composition of this sample by ICP emission analysis, the amount of lithium x was about 0.59 ≦ x ≦ 0.72, and the insertion reaction was confirmed. Further, the amount of sodium remaining and contained was below the ICP detection limit (0.01 wt%), and it was confirmed that the lithium insertion treatment was effective in further reducing the amount of sodium remaining. Furthermore, among the produced samples, an X-ray powder diffraction pattern of Li 0.63 MnO 2 (y = 0) is shown in FIG. Table 2 shows the calculated lattice constants assuming the same structure as Li 0.44 MnO 2 used as a starting material. The change in the lattice constant was clarified by the lithium insertion treatment as compared with the original Li x Mn 1-y Ti y O 2 (0.43 ≦ x ≦ 0.44).

Figure 2007007581
Figure 2007007581

[リチウム二次電池]
得られたLiMn1−yTi(0.59≦x≦0.72;y=0、0.055、0.11、0.22)の各試料20mgに導電剤としてアセチレンブラック5mg、結着剤としてテトラフルオロエチレン0.5mgを配合して正極を作製し、リチウム金属を負極材料、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒(体積比1:1)に溶解させた1M溶液を電解液とする、図1に示す構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。電池の作製は、公知のセルの構成・組み立て方法に従って行った。
[Lithium secondary battery]
20 mg of each sample of the obtained Li x Mn 1-y Ti y O 2 (0.59 ≦ x ≦ 0.72; y = 0, 0.055, 0.11, 0.22) was added to the acetylene black as a conductive agent. 5 mg and 0.5 mg of tetrafluoroethylene as a binder are blended to prepare a positive electrode, lithium metal is a negative electrode material, lithium hexafluorophosphate is a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) ( A lithium secondary battery (coin-type cell) having the structure shown in FIG. 1 was prepared using a 1M solution dissolved in a volume ratio of 1: 1) as an electrolytic solution, and its charge / discharge characteristics were measured. The battery was produced according to a known cell configuration / assembly method.

得られたリチウム二次電池について、30℃の温度条件下で、電流密度30mA/g(Cレートで0.2C相当)、4.8V−2.5Vのカットオフ電位で充放電試験を行ったところ、平均放電電圧3.55〜3.64V、初期放電容量173〜184mAh/gで安定に充放電可能なことが判明した。(ここで、Cレートは放電レート、すなわち放電電流の大きさのことであり、1Cは1時間で放電しきることができる電流量を指し、1時間率という。例えば、容量が1Ahの電池の1Cは1Aということになる。)
Li0.69Mn0.89Ti0.11の場合、10サイクル後の放電容量も168mAh/g程度を維持しており、サイクル特性も良好であった。各電池の初期充電容量、初期放電容量、平均初期放電電圧を表3に示す。
The obtained lithium secondary battery was subjected to a charge / discharge test under a temperature condition of 30 ° C. with a current density of 30 mA / g (corresponding to 0.2 C at C rate) and a cutoff potential of 4.8 V to 2.5 V. However, it was found that charging and discharging can be stably performed at an average discharge voltage of 3.55 to 3.64 V and an initial discharge capacity of 173 to 184 mAh / g. (Here, the C rate is the discharge rate, that is, the magnitude of the discharge current, and 1C refers to the amount of current that can be discharged in one hour. The rate is one hour. For example, 1C of a battery having a capacity of 1 Ah. Will be 1A.)
In the case of Li 0.69 Mn 0.89 Ti 0.11 O 2 , the discharge capacity after 10 cycles was maintained at about 168 mAh / g, and the cycle characteristics were also good. Table 3 shows the initial charge capacity, initial discharge capacity, and average initial discharge voltage of each battery.

Figure 2007007581
Figure 2007007581

また、Li0.63MnOおよびLi0.72Mn0.78Ti0.22を正極材料として作製した電池の初期放電特性を、図3(a)、(b)に示す。比較のために図3(c)に記載した、Li挿入前のLi0.44MnOを正極材料として同様に作製した電池に対して、Li0.63MnOは、4V領域の放電容量が大幅に増大していることがわかる。さらに、(b)にみられるように、Mnの一部をチタンで置換することによって、放電曲線がなだらかになることが確認された。3A and 3B show initial discharge characteristics of a battery manufactured using Li 0.63 MnO 2 and Li 0.72 Mn 0.78 Ti 0.22 O 2 as positive electrode materials. For comparison, the battery shown in FIG. 3 (c), in which Li 0.44 MnO 2 before insertion of Li was used as the positive electrode material in the same manner, Li 0.63 MnO 2 has a discharge capacity in the 4V region. It can be seen that it has increased significantly. Furthermore, as seen in (b), it was confirmed that the discharge curve becomes gentle by substituting a part of Mn with titanium.

(実施例2)
[正極材料の製造]
上記、実施例1で得られた表1に記載の各試料各1gを、硝酸リチウム22gとヨウ化リチウム1gとよく混合した後、空気中、300℃で10時間加熱し、リチウム挿入処理を行った。得られた固体を蒸留水、メタノール、エタノール等で洗浄、乾燥して試料を得た。これらの試料をICP発光分析法により、化学組成を分析した結果、リチウム量xは表4に示すように、0.67≦x≦0.76程度であり、挿入処理の有効性を確認した。また、残存して含有するナトリウム量は、ICPの検出限界(0.01wt%)以下であり、挿入処理は、残存するナトリウム量のさらなる低減にも有効であった。さらに、作製された試料のうち、Li0.76MnO(y=0)のX線粉末回折図形を図2(c)に示す。
出発原料としたLi0.44MnOと同構造であると仮定して、計算された格子定数を表4に示す。リチウム挿入処理により、元のLiMn1−yTi(0.43≦x≦0.44)と比べて、格子定数の変化が明らかとなった。また、ヨウ化リチウムの添加によるイオン挿入処理が、水酸化リチウムを添加した実施例1の場合と、ほぼ同等の効果があることが確認された。
(Example 2)
[Manufacture of positive electrode materials]
1 g of each sample shown in Table 1 obtained in Example 1 was mixed well with 22 g of lithium nitrate and 1 g of lithium iodide, and then heated in air at 300 ° C. for 10 hours to perform lithium insertion treatment. It was. The obtained solid was washed with distilled water, methanol, ethanol or the like and dried to obtain a sample. As a result of analyzing the chemical composition of these samples by ICP emission analysis, the lithium amount x was about 0.67 ≦ x ≦ 0.76 as shown in Table 4, and the effectiveness of the insertion treatment was confirmed. Further, the amount of sodium remaining and contained was below the ICP detection limit (0.01 wt%), and the insertion treatment was effective in further reducing the amount of sodium remaining. Furthermore, among the produced samples, an X-ray powder diffraction pattern of Li 0.76 MnO 2 (y = 0) is shown in FIG.
Table 4 shows the calculated lattice constants assuming the same structure as Li 0.44 MnO 2 used as a starting material. The change in the lattice constant was clarified by the lithium insertion treatment as compared with the original Li x Mn 1-y Ti y O 2 (0.43 ≦ x ≦ 0.44). Further, it was confirmed that the ion insertion treatment by addition of lithium iodide had substantially the same effect as in Example 1 in which lithium hydroxide was added.

Figure 2007007581
Figure 2007007581

[リチウム二次電池]
このようにして得られたLiMn1−yTi(0.67≦x≦0.76)の各試料を用いて実施例1と同様にして正極を作製し、実施例1と同様にリチウム二次電池を作製し充放電試験を行ったところ、いずれも平均放電電圧3.54〜3.60V、初期放電容量168〜176mAh/gで安定に充放電可能であることが確認された。各試料の初期充電容量、初期放電容量、平均初期放電電圧を表5に示す。
[Lithium secondary battery]
Using each sample of Li x Mn 1-y Ti y O 2 (0.67 ≦ x ≦ 0.76) thus obtained, a positive electrode was produced in the same manner as in Example 1, and Example 1 and Similarly, when a lithium secondary battery was produced and a charge / discharge test was performed, it was confirmed that all of the lithium secondary batteries could be stably charged / discharged at an average discharge voltage of 3.54 to 3.60 V and an initial discharge capacity of 168 to 176 mAh / g. It was. Table 5 shows the initial charge capacity, initial discharge capacity, and average initial discharge voltage of each sample.

Figure 2007007581
Figure 2007007581

(比較例1)
上記、実施例1で得られた表1に記載のLiMn1−yTi(0.43≦x≦0.44)の各試料について、リチウム挿入処理を施さずにそのまま正極材料として使用し、実施例1と同様にリチウム二次電池を作製し充放電試験を行ったところ、いずれも平均放電電圧3.48〜3.54V、初期放電容量は141〜156mAh/g程度であった。比較のために、Li0.44MnOの場合の初期放電曲線を図3(c)に記載した。
(Comparative Example 1)
For each sample of Li x Mn 1-y Ti y O 2 (0.43 ≦ x ≦ 0.44) described in Table 1 obtained in Example 1 above, the positive electrode material was used without being subjected to lithium insertion treatment. In the same manner as in Example 1, a lithium secondary battery was prepared and a charge / discharge test was performed. In each case, the average discharge voltage was 3.48 to 3.54 V, and the initial discharge capacity was about 141 to 156 mAh / g. It was. For comparison, the initial discharge curve in the case of Li 0.44 MnO 2 is shown in FIG.

(比較例2)
本発明による新規リチウムマンガンチタン酸化物を正極材料として使用したリチウム二次電池の特性を明確にするために、既存正極であるリチウムマンガンスピネルLi1.1Mn1.9を正極材料として、実施例1と同様にリチウム二次電池を作製し、同条件で充放電試験を行ったところ、平均放電電圧3.67V、初期放電容量は152mAh/gであった。
また、図4(b)に示すように、この正極材料を使用した電池は、スピネル型に特徴的な大きな2段の放電曲線を示した。これに対して、本発明の実施例1で得られた本発明のLi0.63MnOを正極材料とする電池は、図4(a)にみられるように、電圧・容量、すなわちエネルギー密度の観点で、スピネル材料に対する優位性が確認された。
(Comparative Example 2)
In order to clarify the characteristics of the lithium secondary battery using the novel lithium manganese titanium oxide according to the present invention as the positive electrode material, the existing positive electrode lithium manganese spinel Li 1.1 Mn 1.9 O 4 is used as the positive electrode material. When a lithium secondary battery was produced in the same manner as in Example 1 and a charge / discharge test was performed under the same conditions, the average discharge voltage was 3.67 V and the initial discharge capacity was 152 mAh / g.
Further, as shown in FIG. 4B, the battery using this positive electrode material showed a large two-stage discharge curve characteristic of the spinel type. On the other hand, as shown in FIG. 4A, the battery using the Li 0.63 MnO 2 of the present invention obtained in Example 1 of the present invention as the positive electrode material has a voltage / capacity, that is, an energy density. From this point of view, the superiority to the spinel material was confirmed.

(実施例3)
実施例1で得られたLiMn1−yTi(0.59≦x≦0.72、y=0、0.055、0.11、0.22)の各試料を用いて実施例1と同様にして正極を作製し、炭素(MCMB)を負極材料、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒(体積比1:1)に溶解させた1M溶液を電解液として、図1に示す構造のリチウムイオン二次電池(コイン型セル)を作製し、その充放電特性を測定した。電池の作製は、公知のセルの構成・組み立て方法に従って行った。
(Example 3)
Using each sample of Li x Mn 1-y Ti y O 2 (0.59 ≦ x ≦ 0.72, y = 0, 0.055, 0.11, 0.22) obtained in Example 1. A positive electrode was produced in the same manner as in Example 1, carbon (MCMB) as the negative electrode material, and lithium hexafluorophosphate as a mixed solvent (volume ratio 1: 1) of ethylene carbonate (EC) and diethyl carbonate (DEC). A lithium ion secondary battery (coin-type cell) having the structure shown in FIG. 1 was prepared using the dissolved 1M solution as an electrolytic solution, and the charge / discharge characteristics thereof were measured. The battery was produced according to a known cell configuration / assembly method.

このリチウムイオン二次電池について、30℃の温度条件下で、電流密度30mA/g(Cレートで0.2C相当)、4.8V−2.5Vのカットオフ電位で充放電試験を行ったところ、平均放電電圧3.7〜3.8V、初期放電容量114〜120mAh/gで安定に充放電可能なことが判明した。Li0.63MnOの場合、10サイクル後の放電容量も79mAh/g程度を維持しており、サイクル特性も良好であった。各試料の初期充電容量、初期放電容量、平均初期放電電圧を表6に示す。また、Li0.63MnOの初期放電特性を図5(a)に示す。This lithium ion secondary battery was subjected to a charge / discharge test under a temperature condition of 30 ° C. with a current density of 30 mA / g (corresponding to 0.2 C at the C rate) and a cutoff potential of 4.8 V to 2.5 V. It was found that charging and discharging can be stably performed at an average discharge voltage of 3.7 to 3.8 V and an initial discharge capacity of 114 to 120 mAh / g. In the case of Li 0.63 MnO 2 , the discharge capacity after 10 cycles also maintained about 79 mAh / g, and the cycle characteristics were also good. Table 6 shows the initial charge capacity, initial discharge capacity, and average initial discharge voltage of each sample. Moreover, the initial discharge characteristics of Li 0.63 MnO 2 are shown in FIG.

Figure 2007007581
Figure 2007007581

(実施例4)
実施例2で得られたLiMn1−yTi(0.67≦x≦0.76)の各試料を用いて同様にして正極を作製し、実施例3と同様にリチウム二次電池を作製し充放電試験を行ったところ、いずれも平均放電電圧3.7〜3.8V、初期放電容量100〜119mAh/gで安定に充放電可能であることが確認された。各試料の初期充電容量、初期放電容量、平均初期放電電圧を表7に示す。
(Example 4)
A positive electrode was prepared in the same manner using each sample of Li x Mn 1-y Ti y O 2 (0.67 ≦ x ≦ 0.76) obtained in Example 2, and in the same manner as in Example 3, When a secondary battery was produced and a charge / discharge test was performed, it was confirmed that each of the batteries could be stably charged / discharged at an average discharge voltage of 3.7 to 3.8 V and an initial discharge capacity of 100 to 119 mAh / g. Table 7 shows the initial charge capacity, initial discharge capacity, and average initial discharge voltage of each sample.

Figure 2007007581
Figure 2007007581

(比較例3)
上記、実施例1で得られた表1に記載のLiMn1−yTi(0.43≦x≦0.44)の各試料について、リチウム挿入処理を施さずにそのまま正極材料として使用し、実施例3と同様にリチウム二次電池を作製し充放電試験を行ったところ、いずれも平均放電電圧3.8〜3.9V、初期放電容量は50〜60mAh/g程度であった。比較のために、Li0.44MnOの場合の初期放電曲線を図5(b)に記載した。
(Comparative Example 3)
For each sample of Li x Mn 1-y Ti y O 2 (0.43 ≦ x ≦ 0.44) described in Table 1 obtained in Example 1 above, the positive electrode material was used without being subjected to lithium insertion treatment. In the same manner as in Example 3, a lithium secondary battery was prepared and a charge / discharge test was conducted. In each case, the average discharge voltage was 3.8 to 3.9 V, and the initial discharge capacity was about 50 to 60 mAh / g. It was. For comparison, an initial discharge curve in the case of Li 0.44 MnO 2 is shown in FIG.

(比較例4)
本発明による新規リチウムマンガンチタン酸化物を正極材料として使用したリチウム二次電池の特性を明確にするために、既存正極であるリチウムマンガンスピネルLi1.1Mn1.9を正極材料として、実施例3と同様にリチウム二次電池を作製し、同条件で充放電試験を行ったところ、平均放電電圧3.84V、初期放電容量は94mAh/gであった。また、この電池における10サイクル後の放電容量は52mAh/g程度であり、本発明による正極材料の特性(平均放電電圧3.8V、初期放電容量120mAh/g、10サイクル後の放電容量79mAh/g)の優位性が確認された。この例で得られた電池の初期放電曲線を図5(c)に記載し、図5(a)の本発明の電池と比較した。
(Comparative Example 4)
In order to clarify the characteristics of the lithium secondary battery using the novel lithium manganese titanium oxide according to the present invention as the positive electrode material, the existing positive electrode lithium manganese spinel Li 1.1 Mn 1.9 O 4 is used as the positive electrode material. When a lithium secondary battery was produced in the same manner as in Example 3 and a charge / discharge test was performed under the same conditions, the average discharge voltage was 3.84 V and the initial discharge capacity was 94 mAh / g. Further, the discharge capacity after 10 cycles in this battery is about 52 mAh / g, and the characteristics of the positive electrode material according to the present invention (average discharge voltage 3.8 V, initial discharge capacity 120 mAh / g, discharge capacity after 10 cycles 79 mAh / g). ) Was confirmed. The initial discharge curve of the battery obtained in this example is shown in FIG. 5 (c) and compared with the battery of the present invention in FIG. 5 (a).

(実施例5)
実施例1で得られたLiMn1−yTi(x=0.44および0.63、y=0)について、実施例1と同様の正極構成部材をN−メチル−2−ピロリドン(NMP)で希釈して、スラリーとし、定法に従い、塗布電極を作製した。混合割合は、酸化物活物質:導電剤:結着剤=89.5:4.5:6.0(wt%)とした。作製された正極の電極物性を、表8に示す。
(Example 5)
For Li x Mn 1-y Ti y O 2 (x = 0.44 and 0.63, y = 0) obtained in Example 1, the same positive electrode constituent member as that in Example 1 was replaced with N-methyl-2- Diluted with pyrrolidone (NMP) to form a slurry, and a coated electrode was prepared according to a conventional method. The mixing ratio was oxide active material: conductive agent: binder = 89.5: 4.5: 6.0 (wt%). Table 8 shows the electrode physical properties of the produced positive electrode.

Figure 2007007581
Figure 2007007581

[リチウム二次電池]
このようにして得られた正極、MCMBを負極、セパレータとしてポリエチレン製微孔膜、実施例1と同様に6フッ化リン酸リチウム系電解液を用いてリチウム二次電池(単層アルミラミネートセル)を作製し、その出力特性を測定した。電池の作製は、公知のセルの構成・組み立て方法に従って行った。
[Lithium secondary battery]
The positive electrode thus obtained, MCMB as the negative electrode, polyethylene microporous membrane as the separator, and lithium hexafluorophosphate electrolyte as in Example 1 were used for the lithium secondary battery (single-layer aluminum laminate cell). The output characteristics were measured. The battery was produced according to a known cell configuration / assembly method.

得られたリチウム二次電池について、25℃の温度条件下で、30mA/g(Cレートで0.2C相当)の定電流で4.8Vまで充電し、放電をそれぞれ30mA/g、60mA/g、150mA/g、300mA/g、450mA/g、750mA/g、900mA/g、1050mA/gの定電流で2.5Vまで行うことにより、各試料の出力特性を評価した。各レートでの容量保持率をLi0.44MnOおよびLi0.63MnOの場合について、図6で比較した。Li0.44MnOの場合、7C相当の1050mA/gで40%程度の容量保持率であったものが、Li0.63MnOでは、70%を超える高い容量保持率であることが判明した。このことから、リチウム挿入処理によって、高容量化できるばかりでなく、高出力化が可能であることが確認された。The obtained lithium secondary battery was charged to 4.8 V at a constant current of 30 mA / g (corresponding to 0.2 C at the C rate) under a temperature condition of 25 ° C., and discharged at 30 mA / g and 60 mA / g, respectively. , 150 mA / g, 300 mA / g, 450 mA / g, 750 mA / g, 900 mA / g, and 1050 mA / g at a constant current up to 2.5 V, the output characteristics of each sample were evaluated. The capacity retention at each rate was compared for Li 0.44 MnO 2 and Li 0.63 MnO 2 in FIG. In the case of Li 0.44 MnO 2 , what was about 40% capacity retention at 1050 mA / g equivalent to 7C was found to be higher than 70% in Li 0.63 MnO 2. did. From this, it was confirmed that the lithium insertion treatment can not only increase the capacity but also increase the output.

Claims (6)

化学組成式としてLiMn1−yTi(0.5≦x≦1、0≦y<0.56)で表記され、結晶構造として斜方晶系に属し、リチウムが占有するトンネル構造を有するリチウム、マンガン、チタン、酸素から構成されるリチウム二次電池正極材料。A tunnel represented by Li x Mn 1-y Ti y O 2 (0.5 ≦ x ≦ 1, 0 ≦ y <0.56) as a chemical composition formula, belonging to an orthorhombic system as a crystal structure, and occupied by lithium A lithium secondary battery positive electrode material comprising lithium, manganese, titanium, and oxygen having a structure. あらかじめ作製されたLiMn1−yTi(0.40<x<0.50、0≦y<0.56)を出発原料として、リチウム挿入処理によって製造することを特徴とする請求項1に記載のリチウム二次電池正極材料の製造方法。A Li x Mn 1-y Ti y O 2 (0.40 <x <0.50, 0 ≦ y <0.56) prepared in advance is used as a starting material, and is produced by a lithium insertion process. Item 2. A method for producing a positive electrode material for a lithium secondary battery according to Item 1. 前記リチウム挿入処理を、リチウム化合物を含有する溶融塩中、或いはリチウム化合物を溶解した有機溶剤または水溶液中において行うことを特徴とする請求項2に記載の正極材料の製造方法。 The method for producing a positive electrode material according to claim 2, wherein the lithium insertion treatment is performed in a molten salt containing a lithium compound, or in an organic solvent or an aqueous solution in which the lithium compound is dissolved. 正極、負極及び電解質物質を有するリチウム二次電池の正極を請求項1に記載の正極材料により構成したことを特徴とするリチウム二次電池。 A lithium secondary battery comprising the positive electrode material according to claim 1, wherein a positive electrode of a lithium secondary battery having a positive electrode, a negative electrode, and an electrolyte substance. 電池の負極としてリチウム又はリチウム合金負極を使用し、4Vの電圧範囲で安定に充放電できることを特徴とする請求項4に記載のリチウム二次電池。 The lithium secondary battery according to claim 4, wherein lithium or a lithium alloy negative electrode is used as a negative electrode of the battery and can be stably charged and discharged in a voltage range of 4 V. 電池の負極として炭素負極を使用し、4Vの電圧範囲で安定に充放電できることを特徴とする請求項4に記載のリチウム二次電池。



The lithium secondary battery according to claim 4, wherein a carbon negative electrode is used as a negative electrode of the battery, and charging and discharging can be stably performed in a voltage range of 4V.



JP2007524578A 2005-07-08 2006-07-04 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same Active JP5051770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524578A JP5051770B2 (en) 2005-07-08 2006-07-04 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005200685 2005-07-08
JP2005200685 2005-07-08
JP2007524578A JP5051770B2 (en) 2005-07-08 2006-07-04 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
PCT/JP2006/313259 WO2007007581A1 (en) 2005-07-08 2006-07-04 Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same

Publications (2)

Publication Number Publication Date
JPWO2007007581A1 true JPWO2007007581A1 (en) 2009-01-29
JP5051770B2 JP5051770B2 (en) 2012-10-17

Family

ID=37636977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007524578A Active JP5051770B2 (en) 2005-07-08 2006-07-04 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Country Status (2)

Country Link
JP (1) JP5051770B2 (en)
WO (1) WO2007007581A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691711B2 (en) * 2006-03-20 2011-06-01 独立行政法人産業技術総合研究所 Lithium manganese composite oxide and method for producing the same
JP2009129702A (en) * 2007-11-22 2009-06-11 Sumitomo Chemical Co Ltd Sodium-manganese composite metal oxide, manufacturing method thereof, and sodium secondary battery
JP5004239B2 (en) * 2008-03-21 2012-08-22 独立行政法人産業技術総合研究所 Manganese oxide, secondary battery electrode active material, production method thereof, and lithium secondary battery using secondary battery electrode active material
JP5093669B2 (en) * 2008-03-21 2012-12-12 独立行政法人産業技術総合研究所 Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP5207360B2 (en) * 2008-03-28 2013-06-12 独立行政法人産業技術総合研究所 Lithium manganese oxide powder particles, production method thereof, and lithium secondary battery using the same as a positive electrode active material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831408A (en) * 1994-05-13 1996-02-02 Matsushita Electric Ind Co Ltd Positive electrode for non-aqueous electrolyte lithium secondary battery and manufacture thereof
JP2870741B2 (en) * 1997-04-14 1999-03-17 堺化学工業株式会社 Lithium manganate particulate composition, method for producing the same, and lithium ion secondary battery
JP4441678B2 (en) * 1997-08-18 2010-03-31 独立行政法人産業技術総合研究所 Method for producing orthorhombic lithium manganese composite oxide particulate composition represented by LiMnO 2
JP3875053B2 (en) * 2001-09-10 2007-01-31 日本電信電話株式会社 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME
JP2003157832A (en) * 2001-11-22 2003-05-30 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP4431785B2 (en) * 2004-03-09 2010-03-17 独立行政法人産業技術総合研究所 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4431786B2 (en) * 2004-03-19 2010-03-17 独立行政法人産業技術総合研究所 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Also Published As

Publication number Publication date
JP5051770B2 (en) 2012-10-17
WO2007007581A1 (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP5158787B2 (en) NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL
JP5093643B2 (en) Lithium secondary battery active material, method for producing the same, and lithium secondary battery using the same
JP5164131B2 (en) Active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP5177672B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the same
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
WO2012035648A1 (en) Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7135282B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6830120B2 (en) Lithium sodium composite oxide, positive electrode active material for secondary batteries and secondary batteries
JP6369126B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5644273B2 (en) Titanium oxide, method for producing the same, and electrochemical device using the same as member
JP4257426B2 (en) Alkali transition metal oxide crystal material and method for producing the same
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5880928B2 (en) Lithium manganese titanium nickel composite oxide, method for producing the same, and lithium secondary battery using the same as a member
JP4431786B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5207360B2 (en) Lithium manganese oxide powder particles, production method thereof, and lithium secondary battery using the same as a positive electrode active material
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP2002321920A (en) Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery
JP2008159543A (en) Positive electrode active material for non-aqueous type electrolyte secondary battery, and method for manufacturing the material, and non-aqueous type electrolyte secondary battery using the material
JP4431785B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2005302601A (en) Negative electrode active material for battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP5120919B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the active material
JP2020107536A (en) Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

R150 Certificate of patent or registration of utility model

Ref document number: 5051770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250