WO2015019483A1 - Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery - Google Patents

Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery Download PDF

Info

Publication number
WO2015019483A1
WO2015019483A1 PCT/JP2013/071590 JP2013071590W WO2015019483A1 WO 2015019483 A1 WO2015019483 A1 WO 2015019483A1 JP 2013071590 W JP2013071590 W JP 2013071590W WO 2015019483 A1 WO2015019483 A1 WO 2015019483A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
nonaqueous secondary
Prior art date
Application number
PCT/JP2013/071590
Other languages
French (fr)
Japanese (ja)
Inventor
心 ▲高▼橋
崇 中林
達哉 遠山
小西 宏明
孝亮 馮
章 軍司
翔 古月
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/071590 priority Critical patent/WO2015019483A1/en
Publication of WO2015019483A1 publication Critical patent/WO2015019483A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous secondary battery, a positive electrode for a non-aqueous secondary battery using the same, a non-aqueous secondary battery, and a manufacturing method thereof.
  • Lithium ion secondary batteries have a higher energy density than nickel metal hydride batteries and the like, and are used, for example, as power sources for portable electronic devices.
  • application to medium and large-sized applications such as hybrid vehicles, electric vehicles, stationary uninterruptible power supplies, and power leveling has been promoted.
  • an electric vehicle there is a demand for a longer travel distance, and a further increase in energy density is required.
  • the improvement of the coulomb efficiency and the initial charge / discharge efficiency are required.
  • a layered oxide positive electrode active material of LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 is used as the positive electrode active material.
  • the discharge capacity is 150 to 180 Ah / kg, and further higher capacity is required.
  • Patent Document 1 the composition ratio of Li, Co, Ni, and Mn is Li 1+ (1/3) x Co 1-xy Ni (1/2) y Mn (2/3) x + (1/2 )
  • An active material for a lithium secondary battery containing a solid solution of a lithium transition metal composite oxide satisfying y has been proposed.
  • Patent Document 2 discloses I (635) and I (605), which are represented by the chemical formula Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 and have respective intensities of 635 cm ⁇ 1 and 605 cm ⁇ 1 in Raman spectroscopic measurement. ), The discharge capacity and the charge / discharge efficiency are improved when 0.6 ⁇ I (635) / I (605) ⁇ 1.5.
  • the present invention has been made in view of the above points, and the object thereof is a positive electrode active material for a non-aqueous secondary battery having a larger discharge capacity and a high Coulomb efficiency or initial charge / discharge efficiency, and It is to obtain a non-aqueous secondary battery.
  • a positive electrode active material for a non-aqueous secondary battery having a large discharge capacity and high coulomb efficiency is provided.
  • the positive electrode active material for a non-aqueous secondary battery of the present invention that achieves high energy density can be expressed as a solid solution of Li 2 MnO 3 , LiNiO 2 , and LiMnO 2 . Note that a simple mixture of Li 2 MnO 3 powder, LiNiO 2 powder, and LiMnO 2 powder is clearly distinguished from a solid solution.
  • composition formula xLi 2 MnO 3 — (1-x) LiNiaMnbMcO 2
  • M is Co, Ta, Zr, Cr, Ni, Fe, V, Al, Mg, Ti, W, etc.
  • X in the composition formula represents the ratio of Li 2 MnO 3 in xLi 2 MnO 3 — (1-x) LiNiaMnbMcO 2 .
  • a in the composition formula indicates the content ratio (atomic weight ratio) of Ni in the positive electrode active material.
  • a is 0.5 or less, the content ratio of Ni mainly contributing to the charge / discharge reaction is decreased, and the capacity is decreased.
  • b represents the content ratio (atomic weight ratio) of Mn in the positive electrode active material.
  • the composition ratio of Li, Mn, Ni, and O may be in the above range.
  • the composition ratio of M is preferably 5 mol% or less in the proportion of the entire transition metal.
  • the above composition contains Li, Ni, and Mn as main components and contains almost no Co. Since Co is expensive, the positive electrode active material in the present embodiment has an advantage of low cost in addition to high energy density. Moreover, decomposition of the electrolytic solution and suppression of gas generation are possible, and cycle characteristics are improved.
  • the intensities of the peak of 430 cm ⁇ 1 attributed to Li 2 MnO 3 and the peak of 600 cm ⁇ 1 attributed to layered LiMO 2 in Raman spectroscopy are I (430) and I ( 600) (I (430) / I (600)) is less than 0.3.
  • I (430) / I (600) is a value that changes by controlling the surface state of the positive electrode active material, and the Coulomb efficiency is improved by setting the above range.
  • Examples of the surface treatment method include sodium sulfate treatment, ammonium sulfate treatment, aluminum nitrate treatment, boric acid treatment, ammonium vanadate treatment, ammonium fluoride treatment, and mixed treatment thereof.
  • I (660) and I (600) which are intensities of 660 cm ⁇ 1 and 600 cm ⁇ 1 in Raman spectroscopic measurement
  • I (660) / I (600) is smaller than 0.35. preferable.
  • I (660) / I (600) also changes depending on the surface state of the positive electrode active material, and the cycle characteristics are improved within the above range.
  • the above configuration having these characteristics is preferable because it can provide a positive electrode active material for a non-aqueous secondary battery that has high energy density, high coulomb efficiency, high cycle characteristics, and low cost.
  • the method for producing the positive electrode active material according to the present invention is not particularly limited, and various methods such as a coprecipitation method and a solid phase method can be employed.
  • a dry ball mill for pulverization and mixing of raw materials, for example, a dry ball mill, a dry bead mill, a dry planetary ball mill, a dry attritor, a dry jet mill, a wet ball mill, a wet bead mill, a wet planetary ball mill, a wet attritor, and a wet jet mill are used. be able to.
  • Examples of the compound containing Li include lithium acetate, lithium nitrate, lithium carbonate, and lithium hydroxide.
  • Examples of the Ni-containing compound include nickel acetate, nickel nitrate, nickel carbonate, nickel sulfate, and nickel hydroxide.
  • Examples of the compound containing Mn include manganese acetate, manganese nitrate, manganese carbonate, manganese sulfate, manganese oxide, and the like.
  • the composition of the positive electrode active material can be determined by elemental analysis such as inductively coupled plasma (ICP).
  • the method for controlling the surface state of the positive electrode active material is as follows. A predetermined amount of the starting nitrate, acetate, sulfate, and ammonium salt is dissolved in water or an organic solvent. This solution was mixed with the positive electrode active material, and the solvent was evaporated. The solvent is preferably evaporated by heating and stirring or spray drying. Finally, the obtained powder is heat-treated at 200 ° C. or higher and 600 ° C. or lower, preferably 300 ° C. or higher and 500 ° C. or lower. The heating time is 1 hour or more and 20 hours or less, preferably 3 hours or more and 8 hours or less.
  • the compound dissolved in water or an organic solvent may be an inorganic compound or a compound containing a metal element selected from the group of Na, Li, B, Al, Si, P, and V.
  • a positive electrode for a non-aqueous secondary battery according to the present invention includes the above positive electrode active material.
  • energy density can be improved, coulombic efficiency can be improved, cycle characteristics can be improved, and cost can be reduced.
  • a nonaqueous secondary battery according to the present invention includes the positive electrode described above. By using it for the positive electrode, a non-aqueous secondary battery with low resistance (high output) can be obtained.
  • the non-aqueous secondary battery according to the present invention can be preferably used for, for example, an electric vehicle.
  • the non-aqueous secondary battery includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator, an electrolytic solution, an electrolyte, and the like.
  • the negative electrode active material is not particularly limited as long as it is a material that can occlude and release lithium ions.
  • a material generally used in non-aqueous secondary batteries can be used as the negative electrode active material.
  • graphite, silica, lithium alloy, silicon alloy, tin alloy, aluminum alloy and the like can be exemplified.
  • separator those generally used in non-aqueous secondary batteries can be used.
  • examples thereof include polyolefin microporous films and nonwoven fabrics such as polypropylene, polyethylene, and a copolymer of propylene and ethylene.
  • electrolytic solution and the electrolyte those generally used in non-aqueous secondary batteries can be used.
  • diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, methyl acetate, ethyl methyl carbonate, methyl propyl carbonate, dimethoxyethane and the like can be exemplified as the electrolytic solution.
  • the lithium ion secondary battery 1 includes an electrode group having a positive electrode 2 with a positive electrode active material applied to both sides of a current collector, a negative electrode 3 with a negative electrode active material applied to both sides of the current collector, and a separator 4.
  • the positive electrode 2 and the negative electrode 3 are wound through a separator 4 to form a wound electrode group. This wound body is inserted into the battery can 5.
  • the negative electrode 3 is electrically connected to the battery can 5 via the negative electrode lead piece 7.
  • a sealing lid 8 is attached to the battery can 5 via a packing 9.
  • the positive electrode 2 is electrically connected to the sealing lid 8 through the positive electrode lead piece 6.
  • the wound body is insulated by the insulating plate 10.
  • the electrode group may not be the wound body shown in FIG. 1, but may be a laminated body in which the positive electrode 2 and the negative electrode 3 are laminated via the separator 4.
  • Lithium carbonate, manganese carbonate, and nickel carbonate were added to a zirconia pot, acetone was further added, and the mixture was pulverized and mixed without dissolution using a planetary ball mill apparatus.
  • the obtained slurry was dried to obtain a raw material powder.
  • This raw material powder was calcined in the atmosphere at 500 ° C. for 12 hours to obtain a lithium transition metal oxide.
  • the obtained lithium transition metal oxide was added to a zirconia pot, further added with acetone, and pulverized and mixed without dissolution using a planetary ball mill apparatus.
  • the obtained slurry was dried and then fired in the atmosphere at 1000 ° C. for 12 hours to produce the target positive electrode active material.
  • the composition of the positive electrode active material was 0.5Li 2 MnO 3 -0.5LiNi 0.625 Mn 0.375 O 2 .
  • Examples 1 to 4 Four types of samples prepared by adding 5, 7.5, 10, and 15% by mass of sodium sulfate to the above positive electrode active material 0.5Li 2 MnO 3 -0.5LiNi 0.625 Mn 0.375 O 2 and mixing them at 300 ° C. After calcination for a period of time, it was washed with water to produce four active materials of Examples 1 to 4.
  • Comparative Example 1 The positive electrode active material 0.5Li 2 MnO 3 -0.5LiNi 0.625 Mn 0.375 O 2 was used as the active material of Comparative Example 1 without performing ammonium sulfate treatment.
  • positive electrodes were prepared using the five types of positive electrode active materials prepared as described above, and five types of prototype batteries were manufactured.
  • the positive electrode active material, the conductive additive, and the binder were weighed so as to have a weight ratio of 85: 10: 5 and mixed uniformly to prepare a positive electrode slurry.
  • the positive electrode slurry was applied on an aluminum current collector foil having a thickness of 15 ⁇ m, dried at 120 ° C., and compression-molded so as to have an electrode density of 2.0 g / cm 3 with a press to obtain an electrode plate. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.
  • the negative electrode was produced using metallic lithium.
  • a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 2 was used.
  • Table 1 summarizes the Raman spectroscopic measurement results (I 430 / I 600 , I 660 / I 600 ), 1 st discharge capacity, Coulomb efficiency (%), and capacity retention rate at the 60th cycle for five positive electrode active materials.
  • Li 2 MnO 3 has a high resistance, and it is easy to release oxygen from the surface during the first charge, and the irreversible capacity It is considered that the 1 st discharge capacity and Coulomb efficiency have been improved by removing Li 2 MnO 3 from the surface, that is, by lowering I (430) / I (600) because it is a substance that tends to increase. .
  • the capacity maintenance rate can be increased by setting I (660) / I (600) ⁇ 0.35.
  • I (660) is because the peak attributable to the Li 4 Mn 5 O 12, it is considered that the cycle characteristic is deteriorated by that there is a certain level of Li 4 Mn 5 O 12 on the surface.
  • I (600) is a layered structure and I (660) is a peak due to the spinel structure, and it is presumed that there is no direct correlation between the composition and the value of I (660) / I (600). Even when the composition range is changed, it is considered that there is a certain effect within the above numerical range.
  • M is Co, Ta, Zr, Cr, Ni, Fe, V, Al, Mg, Ti, W, etc.
  • the irreversible capacity was reduced by reducing the ratio of Li 2 MnO 3 in the surface layer portion, and the effects of improving the initial discharge capacity and Coulomb efficiency were obtained.
  • M is Co, Ta, Zr, Cr, Ni, Fe, V, Al, Mg, Ti, W, etc.
  • the positive electrode active material of the present invention can be used as a positive electrode by being slurried with various binders and conductive materials that are disclosed, and using this positive electrode, a negative electrode such as graphite or Si, and a non-aqueous electrolyte.
  • a lithium ion battery capable of increasing energy density and improving cycle characteristics can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The objective of the present invention is to provide a positive electrode active material which has high discharge capacity and high coulombic efficiency. A positive electrode active material for nonaqueous secondary batteries, which is composed of a lithium composite oxide that is represented by composition formula xLi2MnO3-(1-x)LiNiaMnbMcO2 (wherein M represents at least one element selected from among Co, Ta, Zr, Cr, Ni, Fe, V, Al, Mg, Ti and W, and x, a, b and c respectively represent numbers that satisfy the following relations: 0.2 < x < 0.8; 0.5 <a < 1; 0 < b < 0.5; 0 ≤ c < 0.05; and a + b + c =1). In addition, the ratio of the intensity I(430), which is the intensity of the positive electrode active material at 430cm-1 as determined by Raman spectroscopy, to the intensity I(600), which is the intensity of the positive electrode active material at 600cm-1 as determined by Raman spectroscopy, satisfies I(430)/I(600) < 0.3.

Description

非水系二次電池用正極活物質、それを用いた非水系二次電池用正極、非水系二次電池Positive electrode active material for non-aqueous secondary battery, positive electrode for non-aqueous secondary battery using the same, non-aqueous secondary battery
 本発明は、非水系二次電池用正極活物質、それを用いた非水系二次電池用正極、非水系二次電池、および、その製造方法関する。 The present invention relates to a positive electrode active material for a non-aqueous secondary battery, a positive electrode for a non-aqueous secondary battery using the same, a non-aqueous secondary battery, and a manufacturing method thereof.
 非水系二次電池として、非水系電解液を用い、リチウムイオンを充放電反応に用いるリチウムイオン二次電池が実用化されている。リチウムイオン二次電池は、ニッケル水素電池等と比べてエネルギー密度が大きく、例えば、携帯電子機器の電源として用いられている。近年では、さらに、ハイブリット自動車、電気自動車、定置無停電電源、電力平準化用途等、中・大型用途への適用が進められている。例えば、電気自動車では走行距離の長距離化の要請があり、さらなる高エネルギー密度化が求められている。また、高エネルギー密度化のためには、放電容量だけでなく、クーロン効率や初回充放電効率の向上も求められる。 As a non-aqueous secondary battery, a lithium ion secondary battery using a non-aqueous electrolyte and using lithium ions for a charge / discharge reaction has been put into practical use. Lithium ion secondary batteries have a higher energy density than nickel metal hydride batteries and the like, and are used, for example, as power sources for portable electronic devices. In recent years, application to medium and large-sized applications such as hybrid vehicles, electric vehicles, stationary uninterruptible power supplies, and power leveling has been promoted. For example, in an electric vehicle, there is a demand for a longer travel distance, and a further increase in energy density is required. Further, in order to increase the energy density, not only the discharge capacity but also the improvement of the coulomb efficiency and the initial charge / discharge efficiency are required.
 現在、正極活物質には、LiCoO2、LiCo1/3Ni1/3Mn1/32の層状酸化物系正極活物質が用いられている。放電容量は150~180Ah/kgであり、さらなる高容量化が求められている。 Currently, a layered oxide positive electrode active material of LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 is used as the positive electrode active material. The discharge capacity is 150 to 180 Ah / kg, and further higher capacity is required.
 近年、Liを富化することによる高容量化が提案されており、層状固溶体が注目されている。例えば特許文献1には、Li、Co、Ni、及びMnの組成比がLi1+(1/3)xCo1-x-yNi(1/2)yMn(2/3)x+(1/2)yを満たすリチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質が提案されている。 In recent years, an increase in capacity by enriching Li has been proposed, and layered solid solutions have attracted attention. For example, in Patent Document 1, the composition ratio of Li, Co, Ni, and Mn is Li 1+ (1/3) x Co 1-xy Ni (1/2) y Mn (2/3) x + (1/2 ) An active material for a lithium secondary battery containing a solid solution of a lithium transition metal composite oxide satisfying y has been proposed.
また、特許文献2には、化学式Li1.2Mn0.54Ni0.13Co0.132で表され、ラマン分光測定における635cm-1と605cm-1のそれぞれの強度であるI(635)とI(605)の比として、0.6<I(635)/I(605)<1.5であると放電容量および充放電効率が向上する記載されている。 Patent Document 2 discloses I (635) and I (605), which are represented by the chemical formula Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 and have respective intensities of 635 cm −1 and 605 cm −1 in Raman spectroscopic measurement. ), The discharge capacity and the charge / discharge efficiency are improved when 0.6 <I (635) / I (605) <1.5.
特開2011-066000号公報JP2011-066000A 特開2011-096626号公報JP2011-096626A
 しかしながら、さらなる電池性能の向上のため、特許文献1、2に記載されている層状固溶体よりなる正極活物質の放電容量及びクーロン効率向上が望まれる。 However, in order to further improve battery performance, it is desired to improve the discharge capacity and Coulomb efficiency of the positive electrode active material made of the layered solid solution described in Patent Documents 1 and 2.
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、さらに放電容量が大きく、かつクーロン効率または初回充放電効率の高い非水系二次電池用正極活物質、および、非水系二次電池を得ることである。 The present invention has been made in view of the above points, and the object thereof is a positive electrode active material for a non-aqueous secondary battery having a larger discharge capacity and a high Coulomb efficiency or initial charge / discharge efficiency, and It is to obtain a non-aqueous secondary battery.
 上記課題を解決するため、組成式:xLi2MnO3―(1-x)LiNiaMnbMcO2[MはCo,Ta、Zr,Cr,Ni、Fe、V、Al、Mg、Ti、Wの少なくともいずれかであり、式中、x、a、b及びcは以下の関係:0.2<x<0.8、0.5<a<1、0<b<0.5、0≦c<0.05、a+b+c=1を満たす数である]で表されるリチウム複合酸化物であり、かつ、ラマン分光測定における430cm-1と600cm-1のそれぞれの強度であるI(430)とI(600)の比として、I(430)/I(600)<0.3であることを特徴とする。 In order to solve the above problems, the composition formula: xLi 2 MnO 3 — (1-x) LiNiaMnbMcO 2 [M is at least one of Co, Ta, Zr, Cr, Ni, Fe, V, Al, Mg, Ti, and W. Wherein x, a, b and c are in the following relationship: 0.2 <x <0.8, 0.5 <a <1, 0 <b <0.5, 0 ≦ c <0. 05, a number satisfying a + b + c = 1], and I (430) and I (1) which are intensities of 430 cm −1 and 600 cm −1 in Raman spectroscopic measurement, respectively. 600), I (430) / I (600) <0.3.
 本発明によれば、放電容量が大きく、かつクーロン効率の高い非水系二次電池用正極活物質が提供される。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, a positive electrode active material for a non-aqueous secondary battery having a large discharge capacity and high coulomb efficiency is provided. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
リチウムイオン二次電池の構造を模式的に示す断面図である。It is sectional drawing which shows the structure of a lithium ion secondary battery typically.
以下、実施形態に基づき本発明を詳細に説明する。
  (正極活物質)
  非水系二次電池の性能向上には、低コストな正極活物質のさらなるエネルギー密度向上、クーロン効率向上、サイクル特性向上が必要となる。
 高エネルギー密度化を達成する本発明の非水系二次電池用正極活物質は、Li2MnO3と、LiNiO2と、LiMnO2との固溶体として表現することができる。なお、Li2MnO3粉末と、LiNiO2粉末と、LiMnO2粉末との単なる混合物は固溶体と明確に区別される。具体的には、組成式:xLi2MnO3―(1-x)LiNiaMnbMcO2[MはCo,Ta、Zr,Cr,Ni、Fe、V、Al、Mg、Ti、W等であり、式中、x、a、b及びcは以下の関係:0.2<x<0.8、0.5<a<1、0<b<0.5、0≦c<0.05、a+b+c=1を満たす数である]で表される。組成式におけるxは、xLi2MnO3―(1-x)LiNiaMnbMcO2におけるLi2MnO3の割合を示す。xが0.2以下であると、高い容量を得ることができない。一方、xが0.8以上であると、電気化学的に不活性なLi2MnO3の割合が多くなるため、正極活物質の抵抗が上昇し、容量が低下する。
Hereinafter, the present invention will be described in detail based on embodiments.
(Positive electrode active material)
In order to improve the performance of the non-aqueous secondary battery, it is necessary to further improve the energy density, the coulomb efficiency, and the cycle characteristics of the low-cost positive electrode active material.
The positive electrode active material for a non-aqueous secondary battery of the present invention that achieves high energy density can be expressed as a solid solution of Li 2 MnO 3 , LiNiO 2 , and LiMnO 2 . Note that a simple mixture of Li 2 MnO 3 powder, LiNiO 2 powder, and LiMnO 2 powder is clearly distinguished from a solid solution. Specifically, composition formula: xLi 2 MnO 3 — (1-x) LiNiaMnbMcO 2 [M is Co, Ta, Zr, Cr, Ni, Fe, V, Al, Mg, Ti, W, etc. , X, a, b and c are as follows: 0.2 <x <0.8, 0.5 <a <1, 0 <b <0.5, 0 ≦ c <0.05, a + b + c = 1 It is a number satisfying]. X in the composition formula represents the ratio of Li 2 MnO 3 in xLi 2 MnO 3 — (1-x) LiNiaMnbMcO 2 . When x is 0.2 or less, a high capacity cannot be obtained. On the other hand, when x is 0.8 or more, the proportion of electrochemically inactive Li 2 MnO 3 increases, so that the resistance of the positive electrode active material increases and the capacity decreases.
 組成式におけるaは、正極活物質中のNiの含有比率(原子量比率)を示す。aが0.5以下であると、充放電反応に主に寄与するNiの含有比率が減少し、容量が低下する。組成式におけるbは、正極活物質中のMnの含有比率(原子量比率)を示す。bが0.5以上であると、充放電反応に主に寄与するNiの含有比率が減少し、容量が低下する。なお、Li、Mn、Ni、O以外の元素Mを含んでいても、Li、Mn、Ni、Oの組成比が上記の範囲であれば構わない。Mの組成比は、遷移金属全体の占める割合のうち5mol%以下であることが好ましい。 A in the composition formula indicates the content ratio (atomic weight ratio) of Ni in the positive electrode active material. When a is 0.5 or less, the content ratio of Ni mainly contributing to the charge / discharge reaction is decreased, and the capacity is decreased. In the composition formula, b represents the content ratio (atomic weight ratio) of Mn in the positive electrode active material. When b is 0.5 or more, the content ratio of Ni mainly contributing to the charge / discharge reaction is decreased, and the capacity is decreased. In addition, even if it contains element M other than Li, Mn, Ni, and O, the composition ratio of Li, Mn, Ni, and O may be in the above range. The composition ratio of M is preferably 5 mol% or less in the proportion of the entire transition metal.
 上記組成は、Li、Ni、及びMnを主成分とし、Coをほぼ含んでいない。Coは高価であるため、本実施形態における正極活物質は、高エネルギー密度に加えて、低コストであるという利点を有する。また、電解液の分解や、ガス発生の抑制が可能であり、サイクル特性が向上する。 The above composition contains Li, Ni, and Mn as main components and contains almost no Co. Since Co is expensive, the positive electrode active material in the present embodiment has an advantage of low cost in addition to high energy density. Moreover, decomposition of the electrolytic solution and suppression of gas generation are possible, and cycle characteristics are improved.
 また、本発明は、ラマン分光測定におけるLi2MnO3に帰属する430cm-1のピークと層状のLiMO2に帰属する600cm-1のピークのそれぞれの強度であるI(430)とI(600)の比(I(430)/I(600))が、0.3よりも小さい。この特徴により、クーロン効率が向上する効果が得られる。I(430)/I(600)は、正極活物質の表面状態を制御することで変化する値であり、上記範囲とすることでクーロン効率が向上する。 In the present invention, the intensities of the peak of 430 cm −1 attributed to Li 2 MnO 3 and the peak of 600 cm −1 attributed to layered LiMO 2 in Raman spectroscopy are I (430) and I ( 600) (I (430) / I (600)) is less than 0.3. With this feature, an effect of improving the coulomb efficiency can be obtained. I (430) / I (600) is a value that changes by controlling the surface state of the positive electrode active material, and the Coulomb efficiency is improved by setting the above range.
 表面処理方法としては、硫酸ナトリウム処理、硫酸アンモニウム処理、硝酸アルミニウム処理、ほう酸処理、バナジン酸アンモニウム処理、フッ化アンモニウム処理や、これらの混合処理が挙げられる。 Examples of the surface treatment method include sodium sulfate treatment, ammonium sulfate treatment, aluminum nitrate treatment, boric acid treatment, ammonium vanadate treatment, ammonium fluoride treatment, and mixed treatment thereof.
 さらに、ラマン分光測定における660cm-1と600cm-1の強度であるI(660)とI(600)の比として、I(660)/I(600)が0.35よりも小さいことが好ましい。I(660)/I(600)も、正極活物質の表面状態により変化し、上記範囲でサイクル特性が向上する。 Furthermore, as a ratio of I (660) and I (600), which are intensities of 660 cm −1 and 600 cm −1 in Raman spectroscopic measurement, I (660) / I (600) is smaller than 0.35. preferable. I (660) / I (600) also changes depending on the surface state of the positive electrode active material, and the cycle characteristics are improved within the above range.
 したがって、これらの特徴を兼ね備える上記構成によれば、エネルギー密度が高く、クーロン効率が高く、さらにサイクル特性が高く、低コストな非水系二次電池用正極活物質が提供でき、好ましい。 Therefore, the above configuration having these characteristics is preferable because it can provide a positive electrode active material for a non-aqueous secondary battery that has high energy density, high coulomb efficiency, high cycle characteristics, and low cost.
 エネルギー密度を更に高めるためには、上記組成式におけるx、a、およびbが0.4≦x≦0.6、0.525≦a≦0.75、0.25≦b≦0.475、0≦c<0.05、a+b+c=1を満たす数であることが好ましい。特に、0.4≦x≦0.6、0.525≦a≦0.7、0.3≦b≦0.475、a+b+c=1を満たす数であることがより好ましく、0.45≦x≦0.55、0.525≦a≦0.7、0.3≦b≦0.475、a+b+c=1を満たす数であることが更に好ましく、0.45≦x≦0.55、0.6≦a≦0.65、0.35≦b≦0.4、a+b=1を満たす数であることが特に好ましい。 In order to further increase the energy density, x, a, and b in the above composition formula are 0.4 ≦ x ≦ 0.6, 0.525 ≦ a ≦ 0.75, 0.25 ≦ b ≦ 0.475, A number satisfying 0 ≦ c <0.05 and a + b + c = 1 is preferable. In particular, it is more preferable that the number satisfies 0.4 ≦ x ≦ 0.6, 0.525 ≦ a ≦ 0.7, 0.3 ≦ b ≦ 0.475, and a + b + c = 1, and 0.45 ≦ x. ≦ 0.55, 0.525 ≦ a ≦ 0.7, 0.3 ≦ b ≦ 0.475, and a number satisfying a + b + c = 1 are further preferable, and 0.45 ≦ x ≦ 0.55, 0. A number satisfying 6 ≦ a ≦ 0.65, 0.35 ≦ b ≦ 0.4, and a + b = 1 is particularly preferable.
(正極活物質製造方法)
 本発明に係る正極活物質の製造方法は特に限定されるものではなく、共沈法、固相法など種々の方法をとることが可能である。
(Positive electrode active material manufacturing method)
The method for producing the positive electrode active material according to the present invention is not particularly limited, and various methods such as a coprecipitation method and a solid phase method can be employed.
 原料の粉砕・混合には、例えば、乾式ボールミル、乾式ビーズミル、乾式遊星型ボールミル、乾式アトライター、乾式ジェットミル、湿式ボールミル、湿式ビーズミル、湿式遊星型ボールミル、湿式アトライター、湿式ジェットミル等を用いることができる。 For pulverization and mixing of raw materials, for example, a dry ball mill, a dry bead mill, a dry planetary ball mill, a dry attritor, a dry jet mill, a wet ball mill, a wet bead mill, a wet planetary ball mill, a wet attritor, and a wet jet mill are used. be able to.
 Liを含有する化合物としては、例えば、酢酸リチウム、硝酸リチウム、炭酸リチウム、水酸化リチウム等を挙げることができる。Niを含有する化合物としては、例えば、酢酸ニッケル、硝酸ニッケル、炭酸ニッケル、硫酸ニッケル、水酸化ニッケル等を挙げることができる。Mnを含有する化合物としては、例えば、酢酸マンガン、硝酸マンガン、炭酸マンガン、硫酸マンガン、酸化マンガン等を挙げることができる。
 正極活物質の組成は、例えば誘導結合プラズマ法(ICP)等による元素分析により決定することができる。
Examples of the compound containing Li include lithium acetate, lithium nitrate, lithium carbonate, and lithium hydroxide. Examples of the Ni-containing compound include nickel acetate, nickel nitrate, nickel carbonate, nickel sulfate, and nickel hydroxide. Examples of the compound containing Mn include manganese acetate, manganese nitrate, manganese carbonate, manganese sulfate, manganese oxide, and the like.
The composition of the positive electrode active material can be determined by elemental analysis such as inductively coupled plasma (ICP).
 正極活物質の表面状態の制御方法は下記のとおりである。水や有機溶媒に、原料の硝酸塩,酢酸塩,硫酸塩,アンモニウム塩を所定量溶解させる。この溶液を上記正極活物質に混合し、溶媒を蒸発させた。溶媒の蒸発は加熱攪拌や噴霧乾燥で行うことが好ましい。最後に、得られた粉末を200℃以上600℃以下、好ましくは300℃以上500℃以下で加熱処理する。加熱時間は1時間以上20時間以下、好ましくは、3時間以上8時間以下である。水や有機溶媒に溶解させる化合物としては、無機化合物や、Na、Li、B、Al、Si、P、Vの群から選ばれる金属元素を含む化合物でもよい。 The method for controlling the surface state of the positive electrode active material is as follows. A predetermined amount of the starting nitrate, acetate, sulfate, and ammonium salt is dissolved in water or an organic solvent. This solution was mixed with the positive electrode active material, and the solvent was evaporated. The solvent is preferably evaporated by heating and stirring or spray drying. Finally, the obtained powder is heat-treated at 200 ° C. or higher and 600 ° C. or lower, preferably 300 ° C. or higher and 500 ° C. or lower. The heating time is 1 hour or more and 20 hours or less, preferably 3 hours or more and 8 hours or less. The compound dissolved in water or an organic solvent may be an inorganic compound or a compound containing a metal element selected from the group of Na, Li, B, Al, Si, P, and V.
(正極)
 本発明に係る非水系二次電池用正極は、上記の正極活物質を含むことを特徴とする。上記の正極活物質を正極に使用することにより、ネルギー密度向上、クーロン効率向上、さらにサイクル特性が向上でき、低コストとすることができる。
(Positive electrode)
A positive electrode for a non-aqueous secondary battery according to the present invention includes the above positive electrode active material. By using the positive electrode active material for the positive electrode, energy density can be improved, coulombic efficiency can be improved, cycle characteristics can be improved, and cost can be reduced.
(非水系二次電池)
 本発明に係る非水系二次電池は、上記の正極を含むことを特徴とする。上記の正極に使用することにより、低抵抗(高出力)の非水系二次電池とすることができる。本発明に係る非水系二次電池は、例えば、電気自動車に対して好ましく使用することができる。
 非水系二次電池は、正極活物質を含む正極、負極活物質を含む負極、セパレータ、電解液、電解質等から構成される。
(Non-aqueous secondary battery)
A nonaqueous secondary battery according to the present invention includes the positive electrode described above. By using it for the positive electrode, a non-aqueous secondary battery with low resistance (high output) can be obtained. The non-aqueous secondary battery according to the present invention can be preferably used for, for example, an electric vehicle.
The non-aqueous secondary battery includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator, an electrolytic solution, an electrolyte, and the like.
 負極活物質は、リチウムイオンを吸蔵放出することができる物質であれば特に限定されない。非水系二次電池において一般的に使用されている物質を負極活物質として使用することができる。例えば、黒鉛、シリカ、リチウム合金、シリコン合金、スズ合金、アルミニウム合金等を例示することができる。 The negative electrode active material is not particularly limited as long as it is a material that can occlude and release lithium ions. A material generally used in non-aqueous secondary batteries can be used as the negative electrode active material. For example, graphite, silica, lithium alloy, silicon alloy, tin alloy, aluminum alloy and the like can be exemplified.
 セパレータとしては、非水系二次電池において一般的に使用されているものを使用することができる。例えば、ポリプロピレン、ポリエチレン、プロピレンとエチレンとの共重合体等のポリオレフィン製の微孔性フィルムや不織布等を例示することができる。 As the separator, those generally used in non-aqueous secondary batteries can be used. Examples thereof include polyolefin microporous films and nonwoven fabrics such as polypropylene, polyethylene, and a copolymer of propylene and ethylene.
 電解液及び電解質としては、非水系二次電池において一般的に使用されているものを使用することができる。例えば、電解液として、ジエチルカーボネート、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、メチルアセテート、エチルメチルカーボネート、メチルプロピルカーボネート、ジメトキシエタン等を例示することができる。また、電解質として、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC49SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23等を例示することができる。 As the electrolytic solution and the electrolyte, those generally used in non-aqueous secondary batteries can be used. For example, diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, methyl acetate, ethyl methyl carbonate, methyl propyl carbonate, dimethoxyethane and the like can be exemplified as the electrolytic solution. Further, as the electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN Examples thereof include (CF 3 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 .
 本発明に係る非水系二次電池の構造の一実施形態を図1を用いて説明する。リチウムイオン二次電池1は、集電体の両面に正極活物質を塗布した正極2と、集電体の両面に負極活物質を塗布した負極3と、セパレータ4とを有する電極群を備える。正極2及び負極3は、セパレータ4を介して捲回され、捲回体の電極群を形成している。この捲回体は電池缶5に挿入される。 An embodiment of the structure of a non-aqueous secondary battery according to the present invention will be described with reference to FIG. The lithium ion secondary battery 1 includes an electrode group having a positive electrode 2 with a positive electrode active material applied to both sides of a current collector, a negative electrode 3 with a negative electrode active material applied to both sides of the current collector, and a separator 4. The positive electrode 2 and the negative electrode 3 are wound through a separator 4 to form a wound electrode group. This wound body is inserted into the battery can 5.
 負極3は、負極リード片7を介して、電池缶5に電気的に接続される。電池缶5には、パッキン9を介して、密閉蓋8が取り付けられる。正極2は、正極リード片6を介して、密閉蓋8に電気的に接続される。捲回体は、絶縁板10によって絶縁される。
 なお、電極群は、図1に示す捲回体でなくてもよく、セパレータ4を介して正極2と負極3とを積層した積層体でもよい。
The negative electrode 3 is electrically connected to the battery can 5 via the negative electrode lead piece 7. A sealing lid 8 is attached to the battery can 5 via a packing 9. The positive electrode 2 is electrically connected to the sealing lid 8 through the positive electrode lead piece 6. The wound body is insulated by the insulating plate 10.
The electrode group may not be the wound body shown in FIG. 1, but may be a laminated body in which the positive electrode 2 and the negative electrode 3 are laminated via the separator 4.
 以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail using examples and comparative examples, but the technical scope of the present invention is not limited thereto.
 炭酸リチウム、炭酸マンガン、炭酸ニッケルをジルコニア製ポットに加え、さらに、アセトンを加え遊星型ボールミル装置を用い、溶解することなく粉砕・混合した。得られたスラリーを乾燥し、原料粉末を得た。この原料粉末を大気中において500℃で12時間焼成し、リチウム遷移金属酸化物を得た。得られたリチウム遷移金属酸化物をジルコニア製ポットに加え、さらに、アセトンを加え遊星型ボールミル装置を用い、溶解することなく粉砕・混合した。得られたスラリーを乾燥した後、大気中において1000℃で12時間焼成し、目的の正極活物質を製造した。正極活物質の組成は0.5Li2MnO3-0.5LiNi0.625Mn0.3752であった。 Lithium carbonate, manganese carbonate, and nickel carbonate were added to a zirconia pot, acetone was further added, and the mixture was pulverized and mixed without dissolution using a planetary ball mill apparatus. The obtained slurry was dried to obtain a raw material powder. This raw material powder was calcined in the atmosphere at 500 ° C. for 12 hours to obtain a lithium transition metal oxide. The obtained lithium transition metal oxide was added to a zirconia pot, further added with acetone, and pulverized and mixed without dissolution using a planetary ball mill apparatus. The obtained slurry was dried and then fired in the atmosphere at 1000 ° C. for 12 hours to produce the target positive electrode active material. The composition of the positive electrode active material was 0.5Li 2 MnO 3 -0.5LiNi 0.625 Mn 0.375 O 2 .
 (実施例1~4)
  上記の正極活物質0.5Li2MnO3-0.5LiNi0.625Mn0.3752に、硫酸ナトリウムを5、7.5、10、15質量%をそれぞれ加えて混合した4種類の試料を、300℃で6時間焼成した後に水洗して、実施例1~4の活物質4種を製造した。
(Examples 1 to 4)
Four types of samples prepared by adding 5, 7.5, 10, and 15% by mass of sodium sulfate to the above positive electrode active material 0.5Li 2 MnO 3 -0.5LiNi 0.625 Mn 0.375 O 2 and mixing them at 300 ° C. After calcination for a period of time, it was washed with water to produce four active materials of Examples 1 to 4.
  (比較例1)
  上記の正極活物質0.5Li2MnO3-0.5LiNi0.625Mn0.3752に、硫酸アンモニウム処理を行わずに、比較例1の活物質とした。
(Comparative Example 1)
The positive electrode active material 0.5Li 2 MnO 3 -0.5LiNi 0.625 Mn 0.375 O 2 was used as the active material of Comparative Example 1 without performing ammonium sulfate treatment.
 (ラマン分光測定)
  実施例1~4および比較例1に示す5種類の活物質を、ラマン分光測定により、430cm-1、600cm-1、660cm-1のピーク強度比を求めた。
(Raman spectroscopy measurement)
For the five types of active materials shown in Examples 1 to 4 and Comparative Example 1, peak intensity ratios of 430 cm-1 , 600 cm-1 , and 660 cm-1 were determined by Raman spectroscopy.
  (試作電池の作製)
  各実施例及び比較例では、上述のように作製した5種類の正極活物質を用いて正極を作製し、5種類の試作電池を作製した。正極活物質と導電助剤とバインダとを、重量比で85:10:5となるよう秤量し、均一に混合して正極スラリーを作製した。正極スラリーを厚み15μmのアルミ集電体箔上に塗布し、120℃で乾燥し、プレスにて電極密度が2.0g/cm3になるように圧縮成形して電極板を得た。その後、電極板を直径15mmの円盤状に打ち抜き、正極を作製した。
(Production of prototype battery)
In each of the examples and comparative examples, positive electrodes were prepared using the five types of positive electrode active materials prepared as described above, and five types of prototype batteries were manufactured. The positive electrode active material, the conductive additive, and the binder were weighed so as to have a weight ratio of 85: 10: 5 and mixed uniformly to prepare a positive electrode slurry. The positive electrode slurry was applied on an aluminum current collector foil having a thickness of 15 μm, dried at 120 ° C., and compression-molded so as to have an electrode density of 2.0 g / cm 3 with a press to obtain an electrode plate. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.
 負極は金属リチウムを用いて作製した。非水電解液としては、体積比1:2のエチレンカーボネートとジメチルカーボネートとの混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させたものを用いた。 The negative electrode was produced using metallic lithium. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 2 was used.
(電池特性評価)
 各実施例及び比較例では、上述のように作製した5種類の試作電池に対して、充放電試験を行った。試作電池に対し、充電は0.05C相当の電流で上限電圧を4.6V、放電は0.05C相当の電流で下限電圧を2.5Vとした充放電試験を行った。また、この試験で得られた放電容量を1st放電容量、充電容量に対する放電容量の比(初回放電容量/初回充電容量)であるクーロン効率、さらに、1C相当の充放電サイクル試験を行ったときの容量維持率を評価した。
(Battery characteristics evaluation)
In each example and comparative example, a charge / discharge test was performed on the five types of prototype batteries produced as described above. The prototype battery was subjected to a charge / discharge test with a current equivalent to 0.05C and an upper limit voltage of 4.6V, and a discharge equivalent to a current equivalent to 0.05C and a lower limit voltage of 2.5V. The discharge capacity obtained in this test is the 1st discharge capacity, the Coulomb efficiency which is the ratio of the discharge capacity to the charge capacity (initial discharge capacity / initial charge capacity), and the charge / discharge cycle test equivalent to 1C. The capacity maintenance rate was evaluated.
 表1に、5種類の正極活物質における、ラマン分光測定結果(I430/I600、I660/I600)、1st放電容量、クーロン効率(%)、60サイクル目における容量維持率を纏めたものを示す。

Figure JPOXMLDOC01-appb-T000001
Table 1 summarizes the Raman spectroscopic measurement results (I 430 / I 600 , I 660 / I 600 ), 1 st discharge capacity, Coulomb efficiency (%), and capacity retention rate at the 60th cycle for five positive electrode active materials. Indicates

Figure JPOXMLDOC01-appb-T000001
 表1に示すように、I(430)/I(600)<0.3とすることにより、放電容量が250Ah/kgを超えるとともに、クーロン効率が80%を超え、良好な性能が得られた。これは、I(600)は層状のLiMO2に帰属するピーク、I(430)はLi2MnO3に帰属するピークである。ここで、初回の放電容量の増加、または初回の充電容量の減少がクーロン効率増加に寄与しており、Li2MnO3は抵抗が高く、また、初回充電で表面から酸素を放出しやすく不可逆容量増加の原因になりやすい物質であるため、表面からLi2MnO3を取り除く、つまり、I(430)/I(600)を低くすることで1st放電容量、クーロン効率が向上したものと考えられる。 As shown in Table 1, by setting I (430) / I (600) <0.3, the discharge capacity exceeded 250 Ah / kg, the coulomb efficiency exceeded 80%, and good performance was obtained. . This is a peak attributed to I (600) attributed to layered LiMO 2 and I (430) attributed to Li 2 MnO 3 . Here, the increase in the initial discharge capacity or the decrease in the initial charge capacity contributes to the increase in coulomb efficiency. Li 2 MnO 3 has a high resistance, and it is easy to release oxygen from the surface during the first charge, and the irreversible capacity It is considered that the 1 st discharge capacity and Coulomb efficiency have been improved by removing Li 2 MnO 3 from the surface, that is, by lowering I (430) / I (600) because it is a substance that tends to increase. .
 また、表1に示すように、I(660)/I(600)<0.35とすることにより、容量維持率も高くすることができる。これは、I(660)はLi4Mn512に帰属するピークであることから、表面に一定以上のLi4Mn512があることによりサイクル特性が悪化したものと考えられる。
 なお、I(600)は層状構造、I(660)はスピネル構造に起因するピークであり、組成とI(660)/I(600)の値に直接的な相関はないと推察される。組成範囲を変化させた場合であっても、上記の数値範囲で一定の効果があると考える。
Further, as shown in Table 1, the capacity maintenance rate can be increased by setting I (660) / I (600) <0.35. This, I (660) is because the peak attributable to the Li 4 Mn 5 O 12, it is considered that the cycle characteristic is deteriorated by that there is a certain level of Li 4 Mn 5 O 12 on the surface.
It should be noted that I (600) is a layered structure and I (660) is a peak due to the spinel structure, and it is presumed that there is no direct correlation between the composition and the value of I (660) / I (600). Even when the composition range is changed, it is considered that there is a certain effect within the above numerical range.
 上述の通り、組成式:xLi2MnO3―(1-x)LiNiaMnbMcO2[MはCo,Ta、Zr,Cr,Ni、Fe、V、Al、Mg、Ti、W等であり、式中、x、a、b及びcは以下の関係:0.2<x<0.8、0.5<a<1、0<b<0.5、0≦c<0.05、a+b+c=1を満たす数である]で表される層状固溶体は、表層部のLi2MnO3の割合を小さくすることで、不可逆容量を低減し、初回放電容量及びクーロン効率向上の効果が得られた。さらに、Li4Mn512の割合を小さくすることで、サイクル特性向上効果が得られ好ましい。 As described above, composition formula: xLi 2 MnO 3 — (1-x) LiNiaMnbMcO 2 [M is Co, Ta, Zr, Cr, Ni, Fe, V, Al, Mg, Ti, W, etc. x, a, b and c are the following relationships: 0.2 <x <0.8, 0.5 <a <1, 0 <b <0.5, 0 ≦ c <0.05, a + b + c = 1. In the layered solid solution represented by the following formula, the irreversible capacity was reduced by reducing the ratio of Li 2 MnO 3 in the surface layer portion, and the effects of improving the initial discharge capacity and Coulomb efficiency were obtained. Furthermore, it is preferable to reduce the ratio of Li 4 Mn 5 O 12 because an effect of improving cycle characteristics is obtained.
 以上の通り、組成式:xLi2MnO3―(1-x)LiNiaMnbMcO2[MはCo,Ta、Zr,Cr,Ni、Fe、V、Al、Mg、Ti、W等であり、式中、x、a、b及びcは以下の関係:0.2<x<0.8、0.5<a<1、0<b<0.5、0≦c<0.05、a+b+c=1を満たす数である]で表されるリチウム複合酸化物であり、かつ、ラマン分光測定における430cm-1と600cm-1のそれぞれの強度であるI(430)とI(600)の比として、I(430)/I(600)<0.3とすることで放電容量とクーロン効率が向上した正極活物質が提供される。 As described above, composition formula: xLi 2 MnO 3 — (1-x) LiNiaMnbMcO 2 [M is Co, Ta, Zr, Cr, Ni, Fe, V, Al, Mg, Ti, W, etc., x, a, b and c are the following relationships: 0.2 <x <0.8, 0.5 <a <1, 0 <b <0.5, 0 ≦ c <0.05, a + b + c = 1. The ratio of I (430) and I (600), which are the respective intensities of 430 cm −1 and 600 cm −1 in the Raman spectroscopic measurement, By setting I (430) / I (600) <0.3, a positive electrode active material with improved discharge capacity and coulomb efficiency is provided.
 さらに、ラマン分光測定における660cm-1と600cm-1の強度であるI(660)とI(600)の比として、I(660)/I(600)<0.35とすることにより、サイクル特性向上も両立する正極活物質が提供される。 Furthermore, by setting I (660) / I (600) <0.35 as the ratio of I (660) and I (600), which are intensities of 660 cm-1 and 600 cm-1 in Raman spectroscopy, Provided is a positive electrode active material that also achieves improved cycle characteristics.
 本発明の正極活物質は、公開されている各種のバインダ、導電材とスラリー化し、正極として使用可能であり、また、この正極と、黒鉛やSi系などの負極と、非水系電解液をもちいて電池として使用すると、高エネルギー密度化やサイクル特性向上が可能なリチウムイオン電池が提供できる。 The positive electrode active material of the present invention can be used as a positive electrode by being slurried with various binders and conductive materials that are disclosed, and using this positive electrode, a negative electrode such as graphite or Si, and a non-aqueous electrolyte. When used as a battery, a lithium ion battery capable of increasing energy density and improving cycle characteristics can be provided.
 1・・リチウムイオン二次電池、2・・正極、3・・負極、4・・セパレータ、5・・電池缶、6・・正極リード片、7・・負極リード片、8・・密閉蓋、9・・パッキン、10・・絶縁板 1 ·· Lithium ion secondary battery 2 ·· Positive electrode 3 ·· Negative electrode 4 ·· Separator 5 ·· Battery can 6 ·· Positive lead piece 7 ·· Negative lead piece 8 ··· Sealing lid 9 .... Packing, 10 .... Insulating plate

Claims (5)

  1.  組成式:xLi2MnO3―(1-x)LiNiaMnbMcO2[MはCo,Ta、Zr,Cr,Ni、Fe、V、Al、Mg、Ti、Wの少なくともいずれかであり、式中、x、a、b及びcは以下の関係:0.2<x<0.8、0.5<a<1、0<b<0.5、0≦c<0.05、a+b+c=1を満たす数である]で表されるリチウム複合酸化物であって、かつ、ラマン分光測定における430cm-1と600cm-1のそれぞれの強度であるI(430)とI(600)の比として、I(430)/I(600)<0.3であることを特徴とする非水系二次電池用正極活物質。 Composition formula: xLi 2 MnO 3 — (1-x) LiNiaMnbMcO 2 [M is at least one of Co, Ta, Zr, Cr, Ni, Fe, V, Al, Mg, Ti, and W, where x , A, b and c satisfy the following relationships: 0.2 <x <0.8, 0.5 <a <1, 0 <b <0.5, 0 ≦ c <0.05, a + b + c = 1 The ratio of I (430) and I (600), which are the respective intensities of 430 cm −1 and 600 cm −1 in Raman spectroscopic measurement. A positive electrode active material for a non-aqueous secondary battery, wherein I (430) / I (600) <0.3.
  2.  請求項1に記載の非水系二次電池用正極活物質であって、
     ラマン分光測定における660cm-1と600cm-1の強度であるI(660)とI(600)の比として、I(660)/I(600)<0.35であることを特徴とする非水系二次電池用正極活物質。
    The positive electrode active material for a non-aqueous secondary battery according to claim 1,
    The ratio of I (660) and I (600), which are intensities of 660 cm-1 and 600 cm-1 in Raman spectroscopic measurement, is I (660) / I (600) <0.35. Positive electrode active material for non-aqueous secondary batteries.
  3.  請求項1または2に記載の非水系二次電池用正極活物質であって、
     0.45≦x≦0.55、0.6≦a≦0.65、0.35≦b≦0.4、a+b=1を満たすことを特徴とする非水系二次電池用正極活物質。
    A positive electrode active material for a non-aqueous secondary battery according to claim 1 or 2,
    A positive electrode active material for a non-aqueous secondary battery, wherein 0.45 ≦ x ≦ 0.55, 0.6 ≦ a ≦ 0.65, 0.35 ≦ b ≦ 0.4, and a + b = 1 are satisfied.
  4.  請求項1ないし3のいずれかに記載の非水系二次電池用正極活物質を含むことを特徴とする非水系二次電池用正極。 A positive electrode for a non-aqueous secondary battery comprising the positive electrode active material for a non-aqueous secondary battery according to any one of claims 1 to 3.
  5.  請求項1ないし3のいずれかに記載の非水系二次電池用正極活物質を含むことを特徴とする非水系二次電池。 A non-aqueous secondary battery comprising the positive electrode active material for a non-aqueous secondary battery according to any one of claims 1 to 3.
PCT/JP2013/071590 2013-08-09 2013-08-09 Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery WO2015019483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071590 WO2015019483A1 (en) 2013-08-09 2013-08-09 Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071590 WO2015019483A1 (en) 2013-08-09 2013-08-09 Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
WO2015019483A1 true WO2015019483A1 (en) 2015-02-12

Family

ID=52460850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071590 WO2015019483A1 (en) 2013-08-09 2013-08-09 Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery

Country Status (1)

Country Link
WO (1) WO2015019483A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290861B2 (en) 2015-12-18 2019-05-14 Samsung Electronics Co., Ltd. Composite positive active material, method of preparing the same, positive electrode including the composite positive active material, and lithium battery including the positive electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158415A (en) * 2007-12-27 2009-07-16 Mitsui Mining & Smelting Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery having the same
JP2011029000A (en) * 2009-07-24 2011-02-10 Nissan Motor Co Ltd Method of manufacturing positive electrode material for lithium ion battery
WO2012111614A1 (en) * 2011-02-18 2012-08-23 三井金属鉱業株式会社 Lithium-manganese-type solid solution positive electrode material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158415A (en) * 2007-12-27 2009-07-16 Mitsui Mining & Smelting Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery having the same
JP2011029000A (en) * 2009-07-24 2011-02-10 Nissan Motor Co Ltd Method of manufacturing positive electrode material for lithium ion battery
WO2012111614A1 (en) * 2011-02-18 2012-08-23 三井金属鉱業株式会社 Lithium-manganese-type solid solution positive electrode material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENIS Y. W. YU ET AL.: "Surface Modification of Li-Excess Mn-based Cathode Materials", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 157, no. 11, 7 September 2010 (2010-09-07), pages A1177 - A1182 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290861B2 (en) 2015-12-18 2019-05-14 Samsung Electronics Co., Ltd. Composite positive active material, method of preparing the same, positive electrode including the composite positive active material, and lithium battery including the positive electrode

Similar Documents

Publication Publication Date Title
CN103872311B (en) Lithium rechargeable battery positive active material, positive pole and lithium rechargeable battery
WO2011155523A1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
WO2014061654A1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
EP2471134A2 (en) Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
JP2013543219A (en) Metal halide coating on lithium ion battery cathode material and corresponding battery
JP2006128115A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery having this
TW201339098A (en) Mixed phase lithium metal oxide compositions with desirable battery performance
JP6096985B1 (en) Nonaqueous electrolyte battery and battery pack
WO2011129066A1 (en) Lithium-ion secondary battery
KR20140111045A (en) Manganese spinel-type lithium transition metal oxide
JP6369126B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR20180044285A (en) POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
WO2016132963A1 (en) Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same
JP6294219B2 (en) Method for producing lithium cobalt composite oxide
WO2015045254A1 (en) Lithium-titanium compound oxide
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
KR20180043276A (en) POSITIVE ACTIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, PROCESS FOR PRODUCING THE SAME, AND NON-
WO2015019483A1 (en) Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery
US10804527B2 (en) Positive electrode active material for rechargeable lithium battery, method for manufacturing same, and rechargeable lithium battery including same
JP5877898B2 (en) Positive electrode active material for lithium ion secondary battery
WO2015037111A1 (en) Positive-electrode active material for use in lithium-ion secondary batteries and lithium-ion secondary battery using said positive-electrode active material
WO2015059779A1 (en) Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
Kim et al. Optimization of lithium in Li 1+ x [Mn 0.720 Ni 0.175 Co 0.105] O 2 as a cathode material for lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP