JPH07169457A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH07169457A
JPH07169457A JP5353059A JP35305993A JPH07169457A JP H07169457 A JPH07169457 A JP H07169457A JP 5353059 A JP5353059 A JP 5353059A JP 35305993 A JP35305993 A JP 35305993A JP H07169457 A JPH07169457 A JP H07169457A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
active material
battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5353059A
Other languages
Japanese (ja)
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIBARU KK
Original Assignee
HAIBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIBARU KK filed Critical HAIBARU KK
Priority to JP5353059A priority Critical patent/JPH07169457A/en
Publication of JPH07169457A publication Critical patent/JPH07169457A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the performance or a nonaqueous electrolytic secondary battery. CONSTITUTION:In a nonaqueous electrolytic secondary battery using a lithium manganese composite oxide (for example, LiMn2O4) with spinel structure as a positive active material, a carbonate of at least one element selected from alkali-earth metals is mixed with the positive active material, and a positive electrode 2 is formed. Capacity deterioration attendant on charge/discharge cycles is remarkably improved. A lithium ion secondary battery using graphite material as a negative active material and lithium manganese composite oxide with spinel structure as a positive active material has low material cost, long life, and high energy density superior to existing secondary batteries.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非水電解液二次電池
の性能改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the performance of a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化が進められる
中、その電源として高エネルギー密度の二次電池の要望
がさらに強まっている。その要望に答えるため、非水電
解液二次電池が注目され、その実用化が試みられて来
た。特に負極にリチウム金属を使用する、いわゆるリチ
ウム二次電池は最も可能性が大きいと思われたが、金属
リチウム負極は充放電の繰り返しによりパウダー化して
著しくその性能が劣化したり、また金属リチウムがデン
ドライトに析出し内部ショートを引起したりするため、
実用的なサイクル寿命に問題があり、今だ実用化は難し
い。そこで最近ではカーボンへのリチウムイオンの出入
りを利用するカーボン電極を負極とする非水電解液二次
電池が開発中である。この電池は本発明者等によって、
リチウムイオン二次電池と名付けて1990年に始めて
世の中に紹介されたもので(雑誌Progress I
n Batteries & SolarCells,
Vol.9,1990,p209)、現在では電池業
界、学会においても次世代の二次電池“リチウムイオン
二次電池”と呼ばれるほどに認識され、その実用化に拍
車がかかっている。代表的には正極材料にリチウム含有
複合酸化物(LiCoO、LiNiO、LiMn
等)を用い、負極にはコークスやグラファイト等の
炭素質材料が用いられる。実際、正極にLiCoO
使用し、負極には特殊な炭素材料(ある程度の乱層構造
を有した擬黒鉛材料)を使用して、200Wh/l程の
エネルギー密度を持つリチウムイオン二次電池が既に実
用されている。既存のニッケルカドミウム電池のエネル
ギー密度は100〜150Wh/lであり、リチウムイ
オン二次電池のエネルギー密度は既存の電池のそれをは
るかに上回るものである。しかし上記リチウムイオン二
次電池の大きな欠点としてはかなり原材料費が高いこと
である。安価なリチウムイオン二次電池を考えるうえ
で、資源的な理由からコバルトの価格低下は将来におい
ても望めない。したがって、安価な材料という点ではス
ピネル型結晶構造のリチウムマンガン複合酸化物(Li
Mn)が極めて魅力的である。LiCoOに代
えてリチウムマンガン複合酸化物を正極活物質とするリ
チウムイオン二次電池が実現すれば、カドミウムの環境
問題で心配のあるニッケルカドミウム二次電池に代わっ
て、リチウムイオン二次電池が二次電池の主流になる可
能性が大である。しかし正極材料としてリチウムマンガ
ン複合酸化物を使用したリチウムイオン二次電池は、特
に高温(35℃以上)での充放電サイクルで、容量の劣
化が著しく大きい。カーボン負極は、充電においては電
極中のカーボンへリチウムイオンがドープされ、放電で
はそのカーボンからリチウムイオンが脱ドープされるだ
けで、カーボン自身は充放電に際して大きな結晶構造の
変化を伴わないので、極めて安定した充放電特性を示
し、充放電に伴う特性劣化が少なく、具体的には100
0回以上の充放電の繰り返しも可能である。しかし、ス
ピネル構造のリチウムマンガン複合酸化物を使用したリ
チウムイオン二次電池のサイクル特性は、サイクルに伴
う正極の特性劣化により支配され、充分満足なレベルと
は言えない。
2. Description of the Related Art As electronic devices are becoming smaller and lighter, there is a growing demand for high energy density secondary batteries as their power sources. In order to meet the demand, attention has been paid to non-aqueous electrolyte secondary batteries, and attempts have been made to put them into practical use. In particular, the so-called lithium secondary battery, which uses lithium metal for the negative electrode, seemed to have the greatest potential, but the metallic lithium negative electrode became powdered due to repeated charging and discharging, and its performance was significantly deteriorated. Because it deposits on dendrites and causes an internal short circuit,
There is a problem with the practical cycle life, and it is still difficult to put it into practical use. Therefore, recently, a non-aqueous electrolyte secondary battery having a carbon electrode as a negative electrode, which utilizes the movement of lithium ions into and out of carbon, is under development. This battery is
It was introduced to the world for the first time in 1990 under the name of lithium-ion secondary battery (Progress I magazine).
n Batteries & SolarCells,
Vol. 9, 1990, p209), and nowadays it is recognized in the battery industry and academic societies as to be called the next-generation secondary battery "lithium ion secondary battery", and its practical application is being spurred. Typically, a lithium-containing composite oxide (LiCoO 2 , LiNiO 2 , LiMn 2) is used as a positive electrode material.
O 4 etc.) and a carbonaceous material such as coke or graphite is used for the negative electrode. In fact, using LiCoO 2 for the positive electrode and a special carbon material (pseudo-graphite material having a certain disordered layer structure) for the negative electrode, a lithium ion secondary battery having an energy density of about 200 Wh / l can be obtained. It is already in practical use. The energy density of the existing nickel-cadmium battery is 100 to 150 Wh / l, and the energy density of the lithium ion secondary battery is much higher than that of the existing battery. However, a major drawback of the lithium ion secondary battery is that the raw material cost is considerably high. When considering an inexpensive lithium-ion secondary battery, the price reduction of cobalt cannot be expected in the future due to resource reasons. Therefore, in terms of inexpensive materials, lithium manganese composite oxide (Li
Mn 2 O 4 ) is extremely attractive. If a lithium-ion secondary battery using a lithium-manganese composite oxide as a positive electrode active material instead of LiCoO 2 is realized, a lithium-ion secondary battery will replace the nickel-cadmium secondary battery, which is worried about the environmental problems of cadmium. There is a high possibility that it will become the mainstream of secondary batteries. However, a lithium ion secondary battery using a lithium manganese composite oxide as a positive electrode material has a significantly large capacity deterioration particularly in a charge / discharge cycle at a high temperature (35 ° C. or higher). The carbon negative electrode is extremely charged because lithium ions are doped into carbon in the electrode during charging, and lithium ions are undoped from the carbon during discharging, and the carbon itself does not undergo a large change in crystal structure during charge / discharge, which is extremely high. Stable charge / discharge characteristics are shown, and characteristic deterioration due to charge / discharge is small.
It is possible to repeat charging and discharging zero or more times. However, the cycle characteristics of the lithium ion secondary battery using the lithium manganese composite oxide having the spinel structure are dominated by the deterioration of the characteristics of the positive electrode due to the cycle, and cannot be said to be at a sufficiently satisfactory level.

【0003】[0003]

【発明が解決しようとする課題】本発明はスピネル構造
のリチウムマンガン複合酸化物(LiMn、Li
Mn2−x等、ただしMはMn以外の元素)を
主たる正極活物質材料とする非水電解液二次電池のサイ
クル特性の改善に関するものである。
DISCLOSURE OF THE INVENTION The present invention is directed to a lithium manganese composite oxide (LiMn 2 O 4 , Li) having a spinel structure.
The present invention relates to improvement of cycle characteristics of a non-aqueous electrolyte secondary battery in which M x Mn 2-x O 4 etc., where M is an element other than Mn) as a main positive electrode active material.

【0004】[0004]

【課題を解決するための手段】課題解決の手段は、正極
中に正極活物質であるスピネル構造のリチウムマンガン
複合酸化物にアルカリ土類金属から選ばれる1種以上の
元素の炭酸塩を添加混合してなるものである。
[Means for Solving the Problems] A means for solving the problems is to add and mix a carbonate of one or more elements selected from alkaline earth metals to a lithium manganese composite oxide having a spinel structure as a positive electrode active material in a positive electrode. It will be done.

【0005】[0005]

【作用】正極活物質としてスピネル構造のリチウム含有
マンガン複合酸化物を使用すると、正極活物質は充電状
態ではリチウムイオンが脱ドープされ、スピネル構造を
保ったままMnO(λ−MnO)に近づく。λ−M
nOは他の結晶構造のMnO(例えばγ−Mn
、β−MnO)に比べ不安定である。従って充放
電を何回も繰り返していくうち、正極活物質の結晶構造
が徐々に変化して充放電機能を失っていくため、サイク
ルに伴い容量が劣化していく。そこで本発明者は充電状
態にある正極活物質(λ−MnO)の安定化を目的に
鋭意研究した結果、アルカリ土類金属から選ばれる1種
以上の元素の炭酸塩を正極活物質に添加混合することに
より、正極物質の安定性が増し、充放電サイクルに伴う
容量劣化がきわめて小さい非水電解液二次電池となるこ
とを見いだしたものである。
When a lithium-containing manganese composite oxide having a spinel structure is used as the positive electrode active material, the positive electrode active material is dedoped with lithium ions in the charged state, and approaches the MnO 2 (λ-MnO 2 ) while maintaining the spinel structure. . λ-M
nO 2 is MnO 2 in other crystal structures (e.g., gamma-Mn
It is more unstable than O 2 and β-MnO 2 ). Therefore, as charging and discharging are repeated many times, the crystal structure of the positive electrode active material gradually changes and loses the charging and discharging function, and the capacity deteriorates with the cycle. Then, as a result of intensive research for stabilizing the positive electrode active material (λ-MnO 2 ) in a charged state, the present inventor added a carbonate of one or more elements selected from alkaline earth metals to the positive electrode active material. It has been found that the mixing improves the stability of the positive electrode material, resulting in a non-aqueous electrolyte secondary battery with extremely small capacity deterioration with charge and discharge cycles.

【0006】[0006]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0007】実施例1 図1を参照しながら本発明を具体的な円筒型電池につい
て説明する。図1は本実施例の電池の全体構造を示すも
のである。本発明を実施するための発電要素である電池
素子は次のようにして用意した。まず2800℃で熱処
理を施したメソカーボンマイクロビーズ(d002
3.37Å)の90重量部に結着剤としてポリフッ化ビ
ニリデン(PVDF)10重量部を加え、溶剤であるN
−メチル−2−ピロリドンと湿式混合してスラリー(ペ
ースト状)にした。そしてこのスラリーを集電体となる
厚さ0.01mmの銅箔の両面に均一に塗布し、乾燥後
ローラープレス機で加圧成型して帯状の負極(1)を作
成した。続いて正極は次のようにして用意した。市販の
二酸化マンガン(MnO)と炭酸リチウム(Li
)をLiとMnの原子比が1:2の組成比になるよ
うに混合し、これを空気中800℃で20時間焼成して
LiMnを調整した。このLiMnの87
重量部にBaCO2重量部をよく混合し、さらにグラ
ファイトを8重量部、結合剤としてポリフッ化ビニリデ
ン3重量部、溶剤であるN−メチル−2−ピロリドンを
加えて湿式混合してスラリー(ペースト状)にする。続
いてこのスラリーを正極集電体となる厚さ0.02mm
のアルミニウム箔の両面に均一に塗布し、乾燥後ローラ
ープレス機で加圧成型して帯状の正極(2)を作成し
た。こうして作成した負極(1)と正極(2)はその間
に多孔質ポリプロピレン製セパレータ(3)を挟んでロ
ール状に巻き上げて、平均外径15.7mmの巻回体と
して電池素子を作成する。次にニッケルメッキを施した
鉄製の電池缶(4)の底部に絶縁板(5)を設置し、上
記電池素子を収納する。電池素子より取り出した負極リ
ード(6)を上記電池缶の底に溶接し、電池缶の中に1
モル/リットルのLiPFを溶解したエチレンカーボ
ネイト(EC)とジエチルカーボネート(DEC)の混
合溶液を電解液として注入する。その後、電池素子の上
部にも絶縁板(5)を設置し、ガスケット(7)を嵌
め、防爆弁(8)を図1に示すように電池内部に設置す
る。電池素子より取り出した正極リード(9)はこの防
爆弁に電解液を注入する前に溶接しておく。防爆弁の上
には正極外部端子となる閉塞蓋体(10)をドーナツ型
PTCスイッチ(11)を挟んで重ね、電池缶の縁をか
しめて、図1に示す電池構造で外径16.5mm、高さ
65mmの電池(A)を完成した。
Example 1 The present invention will be described with reference to FIG. 1 for a specific cylindrical battery. FIG. 1 shows the overall structure of the battery of this embodiment. A battery element which is a power generation element for carrying out the present invention was prepared as follows. First, mesocarbon microbeads (d 002 = heat treated at 2800 ° C.)
To 90 parts by weight of 3.37 Å), 10 parts by weight of polyvinylidene fluoride (PVDF) is added as a binder, and N as a solvent is added.
-Methyl-2-pyrrolidone was wet mixed to form a slurry (paste form). Then, this slurry was uniformly applied to both surfaces of a 0.01 mm-thick copper foil serving as a current collector, dried, and then pressure-molded with a roller press to form a strip-shaped negative electrode (1). Then, the positive electrode was prepared as follows. Commercially available manganese dioxide (MnO 2 ) and lithium carbonate (Li 2 C
O 3 ) was mixed so that the atomic ratio of Li and Mn was 1: 2, and this was baked in air at 800 ° C. for 20 hours to prepare LiMn 2 O 4 . 87 of this LiMn 2 O 4
2 parts by weight of BaCO 3 were mixed well with 8 parts by weight of graphite, 3 parts by weight of polyvinylidene fluoride as a binder and N-methyl-2-pyrrolidone as a solvent were added and wet mixed to form a slurry (paste). State). Subsequently, this slurry is used as a positive electrode current collector and has a thickness of 0.02 mm.
The aluminum foil was evenly applied on both sides, dried, and then pressure-molded with a roller press to form a strip-shaped positive electrode (2). The negative electrode (1) and the positive electrode (2) thus prepared are wound in a roll shape with a porous polypropylene separator (3) sandwiched therebetween to prepare a battery element as a wound body having an average outer diameter of 15.7 mm. Next, the insulating plate (5) is placed on the bottom of the nickel-plated iron battery can (4) to house the battery element. Weld the negative electrode lead (6) taken out from the battery element to the bottom of the battery can and insert 1 into the battery can.
A mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which mol / liter of LiPF 6 is dissolved is injected as an electrolytic solution. Then, the insulating plate (5) is also installed on the upper part of the battery element, the gasket (7) is fitted, and the explosion-proof valve (8) is installed inside the battery as shown in FIG. The positive electrode lead (9) taken out from the battery element is welded before injecting the electrolytic solution into this explosion-proof valve. On the explosion-proof valve, a closing lid body (10) serving as a positive electrode external terminal is overlapped with a doughnut-type PTC switch (11) sandwiched therebetween, and the edge of the battery can is crimped, and the battery structure shown in FIG. A battery (A) having a height of 65 mm was completed.

【0008】比較例 使用する正極を従来法により作成し、他は全て実施例1
と同じにして従来法による電池(X)を作成した。従来
法による正極は次のようにして用意される。実施例1で
調整した紛末状LiMnを89重量部、グラファ
イトを8重量部、結合剤としてポリフッ化ビニリデン3
重量部を溶剤であるN−メチル−2−ピロリドンと湿式
混合してスラリー(ペースト状)にする。次に、このス
ラリーを正極集電体となる厚さ0.02mmのアルミニ
ウム箔の両面に均一に塗布し、乾燥後ローラープレス機
で加圧成型して帯状の正極(2c)を作成した。後は、
この正極(2c)と実施例1で作成したものと同じ負極
(1)をその間に多孔質ポリプロピレン製セパレータ
(3)を挟んでロール状に巻き上げて、平均外径15.
7mmの電池素子を作成し、全くその後は実施例1と同
じにして電池(X)を作成した。
Comparative Example The positive electrode to be used was prepared by a conventional method, and the other examples were all prepared in Example 1.
A battery (X) according to the conventional method was prepared in the same manner as in. The positive electrode according to the conventional method is prepared as follows. 89 parts by weight of powdered LiMn 2 O 4 prepared in Example 1, 8 parts by weight of graphite, and polyvinylidene fluoride 3 as a binder
Part by weight is wet mixed with N-methyl-2-pyrrolidone which is a solvent to form a slurry (paste form). Next, the slurry was uniformly applied to both sides of a 0.02 mm-thick aluminum foil which was a positive electrode current collector, dried and pressure-molded with a roller press machine to prepare a strip-shaped positive electrode (2c). After that,
The positive electrode (2c) and the same negative electrode (1) prepared in Example 1 were wound into a roll with a porous polypropylene separator (3) sandwiched therebetween, and the average outer diameter was 15.
A battery element having a size of 7 mm was prepared, and thereafter, a battery (X) was prepared in the same manner as in Example 1.

【0009】実施例2 実施例1で調整したのLiMnの87重量部にM
gCOの2重量部をよく混合し、さらにグラファイト
を8重量部、結合剤としてポリフッ化ビニリデンを3重
量部、さらに溶剤であるN−メチル−2−ピロリドンを
加えて湿式混合してスラリー(ペースト状)にする。続
いてこのスラリーを正極集電体となる厚さ0.02mm
のアルミニウム箔の両面に均一に塗布し、乾燥後ローラ
ープレス機で加圧成型して帯状の正極(2b)を作成し
た。後は、この正極(2b)と実施例1で作成したもの
と同じ負極(1)をその間に多孔質ポリプロピレン製セ
パレータ(3)を挟んでロール状に巻き上げて、平均外
径15.7mmの電池素子を作成し、全くその後も実施
例1と同じにして電池(B)を作成した。
Example 2 M was added to 87 parts by weight of LiMn 2 O 4 prepared in Example 1.
2 parts by weight of gCO 3 was mixed well, 8 parts by weight of graphite, 3 parts by weight of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone as a solvent were further added and wet mixed to form a slurry (paste). State). Subsequently, this slurry is used as a positive electrode current collector and has a thickness of 0.02 mm.
The aluminum foil was evenly coated on both sides, dried, and then pressure-molded with a roller press to form a strip-shaped positive electrode (2b). After that, this positive electrode (2b) and the same negative electrode (1) as that prepared in Example 1 were wound into a roll with a porous polypropylene separator (3) interposed therebetween, and a battery having an average outer diameter of 15.7 mm. A device was prepared and a battery (B) was prepared in the same manner as in Example 1 after that.

【0010】テスト結果 こうして実施例1、2及び比較例で作成した電池は、い
ずれも電池内部の安定化を目的に常温で12時間のエー
ジング期間を経過させた後、充電上限電圧を4.2Vに
設定し、常温で8時間の充電を行い、放電は同じく常温
で全ての電池について800mAの定電流放電にて終止
電圧3.0Vまで行い、それぞれの電池の初期放電容量
を求めた。その後各電池は40℃の高温槽中で充放電サ
イクル試験を行った。充電電流は400mAで、充電上
限電圧は4.2Vに設定して4時間の充電を行い、放電
は800mAの定電流放電にて終止電圧3.0Vまで行
って充放電を繰り返し、40サイクルおよび100サイ
クル時点での各電池の800mA放電での放電容量を求
めた。その結果は表1にまとめた通りである。表1に示
すように本発明による電池(A)および(B)は充放電
を繰り返しても、その容量低下が少なく、40サイク
ル、100サイクルの各時点では比較例による従来法の
電池(X)との容量差はかなり大きくなる。従来法で作
成した電池(X)に見られるように、正極活物質として
スピネル構造のリチウムマンガン複合酸化物(LiMn
)を使用するリチウムイオン二次電池では、高温
における充放電サイクルでは容量劣化が非常に大きく、
100サイクル時点では初期容量の半分程の容量となっ
てしまう。 しかし表1に示すように、BaCOおよびMgCO
を正極中へ添加混合した本発明による電池(A)および
(B)では、極めて劣化度合いは少なくなり、100サ
イクル時点でも、初期容量の90%以上が維持され、8
50〜860mAhの放電容量が得られる。これはエネ
ルギー密度にすれば約230Wh/lであり、現在商品
化されて市販されているコバルトを使用したリチウムイ
オン二次電池の初期エネルギー密度をも上回るものであ
る。また内部抵抗変化においては、100サイクル終了
時点で、従来法による電池は(X)数十ミリオームの変
化が見られるのに対し、本発明による電池の内部抵抗変
化は(A)、(B)共に数ミリオームで非常に少ないこ
とが確認された。以上のように本発明はスピネル構造の
リチウムマンガン複合酸化物を正極活物質とするリチウ
ムイオン二次電池の最も大きな欠点であったサイクルに
伴う容量劣化を大幅に改善することが出来るものであ
る。なお上述の実施例では正極活物質としてもっとも基
本的なスピネル構造のリチウムマンガン酸化物であるL
iMnを使用して説明したが、他のスピネル構造
のリチウムマンガン複合酸化物(例えばマンガンの一部
を他の元素Mで置き換えたLiMMn2−x等)
を正極活物質として使用する場合においても、勿論改善
効果を現すものである。また上述の実施例では正極活物
質にBaCOおよびMgCOを添加混合して正極を
作成し、電解液にはLiPFを溶解したECとDEC
の混合溶液を使用した場合について説明したが、この他
にも適切な電解液との組合せにおいてアルカリ上類金属
から選ばれる1種以上の元素の炭酸塩を正極活物質に添
加混合すれば基本的には同様の効果が得られる。
Test Results In the batteries thus prepared in Examples 1 and 2 and Comparative Example, after the aging period of 12 hours was passed at room temperature for the purpose of stabilizing the inside of the battery, the charging upper limit voltage was 4.2 V. The battery was charged at room temperature for 8 hours, and all batteries were discharged at a constant current of 800 mA to a final voltage of 3.0 V at the same temperature to obtain the initial discharge capacity of each battery. Thereafter, each battery was subjected to a charge / discharge cycle test in a high temperature bath at 40 ° C. The charging current is 400 mA, the charging upper limit voltage is set to 4.2 V, and charging is performed for 4 hours. The discharging is performed at a constant current discharge of 800 mA up to the final voltage of 3.0 V, charging and discharging are repeated, and 40 cycles and 100 The discharge capacity at 800 mA discharge of each battery at the time of the cycle was determined. The results are summarized in Table 1. As shown in Table 1, the batteries (A) and (B) according to the present invention show a small decrease in capacity even after repeated charging and discharging, and the batteries (X) of the conventional method according to the comparative example at each of 40 and 100 cycles. The capacity difference with As seen in the battery (X) prepared by the conventional method, a spinel structure lithium manganese composite oxide (LiMn) is used as a positive electrode active material.
In a lithium ion secondary battery using 2 O 4 ), capacity deterioration is extremely large in a charge / discharge cycle at high temperature,
At the time of 100 cycles, the capacity will be about half of the initial capacity. However, as shown in Table 1, BaCO 3 and MgCO 3
In the batteries (A) and (B) according to the present invention in which is added and mixed in the positive electrode, the degree of deterioration is extremely small, and 90% or more of the initial capacity is maintained even after 100 cycles.
A discharge capacity of 50-860 mAh is obtained. This has an energy density of about 230 Wh / l, which is higher than the initial energy density of the lithium ion secondary battery using cobalt which is currently commercialized and is commercially available. Regarding the change in internal resistance, at the end of 100 cycles, the battery according to the conventional method shows a change of (X) several tens of milliohms, whereas the change in the internal resistance of the battery according to the present invention shows both (A) and (B). It was confirmed to be very low in a few milliohms. As described above, according to the present invention, it is possible to significantly improve the capacity deterioration due to the cycle, which is the biggest drawback of the lithium ion secondary battery using the spinel structure lithium manganese composite oxide as the positive electrode active material. In the above-mentioned examples, L which is the most basic spinel structure lithium manganese oxide as a positive electrode active material.
Although described using iMn 2 O 4 , other lithium-manganese composite oxides having a spinel structure (for example, LiM x Mn 2-x O 4 in which a part of manganese is replaced with another element M).
Even when is used as the positive electrode active material, the improvement effect is of course exhibited. Further, in the above-mentioned examples, a positive electrode was prepared by adding and mixing BaCO 3 and MgCO 3 to the positive electrode active material, and EC and DEC in which LiPF 6 was dissolved in the electrolytic solution.
The case where the mixed solution of is used was explained, but in addition to this, it is basically possible to add and mix a carbonate of one or more elements selected from the above alkali-metals to the positive electrode active material in combination with an appropriate electrolytic solution. Has the same effect.

【0011】[0011]

【発明の効果】以上述べたように本発明にあっては、ス
ピネル構造のリチウムマンガン複合酸化物(例えばLi
Mn)に混合してアルカリ土類金属から選ばれる
1種以上の元素の炭酸塩を添加して正極を作成するとと
により、リチウムイオン二次電池の充放電サイクルに伴
う容量劣化を大幅に改善できる。リチウムマンガン複合
酸化物はリチウムイオン二次電池の大幅な材料費低減を
可能とするため、既存の二次電池に充分に代わりうる、
高容量、長寿命で且つ安価なリチウムイオン二次電池を
提供できるようになり、その工業的価値は大である。
As described above, according to the present invention, a lithium manganese composite oxide having a spinel structure (for example, Li
By mixing with Mn 2 O 4 ) and adding a carbonate of one or more elements selected from alkaline earth metals to create a positive electrode, the capacity deterioration due to the charge / discharge cycle of the lithium ion secondary battery is significantly reduced. Can be improved. Lithium-manganese composite oxide can significantly reduce the material cost of the lithium-ion secondary battery, and thus can sufficiently replace the existing secondary battery.
A high-capacity, long-life and inexpensive lithium-ion secondary battery can be provided, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例における電池の構造を示し
た模式的断面図
FIG. 1 is a schematic cross-sectional view showing the structures of batteries in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1は負極、2は正極、3はセパレータ、4は電池缶、5
は絶縁板、6は負極リード、7はガスケット、8は防爆
弁、9は正極リード、10は閉塞蓋体である。
1 is a negative electrode, 2 is a positive electrode, 3 is a separator, 4 is a battery can, 5
Is an insulating plate, 6 is a negative electrode lead, 7 is a gasket, 8 is an explosion-proof valve, 9 is a positive electrode lead, and 10 is a closing lid.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極、負極、セパレータおよび非水電解液
を有する電池であって、前記正極にはスピネル結晶構造
のリチウムマンガン複合酸化物を正極活物質として使用
する非水電解液二次電池において、前記正極中にアルカ
リ土類金属から選ばれる1種以上の元素の炭酸塩が前記
正極活物質に添加混合されてなることを特長とする非水
電解液二次電池。
1. A battery having a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, wherein the positive electrode uses a lithium manganese composite oxide having a spinel crystal structure as a positive electrode active material. A non-aqueous electrolyte secondary battery characterized in that a carbonate of one or more elements selected from alkaline earth metals is added to and mixed with the positive electrode active material in the positive electrode.
JP5353059A 1993-12-17 1993-12-17 Secondary battery Pending JPH07169457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5353059A JPH07169457A (en) 1993-12-17 1993-12-17 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5353059A JPH07169457A (en) 1993-12-17 1993-12-17 Secondary battery

Publications (1)

Publication Number Publication Date
JPH07169457A true JPH07169457A (en) 1995-07-04

Family

ID=18428289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5353059A Pending JPH07169457A (en) 1993-12-17 1993-12-17 Secondary battery

Country Status (1)

Country Link
JP (1) JPH07169457A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0689255A2 (en) * 1994-05-23 1995-12-27 Fuji Photo Film Co., Ltd. Non-aqueous secondary cell
FR2775124A1 (en) * 1998-02-16 1999-08-20 Fujitsu Ltd Lithium battery useful as a power source for data retention in an electronic memory or for powering portable electronic equipment
JP2002313339A (en) * 2001-04-16 2002-10-25 Matsushita Battery Industrial Co Ltd Nonaqueous electrolyte secondary battery
JP2011159576A (en) * 2010-02-03 2011-08-18 Hitachi Maxell Energy Ltd Lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0689255A2 (en) * 1994-05-23 1995-12-27 Fuji Photo Film Co., Ltd. Non-aqueous secondary cell
EP0689255A3 (en) * 1994-05-23 1996-03-20 Fuji Photo Film Co Ltd Non-aqueous secondary cell
US5567539A (en) * 1994-05-23 1996-10-22 Fuji Photo Film Co., Ltd. Non-aqueous secondary cell
FR2775124A1 (en) * 1998-02-16 1999-08-20 Fujitsu Ltd Lithium battery useful as a power source for data retention in an electronic memory or for powering portable electronic equipment
JP2002313339A (en) * 2001-04-16 2002-10-25 Matsushita Battery Industrial Co Ltd Nonaqueous electrolyte secondary battery
JP2011159576A (en) * 2010-02-03 2011-08-18 Hitachi Maxell Energy Ltd Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP3436600B2 (en) Rechargeable battery
JP2002324585A (en) Nonaqueous electrolyte secondary battery and capacity restoring method thereof
JP3396696B2 (en) Rechargeable battery
JP2003331825A (en) Nonaqueous secondary battery
JP3368029B2 (en) Rechargeable battery
JPH06349493A (en) Secondary battery
JPH05144472A (en) Secondary battery with nonaqueous electrolyte
KR100565990B1 (en) Cathode Active Material for Lithium Secondary Batteries, Method for manufacturing the same and Lithium Secondary Batteries containing the same
JPH0745304A (en) Organic electrolyte secondary battery
JPH07288124A (en) Nonaqueous electrolyte secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JPH07169457A (en) Secondary battery
JPH06349524A (en) Secondary battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JPH07335201A (en) Nonaqueous electrolyte secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JPH01128371A (en) Nonaqueous electrolyte secondary cell
JP3281223B2 (en) Non-aqueous electrolyte secondary battery
JPH0714572A (en) Secondary battery
KR100489794B1 (en) Nonaqueous electrolyte rechargeable batteries having high reliability and longevity
KR100371404B1 (en) Non-aqueous electrolyte battery
JPH05144471A (en) Secondary battery with nonaqueous electrolyte
JPH07249429A (en) Battery
JPH11250936A (en) Lithium secondary battery
JP4961649B2 (en) Non-aqueous electrolyte secondary battery