JP3532139B2 - Method for producing nickel-containing oxide electrode material and battery using the electrode material - Google Patents

Method for producing nickel-containing oxide electrode material and battery using the electrode material

Info

Publication number
JP3532139B2
JP3532139B2 JP2000149779A JP2000149779A JP3532139B2 JP 3532139 B2 JP3532139 B2 JP 3532139B2 JP 2000149779 A JP2000149779 A JP 2000149779A JP 2000149779 A JP2000149779 A JP 2000149779A JP 3532139 B2 JP3532139 B2 JP 3532139B2
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
battery
electrode material
containing oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000149779A
Other languages
Japanese (ja)
Other versions
JP2001332259A (en
Inventor
創 荒井
昌幸 津田
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000149779A priority Critical patent/JP3532139B2/en
Publication of JP2001332259A publication Critical patent/JP2001332259A/en
Application granted granted Critical
Publication of JP3532139B2 publication Critical patent/JP3532139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はニッケル含有酸化物電極
材料の製造方法及びそれを用いる電池、さらに詳細には
放電容量が大きい電池を提供する技術に関するものであ
る。
The present invention relates to a method for producing a nickel-containing oxide electrode material and a battery using the same, and more particularly to a technique for providing a battery having a large discharge capacity.

【0002】[0002]

【従来の技術及び問題点】ニッケル含有酸化物は、ニッ
ケルカドミウム電池を始めとする水溶液系電池や、リチ
ウム電池を始めとする非水溶液系電池などの正極材料と
して広く用いられている。合成方法としては、水酸化ニ
ッケルを始めとする2価のニッケル化合物を、化学的な
いし電気化学的に酸化して、正極材料として機能するニ
ッケル3価を含む化合物を得る方法が挙げられる。
2. Description of the Related Art Nickel-containing oxides are widely used as cathode materials for aqueous batteries such as nickel cadmium batteries and non-aqueous batteries such as lithium batteries. Examples of the synthesis method include a method in which a divalent nickel compound such as nickel hydroxide is chemically or electrochemically oxidized to obtain a compound containing nickel trivalent which functions as a positive electrode material.

【0003】しかしながら、これらの物質はニッケル2
価までの還元の際に利用できる電子数が少ないため、こ
れらの物質を正極材料とする電池の放電容量が少ないと
いう問題点があった。またニッケル4価を含む化合物と
しては、層状化合物LiXNiO2(0≦X<1)等が挙
げられるが、還元の際に利用できるイオン収納位置が少
ないために、これらの物質を正極材料とする電池の容量
は少ないという問題点があった。
However, these substances are nickel 2
Since the number of electrons that can be used at the time of reduction to a valency is small, there is a problem that the discharge capacity of a battery using these substances as a cathode material is small. Examples of the compound containing tetravalent nickel include a layered compound Li x NiO 2 (0 ≦ X <1). However, since there are few ion storage positions available at the time of reduction, these materials are used as a cathode material. There is a problem that the capacity of the battery to be used is small.

【0004】また他に、ニッケル4価を含む化合物であ
り、層間に水を含む化合物として、ニッケルの2価及び
3価の化合物を臭素や次亜塩素酸塩等で酸化して得られ
る、いわゆるγーNiOOHという化合物があるが、こ
れは結晶性が低いために、イオン収納の効率が悪く、こ
の物質を正極材料とする電池の容量も少ないという問題
があった。
In addition, a compound containing tetravalent nickel, which is a compound containing water between layers, is obtained by oxidizing a divalent or trivalent nickel compound with bromine or hypochlorite, etc. Although there is a compound called γ-NiOOH, it has low crystallinity, so that ion storage efficiency is low and there is a problem that the capacity of a battery using this substance as a positive electrode material is small.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な現状の課題を解決し、放電容量が大きいニッケル含有
酸化物電極材料の製造方法及びそのニッケル含有酸化物
電極材料を用いる電池を提供することにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned current problems and provides a method for producing a nickel-containing oxide electrode material having a large discharge capacity and a battery using the nickel-containing oxide electrode material. Is to do.

【0006】[0006]

【問題点を解決するための手段】かかる目的を達成する
ために、本発明によるニッケル含有酸化物の製造方法で
は、層状化合物LiNiO(0≦X<1)を出発材
料とし、水酸化物を水に溶解したアルカリ性水溶液で前
記層状化合物を処理することにより前記層状化合物の層
間に水分子を挿入する工程を有することを特徴としてい
る。
Means for Solving the Problems To achieve the above object, in the method for producing a nickel-containing oxide according to the present invention, a layered compound Li X NiO 2 (0 ≦ X <1) is used as a starting material.
And an aqueous alkaline solution of hydroxide dissolved in water.
The method is characterized by having a step of inserting water molecules between layers of the layered compound by treating the layered compound .

【0007】さらに本発明による電池では、請求項1
たは2記載のニッケル含有酸化物電極材料の製造方法で
製造したニッケル含有酸化物電極材料を正極活物質とし
て含む正極を有し、リチウム、ナトリウム、カリウム、
マグネシウム、カルシウム、ストロンチウム、アルミニ
ウム、銅、銀の何れかを含む物質またはこの元素を可逆
的に挿入・脱離あるいは吸蔵・脱離できる物質を含む負
極を有し、前記元素のイオンが前記正極および前記負極
と電気化学反応をするための移動を行い得る物質を電解
質物質として含むことを特徴とする
[0007] In the battery according to the present invention further, claim 1 or
Others in the production method of the nickel-containing oxide electrode material wherein
Having a positive electrode containing the produced nickel-containing oxide electrode material as a positive electrode active material, lithium, sodium, potassium,
Magnesium, calcium, strontium, aluminum, copper, a negative electrode containing a substance containing any of silver or a substance capable of reversibly inserting / desorbing or occluding / desorbing this element, wherein the ions of the element are the positive electrode and characterized in that it comprises a material moving may perform for the negative electrode and the electrochemical reaction as the electrolyte material.

【0008】また本発明による第二の電池では、請求項
または2記載のニッケル含有酸化物電極材料の製造方
法で製造したニッケル含有酸化物電極材料を正極活物質
として含む正極を有し、プロトンが前記正極と電気化学
反応をするための移動を行い得る物質を電解質物質とし
て有することを特徴とする
Further, in the second battery according to the present invention, a method for producing a nickel-containing oxide electrode material according to claim 1 or 2.
Having a positive electrode containing a nickel-containing oxide electrode material produced by law as a positive electrode active material, protons and having a substance moving may perform for the positive electrode and the electrochemical reaction as the electrolyte material.

【0009】本発明をさらに詳しく説明する。発明者
は、ニッケル含有酸化物電極材料及びその製造方法を鋭
意探索した結果、前記ニッケル含有酸化物電極材料の製
造方法及びそれにより製造されたニッケル含有酸化物電
極材料を用いる電池により、従来よりも放電容量が大き
いニッケル含有酸化物電極材料と前記ニッケル含有酸化
物電極材料を含む電池を製造、実現できることを確か
め、その認識の下に本発明を完成した。
The present invention will be described in more detail. The inventor has made extensive searches for a nickel-containing oxide electrode material and a method for manufacturing the same, and as a result, a battery using the nickel-containing oxide electrode material and a battery using the nickel-containing oxide electrode material manufactured by the method described above, It has been confirmed that a nickel-containing oxide electrode material having a large discharge capacity and a battery containing the nickel-containing oxide electrode material can be manufactured and realized, and the present invention has been completed based on the recognition.

【0010】その理由は、以下のようなものが考えられ
る。すなわち本発明のニッケル含有酸化物電極材料は、
層状化合物LiXNiO2の層間に水分子を含んでおり、
層間が広く開いているため、還元の際に利用できるイオ
ン収納位置が多い。しかもニッケルの4価を含むLiX
NiO2(0≦X<1)を母体として用いているため、
ニッケルの価数が2価に到達するまでに1電子を越える
放電が可能である。
The reason is considered as follows. That is, the nickel-containing oxide electrode material of the present invention,
It contains water molecules between the layers of the layered compound Li x NiO 2 ,
Since the layers are wide open, there are many ion storage positions available for reduction. Moreover, Li X containing nickel tetravalent
Since NiO 2 (0 ≦ X <1) is used as a base,
Discharge exceeding one electron is possible before the valence of nickel reaches bivalence.

【0011】上記のXの範囲は0≦X<1である。X=
1である場合には、還元能がないために、本発明の効果
である大容量を得ることができない。またXが0に近い
ほど、層間に水分子を挿入した後のニッケル含有酸化物
がニッケルの4価を多く含み、結果として大きな放電容
量が得られることが多い。従って、好ましくは0≦X≦
0.5、さらに好ましくは0≦X≦0.2である。
The range of the above X is 0 ≦ X <1. X =
In the case of 1, since there is no reducing ability, it is not possible to obtain a large capacity which is an effect of the present invention. Further, as X is closer to 0, the nickel-containing oxide after inserting water molecules between layers contains more tetravalent nickel, and as a result, a larger discharge capacity is often obtained. Therefore, preferably 0 ≦ X ≦
0.5, more preferably 0 ≦ X ≦ 0.2.

【0012】本発明によるニッケル含有酸化物電極材料
の製造方法によれば、LiXNiO2に水分子を挿入す
る。
According to the method for producing a nickel-containing oxide electrode material according to the present invention, water molecules are inserted into Li x NiO 2 .

【0013】層間に含まれる水の量は、LiXNiO2
層間に水分子を挿入する方法により、大きく異なる。全
く水を含まない場合は、層間が狭く、還元の際に利用で
きるイオン収納位置が少なく、放電容量が少ない。水分
子が非常に多い場合は、放電に関与しない部分が多くな
り、重量エネルギー密度が低下する。
The amount of water contained between the layers varies greatly depending on the method of inserting water molecules between the layers of Li x NiO 2 . When no water is contained, the interlayer is narrow, the number of ion storage positions available for reduction is small, and the discharge capacity is small. When the number of water molecules is very large, the portion not involved in the discharge increases, and the weight energy density decreases.

【0014】層状化合物LiXNiO2の層間に水分子を
挿入する方法としては、アルカリ金属イオン、アルカリ
土類金属イオン、アンモニウムイオン等を陽イオンとし
て含む水酸化物を水に溶解したアルカリ性の水溶液で、
LiXNiO2を処理する方法が挙げられる。この場合、
水酸化物イオンがLiXNiO2により酸化されて酸素が
発生すると同時に、LiXNiO2が還元されるが、この
際に溶液中に含まれる前記の陽イオンと水が、LiX
iO2の層間に取り込まれる。
As a method for inserting water molecules between the layers of the layered compound Li x NiO 2 , an aqueous alkaline solution obtained by dissolving a hydroxide containing alkali metal ions, alkaline earth metal ions, ammonium ions and the like as cations in water is used. so,
A method of treating Li x NiO 2 is given. in this case,
The hydroxide ions are oxidized by Li x NiO 2 to generate oxygen, and at the same time, Li x NiO 2 is reduced. At this time, the cations and water contained in the solution are converted to Li x N 2
It is taken in between the layers of iO 2 .

【0015】また前記陽イオンを含む水溶液中におい
て、LiXNiO2を電気化学的な手法を用いて還元して
も、溶液中に含まれる前記の陽イオンと水が、LiX
iO2の層間に取り込まれる。また高圧反応、水熱合成
により、LiXNiO2の層間に水分子を挿入することも
できる。この層間に取り込まれた陽イオン種は、イオン
交換により任意のイオンと交換することもでき、特に制
限はない。
Further, even if Li x NiO 2 is reduced by an electrochemical method in an aqueous solution containing the cations, the cations and water contained in the solution become Li x N 2
It is taken in between the layers of iO 2 . Water molecules can also be inserted between Li x NiO 2 layers by high-pressure reaction and hydrothermal synthesis. The cation species taken in between the layers can be exchanged with arbitrary ions by ion exchange, and there is no particular limitation.

【0016】またLiXNiO2は、LiNiO2の酸処
理や、電気化学的リチウム脱離など、従来公知の方法を
用いて合成することができる。
Li X NiO 2 can be synthesized by a conventionally known method such as acid treatment of LiNiO 2 or electrochemical lithium elimination.

【0017】また本発明によるニッケル含有水酸化物の
製造方法で得られた試料は、高温で得られたLi Ni
の高い結晶性を保ったままで、ニッケルの4価を含
み層間に水分子を含むニッケル含有酸化物を得ることが
できるため、結晶性の悪い試料に比べてイオン収納の効
率が高く、電池の正極材料として、大きな容量を実現で
きるという利点を有する。
The sample obtained by the method for producing a nickel-containing hydroxide according to the present invention comprises Li x Ni obtained at a high temperature.
Since a nickel-containing oxide containing nickel tetravalent and containing water molecules between layers can be obtained while maintaining the high crystallinity of O 2 , the efficiency of ion storage is higher than that of a sample with poor crystallinity, and This has the advantage that a large capacity can be realized as the positive electrode material of (1).

【0018】またLiXNiO2(0≦X<1)の層間に
水分子を挿入する際の合成条件により、ニッケルに対す
る酸素量が僅かに増減することがある。この機構の詳細
は明らかではないが、ニッケルに対する酸素量が2に近
ければ層構造は保たれるために、特性に与える影響はな
い。
The amount of oxygen with respect to nickel may slightly increase or decrease depending on the synthesis conditions when water molecules are inserted between the layers of Li x NiO 2 (0 ≦ X <1). Although the details of this mechanism are not clear, if the amount of oxygen with respect to nickel is close to 2, the layer structure is maintained and there is no influence on the characteristics.

【0019】本発明によるニッケル含有酸化物電極材料
を正極活物質を用いて電池正極を形成するには、前記ニ
ッケル含有酸化物電極材料とポリテトラフルオロエチレ
ンのごとき結着剤粉末との混合物をステンレス等の支持
体上に圧着成形する、或いは、かかる混合物粉末に導電
性を付与するためアセチレンブラックのような導電性粉
末を混合し、これにさらにポリテトラフルオロエチレン
のような結着剤粉末を所要に応じて加え、この混合物を
金属容器にいれる、あるいはステンレスなどの支持体に
圧着成形する、あるいは有機溶剤等の溶媒中に分散して
スラリー状にして金属基板上に塗布する、等の従来公知
の手段によって形成され、特に制約はない。
To form a battery positive electrode using the nickel-containing oxide electrode material according to the present invention as a positive electrode active material, a mixture of the nickel-containing oxide electrode material and a binder powder such as polytetrafluoroethylene is mixed with stainless steel. Or a mixture of conductive powder such as acetylene black to impart conductivity to the mixture powder, and further require a binder powder such as polytetrafluoroethylene. Conventionally known methods such as adding this mixture to a metal container, or pressing and molding the mixture on a support such as stainless steel, or dispersing in a solvent such as an organic solvent to form a slurry and applying the slurry on a metal substrate. There is no particular limitation.

【0020】また本発明による電池では、前記ニッケル
含有酸化物電極材料を正極活物質として含む正極を有す
る。負極として、リチウム、ナトリウム、カリウム、マ
グネシウム、カルシウム、ストロンチウム、アルミニウ
ム、銅、銀の何れかを含む物質またはその元素を可逆的
に挿入・脱離あるいは吸蔵・脱離できる物質を含む場合
には、前記元素のイオンが前記正極および前記負極と電
気化学反応をするための移動を行い得る物質を電解質物
質として有することにより、元素のイオンが正極と負極
の間を行き来する電池となる。例えば、リチウムを含む
物質としては、リチウム金属、リチウム−アルミニウム
合金、リチウム−炭素化合物、リチウム含有窒化物な
ど、従来公知の材料を用いることができる。
Further, the battery according to the present invention has a positive electrode containing the nickel-containing oxide electrode material as a positive electrode active material. When the negative electrode contains a substance containing any of lithium, sodium, potassium, magnesium, calcium, strontium, aluminum, copper, silver or a substance capable of reversibly inserting / desorbing or occluding / desorbing the element, By having, as an electrolyte material, a substance capable of performing an electrochemical reaction between the element ions and the positive electrode and the negative electrode, a battery in which the element ions move between the positive electrode and the negative electrode is obtained. For example, as the substance containing lithium, conventionally known materials such as lithium metal, lithium-aluminum alloy, lithium-carbon compound, and lithium-containing nitride can be used.

【0021】またプロトン移動を行い得る物質を電解質
物質として有する場合には、電解質には酸性水溶液、ア
ルカリ性水溶液、塩化ナトリウム水溶液などを用いるこ
とができる。この場合の電池に用いる負極としては従来
公知の水溶液系電池用負極を用いることができる。例え
ば、水素吸蔵合金、鉄、銅、亜鉛、カドミウム、アルミ
ニウム、マグネシウム等を挙げることができ、特に制限
はない。
When a substance capable of performing proton transfer is contained as an electrolyte substance, an acidic aqueous solution, an alkaline aqueous solution, a sodium chloride aqueous solution, or the like can be used as the electrolyte. In this case, a conventionally known negative electrode for an aqueous battery can be used as the negative electrode. For example, a hydrogen storage alloy, iron, copper, zinc, cadmium, aluminum, magnesium and the like can be mentioned, and there is no particular limitation.

【0022】また前記電池の放電・充電を繰り返し行う
ことで、これを二次電池として用いることもできる。
The battery can be used as a secondary battery by repeatedly discharging and charging the battery.

【0023】さらに電解質、セパレータ、電池ケース等
の構造材料等の他の要素についても従来公知の各種材料
が使用でき、特に制限はない。
As for other elements such as an electrolyte, a separator, and a structural material such as a battery case, various conventionally known materials can be used, and there is no particular limitation.

【0024】[0024]

【実施例】以下実施例によって本発明をさらに具体的に
説明するが、本発明はこれらによりなんら制限されるも
のではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0025】[0025]

【実施例1】実施例1では、組成式Li0.10.2NiO
1.9・0.7H2Oで与えられるニッケル含有酸化物を、
次のようにして製造した。まず硝酸リチウムと水酸化ニ
ッケルをモル比でLi:Ni=2:1の割合になるよう
に均一に混合し、これを700℃、10時間、大気中で
固相反応させ、得られた粉末を水洗して過剰のアルカリ
分を除去し、乾燥することにより、LiNiO2を得
た。このLiNiO2をX線回折分析で解析すると、六
方晶(空間群R−3m)で指数付けすることができ、格
子定数はa=2.875(Å)、c=14.19(Å)
であり、層間の距離は約4.7(Å)であることが分か
った。次にこのLiNiO2を、H+/Ni=4の割合で
1.2規定の硫酸溶液と混合し、3時間攪拌・反応さ
せ、水洗、乾燥することによりLi0.1NiO2を得た。
さらにこのLi0.1NiO2を、K+/Ni=0.3の割
合で0.3規定の水酸化カリウム溶液と混合し、3時間
攪拌・反応させ、水洗、乾燥することによりLi0.1
0.2NiO1.9・0.7H2Oを得た。この試料をaとす
る。
Embodiment 1 In Embodiment 1, the composition formula Li 0.1 K 0.2 NiO
The nickel-containing oxide provided by 1.9 · 0.7 H 2 O is
It was manufactured as follows. First, lithium nitrate and nickel hydroxide are uniformly mixed at a molar ratio of Li: Ni = 2: 1, and the mixture is subjected to a solid-phase reaction in the air at 700 ° C. for 10 hours. LiNiO 2 was obtained by removing excess alkali by washing with water and drying. When this LiNiO 2 is analyzed by X-ray diffraction analysis, it can be indexed by a hexagonal crystal (space group R-3m), and the lattice constants are a = 2.875 (Å) and c = 14.19 (Å).
And the distance between the layers was found to be about 4.7 (Å). Next, this LiNiO 2 was mixed with a 1.2 N sulfuric acid solution at a ratio of H + / Ni = 4, stirred and reacted for 3 hours, washed with water and dried to obtain Li 0.1 NiO 2 .
The Li 0.1 NiO 2 is further mixed with a 0.3 N potassium hydroxide solution at a ratio of K + /Ni=0.3, stirred and reacted for 3 hours, washed with water and dried to obtain Li 0.1 K.
0.2 NiO 1.9 · 0.7 H 2 O was obtained. This sample is designated as a.

【0026】試料aのX線回折図を図1に示す。このX
線回折図を解析すると、単斜晶(空間群C2/m)で指
数付けすることができ、格子定数はa=4.902
(Å)、c=2.829(Å)c=7.227(Å)、
β=103.03(°)であり、層間の距離は7.04
(Å)であることが分かった。
FIG. 1 shows an X-ray diffraction pattern of the sample a. This X
When the line diffraction diagram is analyzed, it can be indexed by a monoclinic (space group C2 / m), and the lattice constant is a = 4.902
(Å), c = 2.829 (Å), c = 7.227 (Å),
β = 103.03 (°), and the distance between the layers is 7.04
(Å) was found.

【0027】次にこの試料aを正極活物質として含む電
池を作製した。図2はその電池の断面図であり、図2
中、1は封口板、2はガスケット、3は正極ケース、4
は負極、5はセパレータ、6は正極合剤ペレットを示
す。まず試料aを真空乾燥した後、導電剤(アセチレン
ブラック)、結着剤(ポリテトラフルオロエチレン)と
共に混合の上、ロール成形し、正極合剤ペレット6とし
た。次にステンレス製の封口板1上に金属リチウムの負
極4を加圧配置したものをポリプロピレン製ガスケット
2の凹部に挿入し、負極4の上にポリプロピレン製で微
孔性のセパレータ5、正極合剤ペレット6をこの順序に
配置し、電解液としてエチレンカーボネートとジメチル
カーボネートの等容積混合溶媒にLiPF6を溶解させ
た1規定溶液を適量注入して含浸させた後に、ステンレ
ス製の正極ケース3を被せてかしめることにより、厚さ
2mm、直径23mmのコイン型電池を作製した。な
お、電池の作製はアルゴン雰囲気下のドライボックス内
で行った。
Next, a battery containing this sample a as a positive electrode active material was produced. FIG. 2 is a sectional view of the battery, and FIG.
Among them, 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4
Denotes a negative electrode, 5 denotes a separator, and 6 denotes a positive electrode mixture pellet. First, the sample a was vacuum-dried, mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene), and then roll-molded to obtain a positive electrode mixture pellet 6. Next, a negative electrode 4 made of metallic lithium and placed under pressure on a sealing plate 1 made of stainless steel is inserted into a concave portion of a gasket 2 made of polypropylene, and a microporous separator 5 made of polypropylene and a positive electrode mixture are placed on the negative electrode 4. The pellets 6 are arranged in this order, and an appropriate amount of a 1 N solution of LiPF 6 dissolved in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate as an electrolytic solution is injected and impregnated. Then, the stainless steel positive electrode case 3 is covered. By caulking, a coin-type battery having a thickness of 2 mm and a diameter of 23 mm was produced. The production of the battery was performed in a dry box under an argon atmosphere.

【0028】このようにして作製した試料aを正極活物
質として含む電池を、アルゴン雰囲気下のドライボック
ス内で試験した。25℃において0.5mA/cm2
電流密度で2.0Vまで放電した際に、正極重量当たり
250mAh/gの容量が得られた。放電容量が大き
く、エネルギー密度の高い電池として利用できる利点を
有している。また繰り返し充放電が可能なことも分かっ
た。
A battery containing the thus prepared sample a as a positive electrode active material was tested in a dry box under an argon atmosphere. When discharged to 2.0 V at a current density of 0.5 mA / cm 2 at 25 ° C., a capacity of 250 mAh / g per positive electrode weight was obtained. It has an advantage that it can be used as a battery having a large discharge capacity and a high energy density. It was also found that repeated charging and discharging were possible.

【0029】[0029]

【実施例2】実施例2では、以下のような製造方法によ
り得た組成式Na0.3NiO2.0・0.5H2Oで与えら
れる複酸化物を正極活物質に用いる他は、実施例1と同
様にして電池を作製した。
Example 2 Example 2 was the same as Example 1 except that the composite oxide having the compositional formula of Na 0.3 NiO 2.0 · 0.5 H 2 O obtained by the following manufacturing method was used as the positive electrode active material. A battery was manufactured in the same manner.

【0030】まず硝酸リチウムと水酸化ニッケルをモル
比でLi:Ni=2:1の割合になるように均一に混合
し、これを700℃、10時間、大気中で固相反応さ
せ、得られた粉末を水洗して過剰のアルカリ分を除去
し、乾燥することにより、LiNiO2を得た。このL
iNiO2をX線回折分析で解析すると、六方晶(空間
群R−3m)で指数付けすることができ、格子定数はa
=2.875(Å)、c=14.19(Å)であり、層
間の距離は約4.7(Å)であることが分かった。次に
このLiNiO2を、H+/Ni=4の割合で1.2規定
の硫酸溶液と混合し、3時間攪拌・反応させ、水洗、乾
燥することによりLi0.1NiO2を得た。さらにこのL
0.1NiO2を、Na+/Ni=0.3の割合で0.3
規定の水酸化ナトリウム溶液と混合し、3時間攪拌・反
応させ、水洗、乾燥することによりNa 0.3NiO2.0
0.5H2Oを得た。この試料をbとする。
First, lithium nitrate and nickel hydroxide are
Mix uniformly so that Li: Ni = 2: 1 ratio
Then, this is subjected to a solid phase reaction in air at 700 ° C. for 10 hours.
And wash the resulting powder with water to remove excess alkali
LiNiOTwoGot. This L
iNiOTwoIs analyzed by X-ray diffraction analysis.
Group R-3m), and the lattice constant is a
= 2.875 (Å), c = 14.19 (Å), and the layer
The distance between them was found to be about 4.7 (Å). next
This LiNiOTwoAnd H+/ Ni = 4 at 1.2
Mixed with sulfuric acid solution, stirred and reacted for 3 hours, washed with water, dried
Li0.1NiOTwoGot. Furthermore, this L
i0.1NiOTwoWith Na+/Ni=0.3 at the rate of 0.3
Mix with the specified sodium hydroxide solution and stir for 3 hours.
And washed with water and dried to obtain Na. 0.3NiO2.0
0.5HTwoO was obtained. This sample is designated as b.

【0031】試料bのX線回折図を解析すると、単斜晶
(空間群C2/m)で指数付けすることができ、格子定
数はa=4.903(Å)、c=2.832(Å)、c
=7.093(Å)、β=102.77(°)であり、
層間の距離は6.92(Å)であることが分かった。
When the X-ray diffraction pattern of sample b is analyzed, it can be indexed by monoclinic (space group C2 / m), and the lattice constants are a = 4.903 (Å) and c = 2.832 ( Å), c
= 7.093 (Å), β = 102.77 (°),
The distance between the layers was found to be 6.92 (Å).

【0032】このようにして作製した試料bを正極活物
質として含む電池を、アルゴン雰囲気下のドライボック
ス内で試験した。25℃において0.5mA/cm2
電流密度で2.0Vまで放電した際に、正極重量当たり
260mAh/gの容量が得られた。放電容量が大き
く、エネルギー密度の高い電池として利用できる利点を
有している。また繰り返し充放電が可能なことも分かっ
た。
A battery containing the thus prepared sample b as a positive electrode active material was tested in a dry box under an argon atmosphere. Upon discharging to 2.0 V at a current density of 0.5 mA / cm 2 at 25 ° C., a capacity of 260 mAh / g per positive electrode weight was obtained. It has an advantage that it can be used as a battery having a large discharge capacity and a high energy density. It was also found that repeated charging and discharging were possible.

【0033】[0033]

【実施例3】実施例3では、実施例2で製造した試料b
に重量比で20%の導電剤を加え正極とし、電解液には
塩化ナトリウムを溶解した3モル/リットルの水溶液を
用い、負極には亜鉛板を用いて水溶液系電池を作製し
た。25℃において0.5mA/cm2の電流密度で
0.7Vまで放電した際に、正極重量当たり300mA
h/gの容量が得られた。放電容量が大きく、エネルギ
ー密度の高い電池として利用できる利点を有している。
また繰り返し充放電が可能なことも分かった。
Example 3 In Example 3, the sample b manufactured in Example 2 was used.
An aqueous battery was prepared by adding a 20% by weight conductive agent to a positive electrode, using a 3 mol / liter aqueous solution of sodium chloride dissolved as an electrolytic solution, and using a zinc plate as a negative electrode. When discharged to 0.7 V at a current density of 0.5 mA / cm 2 at 25 ° C., 300 mA per positive electrode weight was discharged.
A capacity of h / g was obtained. It has an advantage that it can be used as a battery having a large discharge capacity and a high energy density.
It was also found that repeated charging and discharging were possible.

【0034】実施例1〜3では、ニッケル含有酸化物の
製造方法の具体例と、それを用いる電池の具体例につい
て示したが、一般に層状化合物LiXNiO2(0≦X<
1)の層間に水分子を挿人して製造するニッケル含有酸
化物の製造法であって、前記ニッケル含有酸化物の製造
方法により製造されたニッケル含有酸化物を正極活物質
として含む正極を有し、リチウム、ナトリウム、カリウ
ム、マグネシウム、カルシウム、ストロンチウム、アル
ミニウム、銅、銀の何れかを含む物質またはこの元素を
可逆的に挿入・脱離あるいは吸蔵・脱離できる物質を含
む負極を有しかつ前記元素のイオンが前記正極および前
記負極と電気化学反応をするための移動を行い得る物質
を電解質物質として含むか、プロトンが前記正極と電気
化学反応をするための移動を行い得る物質を電解質物質
として有する電池である場合には、同様の効果を生じる
ことはいうまでもない。
In Examples 1 to 3, specific examples of a method for producing a nickel-containing oxide and specific examples of a battery using the same were shown. However, in general, a layered compound Li x NiO 2 (0 ≦ X <
1) A method for producing a nickel-containing oxide produced by interposing water molecules between layers, comprising a positive electrode containing the nickel-containing oxide produced by the method for producing a nickel-containing oxide as a positive electrode active material. And a negative electrode containing a substance containing any of lithium, sodium, potassium, magnesium, calcium, strontium, aluminum, copper, silver or a substance capable of reversibly inserting / desorbing or occluding / desorbing this element; and A substance capable of performing an electrochemical reaction between the ions of the element and the positive electrode and the negative electrode as an electrolyte substance, or a substance capable of performing proton migration for performing an electrochemical reaction with the positive electrode is referred to as an electrolyte substance. It is needless to say that the same effect can be obtained in the case of a battery having:

【0035】[0035]

【比較例1】比較例1では、以下のような製造方法によ
り得た正極活物質の試料cを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず硝酸リチウムと
水酸化ニッケルをモル比でLi:Ni=2:1の割合に
なるように均一に混合し、これを700℃、10時間、
大気中で固相反応させ、得られた粉末を水洗して過剰の
アルカリ分を除去し、乾燥することにより、LiNiO
2を得た。このLiNiO2をX線回折分析で解析する
と、六方晶(空間群R−3m)で指数付けすることがで
き、格子定数はa=2.875(Å)、c=14.19
(Å)であり、層間の距離は約4.7(Å)であること
が分かった。この試料をcとする。
Comparative Example 1 In Comparative Example 1, a lithium battery was fabricated in the same manner as in Example 1, except that the sample c of the positive electrode active material obtained by the following manufacturing method was used. First, lithium nitrate and nickel hydroxide are uniformly mixed at a molar ratio of Li: Ni = 2: 1, and this is mixed at 700 ° C. for 10 hours.
A solid phase reaction is performed in the air, and the obtained powder is washed with water to remove excess alkali, and dried to obtain LiNiO 2.
Got two . When this LiNiO 2 is analyzed by X-ray diffraction analysis, it can be indexed by a hexagonal crystal (space group R-3m), and the lattice constants are a = 2.875 (Å) and c = 14.19.
(Å), and the distance between the layers was found to be about 4.7 (Å). This sample is referred to as c.

【0036】このようにして作製した試料cを正極活物
質として含む電池を、アルゴン雰囲気下のドライボック
ス内で試験した。25℃において0.5mA/cm2
電流密度で4.3Vまで充電した後、2.0Vまで放電
した際に、正極重量当たり200mAh/gの容量が得
られた。この電池と比較すると、本発明の実施例で製造
した正極活物質を有する電池は、放電容量が大きいこと
が分かる。
A battery containing the thus prepared sample c as a positive electrode active material was tested in a dry box under an argon atmosphere. After charging to 4.3 V at a current density of 0.5 mA / cm 2 at 25 ° C. and discharging to 2.0 V, a capacity of 200 mAh / g per positive electrode weight was obtained. Compared with this battery, the battery having the positive electrode active material manufactured in the example of the present invention has a large discharge capacity.

【0037】[0037]

【比較例2】比較例2では、比較例1で製造した正極活
物質の試料cを用いる他は、実施例3と同様にして水溶
液系電池を作製した。25℃において0.5mA/cm
2の電流密度で0.7Vまで放電した際に、正極重量当
たり220mAh/gの容量が得られた。この電池と比
較すると、本発明の実施例で製造した正極活物質を有す
る電池は、放電容量が大きいことが分かる。
Comparative Example 2 In Comparative Example 2, an aqueous solution type battery was produced in the same manner as in Example 3 except that the sample c of the positive electrode active material produced in Comparative Example 1 was used. 0.5 mA / cm at 25 ° C.
When the battery was discharged to 0.7 V at a current density of 2 , a capacity of 220 mAh / g per positive electrode weight was obtained. Compared with this battery, the battery having the positive electrode active material manufactured in the example of the present invention has a large discharge capacity.

【0038】[0038]

【比較例3】比較例3では、以下のような製造方法によ
り得た正極活物質の試料cを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず2規定の水酸化
カリウム溶液に臭素をモル比でK:Br=2:1となる
ように溶解させ、ここに硝酸ニッケルを2mol/lの
割合で水に溶解した溶液をゆっくり注ぎ、最終的にN
i:K:Br=4:10:5になるようにした。得られ
た沈殿を水洗、乾燥して、 0.15NiO 1.8
0.8H を得た。この試料をdとする。この試料は
図1に類似したX線回折図を示したが、13度付近に見
られる強度最大ピークの回折強度は300(cps)と
非常に弱く、試料aに比べて結晶性が非常に低いことが
分かった。
Comparative Example 3 In Comparative Example 3, a lithium battery was fabricated in the same manner as in Example 1, except that the sample c of the positive electrode active material obtained by the following manufacturing method was used. First, bromine is dissolved in a 2N potassium hydroxide solution so as to have a molar ratio of K: Br = 2: 1, and a solution obtained by dissolving nickel nitrate in water at a rate of 2 mol / l is slowly poured thereinto. N
i: K: Br = 4: 10: 5. The obtained precipitate was washed with water and dried to obtain K 0.15 NiO 1.8 ·
It was obtained 0.8H 2 O. This sample is referred to as d. This sample showed an X-ray diffraction pattern similar to that in FIG. 1, but the diffraction intensity of the maximum intensity peak observed at around 13 degrees was very weak at 300 (cps), and the crystallinity was very low as compared with sample a. I found out.

【0039】このようにして作製した試料dを正極活物
質として含む電池を、アルゴン雰囲気下のドライボック
ス内で試験した。25℃において0.5mA/cm
電流密度で2.0Vまで放電した際に、正極重量当たり
160mAh/gの容量が得られた。この電池と比較す
ると、本発明の実施例で製造した正極活物質を有する電
池は、放電容量が大きいことが分かる。
The battery containing the thus prepared sample d as a positive electrode active material was tested in a dry box under an argon atmosphere. When discharged to 2.0 V at a current density of 0.5 mA / cm 2 at 25 ° C., a capacity of 160 mAh / g per positive electrode weight was obtained. Compared with this battery, the battery having the positive electrode active material manufactured in the example of the present invention has a large discharge capacity.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
放電容量が大きい電池を実現することができ、種々の電
子機器の電源を始め、様々な分野に利用できるという利
点を有する。
As described above, according to the present invention,
A battery having a large discharge capacity can be realized, and has an advantage that it can be used in various fields including a power supply for various electronic devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における試料aのX線回折図。FIG. 1 is an X-ray diffraction diagram of a sample a in an example of the present invention.

【図2】本発明の実施例におけるコイン型電池の構成例
を示す断面図。
FIG. 2 is a cross-sectional view illustrating a configuration example of a coin-type battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 封口板 2 ガスケット 3 正極ケース 4 負極 5 セパレータ 6 正極合剤ペレット 1 sealing plate 2 Gasket 3 Positive case 4 Negative electrode 5 Separator 6 Positive electrode mixture pellet

フロントページの続き (56)参考文献 特開2001−250548(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 H01M 10/00 - 10/40 Continuation of the front page (56) References JP 2001-250548 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/00-4/62 H01M 10/00-10 / 40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 層状化合物LiNiO(0≦X<
1)を出発材料とし、水酸化物を水に溶解したアルカリ
性水溶液で前記層状化合物を処理することにより前記層
状化合物の層間に水分子を挿入する工程を有することを
特徴とするニッケル含有酸化物電極材料の製造方法。
1. The layered compound Li X NiO 2 (0 ≦ X <
1) Starting material, alkali with hydroxide dissolved in water
Treating the layered compound with a neutral aqueous solution
A method for producing a nickel-containing oxide electrode material, comprising a step of inserting a water molecule between layers of a crystalline compound .
【請求項2】 前記水酸化物が、アルカリ金属イオンま
たはアルカリ土類金属イオンまたはアンモニウムイオン
のいずれかを陽イオンとして含む水酸化物であることを
特徴とする請求項1記載のニッケル含有酸化物電極材料
の製造方法。
2. The method according to claim 1, wherein the hydroxide is an alkali metal ion.
Or alkaline earth metal ion or ammonium ion
Is a hydroxide containing any of
The nickel-containing oxide electrode material according to claim 1, wherein
Manufacturing method.
【請求項3】 請求項1または2記載のニッケル含有酸
化物電極材料の製造方法で製造したニッケル含有酸化物
電極材料を正極活物質として含む正極を有し、リチウ
ム、ナトリウム、カリウム、マグネシウム、カルシウ
ム、ストロンチウム、アルミニウム、銅、銀の何れかを
含む物質またはこの元素を可逆的に挿入・脱離あるいは
吸蔵・脱離できる物質を含む負極を有し、前記元素のイ
オンが前記正極および前記負極と電気化学反応をするた
めの移動を行い得る物質を電解質物質として含むことを
特徴とする電池。
3. Nickel-containing acid according to claim 1 or 2.
Having a positive electrode containing a nickel-containing oxide electrode material produced by the method for producing a nitride electrode material as a positive electrode active material, lithium, sodium, potassium, magnesium, calcium, strontium, aluminum, copper, a substance containing any of silver or An electrolyte material having a negative electrode containing a substance capable of reversibly inserting / desorbing or occluding / desorbing this element, wherein a substance capable of transferring ions of the element for performing an electrochemical reaction with the positive electrode and the negative electrode is used as an electrolyte substance. A battery comprising:
【請求項4】 請求項1または2記載のニッケル含有酸
化物電極材料の製造方法で製造したニッケル含有酸化物
電極材料を正極活物質として含む正極を有し、プロトン
が前記正極と電気化学反応をするための移動を行い得る
物質を電解質物質として有することを特徴とする電池。
4. Nickel-containing acid according to claim 1 or 2.
Having a positive electrode containing a nickel-containing oxide electrode material produced by the method for producing a nitride electrode material as a positive electrode active material, and having, as an electrolyte material, a substance capable of performing proton transfer for performing an electrochemical reaction with the positive electrode. Features battery.
JP2000149779A 2000-05-22 2000-05-22 Method for producing nickel-containing oxide electrode material and battery using the electrode material Expired - Fee Related JP3532139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149779A JP3532139B2 (en) 2000-05-22 2000-05-22 Method for producing nickel-containing oxide electrode material and battery using the electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000149779A JP3532139B2 (en) 2000-05-22 2000-05-22 Method for producing nickel-containing oxide electrode material and battery using the electrode material

Publications (2)

Publication Number Publication Date
JP2001332259A JP2001332259A (en) 2001-11-30
JP3532139B2 true JP3532139B2 (en) 2004-05-31

Family

ID=18655583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149779A Expired - Fee Related JP3532139B2 (en) 2000-05-22 2000-05-22 Method for producing nickel-containing oxide electrode material and battery using the electrode material

Country Status (1)

Country Link
JP (1) JP3532139B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152618B2 (en) * 2001-11-12 2008-09-17 日本電信電話株式会社 Method for producing positive electrode active material for layered oxide battery
JP5487676B2 (en) * 2009-03-30 2014-05-07 Tdk株式会社 Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt
US9028564B2 (en) 2012-03-21 2015-05-12 The Gillette Company Methods of making metal-doped nickel oxide active materials
US9570741B2 (en) 2012-03-21 2017-02-14 Duracell U.S. Operations, Inc. Metal-doped nickel oxide active materials
US9793542B2 (en) * 2014-03-28 2017-10-17 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
EP3278385A1 (en) * 2015-03-30 2018-02-07 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
WO2018043302A1 (en) * 2016-08-30 2018-03-08 国立研究開発法人産業技術総合研究所 Lithium-nickel composite oxide and production method therefor
EP3848330A1 (en) 2017-05-09 2021-07-14 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
JPWO2021229956A1 (en) * 2020-05-14 2021-11-18

Also Published As

Publication number Publication date
JP2001332259A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
Arai et al. Electrochemical and Thermal Behavior of LiNi1− z M z O 2 (M= Co, Mn, Ti)
JP3369206B2 (en) Chemical battery precursor, chemical battery, electrode for chemical battery, and method for producing them
JP3550783B2 (en) Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
Ein‐Eli et al. LiNi x Cu0. 5− x Mn1. 5 O 4 Spinel Electrodes, Superior High‐Potential Cathode Materials for Li Batteries: I. Electrochemical and Structural Studies
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
JP3875053B2 (en) ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME
EP0914683B1 (en) Positive electrode for lithium battery
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
JP5644273B2 (en) Titanium oxide, method for producing the same, and electrochemical device using the same as member
JP2019123668A (en) Lithium sodium composite oxide, cathode active material for secondary battery, and secondary battery
Sun et al. Improved performances of a LiNi 0.6 Co 0.15 Mn 0.25 O 2 cathode material with full concentration-gradient for lithium ion batteries
JP3532139B2 (en) Method for producing nickel-containing oxide electrode material and battery using the electrode material
JP2001332258A (en) Composite oxide material for electrode, its manufacturing method and cell therewith
JP3647758B2 (en) Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
Kim et al. Multifunctional surface modification with Co-free spinel structure on Ni-rich cathode material for improved electrochemical performance
JP4339741B2 (en) Layered oxide electrode material and battery using the same
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
CN114122353B (en) Lithium-rich manganese-based positive electrode material with multifunctional coating, preparation method and lithium ion battery
JPH08287914A (en) Lithium battery
JPH06111822A (en) Lithium battery
JP3403568B2 (en) Lithium nickel composite oxide, its production method and its use
KR20010068271A (en) Positive active material for lithium secondary battery and method of preparing same
Murali et al. Synthesis and characterization of copper substituted lithium manganate spinels
US20170324085A1 (en) Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees