JP3875053B2 - ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME - Google Patents

ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME Download PDF

Info

Publication number
JP3875053B2
JP3875053B2 JP2001273327A JP2001273327A JP3875053B2 JP 3875053 B2 JP3875053 B2 JP 3875053B2 JP 2001273327 A JP2001273327 A JP 2001273327A JP 2001273327 A JP2001273327 A JP 2001273327A JP 3875053 B2 JP3875053 B2 JP 3875053B2
Authority
JP
Japan
Prior art keywords
electrode material
lithium
tunnel
water
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001273327A
Other languages
Japanese (ja)
Other versions
JP2003086179A (en
Inventor
創 荒井
昌幸 津田
政彦 林
景一 斉藤
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001273327A priority Critical patent/JP3875053B2/en
Publication of JP2003086179A publication Critical patent/JP2003086179A/en
Application granted granted Critical
Publication of JP3875053B2 publication Critical patent/JP3875053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電極材料、その製造方法及びそれを用いた電池に関するものである。
【0002】
【従来の技術】
二酸化マンガン類と一般に称される化合物は、マンガンの見かけ上の価数が3価から4価までの酸化物を広く含んでおり、またマンガンと酸素以外に種々のカチオンや水のような中性分子が構造中に存在するものも含んでおり、非常に広範囲の組成や構造を持つ化合物が知られている。
【0003】
マンガンの酸化還元対が比較的高い電位を持つことから、これら二酸化マンガン類は乾電池を始めとする水溶液系の電池、並びにリチウムイオン電池を始めとする非水溶液系の電池の正極材料として、研究・開発されている。
【0004】
これらの二酸化マンガン類では、マンガンの周りに6つの酸素が配位した八面体を形成単位として、その八面体が面や稜や頂点を共有して連なった構造をとる化合物が、多く知られている。その中には、(2×2)トンネル構造を持つ化合物があり、図1に示すように、上記の形成単位が2つ連なった4つの辺で囲まれたトンネルを有している。なお、図1では、トンネル内にカチオンAが含まれる場合を示している。
【0005】
これらの(2×2)トンネル構造を持つ化合物は、トンネルをイオン移動パスとして利用できるため、電極材料として有望であり、実際にリチウム電池用などの電極材料としての利用が提案されている。
【0006】
【発明が解決しようとする課題】
しかし、これらの(2×2)トンネル構造を持つ化合物は、従来、水を用いる湿式工程によって得られる含水化合物を用いて製造されているため、電極としての放電容量が小さいという欠点があった。この原因は、製造工程中に(2×2)トンネル中に入った水分子は非常に安定であり、この化合物に脱水処理を施しても、完全には脱水できず、その残存水分子あるいは残存プロトンが電極特性に悪影響を及ぼすためと考えられる。
【0007】
本発明は、上記のような現状の課題を解決し、上述のような(2×2)トンネル構造を有する二酸化マンガン類であって、大きな放電容量を有する電極材料、その製造方法及びその電極材料を用いた電池を提供することにある。
【0008】
【課題を解決するための手段】
前記課題を解決するために、本発明は、請求項1に記載のように、
リチウム電池の正極材料である電極材料において、組成式Na 0.2 MnO で表され、(2×2)トンネル構造を有し、前記トンネル内にプロトン及び水を含まないことを特徴とする電極材料を構成する。
【0009】
また、本発明は、請求項2に記載のように、
炭酸ナトリウム及び二酸化マンガンを出発原料とし、モル比で、Na:Mn=1:5の割合で前記出発原料を混合し、酸素分圧1〜4気圧の雰囲気下、400〜700℃で焼成する工程を有する、水を用いない乾式工程により、請求項1に記載の電極材料を製造することを特徴とする電極材料の製造方法を構成する。
【0010】
また、本発明は、請求項3に記載のように、
リチウム電池の正極材料である電極材料において、組成式Li Na MnO 2+δ (0<y≦0.4、0<z<0.4、y+z≦0.4及び−0.2≦δ≦0.2)で表され、(2×2)トンネル構造を有し、前記トンネル内にプロトン及び水を含まないことを特徴とする電極材料を構成する。
【0011】
また、本発明は、請求項4に記載のように、
ナトリウム化合物及びマンガン化合物を出発原料とし、水を用いない乾式工程により製造され、組成式Na MnO 2+δ (0<x≦0.4及び−0.2≦δ≦0.2)で表され、(2×2)トンネル構造を有し、前記トンネル内にプロトン及び水を含まない電極材料に含有されるナトリウムの一部を、イオン交換処理によって、リチウムに置換することにより、組成式Li Na MnO 2+δ (0<y≦0.4、0<z<0.4、y+z≦0.4及び−0.2≦δ≦0.2)で表され、(2×2)トンネル構造を有し、前記トンネル内にプロトン及び水を含まないリチウム電池の正極材料である電極材料を得ることを特徴とする電極材料の製造方法を構成する。
【0012】
また、本発明は、請求項5に記載のように、
請求項4記載の電極材料の製造方法において、前記イオン交換処理を、リチウム化合物を含有する溶融塩中、又はリチウム化合物を溶解した有機溶剤中において行うことを特徴とする電極材料の製造方法を構成する。
【0013】
また、本発明は、請求項6に記載のように、
請求項4に記載の電極材料の製造方法において、前記イオン交換処理を、溶融塩中で行う場合は、該溶融塩の溶融温度以上、400℃以下で行い、有機溶剤中で行う場合は、該有機溶剤の沸点付近で該溶剤を還流させながら行うことを特徴とする電極材料の製造方法を構成する。
【0014】
また、本発明は、請求項7に記載のように、
正極、負極及び電解質物質を有するリチウム電池において、前記正極は請求項1又は3に記載の電極材料であり、前記負極はリチウム又はリチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を用いて構成され、前記電解質物質は非水系電解質物質であることを特徴とする電池を構成する。
【0015】
【発明の実施の形態】
かかる目的を達成するために本発明に係る電極材料は、(2×2)トンネル構造を有する、組成式NaMnO2+δ(0<x≦0.4、−0.2≦δ≦0.2)で表される化合物、また、(2×2)トンネル構造を有する、組成式LiNaMnO2+δ(0<y≦0.4、0≦z<0.4、y+z≦0.4、−0.2≦δ≦0.2)で表される化合物であることを特徴としている。
【0016】
また本発明に係る電極材料の製造方法としては、ナトリウム化合物及びマンガン化合物を出発原料とし、水を用いない乾式工程により前記組成式NaMnO2+δ(0<x≦0.4、−0.2≦δ≦0.2)で表される化合物を製造すること、前記組成式NaMnO2+δ(0<x≦0.4、−0.2≦δ≦0.2)で表される化合物にイオン交換処理を施すことにより、前記LiNaMnO2+δ(0<y≦0.4、0≦z<0.4、y+z≦0.4、−0.2≦δ≦0.2)で表される化合物を製造すること、及び、リチウム含有化合物を含む溶融塩中、又はリチウム含有化合物を溶解した有機溶剤中において、前記イオン交換処理を施すことを特徴としている。
【0017】
また、本発明に係る電池は、正極、負極及び電解質物質を有しており、前記正極に前記本発明に係る電極材料を含むことを特徴としており、また、前記負極はリチウム又リチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を用いて構成され、前記電解質物質はリチウムイオンが前記正極及び前記負極と電気化学反応をするための移動を行い得る物質を含むことを特徴としている。
【0018】
本発明をさらに詳しく説明する。
【0019】
本願発明者は、(2×2)トンネル構造を有する二酸化マンガン類で、かつ放電容量の大きい電極材料を鋭意探索した結果、前述の電極材料を用いることにより従来よりも電池の放電容量が大きくなることを見出し、また前述の電極材料の製造方法が放電容量増大に有効であることを見出し、さらにそれを用いた電池の放電容量が大きくなることを確かめ、その認識の下に本発明を完成した。
【0020】
本発明に係る電極材料である、(2×2)トンネル構造を有する、組成式NaMnO2+δ(0<x≦0.4、−0.2≦δ≦0.2)で表される化合物のトンネル内には、少量のマンガンを含む場合もあるが、多くの場合にナトリウムのみを含んでおり、水やプロトンが存在していないのが特徴である。
【0021】
また、本発明に係る電極材料である、(2×2)トンネル構造を有する、組成式LiNaMnO2+δ(0<y≦0.4、0≦z<0.4、y+z≦0.4、−0.2≦δ≦0.2)で表される化合物のトンネル内には、少量のマンガンを含む場合もあるが、多くの場合にナトリウムとリチウムのみを含んでおり、水やプロトンが存在していないのが特徴である。
【0022】
これらの化合物を電極材料に用いた場合、電池特性に悪影響を及ぼす水分子やプロトンが存在しないため、大きな放電容量が得られるものと考えられる。またナトリウム、リチウム以外のイオンや分子がトンネル間に存在しないため、分子量が比較的小さく、重量あたりのエネルギー密度が大きくなるという利点もある。また他の二酸化マンガン類に比べて密度(比重)が高いため、体積当たりのエネルギー密度も大きいという利点がある。
【0023】
本発明に係る前記組成式NaMnO2+δ(0<x≦0.4、−0.2≦δ≦0.2)で表される化合物である電極材料を製造する場合には、ナトリウム化合物とマンガン化合物とを出発原料とし、これらの原料を混合して焼成するなどの、水を用いない乾式工程により製造することができる。このような乾式工程によりこの化合物を製造すれば、化合物中の(2×2)トンネル内への水の混入を避けることができ、電池特性に悪影響を及ぼす水分子やプロトンの混入を避けることができるという利点を有する。例えば、上記の化合物は、炭酸ナトリウムとβ二酸化マンガン(鉱物名:パイロルサイト)を混合して、酸素中で反応させることにより製造することができる。望ましくは酸素分圧が1気圧を越える雰囲気で、400℃〜700℃の温度で、この化合物を製造することが好ましい。
【0024】
また本発明に係る前記組成式LiNaMnO2+δ(0<y≦0.4、0≦z<0.4、y+z≦0.4、−0.2≦δ≦0.2)で表される化合物である電極材料は、前記組成式NaMnO2+δ(0<x≦0.4、−0.2≦δ≦0.2)で表される化合物に、イオン交換処理を施すことにより、製造することができる。すなわち、イオン交換処理により、前記組成式NaMnO2+δ中のナトリウムが、部分的ないし全てリチウムに置換され、前記組成式LiNaMnO2+δ(0<y≦0.4、0≦z<0.4、y+z≦0.4、−0.2≦δ≦0.2)で表される化合物が得られる。
【0025】
この場合に、リチウム含有化合物を含む溶融塩中、又はリチウム含有化合物を溶解した有機溶剤中において、イオン交換処理を施すことが好適である。前記電極材料が水を吸収しやすい特性を考えれば、これらの非水環境中でイオン交換を行うことが望ましい。溶融塩としては硝酸リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウムの何れか1種類以上を含む溶融塩を用いることができる。また塩化リチウム、臭化リチウムなどのリチウム含有化合物を溶解した有機溶剤中でイオン交換を行うこともできる。イオン交換においては、交換できるイオン種が多量に存在するほどイオン交換速度が高いので、リチウム化合物を直接溶融した溶融塩を用いることが特に好ましい。また、高温で行うほど交換速度が高いので、ナトリウムをできるだけ多くのリチウムに短時間で交換するには、高温でイオン交換することが好ましい。但し温度が必要以上に高いと、生成した化合物が分解する可能性があるので、400℃以下の温度で行うことが好ましい。溶融塩を用いる場合、反応温度は溶融塩の融点以上の温度が必要であることは言うまでもない。有機溶剤中でイオン交換を行う場合は、イオン交換速度を高めるため、有機溶剤の沸点付近で、溶剤を還流させながら、イオン交換させることが好ましい。
【0026】
上記組成式中、x、y、z、δは、それぞれ0<x≦0.4、0<y≦0.4、0≦z<0.4、y+z≦0.4、−0.2≦δ≦0.2を満たすものであるが、これらは合成条件により変化する。組成式NaMnO2+δ(0<x≦0.4、−0.2≦δ≦0.2)で表される化合物では、x=0.2付近において、(2×2)トンネル構造を有する化合物が得られやすいので、x=0.2付近が好ましい。またイオン交換されたLiNaMnO2+δ(0<y≦0.4、0≦z<0.4、y+z≦0.4、−0.2≦δ≦0.2)で表される化合物では、出発物質中のナトリウムが、リチウムが入った量yだけ脱離する(x−y=zとなる)のが通常であるが、反応条件によりマンガンの価数が変化しうるため、出発物質のナトリウム量xと、生成物のナトリウム量yとリチウム量zとの和は、等しくない場合もある。またイオン交換中に酸素の出入りが起こることもあり、δ値が変化することもあり得る。
【0027】
本発明に係る電極材料を、リチウムイオンが移動する電池に用いる際には、y値を大きくして、z値を下げることが好ましい。(2×2)トンネル内に、移動するイオン種であるリチウムイオンが多く存在することにより、電極材料内のイオン拡散が容易になり、大きな容量が得られるからである。
【0028】
本発明に係る電極材料を含む正極を形成するには、電極材料とポリテトラフルオロエチレンのごとき結着剤粉末との混合物をステンレス等の支持体上に圧着成形する。或いは、かかる活物質粉末に、導電性を付与するため、アセチレンブラックのような導電性粉末を混合し、さらに、これにポリテトラフルオロエチレンのような結着剤粉末を所要に応じて加え、この混合物を金属容器に入れる、あるいはステンレス等の支持体上に圧着成形する、あるいは有機溶剤等の溶媒中に分散してスラリー状にして金属基板上に塗布する、等の手段によって正極を形成する。
【0029】
本発明に係る電池は正極、負極及び電解質物質を有し、その正極は本発明に係る電極材料を用いて構成される。負極としてはリチウム又リチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を用いて構成され、電解質物質は、リチウムのイオンが前記正極及び前記負極と電気化学反応をするための移動を可能とする物質を含有し、この電池は、リチウムイオンが正極と負極の間を行き来することにより、電池として機能する。
【0030】
上記のように、負極としてリチウムを含む物質を用いる場合には、そのような物質として、例えば、リチウム金属、リチウム−アルミニウム合金、リチウム−炭素化合物、リチウム含有窒化物など、従来公知の材料を用いることができる。
【0031】
上記の電解質物質としては、例えば、メトキシエタン、ジエトキシエタン、2−メチルテトラヒドロフラン、エチレンカーボネート、プロピレンカーボネート、メチルホルメート、ジメチルスルホキシド、アセトニトリル、ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート、ジエチルカーボネート、スルホラン、エチルメチルカーボネート等の有機溶媒に、アルカリ金属、アルカリ土類金属等の塩を溶解した非水電解質溶媒、或いは固体電解質、高分子電解質、前記有機溶媒を担持させた高分子電解質等が使用できる。
【0032】
また前記電池の放電・充電を繰り返し行うことで、これを二次電池として用いることもできる。
【0033】
さらにセパレータ、電池ケース等の構造材料等、他の要素についても従来公知の各種材料が使用でき、特に制限はない。
【0034】
【実施例】
以下実施例によって本発明を具体的に説明するが、本発明はこれらによりなんら制限されるものではない。
【0035】
[実施例1]
図2は、本発明に係る製造方法によって製造された(2×2)トンネル構造を有する二酸化マンガンを正極活物質として用いる電池の一具体例であるコイン型電池の断面図であり、図中、1は封口板、2はガスケット、3は正極ケース、4は負極、5はセパレータ、6は正極合剤ペレットを示す。
【0036】
本実施例では、正極活物質として、次のようにして製造した試料aを用いた。炭酸ナトリウムとβ二酸化マンガン(鉱物名:パイロルサイト)を、モル比で、Na:Mn=1:5の割合で混合して、酸素分圧が4気圧の雰囲気中で、600℃、10時間熱処理することにより、組成Na0.20MnOを有する試料aを得た。
【0037】
このようにして製造した試料aを、粉末X線回折測定法を用いて解析したところ、図3に示すように、JCPDS(Joint Committee on Powder Diffraction Standards)のデータとよく一致し、(2×2)トンネル構造を有していることが分かった。すなわち、試料aは、組成式NaMnO2+δ(ここに、0<x≦0.4、−0.2≦δ≦0.2とする)で表され、(2×2)トンネル構造を有する化合物であることを特徴とする電極材料の1つである。この場合に、試料aの構造は図1で示され、図中のAはNaに該当する。
【0038】
この試料aを得る上記の工程は、水を用いない乾式工程である。
【0039】
次に、この試料aを、硝酸リチウムと塩化リチウムのモル比3:1混合溶融塩中でイオン交換処理した。試料aの溶融塩中における量は、モル比で、溶融塩中のLi:試料a中のNa=20:1とし、溶融塩の温度は350℃とした。このイオン交換処理を3回行い、得られた固体をメタノールで洗浄、乾燥して試料bを得た。この試料bの化学組成を分析し、組成式として、Li0.10Na0.10MnOを得た。
【0040】
このようにして製造した試料bを、粉末X線回折測定法を用いて解析したところ、図4に示すように、イオン交換前の試料と同様なパターンを保っていることから、(2×2)トンネル構造を有していることが分かった。すなわち、試料bは、組成式LiNaMnO2+δ(ここに、0<y≦0.4、0≦z<0.4、y+z≦0.4、−0.2≦δ≦0.2とする)で表され、(2×2)トンネル構造を有する化合物であることを特徴とする電極材料の1つである。この場合に、試料bの構造は図1で示され、図中のAはLi又はNaに該当する。
【0041】
この試料a又は試料bの粉末を導電剤(アセチレンブラック)及び結着剤(ポリテトラフルオロエチレン)と共に混合の上、ロール成形し、正極合剤ペレット6(厚さ0.5mm、直径15mm)とした。
【0042】
次に、ステンレス製の封口板1上に金属リチウムの負極4を加圧配置したものをポリプロピレン製ガスケット2の凹部に挿入し、負極4の上にポリプロピレン製で微孔性のセパレータ5、正極合剤ペレット6をこの順序に配置し、リチウムイオンが前記正極及び前記負極と電気化学反応をするための移動を可能とする電解質物質である電解液として、エチレンカーボネートとジメチルカーボネートの等容積混合溶媒にLiPFを溶解させた1規定溶液を適量注入して含浸させた後に、ステンレス製の正極ケース3を被せてかしめることにより、厚さ2mm、直径23mmのコイン型電池(図2に、上下を逆にして示す)を作製した。
【0043】
このようにして製造した試料a又は試料bを正極活物質とする電池を、0.1mA/cmの電流密度で、4.5Vまで充電を行った後に2.0Vまで放電を行った。すると、試料aでは160mAh/g、試料bでは180mAh/gの容量を得ることができた。従って、上記本発明に係る製造方法で製造された(2×2)トンネル構造を有する電極材料を用いることにより、大きな放電容量を持つ電池を実現できることが判る。
【0044】
[比較例1]
本比較例においては、従来の湿式法に従い、次のようにして製造した試料cを用いる他は、実施例1と同様にしてリチウム電池を作製した。
【0045】
まず、希硫酸中に、硝酸マンガンと過マンガン酸ナトリウムをモル比1:1で混合し、100℃で5時間反応させ、液中に生成する粉末を濾過によって液から分離し、100℃で乾燥させて試料cを得た。
【0046】
このようにして製造した試料cを、粉末X線回折測定法を用いて解析したところ、試料aと類似のパターンが得られ、(2×2)トンネル構造を有していることが分かった。
【0047】
このようにして製造した試料cを正極活物質とする電池を実施例1と同様にして作成し、その電池を0.1mA/cmの電流密度で4.5Vまで充電を行った後に2.0Vまで放電しても120mAh/gの容量しか得られなかった。この電池と比較すると、本発明の実施例1で製造された試料を正極活物質として含む電池は、より大きな放電容量を持つことが分かる。
【0048】
本比較例における電池の容量が、上記実施例1の電池の容量よりも小さい理由は、試料cの(2×2)トンネル構造中に存在する水分子が電極特性に及ぼす悪影響にあると考えられる。
【0049】
以上説明したように、本発明に係る(2×2)トンネル構造を有する二酸化マンガン類電極材料の製造方法、及びその方法により製造された(2×2)トンネル構造を有する二酸化マンガン類電極材料を正極として含む電池によれば、大きな放電容量を持つ電池を実現することができ、本発明は種々の電子機器の電源をはじめ、様々な分野に利用できるという点を有する。
【0050】
【発明の効果】
本発明の実施によって、(2×2)トンネル構造を有する二酸化マンガン類であって、大きな放電容量を有する電極材料、その製造方法及びその電極材料を用いた電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る電極材料の構造模式図である。
【図2】本発明の実施例1におけるコイン型電池の構成例を示す断面図である。
【図3】粉末X線回折測定により同定した、本発明の実施例1における試料aのX線回折パターン及びJCPDSによる(2×2)トンネル構造を有する二酸化マンガンのピークデータを比較して示す図である。
【図4】粉末X線回折測定により同定した、本発明の実施例1における試料bのX線回折パターンをイオン交換前の試料aと比較して示す図である。
【符号の説明】
1…封口板、2…ガスケット、3…正極ケース、4…負極、5…セパレータ、6…正極合剤ペレット。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode material, a manufacturing method thereof, and a battery using the same.
[0002]
[Prior art]
The compounds generally called manganese dioxides include a wide range of oxides with an apparent valence of manganese ranging from trivalent to tetravalent, and are neutral such as various cations and water in addition to manganese and oxygen. Compounds having molecules in the structure are also included, and compounds having a very wide range of compositions and structures are known.
[0003]
Since manganese redox couples have a relatively high potential, these manganese dioxides have been studied and used as positive electrode materials for aqueous batteries, including dry batteries, and non-aqueous batteries, such as lithium ion batteries. Has been developed.
[0004]
In these manganese dioxides, many compounds are known in which the octahedron in which six oxygens are coordinated around manganese is used as a forming unit, and the octahedron has a structure in which faces, ridges, and vertices are connected together. Yes. Among them, there is a compound having a (2 × 2) tunnel structure, and as shown in FIG. 1, it has a tunnel surrounded by four sides in which two of the above-mentioned forming units are connected. FIG. 1 shows a case where the cation A + is contained in the tunnel.
[0005]
These compounds having a (2 × 2) tunnel structure are promising as an electrode material because the tunnel can be used as an ion transfer path, and actually used as an electrode material for a lithium battery or the like.
[0006]
[Problems to be solved by the invention]
However, since these compounds having a (2 × 2) tunnel structure have been conventionally produced using a hydrous compound obtained by a wet process using water, there is a drawback that the discharge capacity as an electrode is small. This is because the water molecules that entered the (2 × 2) tunnel during the manufacturing process are very stable, and even if this compound is dehydrated, it cannot be completely dehydrated. This is probably because protons adversely affect the electrode characteristics.
[0007]
The present invention solves the above-mentioned current problems, and is an manganese dioxide having a (2 × 2) tunnel structure as described above, which has a large discharge capacity, a manufacturing method thereof, and an electrode material thereof The object is to provide a battery using the battery.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention as described in claim 1,
An electrode material, which is a positive electrode material of a lithium battery, is represented by a composition formula Na 0.2 MnO 2 , has a (2 × 2) tunnel structure, and does not contain protons and water in the tunnel Construct material.
[0009]
Further, the present invention provides the following, as described in claim 2.
A step of mixing sodium carbonate and manganese dioxide as starting materials , mixing the starting materials at a molar ratio of Na: Mn = 1: 5, and firing at 400 to 700 ° C. in an atmosphere with an oxygen partial pressure of 1 to 4 atm. The electrode material according to claim 1 is manufactured by a dry process that does not use water and has a manufacturing method of an electrode material.
[0010]
Further, the present invention provides a method as claimed in claim 3.
In an electrode material which is a positive electrode material of a lithium battery, the composition formula Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 <z <0.4, y + z ≦ 0.4 and −0.2 ≦ δ ≦ 0) .2), and has a (2 × 2) tunnel structure, and constitutes an electrode material containing no proton and water in the tunnel .
[0011]
Further, the present invention provides the following, as described in claim 4.
A sodium compound and a manganese compound are used as starting materials and are produced by a dry process using no water, and are represented by the composition formula Na x MnO 2 + δ (0 <x ≦ 0.4 and −0.2 ≦ δ ≦ 0.2), (2 × 2) has a tunnel structure, a part of the sodium contained in the electrode material containing no protons and water into the tunnel, by ion-exchange treatment, by substituting lithium, the composition formula Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 <z <0.4, y + z ≦ 0.4 and −0.2 ≦ δ ≦ 0.2), and has a (2 × 2) tunnel structure. And the electrode material which is a positive electrode material of the lithium battery which does not contain a proton and water in the said tunnel is obtained, and the manufacturing method of the electrode material characterized by the above-mentioned is comprised.
[0012]
Further, the present invention provides the following, as described in claim 5.
5. The method for producing an electrode material according to claim 4, wherein the ion exchange treatment is performed in a molten salt containing a lithium compound or in an organic solvent in which the lithium compound is dissolved. Constitute.
[0013]
Further, the present invention provides the following, as described in claim 6.
In the method for producing an electrode material according to claim 4, when the ion exchange treatment is performed in a molten salt, the ion exchange treatment is performed at a melting temperature of the molten salt of 400 ° C or higher, and when performed in an organic solvent, An electrode material manufacturing method is provided, which is performed while refluxing the solvent in the vicinity of the boiling point of the organic solvent .
[0014]
Further, the present invention provides the following, as described in claim 7.
In a lithium battery having a positive electrode, a negative electrode, and an electrolyte substance, the positive electrode is the electrode material according to claim 1 or 3, and the negative electrode uses lithium or a substance capable of reversibly inserting / extracting or occluding / releasing lithium. And the electrolyte substance is a non-aqueous electrolyte substance .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In order to achieve this object, the electrode material according to the present invention has a composition formula Na x MnO 2 + δ (0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2) having a (2 × 2) tunnel structure. And a composition formula Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 ≦ z <0.4, y + z ≦ 0.4, having a (2 × 2) tunnel structure, It is characterized by being a compound represented by −0.2 ≦ δ ≦ 0.2).
[0016]
In addition, as a method for producing an electrode material according to the present invention, a sodium compound and a manganese compound are used as starting materials, and the composition formula Na x MnO 2 + δ (0 <x ≦ 0.4, −0.2) is performed by a dry process that does not use water. ≦ δ ≦ 0.2), a compound represented by the composition formula Na x MnO 2 + δ (0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2) By performing an ion exchange treatment, Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 ≦ z <0.4, y + z ≦ 0.4, −0.2 ≦ δ ≦ 0.2) It is characterized in that the ion exchange treatment is performed in the production of the compound represented, and in the molten salt containing the lithium-containing compound or in the organic solvent in which the lithium-containing compound is dissolved.
[0017]
The battery according to the present invention, the positive electrode has a negative electrode and an electrolyte material, wherein is characterized by containing an electrode material according to the present invention in the positive electrode, also, the negative electrode is Li Chiu arm or lithium Is formed using a substance that can be reversibly inserted / desorbed or occluded / released, and the electrolyte substance includes a substance capable of performing migration for causing lithium ions to electrochemically react with the positive electrode and the negative electrode. It is said.
[0018]
The present invention will be described in more detail.
[0019]
The inventor of the present application diligently searched for an electrode material having a (2 × 2) tunnel structure and having a large discharge capacity, and as a result, the discharge capacity of the battery is increased by using the above-described electrode material. In addition, the inventors have found that the above-described electrode material manufacturing method is effective in increasing the discharge capacity, and further confirmed that the discharge capacity of a battery using the electrode material is large, and completed the present invention based on this recognition. .
[0020]
A compound represented by the composition formula Na x MnO 2 + δ (0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2) having a (2 × 2) tunnel structure, which is an electrode material according to the present invention. The tunnel may contain a small amount of manganese, but in many cases it contains only sodium and is characterized by the absence of water or protons.
[0021]
Further, the composition formula Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 ≦ z <0.4, y + z ≦ 0,...) Having a (2 × 2) tunnel structure, which is an electrode material according to the present invention. 4, -0.2 ≦ δ ≦ 0.2) may contain a small amount of manganese, but in many cases contains only sodium and lithium, water and protons. The feature is that does not exist.
[0022]
When these compounds are used as electrode materials, it is considered that a large discharge capacity can be obtained because there are no water molecules or protons that adversely affect battery characteristics. In addition, since ions and molecules other than sodium and lithium do not exist between the tunnels, the molecular weight is relatively small and the energy density per weight is increased. Further, since the density (specific gravity) is higher than other manganese dioxides, there is an advantage that the energy density per volume is also large.
[0023]
When producing an electrode material which is a compound represented by the composition formula Na x MnO 2 + δ (0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2) according to the present invention, a sodium compound and Manganese compounds can be used as a starting material, and these can be produced by a dry process that does not use water, such as mixing and firing. If this compound is produced by such a dry process, it is possible to avoid the mixing of water into the (2 × 2) tunnel in the compound, and to avoid the mixing of water molecules and protons that adversely affect the battery characteristics. It has the advantage of being able to. For example, the above compound can be produced by mixing sodium carbonate and β-manganese dioxide (mineral name: pyrolsite) and reacting them in oxygen. Desirably, this compound is preferably produced at a temperature of 400 ° C. to 700 ° C. in an atmosphere where the oxygen partial pressure exceeds 1 atm.
[0024]
Also represented by the composition formula Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 ≦ z <0.4, y + z ≦ 0.4, −0.2 ≦ δ ≦ 0.2) according to the present invention. The electrode material, which is a compound to be formed, is obtained by subjecting a compound represented by the composition formula Na x MnO 2 + δ (0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2) to an ion exchange treatment. Can be manufactured. That is, by the ion exchange treatment, sodium in the composition formula Na x MnO 2 + δ is partially or entirely replaced with lithium, and the composition formula Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 ≦ z < 0.4, y + z ≦ 0.4, −0.2 ≦ δ ≦ 0.2).
[0025]
In this case, it is preferable to perform an ion exchange treatment in a molten salt containing a lithium-containing compound or in an organic solvent in which the lithium-containing compound is dissolved. Considering the characteristic that the electrode material easily absorbs water, it is desirable to perform ion exchange in these non-aqueous environments. As the molten salt, a molten salt containing at least one of lithium nitrate, lithium chloride, lithium bromide, and lithium iodide can be used. In addition, ion exchange can be performed in an organic solvent in which a lithium-containing compound such as lithium chloride or lithium bromide is dissolved. In ion exchange, since the ion exchange rate increases as the amount of ion species that can be exchanged increases, it is particularly preferable to use a molten salt obtained by directly melting a lithium compound. Further, since the exchange rate is higher as the temperature is higher, it is preferable to perform ion exchange at a high temperature in order to exchange sodium for as much lithium as possible in a short time. However, if the temperature is higher than necessary, the produced compound may be decomposed, so it is preferable to carry out at a temperature of 400 ° C. or lower. Needless to say, when a molten salt is used, the reaction temperature must be equal to or higher than the melting point of the molten salt. When ion exchange is performed in an organic solvent, it is preferable to perform ion exchange while refluxing the solvent near the boiling point of the organic solvent in order to increase the ion exchange rate.
[0026]
In the above composition formula, x, y, z, and δ are 0 <x ≦ 0.4, 0 <y ≦ 0.4, 0 ≦ z <0.4, y + z ≦ 0.4, and −0.2 ≦, respectively. Although δ ≦ 0.2 is satisfied, these vary depending on the synthesis conditions. The compound represented by the composition formula Na x MnO 2 + δ (0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2) has a (2 × 2) tunnel structure in the vicinity of x = 0.2. Since a compound is easily obtained, x = 0.2 is preferable. Further, a compound represented by ion-exchanged Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 ≦ z <0.4, y + z ≦ 0.4, −0.2 ≦ δ ≦ 0.2). In this case, it is normal that sodium in the starting material is eliminated by an amount y containing lithium (xy = z). However, since the valence of manganese can change depending on the reaction conditions, the starting material The sum of the amount of sodium x, the amount of sodium y and the amount of lithium z of the product may not be equal. In addition, oxygen may enter and exit during ion exchange, and the δ value may change.
[0027]
When the electrode material according to the present invention is used in a battery in which lithium ions move, it is preferable to increase the y value and decrease the z value. This is because the presence of many lithium ions, which are ion species that move, in the (2 × 2) tunnel facilitates ion diffusion in the electrode material and provides a large capacity.
[0028]
In order to form a positive electrode including the electrode material according to the present invention, a mixture of the electrode material and a binder powder such as polytetrafluoroethylene is pressure-formed on a support such as stainless steel. Alternatively, in order to impart conductivity to the active material powder, a conductive powder such as acetylene black is mixed, and a binder powder such as polytetrafluoroethylene is added to the active powder as required. The positive electrode is formed by such means as placing the mixture in a metal container, pressure forming on a support such as stainless steel, or dispersing the mixture in a solvent such as an organic solvent to form a slurry and applying it onto a metal substrate.
[0029]
The battery according to the present invention includes a positive electrode, a negative electrode, and an electrolyte substance, and the positive electrode is configured using the electrode material according to the present invention. The Li Chiu arm or the negative electrode is constituted by using a material capable of reversibly insertion and extraction or absorbing and desorbing lithium, the electrolyte material, for ions of lithium to the positive electrode and the negative electrode and the electrochemical reaction The battery contains a substance that can move, and this battery functions as a battery by lithium ions moving back and forth between the positive electrode and the negative electrode.
[0030]
As described above, when a substance containing lithium is used as the negative electrode, a conventionally known material such as a lithium metal, a lithium-aluminum alloy, a lithium-carbon compound, or a lithium-containing nitride is used as such a substance. be able to.
[0031]
Examples of the electrolyte substance include methoxyethane, diethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, propylene carbonate, methyl formate, dimethyl sulfoxide, acetonitrile, butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, and ethyl. A non-aqueous electrolyte solvent in which a salt such as an alkali metal or alkaline earth metal is dissolved in an organic solvent such as methyl carbonate, a solid electrolyte, a polymer electrolyte, a polymer electrolyte in which the organic solvent is supported, or the like can be used.
[0032]
In addition, the battery can be used as a secondary battery by repeatedly discharging and charging the battery.
[0033]
Furthermore, conventionally known various materials can be used for other elements such as a structural material such as a separator and a battery case, and there is no particular limitation.
[0034]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0035]
[Example 1]
FIG. 2 is a cross-sectional view of a coin-type battery which is a specific example of a battery using manganese dioxide having a (2 × 2) tunnel structure manufactured by the manufacturing method according to the present invention as a positive electrode active material. 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, 5 is a separator, and 6 is a positive electrode mixture pellet.
[0036]
In this example, sample a produced as follows was used as the positive electrode active material. Sodium carbonate and β-manganese dioxide (mineral name: pyrolsite) are mixed at a molar ratio of Na: Mn = 1: 5 in an atmosphere having an oxygen partial pressure of 4 atm. A sample a having the composition Na 0.20 MnO 2 was obtained by heat treatment.
[0037]
The sample a thus produced was analyzed using a powder X-ray diffraction measurement method. As shown in FIG. 3, the sample a was in good agreement with JCPDS (Joint Committee on Powder Diffraction Standards) data, and (2 × 2 It was found to have a tunnel structure. That is, the sample a is represented by a composition formula Na x MnO 2 + δ (where 0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2) and has a (2 × 2) tunnel structure. It is one of electrode materials characterized by being a compound. In this case, the structure of the sample a is shown in FIG. 1, and A + in the figure corresponds to Na + .
[0038]
The above-described process for obtaining the sample a is a dry process that does not use water.
[0039]
Next, this sample a was subjected to an ion exchange treatment in a 3: 1 molar molten salt of lithium nitrate and lithium chloride. The amount of sample a in the molten salt was a molar ratio: Li in the molten salt: Na in the sample a = 20: 1, and the temperature of the molten salt was 350 ° C. This ion exchange treatment was performed three times, and the obtained solid was washed with methanol and dried to obtain a sample b. The chemical composition of the sample b was analyzed, and Li 0.10 Na 0.10 MnO 2 was obtained as a composition formula.
[0040]
When the sample b thus produced was analyzed using a powder X-ray diffraction measurement method, as shown in FIG. 4, since the same pattern as that of the sample before ion exchange was maintained, (2 × 2 It was found to have a tunnel structure. That is, the sample b has the composition formula Li y Na z MnO 2 + δ (where 0 <y ≦ 0.4, 0 ≦ z <0.4, y + z ≦ 0.4, −0.2 ≦ δ ≦ 0.2). And (2 × 2) one of electrode materials characterized by being a compound having a tunnel structure. In this case, the structure of the sample b is shown in FIG. 1, and A + in the figure corresponds to Li + or Na + .
[0041]
The powder of sample a or sample b was mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene), and then roll-formed to form positive electrode mixture pellets 6 (thickness 0.5 mm, diameter 15 mm) did.
[0042]
Next, a metal lithium negative electrode 4 placed under pressure on a stainless sealing plate 1 is inserted into the recess of the polypropylene gasket 2, and a polypropylene microporous separator 5 and a positive electrode composite are placed on the negative electrode 4. The electrolyte pellet 6 is arranged in this order, and an electrolyte solution that is an electrolyte substance that enables lithium ions to move electrochemically with the positive electrode and the negative electrode is used as an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate. A suitable amount of 1N solution in which LiPF 6 was dissolved was injected and impregnated, and then covered with a stainless steel positive electrode case 3, and then a coin-type battery having a thickness of 2 mm and a diameter of 23 mm (in FIG. Inverted) was prepared.
[0043]
A battery using the sample a or the sample b thus produced as a positive electrode active material was charged to 4.5 V at a current density of 0.1 mA / cm 2 and then discharged to 2.0 V. Then, it was possible to obtain a capacity of 160 mAh / g for sample a and 180 mAh / g for sample b. Therefore, it can be seen that a battery having a large discharge capacity can be realized by using an electrode material having a (2 × 2) tunnel structure manufactured by the manufacturing method according to the present invention.
[0044]
[Comparative Example 1]
In this comparative example, a lithium battery was produced in the same manner as in Example 1 except that the sample c produced as follows was used according to a conventional wet method.
[0045]
First, manganese nitrate and sodium permanganate are mixed at a molar ratio of 1: 1 in dilute sulfuric acid, reacted at 100 ° C. for 5 hours, and the powder produced in the solution is separated from the solution by filtration and dried at 100 ° C. Sample c was obtained.
[0046]
When the sample c thus produced was analyzed using a powder X-ray diffraction measurement method, a pattern similar to the sample a was obtained, and it was found that the sample c had a (2 × 2) tunnel structure.
[0047]
2 Sample c thus produced by the cell to the cathode active material prepared in the same manner as in Example 1, the battery after the charging to 4.5V at a current density of 0.1 mA / cm 2. Even when discharged to 0 V, only a capacity of 120 mAh / g was obtained. As compared with this battery, it can be seen that the battery including the sample manufactured in Example 1 of the present invention as the positive electrode active material has a larger discharge capacity.
[0048]
The reason why the capacity of the battery in this comparative example is smaller than the capacity of the battery of Example 1 is considered to be due to the adverse effect of water molecules present in the (2 × 2) tunnel structure of sample c on the electrode characteristics. .
[0049]
As described above, the manufacturing method of a manganese dioxide electrode material having a (2 × 2) tunnel structure according to the present invention, and the manganese dioxide electrode material having a (2 × 2) tunnel structure manufactured by the method are provided. According to the battery included as the positive electrode, a battery having a large discharge capacity can be realized, and the present invention has a point that it can be used in various fields including a power source of various electronic devices.
[0050]
【The invention's effect】
By carrying out the present invention, it is possible to provide an electrode material having a large discharge capacity, which is a manganese dioxide having a (2 × 2) tunnel structure, a manufacturing method thereof, and a battery using the electrode material.
[Brief description of the drawings]
FIG. 1 is a structural schematic diagram of an electrode material according to the present invention.
FIG. 2 is a cross-sectional view showing a configuration example of a coin-type battery in Example 1 of the present invention.
FIG. 3 is a diagram showing a comparison of the X-ray diffraction pattern of sample a in Example 1 of the present invention identified by powder X-ray diffraction measurement and the peak data of manganese dioxide having a (2 × 2) tunnel structure by JCPDS. It is.
FIG. 4 is a diagram showing an X-ray diffraction pattern of sample b in Example 1 of the present invention identified by powder X-ray diffraction measurement, compared with sample a before ion exchange.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sealing plate, 2 ... Gasket, 3 ... Positive electrode case, 4 ... Negative electrode, 5 ... Separator, 6 ... Positive electrode mixture pellet.

Claims (7)

リチウム電池の正極材料である電極材料において、組成式Na 0.2 MnO で表され、(2×2)トンネル構造を有し、前記トンネル内にプロトン及び水を含まないことを特徴とする電極材料。 An electrode material, which is a positive electrode material of a lithium battery, is represented by a composition formula Na 0.2 MnO 2 , has a (2 × 2) tunnel structure, and does not contain protons and water in the tunnel material. 炭酸ナトリウム及び二酸化マンガンを出発原料とし、モル比で、Na:Mn=1:5の割合で前記出発原料を混合し、酸素分圧1〜4気圧の雰囲気下、400〜700℃で焼成する工程を有する、水を用いない乾式工程により、請求項1に記載の電極材料を製造することを特徴とする電極材料の製造方法。 A step of mixing sodium carbonate and manganese dioxide as starting materials , mixing the starting materials in a molar ratio of Na: Mn = 1: 5, and firing at 400 to 700 ° C. in an atmosphere with an oxygen partial pressure of 1 to 4 atm. having, by a dry process without using water, a manufacturing method of an electrode material, characterized by manufacturing an electrode material according to claim 1. リチウム電池の正極材料である電極材料において、組成式Li Na MnO 2+δ (0<y≦0.4、0<z<0.4、y+z≦0.4及び−0.2≦δ≦0.2)で表され、(2×2)トンネル構造を有し、前記トンネル内にプロトン及び水を含まないことを特徴とする電極材料。 In an electrode material which is a positive electrode material of a lithium battery, the composition formula Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 <z <0.4, y + z ≦ 0.4 and −0.2 ≦ δ ≦ 0) .2), an electrode material having a (2 × 2) tunnel structure and containing no proton and water in the tunnel . ナトリウム化合物及びマンガン化合物を出発原料とし、水を用いない乾式工程により製造され、組成式Na MnO 2+δ (0<x≦0.4及び−0.2≦δ≦0.2)で表され、(2×2)トンネル構造を有し、前記トンネル内にプロトン及び水を含まない電極材料に含有されるナトリウムの一部を、イオン交換処理によって、リチウムに置換することにより、組成式Li Na MnO 2+δ (0<y≦0.4、0<z<0.4、y+z≦0.4及び−0.2≦δ≦0.2)で表され、(2×2)トンネル構造を有し、前記トンネル内にプロトン及び水を含まないリチウム電池の正極材料である電極材料を得ることを特徴とする電極材料の製造方法。 A sodium compound and a manganese compound are used as starting materials and are produced by a dry process using no water, and are represented by the composition formula Na x MnO 2 + δ (0 <x ≦ 0.4 and −0.2 ≦ δ ≦ 0.2), (2 × 2) has a tunnel structure, a part of the sodium contained in the electrode material containing no protons and water in the tunnel, by ion-exchange treatment, by substituting lithium, the composition formula Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 <z <0.4, y + z ≦ 0.4 and −0.2 ≦ δ ≦ 0.2), and has a (2 × 2) tunnel structure. And the electrode material which is a positive electrode material of the lithium battery which does not contain a proton and water in the said tunnel is obtained, The manufacturing method of the electrode material characterized by the above-mentioned . 請求項4記載の電極材料の製造方法において、前記イオン交換処理を、リチウム化合物を含有する溶融塩中、又はリチウム化合物を溶解した有機溶剤中において行うことを特徴とする電極材料の製造方法。5. The method for producing an electrode material according to claim 4, wherein the ion exchange treatment is performed in a molten salt containing a lithium compound or an organic solvent in which the lithium compound is dissolved. 請求項4に記載の電極材料の製造方法において、前記イオン交換処理を、溶融塩中で行う場合は、該溶融塩の溶融温度以上、400℃以下で行い、有機溶剤中で行う場合は、該有機溶剤の沸点付近で該溶剤を還流させながら行うことを特徴とする電極材料の製造方法 In the method for producing an electrode material according to claim 4, when the ion exchange treatment is performed in a molten salt, the ion exchange treatment is performed at a melting temperature of the molten salt of 400 ° C or higher, and when performed in an organic solvent, A method for producing an electrode material, which is carried out while refluxing the solvent near the boiling point of the organic solvent . 正極、負極及び電解質物質を有するリチウム電池において、前記正極は請求項1又は3に記載の電極材料であり、前記負極はリチウム又はリチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を用いて構成され、前記電解質物質は非水系電解質物質であることを特徴とする電池。 In a lithium battery having a positive electrode, a negative electrode, and an electrolyte substance, the positive electrode is the electrode material according to claim 1 or 3, and the negative electrode uses lithium or a substance capable of reversibly inserting / extracting or occluding / releasing lithium. And the electrolyte substance is a non-aqueous electrolyte substance .
JP2001273327A 2001-09-10 2001-09-10 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME Expired - Fee Related JP3875053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273327A JP3875053B2 (en) 2001-09-10 2001-09-10 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001273327A JP3875053B2 (en) 2001-09-10 2001-09-10 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME

Publications (2)

Publication Number Publication Date
JP2003086179A JP2003086179A (en) 2003-03-20
JP3875053B2 true JP3875053B2 (en) 2007-01-31

Family

ID=19098558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273327A Expired - Fee Related JP3875053B2 (en) 2001-09-10 2001-09-10 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME

Country Status (1)

Country Link
JP (1) JP3875053B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739770B2 (en) * 2005-02-07 2011-08-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4739769B2 (en) * 2005-02-07 2011-08-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2006082719A1 (en) * 2005-02-07 2006-08-10 Sanyo Electric Co., Ltd. Positive electrode and nonaqueous electrolyte secondary battery
JP5051770B2 (en) * 2005-07-08 2012-10-17 独立行政法人産業技術総合研究所 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5182844B2 (en) * 2007-03-16 2013-04-17 独立行政法人産業技術総合研究所 Method for producing single crystal sodium manganate (Na0.44MnO2) nanowire and high-rate Li-ion battery using the same
JP5320710B2 (en) 2007-09-07 2013-10-23 ソニー株式会社 Positive electrode active material, method for producing the same, and electrochemical device
CN102027625B (en) 2008-04-07 2017-05-03 卡内基美浓大学 Sodium ion based aqueous electrolyte electrochemical secondary energy storage device
US8318357B2 (en) 2008-05-15 2012-11-27 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2012148569A2 (en) 2011-03-01 2012-11-01 Aquion Energy Inc. Profile responsive electrode ensemble
US8298701B2 (en) 2011-03-09 2012-10-30 Aquion Energy Inc. Aqueous electrolyte energy storage device
JP5836620B2 (en) * 2011-03-28 2015-12-24 国立大学法人東京農工大学 Method for producing composite of manganese oxide and carbon powder
US8137830B2 (en) 2011-07-19 2012-03-20 Aquion Energy, Inc. High voltage battery composed of anode limited electrochemical cells
US8945751B2 (en) 2011-07-19 2015-02-03 Aquion Energy, Inc. High voltage battery composed of anode limited electrochemical cells
JP6007909B2 (en) * 2011-08-31 2016-10-19 旭硝子株式会社 Method for producing lithium ion conductive glass ceramics
US8652672B2 (en) 2012-03-15 2014-02-18 Aquion Energy, Inc. Large format electrochemical energy storage device housing and module
US8945756B2 (en) 2012-12-12 2015-02-03 Aquion Energy Inc. Composite anode structure for aqueous electrolyte energy storage and device containing same
CN109216039B (en) * 2018-10-15 2020-02-11 吉首大学 Na 2Mn 5O 10Preparation method and application of nanorod
CN109346329B (en) * 2018-10-15 2020-02-18 吉首大学 Water system sodium ion hybrid capacitor and preparation method thereof
KR102633443B1 (en) * 2020-10-13 2024-02-06 한양대학교 산학협력단 Positive active material having tunnel structure for sodium secondary battery and the sodium secondary battery comprising the same
JP7363747B2 (en) * 2020-11-13 2023-10-18 トヨタ自動車株式会社 Method for manufacturing positive electrode active material, method for manufacturing positive electrode active material and lithium ion battery
CN113036118B (en) * 2021-03-31 2023-10-03 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2003086179A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
JP3875053B2 (en) ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME
KR101885719B1 (en) Method for producing a lithium or sodium battery
Gaubicher et al. Li/β‐VOPO 4: A New 4 V System for Lithium Batteries
Tarascon et al. Li Metal‐Free Rechargeable Batteries Based on Li1+ x Mn2 O 4 Cathodes (0≤ x≤ 1) and Carbon Anodes
JP3263725B2 (en) Method for producing layered rock salt type lithium manganese oxide by mixed alkaline hydrothermal method
CN112447948B (en) Sulfide coated positive electrode material, preparation method thereof and lithium ion battery
JP2003123755A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JPH10158017A (en) Lithium-nickel-multiple oxide, its production and its use
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
JP2000138072A (en) Nonaqueous electrolyte secondary battery
JPH06283207A (en) Nonaqueous electrolyte battery
JP3403569B2 (en) Lithium nickel composite oxide, its production method and its use
CN110380043A (en) The positive electrode and preparation method thereof of fluoro- phosphorus doping tin oxide coating modification
CN103456980A (en) Non-aqueous electrolyte battery and pack battery
Li et al. A Structural Perspective on Prussian Blue Analogues for Aqueous Zinc‐Ion Batteries
JP3647758B2 (en) Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
JPH10503466A (en) Delithiated cobalt oxide phase and nickel oxide phase, and methods for producing them
JP2001250555A (en) Method to manufacture activate substance for positive electrode and method of manufacturing non aqueous electrolyte cell
JPH06119926A (en) Nonaqueous electrplyte battery
JP2001332258A (en) Composite oxide material for electrode, its manufacturing method and cell therewith
JP3532139B2 (en) Method for producing nickel-containing oxide electrode material and battery using the electrode material
JP2002175836A (en) Nonaqueous electrolyte battery
JPH08287914A (en) Lithium battery
JP3625630B2 (en) Method for producing cobalt oxide positive electrode material, and battery using cobalt oxide positive electrode material produced by the method
JPH11139830A (en) Production of nickel oxide material and cell using the same nickel oxide material produced therewith

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Ref document number: 3875053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees