JP6369126B2 - Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6369126B2
JP6369126B2 JP2014105702A JP2014105702A JP6369126B2 JP 6369126 B2 JP6369126 B2 JP 6369126B2 JP 2014105702 A JP2014105702 A JP 2014105702A JP 2014105702 A JP2014105702 A JP 2014105702A JP 6369126 B2 JP6369126 B2 JP 6369126B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
particle powder
material particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014105702A
Other languages
Japanese (ja)
Other versions
JP2015220220A (en
Inventor
和彦 菊谷
和彦 菊谷
雅史 小尾野
雅史 小尾野
貴幸 山村
貴幸 山村
一路 古賀
一路 古賀
竜太 正木
竜太 正木
和順 松本
和順 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2014105702A priority Critical patent/JP6369126B2/en
Publication of JP2015220220A publication Critical patent/JP2015220220A/en
Application granted granted Critical
Publication of JP6369126B2 publication Critical patent/JP6369126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、安価な原料を用いながら、高容量、高サイクル特性を示す層状岩塩構造を有する非水電解質二次電池用正極活物質粒子粉末及びその製造方法を提供する。   The present invention provides a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery having a layered rock salt structure exhibiting high capacity and high cycle characteristics while using an inexpensive raw material, and a method for producing the same.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.

従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、岩塩型構造のLiMnO、LiCoO、LiCo1−XNi、LiNiO等が一般的に知られており、なかでもLiCoOは高電圧と高容量を有する点で優れているが、コバルト原料の供給量が少ないことによる製造コスト高の問題や廃棄電池の環境安全上の問題を含んでいる。そこで、汎用性に優れて使用できる層状岩塩構造を有するNiとCoとMnの固溶体である層状岩塩構造を有した三元系正極活物質粒子粉末(基本組成:Li(NiCoMn)O−以下、同じ−)の研究が盛んに行われている。 Conventionally, as a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 4 V class, spinel type structure LiMn 2 O 4 , rock salt type structure LiMnO 2 , LiCoO 2 , LiCo 1-X Ni X O 2 , LiNiO 2, etc. are generally known. Among them, LiCoO 2 is excellent in that it has a high voltage and a high capacity, but there is a problem of high manufacturing cost due to a small supply amount of cobalt raw material. It includes environmental safety issues of waste batteries. Therefore, a ternary positive electrode active material particle powder having a layered rock salt structure that is a solid solution of Ni, Co, and Mn having a layered rock salt structure that can be used with excellent versatility (basic composition: Li (Ni x Co y Mn z ) Research on O 2- and so on is the same.

周知の通り、層状岩塩構造である該三元系正極活物質粒子粉末は、Ni化合物とCo化合物とMn化合物とリチウム化合物とを所定の割合で混合し、700〜1000℃の温度範囲で焼成することによって得ることができる。   As is well known, the ternary positive electrode active material particle powder having a layered rock salt structure is prepared by mixing a Ni compound, a Co compound, a Mn compound, and a lithium compound in a predetermined ratio and firing at a temperature range of 700 to 1000 ° C. Can be obtained.

しかし、この材料は、リチウムを引き抜いた際に、Ni2+がNi3+となりヤーンテラー歪を生じ、Liを0.45引き抜いた領域で六方晶から単斜晶へ、さらに引き抜くと単斜晶から六方晶と結晶構造が変化する。そのため、充放電反応を繰り返すことによって、結晶構造が不安定となり、サイクル特性が悪くなる、又酸素放出による電解液との反応などが起こり、電池の初回の充放電効率及び保存特性が悪くなる問題がある。この原因は、充放電の繰り返しに伴う結晶構造中のリチウムイオンの脱離・挿入挙動によって結晶格子が伸縮して、結晶構造が不安定になってしまうこととされている。 However, in this material, when lithium is extracted, Ni 2+ becomes Ni 3+ and yarn teller distortion occurs, and when Li is extracted 0.45, from hexagonal to monoclinic, when further extracted, monoclinic to hexagonal And the crystal structure changes. Therefore, repeated charge / discharge reactions cause the crystal structure to become unstable, resulting in poor cycle characteristics, and reactions with the electrolyte solution due to oxygen release, etc., resulting in poor initial charge / discharge efficiency and storage characteristics of the battery. There is. The cause of this is that the crystal lattice expands and contracts due to the desorption / insertion behavior of lithium ions in the crystal structure with repeated charge and discharge, and the crystal structure becomes unstable.

三元系正極活物質粒子粉末を用いたリチウムイオン二次電池にあっては、充放電の繰り返しによる充放電容量の劣化を抑制し、Co量を減らす、若しくは無くすことで低コストでありながらも高容量、高安定性である材料が現在最も要求されている。   In a lithium ion secondary battery using ternary positive electrode active material particle powder, it is possible to suppress deterioration of charge / discharge capacity due to repeated charge / discharge, and to reduce or eliminate the amount of Co, but at a low cost. There is currently a strong demand for materials with high capacity and high stability.

低コストでありながら高容量であることを達成させるためには、該三元系正極活物質粒子粉末においてCo量を減らし、尚且つ充填性に優れ、適度な大きさを有すること、更に結晶構造の不安定化の抑制をすることが重要と考えられてきた。その手段としては、三元系正極活物質粒子粉末に用いるNi、Co、Mn化合物の組成バランス、粒子径及び粒度分布を制御する方法、焼成温度を制御して高結晶の粉末を得る方法、異種元素を添加して結晶の結合力を強化する方法、表面処理を行うことで該目標を達成する方法等が行われている。   In order to achieve high capacity while being low cost, the amount of Co in the ternary positive electrode active material particle powder is reduced, the filling property is excellent, it has an appropriate size, and the crystal structure It has been considered important to suppress destabilization. As the means, a method of controlling the composition balance, particle diameter and particle size distribution of Ni, Co, and Mn compounds used in the ternary positive electrode active material particle powder, a method of obtaining a high crystal powder by controlling the firing temperature, A method for strengthening the bonding force of crystals by adding an element, a method for achieving the target by surface treatment, and the like are performed.

これまで、Co量が少ない三元系正極活物質粒子粉末でMg/Ca>0.5で且つ、Ca量が150ppm以下である材料が知られている(特許文献1)。また、Coレスとしながらも高容量化することができる材料について知られている(特許文献2)。   Up to now, a ternary positive electrode active material particle powder having a small amount of Co and a material having Mg / Ca> 0.5 and a Ca amount of 150 ppm or less is known (Patent Document 1). Further, a material capable of increasing the capacity while being Co-less is known (Patent Document 2).

特開2003−068306号公報JP 2003-068306 A 特開2003−086183号公報JP 2003-086183 A

非水電解質二次電池用の正極活物質として低コストであり、且つ高容量化が可能な材料が現在最も要求されているところであるが、未だ必要十分な要求を満たす材料やその製造方法が得られていない。   Currently, there is a demand for a low-cost and high-capacity material as a positive electrode active material for a non-aqueous electrolyte secondary battery. However, a material that satisfies the necessary and sufficient requirements and a method for manufacturing the same are still available. It is not done.

即ち、前記特許文献1には、MgとCaの添加量に着目しているのみで、また電池容量についても実用的に考えればまだ不十分であった。また、前記特許文献2では、Me元素がNiとMnのみで構成され、Coレスの材料ではあるが、製造方法などに問題があり電池容量が低く安定性に欠け、また高温サイクル特性等も記載されておらず実用的にまだ不十分であった。   In other words, Patent Document 1 only focuses on the added amounts of Mg and Ca, and the battery capacity is still insufficient when considered practically. Further, in Patent Document 2, although the Me element is composed of only Ni and Mn and is a Co-less material, there is a problem in the manufacturing method, the battery capacity is low, the stability is low, and high temperature cycle characteristics are also described. It was not practically enough.

そこで、本発明では、低コストであり、且つ高容量、高サイクル特性、特に高温下においても高サイクル特性を示す非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池を提供をすることを技術的課題とする。   Therefore, in the present invention, the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery that exhibits low cost, high capacity, high cycle characteristics, particularly high cycle characteristics even at high temperatures, a method for producing the same, and a non-aqueous electrolyte Providing a secondary battery is a technical issue.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、層状岩塩構造を有し、少なくともLiとNiとMnとを含有する複合酸化物からなる正極活物質粒子粉末であって、該正極活物質粒子粉末を一方の電極に用い、対極をLiとしたコインセルを組んで、60℃環境下で4.6Vまで初期充電を行い、横軸に電圧を、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)を作成したとき、4.25〜4.45Vの間にピークを有することを特徴とする非水電解質二次電池用正極活物質粒子粉末である(本発明1)。   That is, the present invention is a positive electrode active material particle powder having a layered rock salt structure and comprising a composite oxide containing at least Li, Ni, and Mn, and using the positive electrode active material particle powder for one electrode, A coin cell having a counter electrode of Li was assembled, and initial charge was performed up to 4.6 V in a 60 ° C. environment. The horizontal axis represents voltage, and the vertical axis represents dQ / dV which is a value obtained by differentiating the initial charge capacity with voltage. It is a positive electrode active material particle powder for nonaqueous electrolyte secondary batteries characterized by having a peak between 4.25 and 4.45 V when a graph (dQ / dV curve) is prepared (Invention 1).

また、本発明は、前記の横軸に電圧を、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)において、3.65〜3.85Vに現れるピークの最大値に対する4.25〜4.45Vの間に現れるピークの最大値の強度比が0.10以上である本発明1に記載の非水電解質二次電池用正極活物質粒子粉末である(本発明2)。   In the graph (dQ / dV curve) showing the dQ / dV which is a value obtained by differentiating the voltage on the horizontal axis and the initial charge capacity on the vertical axis, the present invention is 3.65 to 3.85V. The positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the present invention 1, wherein the intensity ratio of the peak maximum value appearing between 4.25 and 4.45 V with respect to the peak maximum value appearing in (Invention 2).

また、本発明は、少なくともNiとMnとを含有する水酸化物と、炭酸リチウムとを混合し、大気中で700〜1000℃で焼成して、少なくともLiとNiとMnとを含有する複合酸化物を得ることを特徴とする本発明1に記載の非水電解質二次電池用正極活物質粒子粉末の製造方法である(本発明3)。   Further, the present invention is a composite oxidation containing at least Li, Ni, and Mn by mixing a hydroxide containing at least Ni and Mn and lithium carbonate and firing at 700 to 1000 ° C. in the atmosphere. This is a method for producing a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the present invention 1 (Invention 3).

また、本発明は、本発明1に記載の非水電解質二次電池用正極活物質粒子粉末を使用した非水電解質二次電池である(本発明4)。   Moreover, this invention is a nonaqueous electrolyte secondary battery using the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries of this invention 1 (this invention 4).

本発明に係る非水電解質二次電池用正極活物質粒子粉末は、高容量、高サイクル特性を示すため、非水電解質二次電池用の正極活物質として好適である。   The positive electrode active material particle powder for a nonaqueous electrolyte secondary battery according to the present invention is suitable as a positive electrode active material for a nonaqueous electrolyte secondary battery because it exhibits high capacity and high cycle characteristics.

また、本発明に係る非水電解質二次電池用正極活物質粒子粉末の製造方法は、Coの含有量が少なくでき、安価なリチウム原料である炭酸リチウムを用いることができるので、原料コストの低減ができ、低コストで優れた特性を示す非水電解質二次電池用の正極活物質を提供することができる。   In addition, the method for producing a positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the present invention can reduce the content of Co, and can use lithium carbonate, which is an inexpensive lithium raw material, thereby reducing raw material costs. Thus, it is possible to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that exhibits excellent characteristics at a low cost.

横軸に電圧を、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)である。It is the graph (dQ / dV curve) which showed dQ / dV which is the value which differentiated the voltage on the horizontal axis and the initial charge capacity by the voltage on the vertical axis.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る非水電解質二次電池用正極活物質粒子粉末について述べる。   First, the positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the present invention will be described.

本発明に係る正極活物質粒子粉末は、層状岩塩構造を有し、少なくともLiとNiとMnを含有する複合酸化物により構成される。   The positive electrode active material particle powder according to the present invention has a layered rock salt structure and is composed of a composite oxide containing at least Li, Ni, and Mn.

本発明に係る正極活物質粒子粉末のLi含有量の範囲は、Li/(Ni+Co+Mn)がモル比で0.98〜1.07であることが好ましい。Li含有量が少なすぎると、カチオンミキシングが起きやすくなってしまい、特性が悪化してしまう。またLi含有量が多すぎると、残留リチウム分が多くなってしまい、塗料化の際にゲル化してしまう恐れがある。Li含有量はより好ましくは、Li/(Ni+Co+Mn)がモル比で1.00〜1.04である。   The Li content of the positive electrode active material particle powder according to the present invention is preferably such that Li / (Ni + Co + Mn) is 0.98 to 1.07 in molar ratio. If the Li content is too small, cation mixing is likely to occur, and the characteristics deteriorate. Moreover, when there is too much Li content, a residual lithium content will increase and there exists a possibility of gelatinizing in the case of coating-izing. The Li content is more preferably Li / (Ni + Co + Mn) in a molar ratio of 1.00 to 1.04.

本発明に係る正極活物質粒子粉末のNi含有量の範囲は、Ni/(Ni+Co+Mn)がモル比で0.2〜0.8であることが好ましく、0.3〜0.7であることがより好ましい。   The range of Ni content of the positive electrode active material particle powder according to the present invention is preferably such that Ni / (Ni + Co + Mn) is 0.2 to 0.8 in terms of molar ratio, and 0.3 to 0.7. More preferred.

本発明に係る正極活物質粒子粉末のMn含有量の範囲は、Mn/(Ni+Co+Mn)がモル比で0.1〜0.4であることが好ましく、0.2〜0.4であることがより好ましい。   As for the range of the Mn content of the positive electrode active material particle powder according to the present invention, Mn / (Ni + Co + Mn) is preferably 0.1 to 0.4 in terms of molar ratio, and preferably 0.2 to 0.4. More preferred.

特に、本発明に係る正極活物質粒子粉末はCoを含有していない、若しくはCo含有量が少ないことが特徴である。Co含有量はモル量で、0≦Co/(Ni+Mn)≦0.22であることが好ましい。本発明は、Co量を減らしつつ、NiとMnの配合状態をコントロールすることで、化合物の電気的中性条件を満たすために必要な余剰のLiを少なくでき、低コストでありながら、高容量を達成することができるものと考えている。Co含有量はより好ましくは0.02≦Co/(Ni+Mn)≦0.20であり、さらに好ましくは0.05≦Co/(Ni+Mn)≦0.18である。正極活物質粒子粉末にCoを少量含有させることにより、粒子としての導電性を向上させることができる。そのため、本発明の正極活物質粒子粉末を用いた電池のレート特性や直流抵抗といった特性を改善させることができる。   In particular, the positive electrode active material particle powder according to the present invention is characterized by not containing Co or having a low Co content. The Co content is preferably a molar amount, and 0 ≦ Co / (Ni + Mn) ≦ 0.22. The present invention can reduce the amount of excess Li necessary to satisfy the electrical neutral condition of the compound by controlling the blending state of Ni and Mn while reducing the amount of Co. Believes that can be achieved. The Co content is more preferably 0.02 ≦ Co / (Ni + Mn) ≦ 0.20, and further preferably 0.05 ≦ Co / (Ni + Mn) ≦ 0.18. By containing a small amount of Co in the positive electrode active material particle powder, conductivity as particles can be improved. Therefore, characteristics such as rate characteristics and direct current resistance of a battery using the positive electrode active material particle powder of the present invention can be improved.

また、本発明における正極活物質粒子粉末は、Mg、Al、Ti、V、Fe、Ga、Sr、Y、Zr、Nb、Mo、Ru、In、Sn、Ta、W、Biなどといった金属元素を含有していてもよい。正極活物質粒子粉末にこれらの金属元素を含有させることで、電池のサイクル特性やレート特性を向上させることができる。   Further, the positive electrode active material particle powder in the present invention contains metal elements such as Mg, Al, Ti, V, Fe, Ga, Sr, Y, Zr, Nb, Mo, Ru, In, Sn, Ta, W, and Bi. You may contain. By incorporating these metal elements into the positive electrode active material particle powder, the cycle characteristics and rate characteristics of the battery can be improved.

本発明における正極活物質粒子粉末を一方の電極に用い、対極をLiとしたコインセルを組んで、60℃環境下で4.6Vまで初期充電を行い、横軸に電圧を、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)を作成したとき、該グラフはピークが存在する電圧幅において電池容量が発現することを意味する。よって、前述のコインセルのdQ/dV曲線において、4.25〜4.45Vの間にピークが存在するということは、用いられている正極活物質が、電池の上限電圧を4.45Vまでとして充電したときに、より高容量化が可能な材料であることが示唆される。   Using the positive electrode active material particle powder of the present invention as one electrode and assembling a coin cell with Li as the counter electrode, initial charge is performed up to 4.6 V in a 60 ° C. environment, voltage is plotted on the horizontal axis, and initial charge is plotted on the vertical axis. When a graph (dQ / dV curve) showing dQ / dV, which is a value obtained by differentiating the capacity with voltage, is created, this graph means that the battery capacity appears in the voltage width where the peak exists. Therefore, in the dQ / dV curve of the above coin cell, the presence of a peak between 4.25 and 4.45V means that the positive electrode active material used is charged with the upper limit voltage of the battery up to 4.45V. This suggests that the material can have a higher capacity.

一般的に対極をLiとしたときの電池ではカットオフ電圧が3.0〜4.3Vまでの電池容量を使用するが、本発明における正極活物質を使用することで、4.45Vまで上限電圧を上げて高容量かつ安定性に優れた次世代型の正極活物質を使用した電池を提供することができることが考えられる。上限電圧を上げることで電池に使用する正極活物質量を減らすこともでき、電池としてのコストダウンも図ることができると考えられる。   In general, when the counter electrode is set to Li, a battery capacity with a cut-off voltage of 3.0 to 4.3 V is used, but by using the positive electrode active material in the present invention, the upper limit voltage is 4.45 V. It is conceivable that a battery using a next-generation positive electrode active material having a high capacity and excellent stability can be provided. It is considered that by increasing the upper limit voltage, the amount of positive electrode active material used for the battery can be reduced, and the cost of the battery can be reduced.

また、本発明におけるdQ/dV曲線において、一般的な層状岩塩構造を有する正極活物質粒子粉末では4.25〜4.45Vの間にはピークは見られない。各種検討することにより本発明者らは、4.25〜4.45Vにピークを有する正極活物質粒子粉末材料を見出し、コストダウンだけならず、高容量化も成し得た。   In the dQ / dV curve in the present invention, no peak is observed between 4.25 and 4.45 V in the positive electrode active material particle powder having a general layered rock salt structure. Through various investigations, the present inventors have found a positive electrode active material particle powder material having a peak at 4.25 to 4.45 V, and not only reduced costs but also increased capacity.

本発明におけるdQ/dV曲線において、3.65〜3.85Vに現れるピークの最大値に対する4.25〜4.45Vの間に現れるピークの最大値の強度比は好ましくは0.10以上で、より好ましくは0.15以上で、さらに好ましくは0.20以上である。   In the dQ / dV curve in the present invention, the intensity ratio of the peak maximum value appearing between 4.25 and 4.45 V to the peak maximum value appearing at 3.65 to 3.85 V is preferably 0.10 or more, More preferably, it is 0.15 or more, More preferably, it is 0.20 or more.

次に、本発明に係る非水電解質用二次電池正極活物質粒子粉末の製造方法について述べる。   Next, the manufacturing method of the secondary battery positive electrode active material particle powder for nonaqueous electrolyte which concerns on this invention is described.

本発明に係る非水電解質用二次電池正極活物質粒子粉末は、少なくともNiとMnとを含有する水酸化物を前駆体として、該前駆体と炭酸リチウムとを所定の比率で加え均一に混合し、大気中で700℃〜1000℃の焼成を経ることで得ることができる。   The secondary battery positive electrode active material particle powder for non-aqueous electrolyte according to the present invention uses a hydroxide containing at least Ni and Mn as a precursor, and the precursor and lithium carbonate are added in a predetermined ratio and mixed uniformly. And it can obtain by passing through 700 degreeC-1000 degreeC baking in air | atmosphere.

本発明における少なくともNiとMnとを含有する水酸化物は、湿式反応による共沈等の定法により得ることができる。   The hydroxide containing at least Ni and Mn in the present invention can be obtained by a conventional method such as coprecipitation by a wet reaction.

また、湿式反応の過程においてCoを添加することで、NiとCoとMnの水酸化物を得ることもできる。その際のCo量は前記したとおり、0≦Co/(Ni+Mn)≦0.22程度であることが好ましい。   Further, by adding Co in the course of the wet reaction, a hydroxide of Ni, Co, and Mn can be obtained. As described above, the amount of Co at that time is preferably about 0 ≦ Co / (Ni + Mn) ≦ 0.22.

加えて、湿式反応の過程において他の金属元素も添加することができる。添加した金属元素は水酸化物粒子内に存在しても、水酸化物粒子の外縁に存在してもよい。添加できる金属元素の種類としては、Mg、Al、Ti、V、Fe、Ga、Sr、Y、Zr、Nb、Mo、Ru、In、Sn、Ta、W、Biなどが挙げられる。   In addition, other metal elements can be added in the course of the wet reaction. The added metal element may be present in the hydroxide particles or may be present at the outer edge of the hydroxide particles. Examples of the metal element that can be added include Mg, Al, Ti, V, Fe, Ga, Sr, Y, Zr, Nb, Mo, Ru, In, Sn, Ta, W, and Bi.

本発明においては、Li源に炭酸リチウムを使用し、焼成は大気中で行うことが重要である。一般的にNi含有量が多い三元系粒子粉末はLi源に水酸化リチウムを使用し、酸素濃度が80%を超えた領域で焼成する必要があるが、本発明の正極活物質粒子粉末は、より安価である炭酸リチウムがLi源として使用でき、また焼成において高濃度酸素を使用する必要がないため、更にコストダウンを図ることができる。   In the present invention, it is important to use lithium carbonate as the Li source and perform the firing in the air. In general, the ternary particle powder having a high Ni content uses lithium hydroxide as the Li source and needs to be fired in a region where the oxygen concentration exceeds 80%. Since cheaper lithium carbonate can be used as the Li source and it is not necessary to use high-concentration oxygen during firing, the cost can be further reduced.

次に、本発明に係る非水電解質二次電池用正極活物質粒子粉末からなる正極活物質を用いた正極について述べる。   Next, the positive electrode using the positive electrode active material which consists of the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries which concerns on this invention is described.

本発明に係る正極活物質粒子粉末を含有する正極を製造する場合には、定法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When manufacturing the positive electrode containing the positive electrode active material particle powder according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明に係る正極活物質粒子粉末を含有する正極を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder which concerns on this invention is comprised from the said positive electrode, a negative electrode, and electrolyte.

本発明において負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。   In the present invention, as the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite or the like can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係る正極活物質粒子粉末を含有する正極を用いて製造した非水電解質二次電池は、後述する評価法で初期放電容量は170mAh/g以上である。   The nonaqueous electrolyte secondary battery manufactured using the positive electrode containing the positive electrode active material particle powder according to the present invention has an initial discharge capacity of 170 mAh / g or more by an evaluation method described later.

本発明に係る正極活物質粒子粉末を用いたとき、一般的にNi含有量が大きいことから高容量が期待できるが、本発明のように該正極活物質粒子粉末をCo量を減らして、尚且つ本発明にある製造方法を用いても高容量を達成できることが重要である。   When the positive electrode active material particle powder according to the present invention is used, a high capacity can be expected because the Ni content is generally large. However, the positive electrode active material particle powder is reduced in the Co amount as in the present invention, and It is important that high capacity can be achieved even by using the manufacturing method according to the present invention.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

正極活物質粒子粉末の組成は、0.2gの試料を20%塩酸溶液25mlの溶液で加熱溶解させ、冷却後100mlメスフラスコに純水を入れ調整液を作製し、測定にはICAP[SPS−4000 セイコー電子工業(株)製]を用いて各元素を定量して決定した。   The composition of the positive electrode active material particle powder was as follows. 0.2 g of a sample was heated and dissolved in 25 ml of a 20% hydrochloric acid solution, and after cooling, pure water was added to a 100 ml volumetric flask to prepare an adjustment solution. For measurement, ICAP [SPS- 4000 Seiko Denshi Kogyo Co., Ltd.] was used to quantitatively determine each element.

正極活物質粒子粉末の化合物の相の同定は、X線回折装置[SmartLab (株)リガク製]にて、2θが10〜90度の範囲を、0.02度刻みで0.8度/minステップスキャンで行った。   The identification of the compound phase of the positive electrode active material particle powder is performed using an X-ray diffractometer [SmartLab Co., Ltd., manufactured by Rigaku Corporation] in the range of 2θ of 10 to 90 degrees and 0.8 degrees / min in increments of 0.02 degrees. Performed by step scan.

本発明に係る正極活物質粒子粉末については、2032型コインセルを用いて電池評価を行った。   About the positive electrode active material particle powder which concerns on this invention, battery evaluation was performed using the 2032 type | mold coin cell.

電池評価に係るコインセルについては、正極活物質粒子粉末として複合酸化物を90重量%、導電材としてアセチレンブラックを3重量%、グラファイトを3重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン4重量%とを混合した後、Al金属箔に塗布し120℃にて乾燥した。このシートを14mmΦに打ち抜いた後、1.5t/cmで圧着したものを正極に用いた。負極は16mmΦに打ち抜いた厚さが500μmの金属リチウムとし、電解液は1mol/LのLiPFを溶解したECとDMCを体積比1:2で混合した溶液を用いて2032型コインセルを作製した。 For coin cells for battery evaluation, 90% by weight of composite oxide as positive electrode active material powder, 3% by weight of acetylene black as a conductive material, 3% by weight of graphite, and polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder After mixing 4% by weight, it was applied to an Al metal foil and dried at 120 ° C. This sheet was punched out to 14 mmΦ, and then pressure-bonded at 1.5 t / cm 2 was used as the positive electrode. A 2032 type coin cell was manufactured using a solution in which EC and DMC mixed with 1 mol / L LiPF 6 dissolved in a volume ratio of 1: 2 were used as the negative electrode made of metallic lithium having a thickness of 500 μm punched to 16 mmΦ.

横軸に電圧を、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)は、前記のコインセルを60℃の環境下で0.2Cで4.6Vまで16mA/gの充電密度で初期充電を行い、そのときの電圧を横軸に、初期充電容量を電圧で微分した値であるdQ/dVを縦軸に用いて電圧が3.0V〜4.6Vの範囲のグラフを作成した。図1に実施例と比較例のdQ/dV曲線を示す。   The graph (dQ / dV curve) showing dQ / dV which is a value obtained by differentiating the voltage on the horizontal axis and the initial charge capacity on the vertical axis is 4 at 0.2 C in an environment of 60 ° C. The initial charge is performed at a charge density of 16 mA / g up to .6V, the voltage at that time is plotted on the horizontal axis, and dQ / dV, which is a value obtained by differentiating the initial charge capacity with the voltage, is plotted on the vertical axis. A graph in the range of 4.6V was created. FIG. 1 shows dQ / dV curves of Examples and Comparative Examples.

初期放電容量については、前記のコインセルを25℃の環境下で0.2CのCレートで4.3VまでCC−CV条件で充電し、5分休止させ、その後0.1CのCレートで3.0Vまで放電した1サイクル目の放電容量を用いた。表2に実施例と比較例の初期放電容量を示す。   With respect to the initial discharge capacity, the coin cell was charged under a CC-CV condition at a C rate of 0.2 C up to 4.3 V under an environment of 25 ° C. under a CC-CV condition, and rested for 5 minutes, and then at a C rate of 0.1 C. The discharge capacity of the first cycle discharged to 0V was used. Table 2 shows the initial discharge capacities of the examples and comparative examples.

60℃サイクル特性については、まず前記のコインセルを60℃の環境下で充電を0.2CのCレート条件で4.3Vまで充電し(CC−CV条件)、5分休止後、放電を0.2CのCレート条件で3.0Vまで行った。本条件にて、2サイクルの充放電を実施した後、充電を0.5CのCレート条件で4.3Vまで充電し(CC−CV条件)、5分休止後、放電を1CのCレート条件で3.0Vまで行った。この条件にて70サイクルの充放電を実施し、3サイクル目の放電容量xに対する70サイクル目の放電容量をyとしたとき、60℃サイクル特性は(y/x)×100%とした。表2に実施例と比較例の60℃サイクル特性を示す。   Regarding the 60 ° C. cycle characteristics, first, the above-mentioned coin cell was charged in an environment of 60 ° C. under a C rate condition of 0.2 C to 4.3 V (CC-CV condition), and after 5 minutes of rest, the discharge was reduced to 0. 0. It carried out to 3.0V on the C rate conditions of 2C. Under this condition, after 2 cycles of charge / discharge, charge was charged to 4.3V under 0.5C C rate condition (CC-CV condition), and after 5 minutes rest, the discharge was discharged at 1C C rate condition To 3.0V. Under these conditions, 70 cycles of charge / discharge were performed, and when the discharge capacity at the 70th cycle relative to the discharge capacity x at the 3rd cycle was y, the 60 ° C. cycle characteristics were (y / x) × 100%. Table 2 shows the 60 ° C. cycle characteristics of Examples and Comparative Examples.

実施例1 <Li1.02(Ni0.6Co0.1Mn0.3)O粒子粉末>
硫酸ニッケルと硫酸コバルトと硫酸マンガンとを各元素のモル比でNi:Co:Mn=6:1:3の比になるように秤量し、湿式反応により共沈させた。水洗、乾燥することで(Ni0.6Co0.1Mn0.3)(OH)粒子粉末(前駆体)を得た。該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.02の比になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で900℃、5時間保持することでLi1.02(Ni0.6Co0.1Mn0.3)Oとなる正極活物質粒子粉末を得た。
Example 1 <Li 1.02 (Ni 0.6 Co 0.1 Mn 0.3 ) O 2 Particle Powder>
Nickel sulfate, cobalt sulfate, and manganese sulfate were weighed so that each element had a molar ratio of Ni: Co: Mn = 6: 1: 3 and coprecipitated by a wet reaction. By washing with water and drying, (Ni 0.6 Co 0.1 Mn 0.3 ) (OH) 2 particle powder (precursor) was obtained. The precursor and lithium carbonate were mixed in a mortar for 1 hour so that the molar ratio of Li / (Ni + Co + Mn) was 1.02, and a uniform mixture was obtained. Positive electrode active material particle powder in which 50 g of the obtained mixture is put in an alumina crucible and becomes Li 1.02 (Ni 0.6 Co 0.1 Mn 0.3 ) O 2 by holding at 900 ° C. for 5 hours in an air atmosphere. Got.

ここで得た正極活物質粒子粉末を用いてコイン型電池を作製した。このコイン型電池は前述したdQ/dV曲線で、4.25〜4.45Vの範囲でピークを有した。また、3.65〜3.85Vに現れるピークの最大値に対する4.25〜4.45Vの間に現れるピークの最大値の強度比は、0.29であった。   A coin-type battery was fabricated using the positive electrode active material particle powder obtained here. This coin-type battery had a peak in the range of 4.25 to 4.45 V in the dQ / dV curve described above. The intensity ratio of the maximum value of the peak appearing between 4.25 and 4.45 V to the maximum value of the peak appearing at 3.65 to 3.85 V was 0.29.

参考例1 <Li1.02(Ni0.67Mn0.33)O粒子粉末>
硫酸ニッケルと硫酸マンガンとをNi元素とMn元素とのモル比でNi:Mn67:33とした他は実施例1と同様にして水酸化物の前駆体を得た。該前駆体と炭酸リチウムとをLi/(Ni+Mn)がモル比で1.02になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で900℃、5時間保持することでLi1.02(Ni0.67Mn0.33)Oとなる正極活物質粒子粉末を得た。得られた正極活物質粒子粉末の諸特性を表1に示す。
Reference Example 1 <Li 1.02 (Ni 0.67 Mn 0.33 ) O 2 Particle Powder>
A hydroxide precursor was obtained in the same manner as in Example 1 except that nickel sulfate and manganese sulfate were changed to Ni: Mn67: 33 in the molar ratio of Ni element and Mn element. The precursor and lithium carbonate were mixed in a mortar for 1 hour so that the Li / (Ni + Mn) molar ratio was 1.02, and a uniform mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and held at 900 ° C. for 5 hours in an air atmosphere to obtain positive electrode active material particle powder that became Li 1.02 (Ni 0.67 Mn 0.33 ) O 2 . Table 1 shows various characteristics of the obtained positive electrode active material particle powder.

比較例1 <Li1.04(Ni0.5Co0.2Mn0.3)O粒子粉末>
硫酸ニッケルと硫酸コバルトと硫酸マンガンとを各元素のモル比でNi:Co:Mn=5:2:3とした他は実施例1と同様にして水酸化物の前駆体を得た。該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.04になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で920℃、5時間保持することでLi1.04(Ni0.5Co0.2Mn0.3)Oとなる正極活物質粒子粉末を得た。得られた正極活物質粒子粉末の諸特性を表1、表2に示す。
Comparative Example 1 <Li 1.04 (Ni 0.5 Co 0.2 Mn 0.3 ) O 2 Particle Powder>
A hydroxide precursor was obtained in the same manner as in Example 1 except that nickel sulfate, cobalt sulfate, and manganese sulfate were used at a molar ratio of each element of Ni: Co: Mn = 5: 2: 3. The precursor and lithium carbonate were mixed for 1 hour in a mortar so that the molar ratio of Li / (Ni + Co + Mn) was 1.04 to obtain a uniform mixture. Positive electrode active material particle powder that is put into Li 1.04 (Ni 0.5 Co 0.2 Mn 0.3 ) O 2 by putting 50 g of the obtained mixture in an alumina crucible and holding at 920 ° C. for 5 hours in an air atmosphere. Got. Various characteristics of the obtained positive electrode active material particle powder are shown in Tables 1 and 2.

比較例2 <Li1.05(Ni0.33Co0.33Mn0.33)O粒子粉末>
硫酸ニッケルと硫酸コバルトと硫酸マンガンとを各元素のモル比でNi:Co:Mn=1:1:1とした他は実施例1と同様にして水酸化物の前駆体を得た。該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.05になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で950℃、5時間保持することでLi1.05(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子粉末を得た。得られた正極活物質粒子粉末の諸特性を表1に示す。
Comparative Example 2 <Li 1.05 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 Particle Powder>
A hydroxide precursor was obtained in the same manner as in Example 1 except that nickel sulfate, cobalt sulfate, and manganese sulfate were used at a molar ratio of Ni: Co: Mn = 1: 1: 1. The precursor and lithium carbonate were mixed for 1 hour in a mortar so that the molar ratio of Li / (Ni + Co + Mn) was 1.05 to obtain a uniform mixture. Positive electrode active material particle powder that is put into Li 1.05 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 by putting 50 g of the obtained mixture in an alumina crucible and holding at 950 ° C. for 5 hours in an air atmosphere. Got. Table 1 shows various characteristics of the obtained positive electrode active material particle powder.

比較例3 <Li1.00(Ni0.6Co0.2Mn0.2)O粒子粉末>
硫酸ニッケルと硫酸コバルトと硫酸マンガンとを各元素のモル比でNi:Co:Mn=6:2:2とした他は実施例1と同様にして水酸化物の前駆体を得た。前記該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.00になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で930℃、5時間保持することでLi1.00(Ni0.6Co0.2Mn0.2)Oとなる正極活物質粒子粉末を得た。得られた正極活物質粒子粉末の諸特性を表1に示す。
Comparative Example 3 <Li 1.00 (Ni 0.6 Co 0.2 Mn 0.2) O 2 particles>
A hydroxide precursor was obtained in the same manner as in Example 1 except that nickel sulfate, cobalt sulfate, and manganese sulfate were used at a molar ratio of each element of Ni: Co: Mn = 6: 2: 2. The precursor and lithium carbonate were mixed for 1 hour in a mortar so that the molar ratio of Li / (Ni + Co + Mn) was 1.00 to obtain a uniform mixture. The resultant mixture 50g placed in an alumina crucible, 930 ° C. in an air atmosphere, the positive electrode active material particles forming Li 1.00 (Ni 0.6 Co 0.2 Mn 0.2) O 2 by 5 hours Got. Table 1 shows various characteristics of the obtained positive electrode active material particle powder.

Figure 0006369126
Figure 0006369126

Figure 0006369126
Figure 0006369126

本発明に係る非水電解質二次電池用正極活物質粒子粉末は、電池としたときに高容量でありながらCoを低減して安価にすることができたため、非水電解質二次電池用の正極活物質として好適である。   The positive electrode active material particle powder for a non-aqueous electrolyte secondary battery according to the present invention was able to reduce the cost by reducing Co while having a high capacity when used as a battery, so that the positive electrode for a non-aqueous electrolyte secondary battery Suitable as an active material.

Claims (4)

層状岩塩構造を有し、少なくともLiとNiとMnとCoと以下に記載のモル比で含有する複合酸化物からなる正極活物質粒子粉末であって、該正極活物質粒子粉末を一方の電極に用い、対極をLiとしたコインセルを組んで、60℃環境下で4.6Vまで初期充電を行い、横軸に電圧を、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)を作成したとき、4.25〜4.45Vの間にピークを有することを特徴とする非水電解質二次電池用正極活物質粒子粉末。
Li/(Ni+Co+Mn):1.00〜1.04
Ni/(Ni+Co+Mn):0.3〜0.7
Mn/(Ni+Co+Mn):0.2〜0.4
Co/(Ni+Co+Mn):0.05〜0.18
A positive electrode active material particle powder comprising a composite oxide having a layered rock salt structure and containing at least the following molar ratios of Li, Ni, Mn, and Co, the positive electrode active material particle powder being one electrode In this example, a coin cell having a counter electrode of Li is assembled, and an initial charge is performed up to 4.6 V in a 60 ° C. environment. The horizontal axis represents the voltage, and the vertical axis represents the value obtained by differentiating the initial charge capacity by the voltage dQ / dV. A positive electrode active material particle powder for a non-aqueous electrolyte secondary battery, having a peak between 4.25 and 4.45 V when a graph (dQ / dV curve) showing is shown.
Li / (Ni + Co + Mn): 1.00 to 1.04
Ni / (Ni + Co + Mn): 0.3 to 0.7
Mn / (Ni + Co + Mn): 0.2 to 0.4
Co / (Ni + Co + Mn): 0.05 to 0.18
前記の横軸に電圧を、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)において、3.65〜3.85Vに現れるピークの最大値に対する4.25〜4.45Vの間に現れるピークの最大値の強度比が0.10以上である請求項1に記載の非水電解質二次電池用正極活物質粒子粉末。 The maximum value of the peak appearing at 3.65 to 3.85 V in the graph (dQ / dV curve) showing dQ / dV which is a value obtained by differentiating the voltage on the horizontal axis and the initial charge capacity on the vertical axis. The positive electrode active material particle powder for nonaqueous electrolyte secondary batteries according to claim 1, wherein the intensity ratio of the maximum value of the peak appearing between 4.25 and 4.45 V relative to is 0.10 or more. 少なくともNiとMnとを含有する水酸化物と、炭酸リチウムとを混合し、大気中で700〜1000℃で焼成して、少なくともLiとNiとMnとを含有する複合酸化物を得ることを特徴とする請求項1に記載の非水電解質二次電池用正極活物質粒子粉末の製造方法。 It is characterized in that a hydroxide containing at least Ni and Mn and lithium carbonate are mixed and fired at 700 to 1000 ° C. in the atmosphere to obtain a composite oxide containing at least Li, Ni and Mn. The manufacturing method of the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries of Claim 1. 請求項1に記載の非水電解質二次電池用正極活物質粒子粉末を使用した非水電解質二次電池。 The nonaqueous electrolyte secondary battery using the positive electrode active material particle powder for nonaqueous electrolyte secondary batteries of Claim 1.
JP2014105702A 2014-05-21 2014-05-21 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Active JP6369126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014105702A JP6369126B2 (en) 2014-05-21 2014-05-21 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105702A JP6369126B2 (en) 2014-05-21 2014-05-21 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015220220A JP2015220220A (en) 2015-12-07
JP6369126B2 true JP6369126B2 (en) 2018-08-08

Family

ID=54779415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105702A Active JP6369126B2 (en) 2014-05-21 2014-05-21 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6369126B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10236505B2 (en) 2015-03-04 2019-03-19 Jgc Catalysts And Chemicals Ltd. Positive electrode active substance for non-aqueous electrolyte secondary battery, positive electrode and non-aqueous electrolyte secondary battery
JP6053982B1 (en) * 2016-02-22 2016-12-27 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
EP3518330A4 (en) 2016-09-21 2020-11-11 Basf Toda Battery Materials LLC Cathode active material and method of manufacturing same, and nonaqueous electrolyte secondary battery
US11552293B2 (en) 2019-03-05 2023-01-10 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP7225288B2 (en) * 2021-02-22 2023-02-20 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and lithium ion secondary battery
WO2023206241A1 (en) * 2022-04-28 2023-11-02 宁德新能源科技有限公司 Positive electrode material and electrochemical apparatus comprising same, and electronic apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012112316A1 (en) * 2011-02-18 2012-08-23 3M Innovative Properties Company Composite particles, methods of making the same, and articles including the same
WO2013070298A2 (en) * 2011-08-31 2013-05-16 3M Innovative Properties Company High capacity positive electrodes for use in lithium-ion electrochemical cells and methods of making same

Also Published As

Publication number Publication date
JP2015220220A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
KR102307224B1 (en) Compositions containing doped nickelate compounds
JP6407861B2 (en) Doped nickel acid compound
WO2016104702A1 (en) Sulfide-based solid electrolyte for lithium ion cell, and solid electrolyte compound
TWI526397B (en) A lithium manganate powder for a nonaqueous electrolyte storage battery and a method for producing the same, and a nonaqueous electrolyte battery
JP5472602B2 (en) Method for producing lithium manganate particles and non-aqueous electrolyte secondary battery
WO2010113512A1 (en) Positive electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
EP2872452B1 (en) Doped nickelate compounds
JP6369126B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JPWO2014061654A1 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP6986879B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP6053982B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP6341095B2 (en) Non-aqueous electrolyte secondary battery lithium manganate particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP6142868B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP6109399B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP5598684B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and battery
WO2015019483A1 (en) Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery
JP5594500B2 (en) Lithium manganate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015037111A1 (en) Positive-electrode active material for use in lithium-ion secondary batteries and lithium-ion secondary battery using said positive-electrode active material
JP2016192310A (en) Positive electrode material, nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6369126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250