KR100358804B1 - Method of preparing positive active material for lithium secondary battery - Google Patents

Method of preparing positive active material for lithium secondary battery Download PDF

Info

Publication number
KR100358804B1
KR100358804B1 KR20000006854A KR20000006854A KR100358804B1 KR 100358804 B1 KR100358804 B1 KR 100358804B1 KR 20000006854 A KR20000006854 A KR 20000006854A KR 20000006854 A KR20000006854 A KR 20000006854A KR 100358804 B1 KR100358804 B1 KR 100358804B1
Authority
KR
South Korea
Prior art keywords
active material
lithium
oxide
secondary battery
lithium secondary
Prior art date
Application number
KR20000006854A
Other languages
Korean (ko)
Other versions
KR20010081435A (en
Inventor
정현숙
김근배
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR20000006854A priority Critical patent/KR100358804B1/en
Priority to US09/775,315 priority patent/US20010031399A1/en
Priority to JP2001028951A priority patent/JP4167809B2/en
Publication of KR20010081435A publication Critical patent/KR20010081435A/en
Application granted granted Critical
Publication of KR100358804B1 publication Critical patent/KR100358804B1/en
Priority to JP2008166194A priority patent/JP4879226B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/34Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for fruit, e.g. apples, oranges or tomatoes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/07Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using resilient suspension means

Abstract

본 발명은 리튬 이차 전지용 양극 활물질의 제조 방법에 관한 것으로서, 이 제조 방법은 리튬 니켈계 산화물과 리튬 망간계 산화물을 리튬 니켈 산화물에 대한 리튬 망간계 산화물의 중량 비율이 1 미만이 되도록 혼합하는 공정, 상기 혼합물에 결착제를 첨가하는 공정, 얻어진 생성물을 저온 열처리하는 공정으로 구성된다.The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery, the production method is a step of mixing a lithium nickel-based oxide and a lithium manganese oxide so that the weight ratio of lithium manganese oxide to lithium nickel oxide is less than 1, It consists of the process of adding a binder to the said mixture, and the process of low temperature heat processing of the obtained product.

상기 제조 방법은 충방전 특성, 열적 안정성이 우수하고, 용량이 높으며 저렴한 양극 활물질을 제조할 수 있다.The manufacturing method is excellent in charge and discharge characteristics, thermal stability, high capacity and can produce a cheap cathode active material.

Description

리튬 이차 전지용 양극 활물질의 제조 방법{METHOD OF PREPARING POSITIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY}Manufacturing method of positive electrode active material for lithium secondary batteries {METHOD OF PREPARING POSITIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY}

[산업상 이용 분야][Industrial use]

본 발명은 리튬 이차 전지용 양극 활물질의 제조 방법에 관한 것으로서, 더욱 상세하게는 충방전 특성 및 안정성이 향상된 양극 활물질을 제조할 수 있는 리튬 이차 전지용 양극 활물질의 제조 방법에 관한 것이다.The present invention relates to a method for producing a cathode active material for a lithium secondary battery, and more particularly to a method for manufacturing a cathode active material for a lithium secondary battery capable of producing a cathode active material with improved charge and discharge characteristics and stability.

[종래 기술][Prior art]

리튬 이차 전지는 리튬 이온의 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)이 가능한 물질을 음극 및 양극으로 사용하고, 상기 양극과 음극 사이에 리튬 이온의 이동이 가능한 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 상기 양극 및 음극에서 인터칼레이션/디인터칼레이션 될때의 산화, 환원 반응에 의하여 전기적 에너지를 생성한다.The lithium secondary battery uses a material capable of intercalation and deintercalation of lithium ions as a cathode and an anode, and an organic electrolyte or polymer electrolyte capable of moving lithium ions between the cathode and the anode. It is prepared by charging, and produces electrical energy by oxidation and reduction reactions when lithium ions are intercalated / de-intercalated in the positive and negative electrodes.

이러한 리튬 이차 전지의 음극(anode) 활물질로서 리튬 금속이 사용되기도 하였으나, 리튬 금속을 사용할 경우에는 전지의 충방전 과정 중 리튬 금속의 표면에 덴드라이트(dendrite)가 형성되어 전지 단락 및 전지 폭발의 위험성이 있다. 이와 같은 문제를 해결하기 위하여, 구조 및 전기적 성질을 유지하면서 가역적으로 리튬이온을 받아들이거나 공급할 수 있으며, 리튬 이온의 삽입 및 탈리시 반쪽 셀 포텐셜이 리튬 금속과 유사한 탄소계 물질이 음극 활물질로서 널리 사용되고 있다.Although lithium metal has been used as an anode active material of such a lithium secondary battery, in the case of using lithium metal, dendrite is formed on the surface of the lithium metal during the charge and discharge of the battery. There is this. In order to solve this problem, lithium ions can be reversibly accepted or supplied while maintaining their structural and electrical properties, and a carbon-based material similar to lithium metal in half cell potential when lithium ion is inserted and desorbed is widely used as a negative electrode active material. have.

리튬 이차 전지의 양극(cathode) 활물질로는 리튬 이온의 삽입과 탈리가 가능한 금속의 칼코겐화(chalcogenide) 화합물이 일반적으로 사용되며, 대표적으로는 LiCoO2등의 코발트계,LiMn2O4, LiMnO2등의 망간계, LiNiO2, LiNi1-xCoxO2(0<X<1) 등의 니켈계 등의 복합 금속 산화물이 실용화되어 있다.As a cathode active material of a lithium secondary battery, a chalcogenide compound of a metal capable of inserting and desorbing lithium ions is generally used. Representatively, a cobalt-based compound such as LiCoO 2 , LiMn 2 O 4 , and LiMnO 2 is used. etc. there are composite metal oxides such as manganese, LiNiO 2, LiNi 1-x Co x O 2 , such as a nickel-based (0 <X <1) is put to practical use of.

상기 양극 활물질 중 LiCoO2등의 코발트계 양극 활물질은 실온에서 10-2∼1 S/㎝ 정도의 양호한 전기 전도도와 높은 전지 전압 그리고 우수한 전극 특성을 보이며, 현재 Sony사 등에서 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 그러나 상기 코발트계 양극 활물질은 Co 원소의 희소성으로 인해 비싼 단점이 있다. 또한, LiMn2O4, LiMnO2등의 Mn계 활물질은 값이 비교적 싸며, 환경 오염도 적고, 평탄한 충방전 특성 및 열적 안정성이 우수하다는 장점이 있으나, 용량이 작은 단점이 있다. 또한, LiNiO2는 상기한 양극 활물질 중 가장 값이 싸며, 가장 높은방전 용량의 전지 특성을 나타내나, Ni계 산화물 자체 구조의 불안정성으로 인해 충방전 특성 및 열적 안정성면에서 문제점이 나타나고 있다.Among the cathode active materials, cobalt-based cathode active materials such as LiCoO 2 exhibit good electrical conductivity, high battery voltage, and excellent electrode characteristics of about 10 −2 to 1 S / cm at room temperature, and are representative cathodes currently commercialized and marketed by Sony. It is an active material. However, the cobalt-based positive electrode active material has an expensive disadvantage due to the scarcity of the Co element. In addition, Mn-based active materials such as LiMn 2 O 4 , LiMnO 2 are relatively inexpensive, less environmental pollution, excellent flat charge and discharge characteristics and thermal stability, but has the disadvantage of small capacity. In addition, LiNiO 2 is the cheapest of the above-described positive electrode active material, exhibits the highest discharge capacity of battery characteristics, but due to the instability of the Ni-based oxide itself structure, there are problems in terms of charge and discharge characteristics and thermal stability.

최근에는, 전극 특성이 우수하나, 비싼 Co계 양극 활물질을 대체하기 위해 Co 함량을 줄인 LixCo1-x-yMyO2등의 리튬 복합 금속 산화물이 연구되고 있다. 그러나 Co의 함량이 적어질수록 전지의 충방전 특성 및 열안정성이 나빠지는 단점이 있다(미국 특허 제 4,770,960 호).Recently, lithium composite metal oxides such as Li x Co 1-xy M y O 2 , which have excellent electrode characteristics but have reduced Co content in order to replace expensive Co-based cathode active materials, have been studied. However, as the amount of Co decreases, the charge and discharge characteristics and thermal stability of the battery are deteriorated (US Patent No. 4,770,960).

또한, 비싼 Co를 대체하고자 가격면에서 저렴한 Ni계와 Mn계 산화물을 물리적으로 단순히 혼합하여 Co계 양극 활물질 특성을 갖는 리튬 이온 이차 전지를 구성하였다(미국 특허 제 5,429,890 호) 그러나 상이 다른 금속 산화물 분말끼리의 단순 혼합은 슬러리 제조시 균일성이 떨어져 전지 제조 후 성능 편차가 심하였다.In addition, in order to replace expensive Co, a low-cost Ni-based and Mn-based oxide were physically simply mixed to form a lithium ion secondary battery having a Co-based positive electrode active material (US Pat. No. 5,429,890). Simple mixing between the two was poor in the uniformity of slurry production, there was a serious performance variation after battery production.

본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 충방전 특성 및 열적 안정성이 우수하고, 용량도 높은 양극 활물질을 제조할 수 있는 리튬 이차 전지용 양극 활물질의 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a cathode active material for a lithium secondary battery that is capable of producing a cathode active material having excellent charge and discharge characteristics and thermal stability and high capacity.

본 발명의 다른 목적은 경제적인 양극 활물질을 제조할 수 있는 리튬 이차 전지용 양극 활물질의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a cathode active material for a lithium secondary battery that can produce an economical cathode active material.

도 1은 본 발명의 일 실시예에 따라 제조된 양극 활물질의 충방전 특성을 나타낸 그래프.1 is a graph showing the charge and discharge characteristics of the positive electrode active material prepared according to an embodiment of the present invention.

도 2는 비교예에 따라 제조된 양극 활물질의 충방전 특성을 나타낸 그래프.2 is a graph showing the charge and discharge characteristics of the positive electrode active material prepared according to the comparative example.

상술한 목적을 달성하기 위하여, 본 발명은 리튬 니켈계 산화물과 리튬 망간계 산화물을 리튬 니켈 산화물에 대한 리튬 망간계 산화물의 중량 비율이 1 미만이되도록 혼합하는 공정; 상기 혼합물에 결착제를 첨가하는 공정; 얻어진 생성물을 저온 열처리하는 공정을 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of mixing a lithium nickel-based oxide and lithium manganese oxide so that the weight ratio of lithium manganese oxide to lithium nickel oxide is less than 1; Adding a binder to the mixture; Provided is a method for producing a cathode active material for a lithium secondary battery, including a step of subjecting the obtained product to low temperature heat treatment.

이하 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

리튬 이차 전지에서 양극 활물질로 사용되는 니켈계 산화물은 용량 특성이 우수하고, 저렴하나, 구조의 불안정성으로 인해 충방전 특성 및 열적 안정성이 나쁜 단점이 있고, 망간계 산화물은 충방전 특성 및 열적 안정성이 우수하나, 용량이 적은 단점이 있다. 본 발명은 이러한 니켈계 산화물과 망간계 산화물의 장점만을 최대로 이용하여, 충방전 특성, 열적 안정성이 우수하고, 용량이 크며, 저렴한 양극 활물질을 제조할 수 있는 방법을 제공한다.Nickel-based oxides used as positive electrode active materials in lithium secondary batteries are excellent in capacity characteristics and inexpensive, but have a disadvantage of poor charging and discharging characteristics and thermal stability due to instability of the structure, and manganese oxides have low charging and discharging characteristics and thermal stability. Excellent, but has a disadvantage of low capacity. The present invention utilizes only the advantages of the nickel-based oxide and manganese-based oxide to provide the method of producing a cathode active material having excellent charge and discharge characteristics, thermal stability, large capacity, and low cost.

본 발명의 리튬 이차 전지용 양극 활물질의 제조 방법은 먼저, 리튬 니켈계 산화물과 리튬 망간계 산화물을 혼합한다. 이때, 리튬 니켈계 산화물을 리튬 망간계 산화물보다 과량으로 사용한다. 즉, 리튬 니켈계 산화물에 대한 리튬 망간계 산화물의 중량비가 1 미만이 되도록 혼합한다. 리튬 니켈계 산화물이 리튬 망간계 산화물과 동량 또는 더 적은 양으로 사용하면, 용량이 저하되는 문제점이 있다. 더욱 바람직하게는, 리튬 니켈계 산화물과 리튬 망간계 산화물의 혼합비율(중량% 기준)를 90 내지 60 : 10 내지 40으로 한다.In the method for producing a cathode active material for a lithium secondary battery of the present invention, first, a lithium nickel oxide and a lithium manganese oxide are mixed. At this time, lithium nickel oxide is used in excess of lithium manganese oxide. That is, it mixes so that the weight ratio of lithium manganese oxide to lithium nickel oxide may be less than one. If lithium nickel oxide is used in the same amount or less than lithium manganese oxide, there is a problem that the capacity is lowered. More preferably, the mixing ratio (based on the weight%) of the lithium nickel oxide and the lithium manganese oxide is 90 to 60:10 to 40.

상기 리튬 니켈계 산화물로는 LixNi1-y-zCoyMzO2(M은 전이금속, 0 < x < 1.3, 0 ≤ z ≤ 0.5, y + z < 1)을 사용할 수 있고, 상기 망간계 산화물로는 LixMn2O4(0 <x < 1.3)를 사용할 수 있다.Li x Ni 1-yz Co y M z O 2 (M is a transition metal, 0 <x <1.3, 0 ≤ z ≤ 0.5, y + z <1) may be used as the lithium nickel-based oxide, and the manganese Li x Mn 2 O 4 (0 <x <1.3) may be used as the system oxide.

리튬 니켈계 산화물과 리튬 망간계 산화물 혼합물에 결착제를 첨가한다. 결착제의 첨가량은 상기 혼합물 중량의 0.5 내지 1 중량%, 바람직하게는 0.5 내지 0.8 중량%로 한다. 결착제로는 일반적으로 리튬 이차 전지용 양극 제조시 사용되는 것은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로 폴리비닐리덴 플루오라이드를 사용할 수 있다. 결착제는 상기 리튬 니켈계 산화물과 리튬 망간계 산화물이 균일하게 혼합되도록 하는 역할을 한다. 또한, 결착제는 일반적으로 활물질 조성물을 제조할 때 사용되는 물질로서, 활물질 특성을 저하시키지 않는다.A binder is added to the lithium nickel-based oxide and lithium manganese-based oxide mixture. The amount of the binder added is 0.5 to 1% by weight, preferably 0.5 to 0.8% by weight of the mixture. As the binder, any one generally used in manufacturing a positive electrode for a lithium secondary battery may be used, and as a representative example, polyvinylidene fluoride may be used. The binder serves to uniformly mix the lithium nickel oxide and the lithium manganese oxide. In addition, the binder is generally a material used when preparing the active material composition, and does not lower the active material properties.

이어서, 얻어진 혼합물을 저온 열처리를 실시한다. 열처리는 200 내지 500℃에서 실시하는 것이 바람직하다. 열처리 온도가 200℃ 미만인 경우는 결착제가 녹지 않는 문제점이 있고, 500℃를 초과하는 경우에는 활물질간의 화학 결합이 일어나 원하지 않는 화합물이 형성될 수 있다. 저온 열처리 공정을 실시함에 따라, 단순히, 리튬 니켈계 산화물과 리튬 망간계 산화물을 혼합한 것에 비하여, 더욱 균일한 혼합물을 형성할 수 있다. 이와 같이, 균일한 혼합물이 형성되면, 리튬 니켈계 산화물과 리튬 망간계 산화물의 각각의 단점보다는 각각의 장점이 나타나는 활물질을 형성할 수 있다.Subsequently, the obtained mixture is subjected to low temperature heat treatment. It is preferable to perform heat processing at 200-500 degreeC. If the heat treatment temperature is less than 200 ℃ there is a problem that the binder does not melt, if it exceeds 500 ℃ chemical bonding between the active material may occur to form an unwanted compound. By carrying out the low temperature heat treatment step, it is possible to form a more uniform mixture as compared with simply mixing lithium nickel-based oxide and lithium manganese-based oxide. As such, when a uniform mixture is formed, it is possible to form an active material in which respective advantages appear rather than the disadvantages of lithium nickel oxide and lithium manganese oxide.

상술한 공정으로 제조된 리튬 이차 전지용 양극 활물질은 리튬 니켈계 산화물과 리튬 망간계 산화물이 균일하게 혼합되어 있으며, 열처리 공정에서 휘발되지 않고 남은 결착제가 일부 잔존할 수 있다.In the cathode active material for a lithium secondary battery manufactured by the above-described process, lithium nickel-based oxide and lithium manganese-based oxide are uniformly mixed, and a binder remaining without volatilization in a heat treatment process may remain.

이와 같이 제조된 리튬 이차 전지용 양극 활물질로 양극을 제조하는 방법은이 분야에 이미 널리 알려져 있으며, 그 대표적인 방법을 예로 들어 설명하면, 먼저 제조된 양극 활물질을 폴리비닐피롤리돈 등의 결착제 및 아세틸렌블랙, 카본 블랙 등의 도전제와 함께 N-메틸-2-피롤리돈 등의 유기 용매에 첨가하여 양극 활물질 슬러리 조성물을 제조한다. 상기 슬러리 조성물을 Al 포일 등의 전류 집전체에, 집전체 두께를 포함하여 60∼70㎛가 되도록 도포한 후, 건조하여 양극을 제조한다.A method of manufacturing a positive electrode with the positive electrode active material for a lithium secondary battery thus prepared is well known in the art. When the representative method is described as an example, the prepared positive electrode active material may be a binder such as polyvinylpyrrolidone and acetylene. A positive electrode active material slurry composition is prepared by adding to an organic solvent such as N-methyl-2-pyrrolidone together with a conductive agent such as black and carbon black. The slurry composition is applied to a current collector such as Al foil so as to have a thickness of 60 to 70 µm including the current collector thickness, and then dried to prepare a positive electrode.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.

(실시예 1)(Example 1)

Li0.98Ni0.82Co0.18O2분말과 Li1.05Mn2O4분말을 90 : 10의 혼합비율(중량% 기준)로 유발에서 잘 섞은 후, 소량인 0.01g의 결착제(폴리비닐리덴 플루오라이드, 1.30㎗/g)를 넣었다. 상기 혼합물을 300℃에서 열처리를 하여 리튬 이차 전지용 양극 활물질을 제조하였다.Li 0.98 Ni 0.82 Co 0.18 O 2 powder and Li 1.05 Mn 2 O 4 powder were mixed well in a mortar at a mixing ratio of 90:10 by weight, and then a small amount of 0.01 g of binder (polyvinylidene fluoride, 1.30 dl / g) was added. The mixture was heat-treated at 300 ° C. to prepare a cathode active material for a lithium secondary battery.

제조된 양극 활물질/도전제(아세틸렌 블랙, 62.5㎡/g)/결착제(폴리비닐리덴 플루오라이드, 1.30㎗/g)=94/3/3의 무게 비율로 측량한 후 N-메틸-2-피롤리돈 유기 용매에 녹여 양극 제조용 슬러리를 제조하였다. 이 슬러리를 Al 포일 위에 코팅하여 얇은 극판의 형태로 만든 후(60㎛, 포일 두께 포함) 135℃ 오븐에서 3시간 이상 건조한 후 프레싱하여 양극을 제작하였다. 이어서, 글로브 박스(glove box) 내에서 리튬 금속을 대극으로 사용하여 코인 타입의 반쪽 전지를 제조하였다.N-methyl-2- after weighing the prepared positive electrode active material / conductive agent (acetylene black, 62.5 m 2 / g) / binder (polyvinylidene fluoride, 1.30 dl / g) = 94/3/3 A slurry for preparing a positive electrode was prepared by dissolving in pyrrolidone organic solvent. The slurry was coated on Al foil to form a thin electrode plate (60 μm, including foil thickness), dried in an oven at 135 ° C. for at least 3 hours, and then pressed to prepare a positive electrode. Subsequently, a coin-type half cell was produced using lithium metal as a counter electrode in a glove box.

(실시예 2)(Example 2)

Li0.98Ni0.82Co0.18O2분말과 Li1.05Mn2O4분말을 80 : 20의 혼합비율(중량% 기준)로 유발에서 잘 섞은 후, 소량인 0.01g의 결착제(폴리비닐리덴 플루오라이드, 1.30㎗/g)를 넣었다. 상기 혼합물을 300℃에서 열처리를 하여 리튬 이차 전지용 양극 활물질을 제조하였다.After mixing Li 0.98 Ni 0.82 Co 0.18 O 2 powder and Li 1.05 Mn 2 O 4 powder in a mortar at a mixing ratio of 80: 20, a small amount of 0.01 g of binder (polyvinylidene fluoride, 1.30 dl / g) was added. The mixture was heat-treated at 300 ° C. to prepare a cathode active material for a lithium secondary battery.

제조된 양극 활물질을 이용하여 상기 실시예 1과 동일한 방법으로 코인 타입의 반쪽 전지를 제조하였다.A coin-type half cell was manufactured in the same manner as in Example 1 using the prepared cathode active material.

(실시예 3)(Example 3)

Li0.98Ni0.82Co0.18O2분말과 Li1.05Mn2O4분말을 70 : 30의 혼합비율(중량% 기준)로 유발에서 잘 섞은 후, 소량인 0.01g의 결착제(폴리비닐리덴 플루오라이드, 1.30㎗/g)를 넣었다. 상기 혼합물을 300℃에서 열처리를 하여 리튬 이차 전지용 양극 활물질을 제조하였다.Li 0.98 Ni 0.82 Co 0.18 O 2 powder and Li 1.05 Mn 2 O 4 powder were mixed well in a mortar at a mixing ratio of 70:30, and then a small amount of 0.01 g of binder (polyvinylidene fluoride, 1.30 dl / g) was added. The mixture was heat-treated at 300 ° C. to prepare a cathode active material for a lithium secondary battery.

제조된 양극 활물질을 이용하여 상기 실시예 1과 동일한 방법으로 코인 타입의 반쪽 전지를 제조하였다.A coin-type half cell was manufactured in the same manner as in Example 1 using the prepared cathode active material.

(비교예 1)(Comparative Example 1)

Li0.98Ni0.82Co0.18O2분말과 Li1.05Mn2O4분말을 90 : 10의 혼합비율(중량% 기준)로 유발에서 잘 섞어 리튬 이차 전지용 양극 활물질로 사용하였다.Li 0.98 Ni 0.82 Co 0.18 O 2 powder and Li 1.05 Mn 2 O 4 powder were mixed in a mortar at a mixing ratio of 90:10 to be used as a cathode active material for a lithium secondary battery.

제조된 양극 활물질을 이용하여 상기 실시예 1과 동일한 방법으로 코인 타입의 반쪽 전지를 제조하였다.A coin-type half cell was manufactured in the same manner as in Example 1 using the prepared cathode active material.

(비교예 2)(Comparative Example 2)

Li0.98Ni0.82Co0.18O2분말과 Li1.05Mn2O4분말을 80 : 20의 혼합비율(중량% 기준)로 유발에서 잘 섞어 리튬 이차 전지용 양극 활물질로 사용하였다.Li 0.98 Ni 0.82 Co 0.18 O 2 powder and Li 1.05 Mn 2 O 4 powder were mixed well in a mortar at a mixing ratio of 80:20 and used as a cathode active material for a lithium secondary battery.

제조된 양극 활물질을 이용하여 상기 실시예 1과 동일한 방법으로 코인 타입의 반쪽 전지를 제조하였다.A coin-type half cell was manufactured in the same manner as in Example 1 using the prepared cathode active material.

(비교예 3)(Comparative Example 3)

Li0.98Ni0.82Co0.18O2분말과 Li1.05Mn2O4분말을 70 : 30의 혼합비율(중량% 기준)로 유발에서 잘 섞어 리튬 이차 전지용 양극 활물질로 사용하였다.Li 0.98 Ni 0.82 Co 0.18 O 2 powder and Li 1.05 Mn 2 O 4 powder were mixed well in a mortar at a mixing ratio of 70:30 (by weight percent), and used as a cathode active material for a lithium secondary battery.

제조된 양극 활물질을 이용하여 상기 실시예 1과 동일한 방법으로 코인 타입의 반쪽 전지를 제조하였다.A coin-type half cell was manufactured in the same manner as in Example 1 using the prepared cathode active material.

상기 실시예 1-3 및 비교예 1-3의 방법으로 제조된 리튬 이차 전지의 충방전 평가를 실시하여 전기적 특성(특히 수명 특성)을 평가하였다. 충방전 평가는 4.3V∼3.0V 사이에서 0.1C↔0.1C(1회), 0.2C↔0.2C(3회), 0.5C↔0.5C(10회), 1C↔1C(100회)의 조건으로 전류량을 변화시키며 전지의 충방전 특성을 평가하였다. 측정된 실시예 2-3 및 비교예 2-3의 방법으로 제조된 양극 활물질의 방전 용량, 방전 전압 특성을 측정하여 그 결과를 하기 표 1에 나타내었다.The charging and discharging evaluation of the lithium secondary battery manufactured by the method of Example 1-3 and Comparative Example 1-3 was carried out to evaluate the electrical characteristics (especially the life characteristics). Charging and discharging evaluation is performed under conditions of 0.1C↔0.1C (1 time), 0.2C↔0.2C (3 times), 0.5C↔0.5C (10 times) and 1C↔1C (100 times) between 4.3V and 3.0V. The charge and discharge characteristics of the battery were evaluated by varying the amount of current. Discharge capacities and discharge voltage characteristics of the cathode active materials prepared by the method of Example 2-3 and Comparative Example 2-3 were measured, and the results are shown in Table 1 below.

Ni계/Mn계[중량비]Ni-based / Mn-based [weight ratio] 방전 용량[mAh/g]Discharge Capacity [mAh / g] 방전 전압 특성[18mA/g 기준, V]Discharge voltage characteristic [18 mA / g at V] 비고Remarks 실시예 2Example 2 8/28/2 179179 3.8813.881 우수Great 실시예 3Example 3 7/37/3 172172 3.8893.889 우수Great 비교예 2Comparative Example 2 8/28/2 169169 3.7923.792 불량Bad 비교예 3Comparative Example 3 7/37/3 172172 3.8393.839 불량Bad

표 1에 나타낸 것과 같이, 실시예 2-3의 활물질을 이용한 전지가 비교예 2-3의 활물질을 이용한 전지보다 방전 용량이 우수하며, 방전 전압 특성은 매우 우수함을 알 수 있다.As shown in Table 1, it can be seen that the battery using the active material of Example 2-3 is superior to the discharge capacity and the discharge voltage characteristics of the battery using the active material of Comparative Example 2-3.

또한, 실시예 1, 3 및 비교예 1, 3의 활물질을 이용한 전지의 초기 충방전 특성을 도 1 및 도 2에 각각 나타내었다. 도 1 및 도 2에 나타낸 것과 같이, 리튬 니켈계 산화물과 리튬 망간계 산화물을 9/1로 혼합한 실시예 1과 비교예 1의 경우는 방전 용량 차이가 거의 없으나, 그 비율이 7/3인 실시예 3과 비교예 3의 경우에는 실시예 3이 비교예 3보다 용량이 매우 우수하였다. 이는 망간계 산화물과 니켈계 산화물을 단순 혼합한 비교예 3의 경우, 용량이 낮은 망간계 산화물의 양이 증가됨에 따라 전체 용량이 감소한 것으로 생각된다. 즉, 비교예 3은 두 물질을 단순 혼합함에 따라, 물질 각각의 특성이 그대로 나타나는 것이다. 이에 반하여, 저온 열처리를 실시한 실시예 3의 경우는 니켈계 산화물 특성과의 혼합 특성이 나타남에 따른 것으로 여겨진다.In addition, the initial charge and discharge characteristics of the battery using the active materials of Examples 1, 3 and Comparative Examples 1, 3 are shown in Figs. 1 and 2, respectively. 1 and 2, in Example 1 and Comparative Example 1 in which lithium nickel oxide and lithium manganese oxide were mixed at 9/1, there was almost no difference in discharge capacity, but the ratio was 7/3. In the case of Example 3 and Comparative Example 3, Example 3 was much better than Comparative Example 3. In the case of Comparative Example 3 in which manganese oxide and nickel oxide were simply mixed, it is thought that the total capacity decreased as the amount of manganese oxide having a low capacity was increased. That is, in Comparative Example 3, as the two materials are simply mixed, the properties of each of the materials are displayed as they are. In contrast, in the case of Example 3 subjected to low temperature heat treatment, it is considered that the mixing characteristic with the nickel-based oxide characteristics is shown.

본 발명의 제조 방법은 충방전 특성, 열적 안정성이 우수하고, 용량이 높으며 저렴한 양극 활물질을 제조할 수 있다. 본 발명으로 제조된 양극 활물질로 리튬 이온 이차 전지 제조시 기존 대비 율별에서의 충방전 특성이 약 3% 정도 향상됨을 확인할 수 있었다.The production method of the present invention can produce a cathode active material having excellent charge and discharge characteristics, thermal stability, high capacity and low cost. When the lithium ion secondary battery was manufactured with the cathode active material prepared according to the present invention, it was confirmed that the charge / discharge characteristics were improved by about 3% compared to the conventional ones.

Claims (5)

(정정) 리튬 니켈계 산화물과 리튬 망간계 산화물을 리튬 니켈 산화물에 대한 리튬 망간계 산화물의 중량 비율이 1 미만이 되도록 혼합하는 공정;(Correction) mixing lithium nickel oxide and lithium manganese oxide so that the weight ratio of lithium manganese oxide to lithium nickel oxide is less than 1; 상기 혼합물에 결착제를 첨가하는 공정; 및Adding a binder to the mixture; And 얻어진 생성물을 저온 열처리하는 공정Process of low temperature heat treatment of the obtained product 을 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법.The manufacturing method of the positive electrode active material for lithium secondary batteries containing these. (정정) 제1항에 있어서, 상기 리튬 니켈계 산화물은 LixNi1-y-zCoyMzO2(M은 전이 금속, 0 < x < 1.3, 0 ≤z ≤0.5, y + z < 1)인 리튬 이차 전지용 양극 활물질의 제조 방법.(Correction) The method of claim 1, wherein the lithium nickel-based oxide is Li x Ni 1-yz Co y M z O 2 (M is a transition metal, 0 <x <1.3, 0 <z <0.5, y + z <1 A method for producing a positive electrode active material for a lithium secondary battery. (정정) 제1항에 있어서, 상기 리튬 망간계 산화물은 LixMn2O4(0 < x < 1.3)인 리튬 이차 전지용 양극 활물질의 제조 방법.(Correction) The method according to claim 1, wherein the lithium manganese oxide is Li x Mn 2 O 4 (0 <x <1.3). (정정) 제1항에 있어서, 상기 리튬 니켈계 산화물과 리튬 망간계 산화물의 혼합비율(중량% 기준)는 90 내지 60 : 10 내지 40인 리튬 이차 전지용 양극 활물질의 제조 방법.(Correction) The method for producing a cathode active material for lithium secondary batteries according to claim 1, wherein a mixing ratio (based on weight%) of the lithium nickel oxide and lithium manganese oxide is 90 to 60:10 to 40. 제1항에 있어서, 상기 열처리 온도는 200 내지 500℃인 리튬 이차 전지용 양극 활물질의 제조 방법.The method of claim 1, wherein the heat treatment temperature is 200 to 500 ° C.
KR20000006854A 2000-02-14 2000-02-14 Method of preparing positive active material for lithium secondary battery KR100358804B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20000006854A KR100358804B1 (en) 2000-02-14 2000-02-14 Method of preparing positive active material for lithium secondary battery
US09/775,315 US20010031399A1 (en) 2000-02-14 2001-01-31 Positive active material for rechargeable lithium battery and method of preparing same
JP2001028951A JP4167809B2 (en) 2000-02-14 2001-02-06 Positive electrode active material for lithium secondary battery and method for producing the same
JP2008166194A JP4879226B2 (en) 2000-02-14 2008-06-25 Positive electrode active material for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20000006854A KR100358804B1 (en) 2000-02-14 2000-02-14 Method of preparing positive active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
KR20010081435A KR20010081435A (en) 2001-08-29
KR100358804B1 true KR100358804B1 (en) 2002-10-25

Family

ID=19646273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20000006854A KR100358804B1 (en) 2000-02-14 2000-02-14 Method of preparing positive active material for lithium secondary battery

Country Status (1)

Country Link
KR (1) KR100358804B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490055A (en) * 2013-09-06 2014-01-01 中国海洋石油总公司 Preparation method of nickel cobalt lithium manganate composite anode material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801637B1 (en) 2006-05-29 2008-02-11 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Containing Them
KR101439638B1 (en) * 2012-11-06 2014-09-11 삼성정밀화학 주식회사 Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490055A (en) * 2013-09-06 2014-01-01 中国海洋石油总公司 Preparation method of nickel cobalt lithium manganate composite anode material

Also Published As

Publication number Publication date
KR20010081435A (en) 2001-08-29

Similar Documents

Publication Publication Date Title
US8585935B2 (en) Composite for Li-ion cells and the preparation process thereof
KR100725705B1 (en) Electrode active material for lithium secondary battery
JP4879226B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
WO2007035584A2 (en) High performance composite electrode materials
KR20170133188A (en) Positive active material, method of preparing the same, and rechargeable lithium battery including the same
JPH07153495A (en) Secondary battery
KR100354224B1 (en) Mn-based positive active material for Li-ion battery and method of preparing the same
KR100307165B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
KR100358804B1 (en) Method of preparing positive active material for lithium secondary battery
US20230231125A1 (en) Method for activating electrochemical property of cathode active material for lithium secondary battery and cathode active material for lithium secondary battery
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
KR100436708B1 (en) Negative active material composition and lithium battery containing anode plate prepared from the same
KR101783316B1 (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same
KR100362437B1 (en) Positive active material for lithium secondary battery
EP1164649A1 (en) Positive active material for secondary battery, process for preparation thereof and non-aqueous secondary battery comprising same
JPH1064542A (en) Nonaqueous electrolyte secondary battery
KR101777399B1 (en) Method for manufacturing positive electrode active material for rechargable lithium battery
KR100424638B1 (en) Method of preparing positive active material for rechargeable lithium batteries and preparing the same
KR100434547B1 (en) Lithium metal oxide cathode and lithium secondary battery using the same
KR100578865B1 (en) A positive active material for a lithium secondary battery and a lithium secondary battery comprising the same
KR102076035B1 (en) Elemental coating on oxide materials for lithium rechargeable battery
KR100382304B1 (en) Positive active material for lithium secondary battery and method of preparing same
JPH09293510A (en) Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture
JP2000294237A (en) Positive electrode material for lithium secondary battery and its manufacture
KR100326458B1 (en) Positive active material for lithium secondary battery and lithium secondary battery by using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120921

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150925

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160922

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170920

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180917

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 18