JPH07153495A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH07153495A
JPH07153495A JP5340304A JP34030493A JPH07153495A JP H07153495 A JPH07153495 A JP H07153495A JP 5340304 A JP5340304 A JP 5340304A JP 34030493 A JP34030493 A JP 34030493A JP H07153495 A JPH07153495 A JP H07153495A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
lithium
al2o3
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5340304A
Other languages
Japanese (ja)
Other versions
JP3396696B2 (en
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIBARU KK
Original Assignee
HAIBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIBARU KK filed Critical HAIBARU KK
Priority to JP34030493A priority Critical patent/JP3396696B2/en
Publication of JPH07153495A publication Critical patent/JPH07153495A/en
Application granted granted Critical
Publication of JP3396696B2 publication Critical patent/JP3396696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent the capacity deterioration caused by charge/discharge cycles by adding and mixing one or more oxides selected among Al2O3, In2O3, SnO2, ZnO to a lithium containing composite oxide, and generating the positive electrode of a lithium ion secondary battery. CONSTITUTION:MnO2 and Li2 CO3 are mixed at the atomic ratio of 1:2 between Li and Mn, and the mixture is baked in the air at 800 deg.C for 20hrs to obtain LiMn2O4, for example. Al2O3 is selected among Al2O3, In2O3, SnO2, and ZnO, and Al2O3 of 2 pts.wt. and graphite of 8 pts.wt. are added to LiMn2O3, of 87 pts.wt. to obtain slurry by wet blending. The slurry is uniformly applied on both faces of an aluminum foil having the thickness of 0.02mm, for example, and serving as a positive electrode current collector, and it is pressed and molded by a roller press machine after drying to form a band-like positive electrode 2. A porous polypropylene separator 3 is sandwiched between a negative electrode 1 and the positive electrode 2, and they are wound into a roll shape into a wound body to obtain a battery element. The capacity deterioration caused by charge/discharge cycles can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非水電解液二次電池
の性能改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the performance of a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化が進められる
中、その電源として高エネルギー密度の二次電池の要望
がさらに強まっている。その要望に答えるため、非水電
解液二次電池が注目され、その実用化が試みられて来
た。特に負極にリチウム金属を使用する、いわゆるリチ
ウム二次電池は最も可能性が大きいと思われたが、金属
リチウム負極は充放電の繰り返しによりパウダー化して
著しくその性能が劣化したり、また金属リチウムがデン
ドライトに析出し内部ショートを引起したりするため、
実用的なサイクル寿命に問題があり、今だ実用化は難し
い。そこで最近ではカーボンへのリチウムイオンの出入
りを利用するカーボン電極を負極とする非水電解液二次
電池が開発中である。この電池は本発明者等によって、
リチウムイオン二次電池と名付けて1990年に始めて
世の中に紹介されたもので(雑誌Progress I
n Batteries & SolarCells,
Vol.9,1990,p209)、現在では電池業
界、学会においても次世代の二次電池“リチウムイオン
二次電池”と呼ばれるほどに認識され、その実用化に拍
車がかかっている。代表的には正極材料にリチウム含有
複合酸化物(例えばLiMn、LiCoO、L
iNiO等)を用い、負極にはコークスやグラファイ
ト等の炭素質材料が用いられる。実際、正極にLiCo
を使用し、負極には特殊な炭素材料(ある程度の乱
層構造を有した擬黒鉛材料)を使用して、200Wh/
l程のエネルギー密度を持つリチウムイオン二次電池が
既に少量実用されている。既存のニッケルカドミウム電
池のエネルギー密度は100〜150Wh/lであり、
リチウムイオン二次電池のエネルギー密度は既存の電池
のそれをはるかに上回るものである。しかし大きな欠点
としてはまず原材料費がかなり高いことである。安価な
リチウムイオン二次電池を考えるうえで、資源的な理由
からコバルトの価格低下は将来においても望めない。し
かし、安価な材料という点ではリチウムマンガン複合酸
化物(LiMn、LiMnO等)が極めて魅力
的である。もうひとつの欠点はリチウムイオン二次電池
は充放電サイクルに伴う容量の劣化が大きいことであ
る。しかも正極材料としてリチウムマンガン複合酸化物
を使用したものではその劣化は著しく大きい。カーボン
負極は、充電においては電極中のカーボンへリチウムイ
オンがドープされ、放電ではそのカーボンからリチウム
イオンが脱ドープされるだけで、カーボン自身は充放電
に際して大きな結晶構造の変化を伴わないので、極めて
安定した充放電特性を示し、充放電に伴う特性劣化が少
なく、具体的には1000回以上の充放電の繰り返しも
可能である。しかし、実際のリチウムイオン二次電池の
サイクルに伴う容量の劣化は、正極の特性劣化により支
配され、充分満足なレベルとは言えない。
2. Description of the Related Art As electronic devices are becoming smaller and lighter, there is a growing demand for high energy density secondary batteries as their power sources. In order to meet the demand, attention has been paid to non-aqueous electrolyte secondary batteries, and attempts have been made to put them into practical use. In particular, the so-called lithium secondary battery, which uses lithium metal for the negative electrode, seemed to have the greatest potential, but the metallic lithium negative electrode became powdered due to repeated charging and discharging, and its performance was significantly deteriorated. Because it deposits on dendrites and causes an internal short circuit,
There is a problem with the practical cycle life, and it is still difficult to put it into practical use. Therefore, recently, a non-aqueous electrolyte secondary battery having a carbon electrode as a negative electrode, which utilizes the movement of lithium ions into and out of carbon, is under development. This battery is
It was introduced to the world for the first time in 1990 under the name of lithium-ion secondary battery (Progress I magazine).
n Batteries & SolarCells,
Vol. 9, 1990, p209), and nowadays it is recognized in the battery industry and academic societies as to be called the next-generation secondary battery "lithium ion secondary battery", and its practical application is being spurred. Typically, a lithium-containing composite oxide (for example, LiMn 2 O 4 , LiCoO 2 , L) is used as a positive electrode material.
iNiO 2 etc.) and a carbonaceous material such as coke or graphite is used for the negative electrode. In fact, the positive electrode is LiCo
O 2 is used, and a special carbon material (pseudo-graphite material having a certain degree of disordered layer structure) is used for the negative electrode, and 200 Wh /
A small amount of lithium ion secondary batteries having an energy density of about 1 have already been put into practical use. The energy density of existing nickel-cadmium batteries is 100-150 Wh / l,
The energy density of lithium-ion secondary batteries is much higher than that of existing batteries. However, the major drawback is that the cost of raw materials is quite high. When considering an inexpensive lithium-ion secondary battery, the price reduction of cobalt cannot be expected in the future due to resource reasons. However, lithium manganese composite oxides (LiMn 2 O 4 , LiMnO 2, etc.) are extremely attractive in terms of inexpensive materials. Another drawback is that the capacity of lithium ion secondary batteries deteriorates significantly with charge and discharge cycles. In addition, when the lithium manganese composite oxide is used as the positive electrode material, the deterioration is extremely large. The carbon negative electrode is extremely charged because lithium ions are doped into carbon in the electrode during charging, and lithium ions are undoped from the carbon during discharging, and the carbon itself does not undergo a large change in crystal structure during charge / discharge, which is extremely high. Stable charge / discharge characteristics are exhibited, the characteristic deterioration due to charge / discharge is small, and specifically, the charge / discharge can be repeated 1000 times or more. However, the deterioration of the capacity associated with the actual cycle of the lithium-ion secondary battery is dominated by the deterioration of the characteristics of the positive electrode, and cannot be said to be a sufficiently satisfactory level.

【0003】[0003]

【発明が解決しようとする課題】本発明はリチウム含有
複合酸化物を主たる正極活物質材料とする非水電解液二
次電池のサイクル特性の改善に関するものである。
DISCLOSURE OF THE INVENTION The present invention relates to improvement of cycle characteristics of a non-aqueous electrolyte secondary battery containing a lithium-containing composite oxide as a main positive electrode active material.

【0004】[0004]

【課題を解決するための手段】課題解決の手段は、正極
中に正極活物質であるリチウム含有複合酸化物に混じ
て、Al、In、SnO、ZnOから選
ばれる1種以上の酸化物を添加してなるものである。
[Means for Solving the Problem] The means for solving the problem is selected from Al 2 O 3 , In 2 O 3 , SnO 2 , and ZnO mixed with a lithium-containing composite oxide that is a positive electrode active material in a positive electrode. One or more kinds of oxides are added.

【0005】[0005]

【作用】正極にリチウム含有複合酸化物(LiMn
、LiMnO、LiCoO、LiNiO等)を
使用すると、充電状態ではいずれの複合酸化物もリチウ
ムイオンが脱ドープされた状態となり、不安定になる。
従って充放電を何回も繰り返していくうち、正極活物質
が徐々に変化し充放電機能を失っていくため、サイクル
に伴い容量が劣化していく。そこで本発明者は充電状態
にある正極活物質の安定化を目的に鋭意研究した結果、
Al、In、SnO、ZnOから選ばれ
る1種以上の酸化物を活物質に混じて正極中に添加する
ことにより、充電状態の正極活物質の安定性が増し、充
放電サイクルに伴う容量劣化がきわめて小さい非水電解
液二次電池となることを見いだしたものである。
[Function] A lithium-containing composite oxide (LiMn 2 O
(4 , LiMnO 2 , LiCoO 2 , LiNiO 2 etc.) is used, any of the composite oxides becomes dedoped with lithium ions and becomes unstable in the charged state.
Therefore, as charging and discharging are repeated many times, the positive electrode active material gradually changes and loses the charging and discharging function, and the capacity deteriorates with the cycle. Therefore, the present inventor has conducted intensive studies for the purpose of stabilizing the positive electrode active material in a charged state,
By mixing one or more oxides selected from Al 2 O 3 , In 2 O 3 , SnO 2 , and ZnO with the active material and adding it to the positive electrode, the stability of the positive electrode active material in a charged state is increased and the It was discovered that the capacity of the non-aqueous electrolyte secondary battery is extremely small with the discharge cycle.

【0006】[0006]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0007】実施例1 図1を参照しながら本発明を具体的な円筒型電池につい
て説明する。図1は本実施例の電池の全体構造を示すも
のである。本発明を実施するための発電要素である電池
素子は次のようにして用意した。2800℃で熱処理を
施したメソカーボンマイクロビーズ(d002=3.3
7Å)の90重量部に結着剤としてポリフッ化ビニリデ
ン(PVDF)10重量部を加え、溶剤であるN−メチ
ル−2−ピロリドンと湿式混合してスラリー(ペースト
状)にした。そしてこのスラリーを集電体となる厚さ
0.01mmの銅箔の両面に均一に塗布し、乾燥後ロー
ラープレス機で加圧成型して帯状の負極(1)を作成し
た。続いて正極を次のようにして用意した。市販の二酸
化マンガン(MnO)と炭酸リチウム(Li
)をLiとMnの原子比が1:2の組成比になるよ
うに混合し、これを空気中800℃で20時間焼成して
LiMnを調整した。このLiMnの87
重量部にAl2重量部、グラファイト8重量部を
加えてよく混合し、さらに結合剤としてポリフッ化ビニ
リデン3重量部と溶剤であるN−メチル−2−ピロリド
ンを加えて湿式混合してスラリー(ペースト状)にす
る。このスラリーを正極集電体となる厚さ0.02mm
のアルミニウム箔の両面に均一に塗布し、乾燥後ローラ
ープレス機で加圧成型して帯状の正極(2)を作成し
た。こうして作成した負極(1)と正極(2)はその間
に多孔質ポリプロピレン製セパレータ(3)を挟んでロ
ール状に巻き上げて、平均外径15.7mmの巻回体と
して電池素子を作成した。次にニッケルメッキを施した
鉄製の電池缶(4)の底部に絶縁板(5)を設置し、上
記電池素子を収納する。電池素子より取り出した負極リ
ード(6)を上記電池缶の底に溶接し、電池缶の中に1
モル/リットルのLiPFを溶解したエチレンカーボ
ネイト(EC)とジエチルカーボネート(DEC)の混
合溶液を電解液として注入する。その後、電池素子の上
部にも絶縁板(5)を設置し、ガスケット(7)を嵌
め、防爆弁(8)を図1に示すように電池内部に設置す
る。電池素子より取り出した正極リード(9)はこの防
爆弁に電解液を注入する前に溶接しておく。防爆弁の上
には正極外部端子となる閉塞蓋体(10)をドーナツ型
PTCスイッチ(11)を挟んで重ね、電池缶の縁をか
しめて、図1に示す電池構造で外径16.5mm、高さ
65mmの電池(A)を完成した。
Example 1 The present invention will be described with reference to FIG. 1 for a specific cylindrical battery. FIG. 1 shows the overall structure of the battery of this embodiment. A battery element which is a power generation element for carrying out the present invention was prepared as follows. Mesocarbon micro beads heat-treated at 2800 ° C. (d002 = 3.3
10 parts by weight of polyvinylidene fluoride (PVDF) as a binder was added to 90 parts by weight of 7Å), and wet mixed with N-methyl-2-pyrrolidone as a solvent to form a slurry (paste form). Then, this slurry was uniformly applied to both surfaces of a 0.01 mm-thick copper foil serving as a current collector, dried, and then pressure-molded with a roller press to form a strip-shaped negative electrode (1). Then, the positive electrode was prepared as follows. Commercially available manganese dioxide (MnO 2 ) and lithium carbonate (Li 2 C
O 3 ) was mixed so that the atomic ratio of Li and Mn was 1: 2, and this was baked in air at 800 ° C. for 20 hours to prepare LiMn 2 O 4 . 87 of this LiMn 2 O 4
2 parts by weight of Al 2 O 3 and 8 parts by weight of graphite were added to the parts by weight and mixed well, and further 3 parts by weight of polyvinylidene fluoride as a binder and N-methyl-2-pyrrolidone as a solvent were added and wet mixed. Make a slurry (paste). The thickness of this slurry to be a positive electrode current collector is 0.02 mm
The aluminum foil was evenly applied on both sides, dried, and then pressure-molded with a roller press to form a strip-shaped positive electrode (2). The negative electrode (1) and the positive electrode (2) thus prepared were wound into a roll with a porous polypropylene separator (3) sandwiched between them to prepare a battery element as a wound body having an average outer diameter of 15.7 mm. Next, the insulating plate (5) is placed on the bottom of the nickel-plated iron battery can (4) to house the battery element. Weld the negative electrode lead (6) taken out from the battery element to the bottom of the battery can and insert 1 into the battery can.
A mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which mol / liter of LiPF 6 is dissolved is injected as an electrolytic solution. Then, the insulating plate (5) is also installed on the upper part of the battery element, the gasket (7) is fitted, and the explosion-proof valve (8) is installed inside the battery as shown in FIG. The positive electrode lead (9) taken out from the battery element is welded before injecting the electrolytic solution into this explosion-proof valve. On the explosion-proof valve, a closing lid body (10) serving as a positive electrode external terminal is overlapped with a doughnut-type PTC switch (11) sandwiched therebetween, and the edge of the battery can is crimped, and the battery structure shown in FIG. A battery (A) having a height of 65 mm was completed.

【0008】比較例 使用する正極を従来法により作成し、他は全て実施例1
と同じにして従来法による電池(X)を作成した。従来
法による正極は次のようにして用意される。実施例1で
調整した粉末状LiMnの89重量部に、グラフ
ァイトを8重量部混合し、さらに結合剤としてポリフッ
化ビニリデン3重量部と溶剤であるN−メチル−2−ピ
ロリドンを加えて湿式混合してスラリー(ペースト状)
にする。このスラリーを正極集電体となる厚さ0.02
mmのアルミニウム箔の両面に均一に塗布し、乾燥後ロ
ーラープレス機で加圧成型して帯状の正極(2c)を作
成した。後は、この正極(2c)と実施例1で作成した
ものと同じ負極(1)をその間に多孔質ポリプロピレン
製セパレータ(3)を挟んでロール状に巻き上げて、平
均外径15.7mmの電池素子を作成し、全くその後は
実施例1と同じにして電池(X)を作成した。
Comparative Example The positive electrode to be used was prepared by a conventional method, and the other examples were all prepared in Example 1.
A battery (X) according to the conventional method was prepared in the same manner as in. The positive electrode according to the conventional method is prepared as follows. 8 parts by weight of graphite was mixed with 89 parts by weight of the powdery LiMn 2 O 4 prepared in Example 1, and 3 parts by weight of polyvinylidene fluoride as a binder and N-methyl-2-pyrrolidone as a solvent were added. Wet mix and slurry (paste)
To This slurry is used as a positive electrode current collector with a thickness of 0.02.
mm aluminum foil was evenly applied on both sides, dried, and pressure-molded with a roller press to form a strip-shaped positive electrode (2c). After that, the positive electrode (2c) and the same negative electrode (1) as that prepared in Example 1 were wound into a roll with a porous polypropylene separator (3) interposed therebetween, and a battery having an average outer diameter of 15.7 mm. A device was prepared, and thereafter, a battery (X) was prepared in the same manner as in Example 1.

【0009】実施例2 実施例1で調整したのLiMnの87重量部にS
nO2重量部、グラファイト8重量部を混合し、さら
に結合剤としてポリフッ化ビニリデン3重量部と溶剤で
あるN−メチル−2−ピロリドンを加えて湿式混合して
スラリー(ペースト状)にする。続いてこのスラリーを
正極集電体となる厚さ0.02mmのアルミニウム箔の
両面に均一に塗市し、乾燥後ローラープレス機で加圧成
型して帯状の正極(2b)を作成した。後は、この正極
(2b)と実施例1で作成したものと同じ負極(1)を
その間に多孔質ポリプロピレン製セパレータ(3)を挟
んでロール状に巻き上げて、平均外径15.7mmの電
池素子を作成し、全くその後も実施例1と同じにして電
池(B)を作成した。
Example 2 87 parts by weight of LiMn 2 O 4 prepared in Example 1 was added with S.
2 parts by weight of nO 2 and 8 parts by weight of graphite are mixed, and further 3 parts by weight of polyvinylidene fluoride as a binder and N-methyl-2-pyrrolidone as a solvent are added and wet mixed to form a slurry (paste form). Subsequently, the slurry was uniformly applied on both sides of a 0.02 mm-thick aluminum foil serving as a positive electrode current collector, dried and then pressure-molded with a roller press to form a strip-shaped positive electrode (2b). After that, this positive electrode (2b) and the same negative electrode (1) as that prepared in Example 1 were wound into a roll with a porous polypropylene separator (3) interposed therebetween, and a battery having an average outer diameter of 15.7 mm. A device was prepared and a battery (B) was prepared in the same manner as in Example 1 after that.

【0010】テスト結果 こうして実施例1、2及び比較例で作成した電池は、い
ずれも電池内部の安定化を目的に常温で12時間のエー
ジング期間を経過させた後、充電上限電圧を4.2Vに
設定し、常温で8時間の充電を行い、放電は同じく常温
で全ての電池について800mAの定電流放電にて終止
電圧3.0Vまで行い、それぞれの電池の初期放電容量
を求めた。その後各電池は40℃の高温槽中で充放電サ
イクル試験を行った。充電電流は400mAで、充電上
限電圧は4.2Vに設定して4時間の充電を行い、放電
は800mAの定電流放電にて終止電圧3.0Vまで行
って充放電を繰り返し、40サイクルおよび100サイ
クル時点での各電池の800mA放電での放電容量を求
めた。その結果は表1にまとめた通りである。表1に示
すとおり、本発明による電池(A)および(B)は充放
電を繰り返しても、その容量低下が少なく、40サイク
ル、100サイクルの各時点では従来技術による電池
(X)との容量差はかなり大きくなる。本実施例で作成
したリチウムイオン電池のように、正極活物質にリチウ
ムマンガン複合酸化物(LiMn)を使用する場
合は、従来技術では電池(X)に見られるように、特に
高温状態での充放電サイクルでは容量がかなり急激に減
っていく。100サイクル時点ではすでに初期容量の半
分程の容量となってしまう。 しかし表1に示すように、正極にAlおよびSn
を添加混合した本発明による電池(A)および
(B)では、正極活物質としてリチウムマンガン複合酸
化物(LiMn)を使用した電池においても、極
めて劣化度合いは少なくなり、100サイクル時点でも
870〜880mAhの放電容量が得られる。これはエ
ネルギー密度にすれば約230Wh/lであり、現在商
品化されているコバルトを使用したリチウムイオン二次
電池の初期エネルギー密度をも上回るものである。また
内部抵抗変化においては、100サイクル終了時点で、
従来法による電池(X)では数十ミリオームの変化が見
られるのに対し、本発明による電池の内部抵抗変化は
(A)、(B)共に数ミリオームで非常に少ないことが
確認された。以上のように本発明はリチウムイオン二次
電池の最も大きな欠点であったサイクルに伴う容量劣化
を大幅に改善することが出来る。なお上述の実施例では
本発明の効果がもっとも顕著に現れる例として、正極活
物質としてLiMnを使用した場合について説明
したが、LiCoOやLiNiO等他のリチウム含
有複合酸化物を正極活物質として使用する非水電解液二
次電池においても本発明は改善効果を現すものである。
また上述の実施例では正極活物質に混合してAl
およびSnOを添加して正極を作成した場合について
説明したが、その他にもInおよびZnOが同様
な添加効果を示す。
Test Results In the batteries thus prepared in Examples 1 and 2 and Comparative Example, after the aging period of 12 hours was passed at room temperature for the purpose of stabilizing the inside of the battery, the charging upper limit voltage was 4.2 V. The battery was charged at room temperature for 8 hours, and all batteries were discharged at a constant current of 800 mA to a final voltage of 3.0 V at the same temperature to obtain the initial discharge capacity of each battery. Thereafter, each battery was subjected to a charge / discharge cycle test in a high temperature bath at 40 ° C. The charging current is 400 mA, the charging upper limit voltage is set to 4.2 V, and charging is performed for 4 hours. The discharging is performed at a constant current discharge of 800 mA up to the final voltage of 3.0 V, charging and discharging are repeated, and 40 cycles and 100 The discharge capacity at 800 mA discharge of each battery at the time of the cycle was determined. The results are summarized in Table 1. As shown in Table 1, the batteries (A) and (B) according to the present invention show a small decrease in capacity even after repeated charging and discharging, and the capacity of the batteries (X) according to the prior art at each of 40 and 100 cycles. The difference can be quite large. When a lithium-manganese composite oxide (LiMn 2 O 4 ) is used as the positive electrode active material like the lithium-ion battery prepared in this example, a particularly high temperature condition is observed as in the battery (X) in the prior art. In the charge / discharge cycle at, the capacity decreases sharply. At the time of 100 cycles, the capacity is already about half of the initial capacity. However, as shown in Table 1, Al 2 O 3 and Sn were added to the positive electrode.
In the batteries (A) and (B) according to the present invention in which O 2 is added and mixed, the degree of deterioration is extremely small even in a battery using a lithium manganese composite oxide (LiMn 2 O 4 ) as the positive electrode active material, and the cycle is 100 cycles. A discharge capacity of 870-880 mAh is obtained at that time. This is about 230 Wh / l in terms of energy density, which is higher than the initial energy density of currently commercialized lithium ion secondary batteries using cobalt. Also, regarding the change in internal resistance, at the end of 100 cycles,
It was confirmed that in the battery (X) manufactured by the conventional method, a change of several tens of milliohms was observed, whereas in the batteries of the present invention, both (A) and (B) showed a very small change of several milliohms. As described above, the present invention can greatly improve the deterioration of capacity due to cycling, which is the biggest drawback of lithium ion secondary batteries. Note as an example of the effect appears most pronounced in the present invention in the above embodiment described the case of using the LiMn 2 O 4 as a cathode active material, the positive electrode of LiCoO 2 and LiNiO 2 and the like other lithium-containing composite oxide The present invention also exhibits an improvement effect in a non-aqueous electrolyte secondary battery used as an active material.
Further, in the above-mentioned embodiment, Al 2 O 3 is mixed with the positive electrode active material.
Although the case where SnO 2 and SnO 2 are added to form a positive electrode has been described, In 2 O 3 and ZnO have similar addition effects.

【0011】[0011]

【発明の効果】以上述べたように本発明にあっては、リ
チウム含有複合酸化物(例えばLiMn、LiC
oO、LiNiO等)にAl、In
SnO、ZnOから選ばれる1種以上の酸化物を添加
混合してリチウムイオン二次電池の正極を作成すること
により、リチウムイオン二次電池のこれまでの大きな欠
点である充放電サイクルに伴う容量劣化を大幅に改善で
きる。特に、リチウムマンガン複合酸化物を正極活物質
として用いるリチウムイオン二次電池においては、改善
効果が著しく、既存の二次電池に充分に代わりうる、高
容量、長寿命で且つ安価なリチウムイオン二次電池を提
供できるようになり、その工業的価値は大である。
As described above, in the present invention, a lithium-containing composite oxide (for example, LiMn 2 O 4 , LiC) is used.
(OO 2 , LiNiO 2 etc.) to Al 2 O 3 , In 2 O 3 ,
By adding and mixing one or more kinds of oxides selected from SnO 2 and ZnO to form a positive electrode of a lithium ion secondary battery, the capacity of the lithium ion secondary battery with charge / discharge cycles, which has been a major drawback so far. Deterioration can be greatly improved. In particular, in a lithium ion secondary battery using a lithium manganese composite oxide as a positive electrode active material, a remarkably improved effect, a high capacity, long life and inexpensive lithium ion secondary battery that can sufficiently replace an existing secondary battery. Now that we can provide batteries, their industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例における電池の構造を示し
た模式的断面図
FIG. 1 is a schematic cross-sectional view showing the structures of batteries in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1は負極、2は正極、3はセパレータ、4は電池缶、5
は絶縁板、6は負極リード、7はガスケット、8は防爆
弁、9は負極リード、10は閉塞蓋体である。
1 is a negative electrode, 2 is a positive electrode, 3 is a separator, 4 is a battery can, 5
Is an insulating plate, 6 is a negative electrode lead, 7 is a gasket, 8 is an explosion-proof valve, 9 is a negative electrode lead, and 10 is a closing lid.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極、負極、セパレータおよび非水電解液
を有する電池であって、前記正極にはリチウム含有複合
酸化物が活物質として使用される非水電解液二次電池に
おいて、正極中に前記活物質に混じてAl、In
、SnO、ZnOから選ばれる1種以上の酸化
物を添加してなることを特長とする非水電解液二次電
池。
1. A battery having a positive electrode, a negative electrode, a separator, and a nonaqueous electrolytic solution, wherein a lithium-containing composite oxide is used as an active material in the positive electrode, wherein Al 2 O 3 , In mixed with the active material
A non-aqueous electrolyte secondary battery characterized in that one or more kinds of oxides selected from 2 O 3 , SnO 2 and ZnO are added.
【請求項2】正極にはリチウムマンガン複合酸化物(例
えばLiMn)が活物質として使用される請求項
1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a lithium manganese composite oxide (eg, LiMn 2 O 4 ) is used as an active material in the positive electrode.
JP34030493A 1993-11-26 1993-11-26 Rechargeable battery Expired - Lifetime JP3396696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34030493A JP3396696B2 (en) 1993-11-26 1993-11-26 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34030493A JP3396696B2 (en) 1993-11-26 1993-11-26 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH07153495A true JPH07153495A (en) 1995-06-16
JP3396696B2 JP3396696B2 (en) 2003-04-14

Family

ID=18335667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34030493A Expired - Lifetime JP3396696B2 (en) 1993-11-26 1993-11-26 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP3396696B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022986A2 (en) * 1996-11-13 1998-05-28 Mitsubishi Chemical Corporation Lithium ion electrolytic cell and method for fabricating same
EP0865092A2 (en) * 1997-03-13 1998-09-16 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2001057213A (en) * 1999-08-17 2001-02-27 Sony Corp Non-aqueous electrolyte battery
JP2002050358A (en) * 2000-08-03 2002-02-15 Toyota Central Res & Dev Lab Inc Lithium secondary battery positive electrode
WO2002069417A1 (en) * 2001-02-27 2002-09-06 Nec Corporation Secondary cell
JP2006512742A (en) * 2002-12-23 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー Cathode composition for rechargeable lithium batteries
JP2006261132A (en) * 2006-05-17 2006-09-28 Nichia Chem Ind Ltd Positive electrode active material for lithium secondary battery and its manufacturing method
JP2007522619A (en) * 2004-02-07 2007-08-09 エルジー・ケム・リミテッド Electrode additive coated with conductive material and lithium secondary battery comprising the same
JP2009152197A (en) * 2007-12-18 2009-07-09 Samsung Sdi Co Ltd Cathode, and lithium battery employing the same
US7608365B1 (en) 1999-05-25 2009-10-27 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
WO2010122819A1 (en) * 2009-04-24 2010-10-28 シャープ株式会社 Positive active material and nonaqueous secondary battery equipped with positive electrode including same
US8383273B2 (en) 2009-04-27 2013-02-26 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
WO2018061478A1 (en) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 Lithium ion secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022986A3 (en) * 1996-11-13 1998-10-08 Mitsubishi Chem Corp Lithium ion electrolytic cell and method for fabricating same
WO1998022986A2 (en) * 1996-11-13 1998-05-28 Mitsubishi Chemical Corporation Lithium ion electrolytic cell and method for fabricating same
US6905796B2 (en) 1997-03-13 2005-06-14 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
EP0865092A2 (en) * 1997-03-13 1998-09-16 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
EP0865092A3 (en) * 1997-03-13 1998-09-23 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
EP1148563A2 (en) * 1997-03-13 2001-10-24 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
EP1148563A3 (en) * 1997-03-13 2001-11-07 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
US7655358B2 (en) 1999-05-25 2010-02-02 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US7608365B1 (en) 1999-05-25 2009-10-27 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP2001057213A (en) * 1999-08-17 2001-02-27 Sony Corp Non-aqueous electrolyte battery
JP2002050358A (en) * 2000-08-03 2002-02-15 Toyota Central Res & Dev Lab Inc Lithium secondary battery positive electrode
WO2002069417A1 (en) * 2001-02-27 2002-09-06 Nec Corporation Secondary cell
JP2006512742A (en) * 2002-12-23 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー Cathode composition for rechargeable lithium batteries
JP2007522619A (en) * 2004-02-07 2007-08-09 エルジー・ケム・リミテッド Electrode additive coated with conductive material and lithium secondary battery comprising the same
JP2006261132A (en) * 2006-05-17 2006-09-28 Nichia Chem Ind Ltd Positive electrode active material for lithium secondary battery and its manufacturing method
JP4736943B2 (en) * 2006-05-17 2011-07-27 日亜化学工業株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
JP2009152197A (en) * 2007-12-18 2009-07-09 Samsung Sdi Co Ltd Cathode, and lithium battery employing the same
WO2010122819A1 (en) * 2009-04-24 2010-10-28 シャープ株式会社 Positive active material and nonaqueous secondary battery equipped with positive electrode including same
JP5493236B2 (en) * 2009-04-24 2014-05-14 シャープ株式会社 Non-aqueous secondary battery comprising a positive electrode active material and a positive electrode including the same
US8383273B2 (en) 2009-04-27 2013-02-26 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
US8647779B2 (en) 2009-04-27 2014-02-11 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
WO2018061478A1 (en) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 Lithium ion secondary battery
JP2018060604A (en) * 2016-09-30 2018-04-12 日立オートモティブシステムズ株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP3396696B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP3436600B2 (en) Rechargeable battery
JPH04284372A (en) Nonaqueous electrolyte secondary battery
KR20060112823A (en) Positive electrode for a lithium secondary battery and a lithium secondary battery comprising the same
JP3396696B2 (en) Rechargeable battery
JP2003331825A (en) Nonaqueous secondary battery
JPH06349493A (en) Secondary battery
JP3368029B2 (en) Rechargeable battery
JPH05144472A (en) Secondary battery with nonaqueous electrolyte
KR20190084759A (en) Electrode for lithium secondary battery and lithium secondary battery comprising the same
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JPH07288124A (en) Nonaqueous electrolyte secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JPH07169457A (en) Secondary battery
JPH07335201A (en) Nonaqueous electrolyte secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JPH10112307A (en) Nonaqueous electrolyte secondary battery
JP2002110155A (en) Nonaqueous electrolyte secondary battery
KR100371404B1 (en) Non-aqueous electrolyte battery
JPH0714572A (en) Secondary battery
KR100489794B1 (en) Nonaqueous electrolyte rechargeable batteries having high reliability and longevity
JPH05144471A (en) Secondary battery with nonaqueous electrolyte
JP3281223B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

EXPY Cancellation because of completion of term