JPH07288124A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH07288124A
JPH07288124A JP6113337A JP11333794A JPH07288124A JP H07288124 A JPH07288124 A JP H07288124A JP 6113337 A JP6113337 A JP 6113337A JP 11333794 A JP11333794 A JP 11333794A JP H07288124 A JPH07288124 A JP H07288124A
Authority
JP
Japan
Prior art keywords
battery
lithium
positive electrode
active material
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6113337A
Other languages
Japanese (ja)
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIBARU KK
Original Assignee
HAIBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIBARU KK filed Critical HAIBARU KK
Priority to JP6113337A priority Critical patent/JPH07288124A/en
Publication of JPH07288124A publication Critical patent/JPH07288124A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To enhance performance of a nonaqueous electrolyte secondary battery. CONSTITUTION:In a nonaqueous secondary battery using a carbon material such as coke and graphite as a negative active material, a positive electrode 2 is prepared by using a mixture of a lithium containing composite oxide (for example, LiMn2O4 or LiCoO2) and a lithium-titanium composite oxide represented by a general formula, Li1+x Ti2-xO4 (0<=x<=0.17) as an active material. Elution of a negative current collector 1 in overdischarge is prevented, and the battery free from remarkable deterioration in performance is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非水電解液二次電池
の性能改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the performance of a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化が進められる
中、その電源として高エネルギー密度の二次電池の要望
がさらに強まっている。その要望に答えるべく、非水電
解液二次電池は高エネルギー密度電池としての可能性の
高さから、その実用化が試みられている。負極に金属リ
チウムを使用し、正極にリチウム含有マンガン複合酸化
物を使用する非水電解液二次電池がかなり有望と思われ
たが金属リチウム負極が充放電の繰り返しによりパウダ
ー化して著しくその性能が劣化したり、また金属リチウ
ムがデンドライトに析出し内部ショートを引起したりす
るため、実用的なサイクル寿命に問題があり、実用化は
なかなか難しいことがわかってきた。そこで最近では、
リチウム金属負極に代えて、カーボンへのリチウムイオ
ンの出入りを利用するカーボン電極を負極とする非水電
解液二次電池が開発の主流となっている。この電池は本
発明者等によってリチウムイオン二次電池と名付けて、
1990年(雑誌Progress in Batte
ries & Solar Cells,Vol.9、
P.209)に初めて紹介されたもので、代表的には正
極材料にLiCoOやLiMn等のリチウム含
有複合酸化物を用い、負極にはコークスや黒鉛質材料が
使用され、充電状態では4V以上の高い電池電圧を示す
ことが大きな特徴である。現在では電池業界や学会でも
リチウムイオン二次電池の呼び名で認知され、次世代の
二次電池と言われて注目を集めている。実際、240W
h/l程のエネルギー密度を持つリチウムイオン二次電
池は既に少量実用され始めている。既存のニッケルカド
ミウム電池のエネルギー密度は100〜150Wh/l
であり、リチウムイオン二次電池のエネルギー密度は既
存の電池のそれをはるかに上回るものである。さらにリ
チウムイオン二次電池の特長は高寿命の点にもある。カ
ーボン負極は、充電においては電極中のカーボンへリチ
ウムイオンがドープされ、放電ではそのカーボンからリ
チウムイオンが脱ドープされるだけで、カーボン自身は
充放電に際して大きな結晶構造の変化を伴わないので、
極めて安定した充放電特性を示し、充放電に伴う特性劣
化が少なく、具体的には1000回以上の充放電の繰り
返しも可能である。しかしリチウムイオン二次電池の大
きな欠点は過放電により著しく性能が劣化することであ
る。このため、例えば現在ビデオカメラ用の電源として
実用されているリチウムイオン二次電池はその電池パッ
クに過放電防止回路を組み込み、その対策が採られてい
る。従って正極活物質に高価なコバルトを使用するので
もともと材料費の高い電池である上に、過放電防止回路
の価格が上乗せされ、リチウムイオン電池の電池パック
は非常に値段的に高くなり、リチウムイオン電池が広い
用途に採用されるための大きな障害となっている。材料
的にはリチウムコバルト複合酸化物に代えて、将来は安
価なリチウムマンガン複合酸化物を使用すべきであろ
う。しかし既存のニッケルカドミウム蓄電池に代わり、
広い用途にリチウムイオン蓄電池が使用されるために
は、やはり過放電防止回路を必要としない電池、つまり
過放電による性能劣化の無い電池として完成されなけれ
ばならない。
2. Description of the Related Art As electronic devices are becoming smaller and lighter, there is a growing demand for high energy density secondary batteries as their power sources. In order to meet the demand, non-aqueous electrolyte secondary batteries are being put into practical use because of their high potential as high energy density batteries. A non-aqueous electrolyte secondary battery that uses metallic lithium for the negative electrode and a lithium-containing manganese composite oxide for the positive electrode seemed to be quite promising, but the metallic lithium negative electrode was powdered by repeated charging and discharging, and its performance was remarkably high. It has been found that there is a problem in practical cycle life because it deteriorates or metallic lithium deposits on dendrites and causes an internal short circuit, and it is difficult to put it into practical use. So recently,
In place of the lithium metal negative electrode, a non-aqueous electrolyte secondary battery having a negative electrode of a carbon electrode that utilizes the inflow / outflow of lithium ions from / to carbon has become the mainstream of development. This battery is named as a lithium ion secondary battery by the present inventors,
1990 (magazine Progress in Batte
ries & Solar Cells, Vol. 9,
P. 209), which typically uses a lithium-containing composite oxide such as LiCoO 2 or LiMn 2 O 4 for the positive electrode material and coke or a graphite material for the negative electrode. It is a major feature that it exhibits the above high battery voltage. At present, it is recognized by the battery industry and academic societies under the name of lithium-ion secondary battery, and it is attracting attention as the next-generation secondary battery. Actually 240W
A small amount of lithium ion secondary batteries having an energy density of about h / l have already been put into practical use. The energy density of existing nickel-cadmium batteries is 100-150 Wh / l
The energy density of the lithium ion secondary battery is far higher than that of the existing battery. Another feature of lithium-ion secondary batteries is their long life. The carbon negative electrode is such that during charging, lithium ions are doped into the carbon in the electrode, and during discharging, lithium ions are only undoped, and the carbon itself does not undergo a large change in crystal structure during charging and discharging,
It exhibits extremely stable charge and discharge characteristics, has little characteristic deterioration due to charge and discharge, and specifically, can be repeatedly charged and discharged 1000 times or more. However, a major drawback of the lithium-ion secondary battery is that its performance is significantly deteriorated due to overdischarge. For this reason, for example, lithium-ion secondary batteries that are currently in practical use as power sources for video cameras incorporate an over-discharge prevention circuit in their battery packs and take measures against it. Therefore, the use of expensive cobalt as the positive electrode active material is a battery with a high material cost, and the cost of the overdischarge prevention circuit is added. This is a major obstacle to the widespread use of batteries. In terms of materials, inexpensive lithium-manganese composite oxide should be used in the future instead of lithium-cobalt composite oxide. However, replacing the existing nickel-cadmium battery,
In order for a lithium ion storage battery to be used in a wide range of applications, it must be completed as a battery that does not require an overdischarge prevention circuit, that is, a battery that does not have performance deterioration due to overdischarge.

【0003】[0003]

【発明が解決しようとする課題】本発明はリチウム含有
複合酸化物を主たる正極活物質材料とし、炭素材料を負
極活物質とする非水電解液二次電池の過放電による特性
劣化を改善しようとするものである。
DISCLOSURE OF THE INVENTION The present invention intends to improve the characteristic deterioration due to over-discharge of a non-aqueous electrolyte secondary battery containing a lithium-containing composite oxide as a main positive electrode active material and a carbon material as a negative electrode active material. To do.

【0004】[0004]

【課題を解決するための手段】課題解決の手段は、一般
式Li1+XTi2−X(但し、0≦X≦0.1
7)で示されるリチウムチタン複合酸化物を混合したリ
チウム含有複合酸化物を活物質として正極を作成する。
[Means for Solving the Problems] Means for solving the problems are represented by the general formula Li 1 + X Ti 2 -X O 4 (where 0 ≦ X ≦ 0.1
A positive electrode is prepared by using the lithium-containing composite oxide mixed with the lithium titanium composite oxide shown in 7) as an active material.

【0005】[0005]

【作用】リチウムイオン二次電池において過放電で極端
に性能劣化をする原因は、過放電を行うと負極集電体で
ある銅が電解液中に溶けだすことによる。これは正極活
物質にリチウム含有複合酸化物(LiCoOやLiM
等)を用いた場合、電池の電圧が殆ど0に達し
ても、正極の電位は依然3.5V(vsLi/Li)
以上もあり、負極の電位が正極の電位に接近して電池電
圧が0に達しているに過ぎない。したがって過放電を続
けると負極集電体の銅に3.5V(vsLi/Li)
以上もの電位となれば、電気化学的酸化反応によって銅
は電解液中へ溶け出す。本発明者はリチウムイオン二次
電池の正極活物質としてLi1+XTi2−X(但
し、0≦X≦0.17)を使用した場合では、過放電に
おいても負極集電体の銅の溶けだしが無く、電池性能の
劣化もないことを見いだした。そしてさらに、本発明者
はLiCoOLiMnにLi1+XTi2−X
(但し、0≦X≦0.17)をある程度の量以上混
じて正極活物質とすれば、過放電による負極集電体の銅
の電解液への溶けだしが無くなることを見いだし本発明
に至った。
The cause of the excessive deterioration of the performance of the lithium ion secondary battery due to over-discharging is that copper, which is the negative electrode current collector, begins to dissolve in the electrolytic solution when over-discharging. This is a positive electrode active material containing a lithium-containing composite oxide (such as LiCoO 2 or LiM).
When using n 2 O 4, etc.), even reaching zero voltage of the battery is almost the potential of the positive electrode remains 3.5V (vsLi + / Li)
Due to the above, the potential of the negative electrode approaches the potential of the positive electrode, and the battery voltage has only reached 0. Therefore, if over-discharge is continued, 3.5 V (vsLi + / Li) is added to the copper of the negative electrode current collector.
When the potential is higher than the above, copper is dissolved into the electrolytic solution by the electrochemical oxidation reaction. The present inventor, when Li 1 + X Ti 2 —X O 4 (where 0 ≦ X ≦ 0.17) is used as the positive electrode active material of the lithium ion secondary battery, is capable of removing copper of the negative electrode current collector even during overdischarge. It was found that there was no melting and no deterioration in battery performance. And further, the present inventor has added Li 1 + X Ti 2 -X to LiCoO 2 LiMn 2 O 4.
It has been found that when O 4 (where 0 ≦ X ≦ 0.17) is mixed in a certain amount or more to form a positive electrode active material, the negative electrode current collector does not melt into the electrolytic solution due to overdischarging. I arrived.

【0006】[0006]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0007】実施例1 図1を参照しながら本発明の具体的な電池について説明
する。本発明を実施するための発電要素である電池素子
は次のようにして用意された。まず2800℃で熱処理
を施したメソカーボンマイクロビーズ(d002=3.
37Å)の86重量部にアセチレンブラック4重量部と
結着剤としてポリフッ化ビニリデン(PVDF)10重
量部を加え、溶剤であるN−メチル−2−ピロリドンと
湿式混合してスラリー(ペースト状)にした。そしてこ
のスラリーを集電体となる厚さ0.01mmの銅箔の両
面に均一に塗布し、乾燥後ローラープレス機で加圧成型
して帯状の負極(1)を作成した。
Example 1 A specific battery of the present invention will be described with reference to FIG. A battery element which is a power generation element for carrying out the present invention was prepared as follows. First, mesocarbon microbeads (d002 = 3.
To 37 parts of 86), 4 parts by weight of acetylene black and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder are added, wet mixed with N-methyl-2-pyrrolidone as a solvent to form a slurry (paste form). did. Then, this slurry was uniformly applied to both surfaces of a 0.01 mm-thick copper foil serving as a current collector, dried, and then pressure-molded with a roller press to form a strip-shaped negative electrode (1).

【0008】次に二酸化マンガン(MnO)と炭酸リ
チウム(LiCO)を1モル:0.263モルの比
でよく混合し、これをを空気中750℃で12時間焼成
して正極主活物質とするリチウムマンガン酸化物(Li
Mn)を用意した。
Next, manganese dioxide (MnO 2 ) and lithium carbonate (Li 2 CO 3 ) were mixed well at a ratio of 1 mol: 0.263 mol, and the mixture was calcined in air at 750 ° C. for 12 hours to prepare a positive electrode. Lithium manganese oxide as active material (Li
Mn 2 O 4 ) was prepared.

【0009】次に正極主活物質に混合する副活物質とし
て、リチウムチタン複合酸化物Li1+XTi2−X
を次のようにして作成した。但し予備実験の結果、L
1+XTi2−XにおけるX値は、0≦X≦0.
17の範囲でより効果的であることを確認した。そこで
本実施例ではX=0.035で実施した。二酸化チタン
(TiO:アナターゼ)と炭酸リチウム(LiCO
)を1モル:1モルの比でよく混合し、これをを空気
中750℃で24時間焼成してLiTiOを調整し
た。調整したLiTiOにはさらに二酸化チタン
(TiO:アナターゼ)と金属チタン粉末を2.0
7:4.895:0.895のモル比でよく混合し、そ
の混合物は石英管に入れて真空下で封じ、電気炉中に設
置し、1時間に150℃の速度で850℃迄昇温し、8
50℃の温度に16時間保持して反応させ、リチウムチ
タン複合酸化物(Li1.035Ti1.965
を調整した。生成反応は次の(1)式で示される。(但
しX=0.035) 2(1+X)LiTiO+(5−3X)TiO+(1−3X)Ti →4Li1+XTi2−X・・・・・・ (1)
Next, as a sub-active material mixed with the positive electrode main active material, lithium titanium composite oxide Li 1 + X Ti 2 -X O
4 was prepared as follows. However, as a result of preliminary experiments, L
The X value in i 1 + X Ti 2 —X O 4 is 0 ≦ X ≦ 0.
It was confirmed to be more effective in the range of 17. Therefore, in this embodiment, X = 0.035 is used. Titanium dioxide (TiO 2 : anatase) and lithium carbonate (Li 2 CO
3 ) was well mixed at a ratio of 1 mol: 1 mol, and this was calcined in air at 750 ° C. for 24 hours to prepare Li 2 TiO 3 . The adjusted Li 2 TiO 3 was further added with titanium dioxide (TiO 2 : anatase) and metallic titanium powder in an amount of 2.0.
Mix well at a molar ratio of 7: 4.895: 0.895, put the mixture in a quartz tube, seal it under vacuum, install in an electric furnace, and heat up to 850 ° C at a rate of 150 ° C for 1 hour. Then 8
Lithium-titanium composite oxide (Li 1.035 Ti 1.965 O 4 ) was maintained by holding it at a temperature of 50 ° C. for 16 hours.
Was adjusted. The production reaction is represented by the following formula (1). (Where X = 0.035) 2 (1 + X) Li 2 TiO 3 + (5-3X) TiO 2 + (1-3X) Ti → 4Li 1 + X Ti 2-X O 4 ······ (1)

【0010】以上のようにして調整した リチウムマン
ガン複合酸化物とリチウムチタン複合酸化物は重量比
9:1の割合でよく混合し、その混合物94重量部をカ
ーボンブラックの3重量部と結合剤としてポリフッ化ビ
ニリデン3重量部とともに溶剤であるN−メチル−2−
ピロリドンと湿式混合してスラリー(ペースト状)にす
る。次に、このスラリーを正極集電体となる厚さ0.0
2mmのアルミニウム箔の両面に均一に塗布し、乾燥後
ローラープレス機で加圧成型して帯状の正極(2a)を
作成した。
The lithium-manganese composite oxide and the lithium-titanium composite oxide prepared as described above were mixed well in a weight ratio of 9: 1, and 94 parts by weight of the mixture was used as a binder with 3 parts by weight of carbon black. N-methyl-2- which is a solvent together with 3 parts by weight of polyvinylidene fluoride
Wet mix with pyrrolidone to form a slurry (paste form). Next, this slurry is used as a positive electrode current collector in a thickness of 0.0
A 2 mm aluminum foil was evenly applied on both sides, dried, and pressure-molded with a roller press to form a strip-shaped positive electrode (2a).

【0011】続いて負極(1)と正極(2a)はその間
に多孔質ポリプロピレン製セパレータ(3)を挟んでロ
ール状に巻き上げて、平均外径15.7mmの電池素子
とした。次にニッケルメッキを施した鉄製の電池缶
(4)の底部に絶縁板(14)を設置し、上記電池素子
を収納する。電池素子より取り出した負極リード(5)
を上記電池缶の底に溶接し、電池缶の中に電解液として
1モル/リットルのLiPF溶解したエチレンカーボ
ネイト(EC)とジエチルカーボネート(DEC)の混
合溶液を注入する。その後電池素子の上部にも絶縁板
(14)を設置し、ガスケット(15)を嵌め、防爆弁
(28)を図1に示すように電池内部に設置する。電池
素子より取り出した正極リード(7)はこの防爆弁に電
解液を注入する前に溶接しておく。防爆弁の上にはリン
グ状のPTC素子(16)を挟んで正極外部端子となる
閉塞蓋体(29)を重ね、電池缶の縁をかしめて、図1
に示す電池構造で外径16.5mm、高さ65mmの電
池(A)を作成した。
Subsequently, the negative electrode (1) and the positive electrode (2a) were wound in a roll shape with a porous polypropylene separator (3) interposed therebetween to obtain a battery element having an average outer diameter of 15.7 mm. Next, the insulating plate (14) is placed on the bottom of the nickel-plated iron battery can (4) to house the battery element. Negative electrode lead taken out from battery element (5)
Is welded to the bottom of the battery can, and a 1 mol / liter LiPF 6 dissolved ethylene carbonate (EC) and diethyl carbonate (DEC) mixed solution is injected into the battery can as an electrolyte. After that, the insulating plate (14) is also installed on the upper part of the battery element, the gasket (15) is fitted, and the explosion-proof valve (28) is installed inside the battery as shown in FIG. The positive electrode lead (7) taken out from the battery element is welded before injecting the electrolytic solution into this explosion-proof valve. On the explosion-proof valve, a ring-shaped PTC element (16) is sandwiched and a closing lid (29) serving as a positive electrode external terminal is overlaid, and the edge of the battery can is caulked, and the
A battery (A) having an outer diameter of 16.5 mm and a height of 65 mm was prepared with the battery structure shown in FIG.

【0012】比較例1 実施例1による電池と過放電性能の比較をするため、従
来技術による電池(Y)を作成する。つまり従来技術で
は実施例1で調整したリチウムマンガン複合酸化物
(LiMnO)だけを正極活物質とする。実施例1で
調整したリチウムマンガン複合酸化物の91重量部に導
電剤としてグラファイトを6重量部、結合剤としてポリ
フッ化ビニリデン3重量部を溶剤であるN−メチル−2
−ピロリドンと湿式混合してスラリー(ペースト状)に
する。次に、このスラリーを正極集電体となる厚さ0.
02mmのアルミニウム箔の両面に均一に塗布し、乾燥
後ローラープレス機で加圧成型して帯状の正極(2y)
を作成する。後は全く実施例1と同じに、負極(1)と
正極(2y)を使用して電池素子を作成し、ニッケルメ
ッキを施した鉄製の電池缶(4)に収納し、電解液も実
施例1と同じ電解液を注入し、最後に電池缶の縁をかし
めて、図1に示す実施例1の場合と同じ電池寸法、同じ
電池構造で電池(Y)を作成した。
Comparative Example 1 In order to compare the battery according to Example 1 with the overdischarge performance, a battery (Y) according to the prior art is prepared. That is, in the prior art, the lithium manganese composite oxide prepared in Example 1 was used.
Only (LiMnO 4 ) is used as the positive electrode active material. To 91 parts by weight of the lithium manganese composite oxide prepared in Example 1, 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder were used as a solvent, N-methyl-2.
Wet mix with pyrrolidone to form a slurry (paste). Next, this slurry was made to have a thickness of 0.
Evenly applied to both sides of 02 mm aluminum foil, dried and pressure-molded with a roller press machine to form a strip-shaped positive electrode (2y)
To create. After that, in exactly the same manner as in Example 1, a battery element was prepared using the negative electrode (1) and the positive electrode (2y) and housed in a nickel-plated iron battery can (4). The same electrolytic solution as in Example 1 was injected, and finally the edge of the battery can was caulked to prepare a battery (Y) with the same battery size and the same battery structure as in Example 1 shown in FIG.

【0013】テスト結果1 実施例1および比較例1で作成した電池(A)および電
池(Y)は、いずれも電池内部の安定化を目的に12時
間のエージング期間を経過させた後、充電電圧を4.2
Vに設定し、いずれも8時間の充電を行い、放電は全て
の電池について800mAの定電流放電にて終止電圧
3.0Vまで行い、それぞれの電池の初期放電容量を求
めた。またさらに、再び充電電圧を4.2Vに設定し、
いずれも8時間の充電を行った後、全ての電池について
5オームの抵抗を介して定抵抗放電を行い、電池電圧が
通常の終止電圧(3V)以下になってもそのまま過放電
を続け、5オームの抵抗を接続したまま2週間放置し
た。その後再び充電電圧を4.2Vに設定し、いずれも
8時間の充電を行い、全ての電池について800mAの
定電流放電にて終止電圧3.0Vまで放電し、それぞれ
の電池の過放電後の回復放電容量を求めた。またその後
電池を解体して負極集電体の銅の溶け出しの有無を調べ
た。その結果を表1に比較した。
Test Result 1 The batteries (A) and (Y) prepared in Example 1 and Comparative Example 1 were each charged with a charging voltage after an aging period of 12 hours for the purpose of stabilizing the inside of the battery. 4.2
The battery was set to V, each was charged for 8 hours, and discharged for all batteries by constant current discharge of 800 mA up to the final voltage of 3.0 V, and the initial discharge capacity of each battery was determined. Furthermore, the charging voltage is set to 4.2V again,
After charging for 8 hours in all cases, constant resistance discharge was performed for all batteries through a resistance of 5 ohms, and over discharge was continued even if the battery voltage dropped below the normal end voltage (3V). It was left for 2 weeks with the resistance of ohms connected. After that, the charging voltage was set to 4.2V again, and each battery was charged for 8 hours, and all the batteries were discharged to the final voltage of 3.0V by the constant current discharge of 800mA to recover after over-discharging each battery. The discharge capacity was determined. Further, after that, the battery was disassembled and the presence or absence of the dissolution of copper in the negative electrode current collector was examined. The results are compared with Table 1.

【0014】これまで、性能の良い炭素材料はある程度
の乱造構造を有した擬黒鉛材料であると考えられ、高結
晶性の黒鉛材料は黒鉛表面で電解液が分解しリチウムイ
オンのインターカレーション反応は進みにくいと報告さ
れていた。しかし、実施例1で使用した負極活物質は2
800℃で熱処理を施したメソカーボンマイクロビーズ
で、X線広角回折法による002面の面間隔(d00
2)が3.37Åで高結晶性の黒鉛材料である。本実施
例で使用したECとDECの混合溶媒の電解液を用いれ
ば、むしろこの高結晶性の黒鉛材料は従来の擬黒鉛材料
より平坦で、高い放電電圧を持つリチウムイオン二次電
池と成り、電池(A)および電池(Y)はともに初期容
量においては表1の結果が示すように、正極材にリチウ
ムマンガン複合酸化物を使用しても、235wh/l以
上のエネルギー密度(現在商品化されているコバルトを
正極材料とする電池とほぼ同じのエネルギー密度)を持
つたリチウムイオン二次電池ができる。
Up to now, it has been considered that a carbon material having good performance is a pseudo-graphite material having a certain degree of disordered structure, and a highly crystalline graphite material is decomposed by an electrolytic solution on the surface of graphite to cause an intercalation reaction of lithium ions. Was reported to be difficult to proceed. However, the negative electrode active material used in Example 1 was 2
The mesocarbon microbeads heat-treated at 800 ° C. were used to measure the interplanar spacing (d00
2) is a highly crystalline graphite material with 3.37Å. If the electrolytic solution of the mixed solvent of EC and DEC used in this example is used, the highly crystalline graphite material is rather flat and becomes a lithium ion secondary battery having a higher discharge voltage than the conventional pseudo-graphite material. As for the battery (A) and the battery (Y), in the initial capacity, as shown in the results of Table 1, even if the lithium manganese composite oxide is used as the positive electrode material, the energy density of 235 wh / l or more (currently commercialized) A lithium-ion secondary battery with almost the same energy density as a battery using cobalt as a positive electrode material can be obtained.

【0015】しかし、従来技術による電池(Y)は一旦
過放電をしてしまうと、その後は殆ど充放電機能を無く
し、回復不能となる。ところが、表1の電池(A)の結
果に見られるように、正極活物質が主活物質であるスピ
ネル型リチウムマンガン複合酸化物の9重量部に1重量
部の比でリチウムチタン酸化物(Li1+XTi2−X
、0≦X≦0.17) を副活物質として混じた混
合物であれば、電池が過放電されても負極集電体の銅が
溶け出すことがなく、過放電後の性能は殆ど劣化するこ
とがない。リチウムチタン酸化物(Li1+XTi
2−X、0≦X≦0.17)の混合は過放電に対し
て極めて有効であると同時に適量の混合は電池容量の増
加も見られる。
However, once the battery (Y) according to the prior art is over-discharged, the charge / discharge function is almost lost thereafter and the battery cannot be recovered. However, as can be seen from the results of the battery (A) in Table 1, the ratio of lithium titanium oxide (Li) to the lithium titanium oxide (Li) was 9 parts by weight to 9 parts by weight of the spinel-type lithium manganese composite oxide in which the positive electrode active material was the main active material. 1 + X Ti 2-X
A mixture of O 4 , 0 ≦ X ≦ 0.17) as a sub-active material does not dissolve copper of the negative electrode current collector even when the battery is over-discharged, and the performance after the over-discharge is almost zero. It does not deteriorate. Lithium titanium oxide (Li 1 + X Ti
The mixture of 2-X O 4 , 0 ≦ X ≦ 0.17) is extremely effective against overdischarge, and at the same time, an appropriate amount of the mixture increases the battery capacity.

【0016】実施例2 正極主活物質とするリチウムコバルト複合酸化物(Li
CoO)を次のようにして合成する。炭酸リチウム
(LiCO)と炭酸コバルト(CoCO) をL
iとCoの原子比が1.03:1の組成比になるように
混合し、空気中で900℃で約10時間焼成してLiC
oOを得る。焼成後のLiCoOは非常に固い塊と
して得られるので、これを粉砕機にかけて平均粒径0.
01mmの粉末状に調整する。
Example 2 A lithium cobalt composite oxide (Li
CoO 2 ) is synthesized as follows. Add lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) to L
i and Co were mixed so that the atomic ratio was 1.03: 1, and the mixture was baked in air at 900 ° C. for about 10 hours to obtain LiC.
Obtain oO 2 . Since LiCoO 2 after calcination is obtained as a very hard mass, it is crushed by a pulverizer to obtain an average particle size of 0.
The powder is adjusted to 01 mm.

【0017】次に正極主活物質に混合する副活物質とし
て、リチウムチタン複合酸化物Li1+XTi2−X
を次のようにして作成した。但し予備実験の結果、L
1+XTi2−XにおけるX値は、0≦X≦0.
17の範囲でより効果的であることを確認しているので
本実施例ではX=0で実施した。市販の二酸化チタン
(TiO:アナターゼ)と炭酸リチウム(LiCO
)を1モル:1モルの比でよく混合し、これをを空気
中750℃で24時間焼成してLiTiOを調整し
た。調整したLiTiOにはさらに二酸化チタン
(TiO:アナターゼ)と金属チタン粉末を2:5:
1のモル比でよく混合し、その混合物は石英管に入れて
真空下で封じ、電気炉中に設置し、1時間に150℃の
速度で850℃迄昇温し、850℃の温度に16時間保
持して反応させ、リチウムチタン複合酸化物(LiTi
)を調整した。Li1+XTi2−Xの生成
反応は同じく前記(1)式で示される。
Next, as a sub-active material to be mixed with the positive electrode main active material, lithium titanium composite oxide Li 1 + X Ti 2 -X O
4 was prepared as follows. However, as a result of preliminary experiments, L
The X value in i 1 + X Ti 2 —X O 4 is 0 ≦ X ≦ 0.
Since it has been confirmed that it is more effective in the range of 17, the present example was carried out at X = 0. Commercially available titanium dioxide (TiO 2 : anatase) and lithium carbonate (Li 2 CO
3 ) was well mixed at a ratio of 1 mol: 1 mol, and this was calcined in air at 750 ° C. for 24 hours to prepare Li 2 TiO 3 . The adjusted Li 2 TiO 3 was further mixed with titanium dioxide (TiO 2 : anatase) and metallic titanium powder 2: 5:
Mix well at a molar ratio of 1, the mixture is put in a quartz tube, sealed under vacuum, placed in an electric furnace, heated to 850 ° C at a rate of 150 ° C for 1 hour, and heated to 850 ° C at a temperature of 16 ° C. Hold for a period of time to cause a reaction, and a lithium titanium composite oxide (LiTi
2 O 4 ) was adjusted. The production reaction of Li 1 + X Ti 2 —X O 4 is also represented by the above formula (1).

【0018】以上のようにして調整したリチウムコバル
ト複合酸化物(LiCoO)とリチウムチタン複合酸
化物(LiTi)は重量比9:1の割合でよく混
合し、その混合物94重量部をカーボンブラックの3重
量部と結合剤としてポリフッ化ビニリデン3重量部とと
もに溶剤であるN−メチル−2−ピロリドンと湿式混合
してスラリー(ペ−スト状)にする。次に、このスラリ
ーを正極集電体となる厚さ0.02mmのアルミニウム
箔の両面に均一に塗布し、乾燥後ローラープレス機で加
圧成型して帯状の正極(2b)を作成した。正極(2
b)は実施例1で作成したと同じ負極(1)と組合せ、
セパレータを挟んで渦巻状巻回体として電池素子を作成
し、電池素子は実施例1と同じようにニッケルメッキを
施した鉄製の電池缶(4)に収納し、電解液も実施例1
と同じ電解液を注入し、最後に電池缶の縁をかしめて、
電池(A)と同じ電池寸法、同じ電池構造で電池(B)
を作成した。
The lithium cobalt composite oxide (LiCoO 2 ) and the lithium titanium composite oxide (LiTi 2 O 4 ) prepared as described above were well mixed at a weight ratio of 9: 1, and 94 parts by weight of the mixture was added. 3 parts by weight of carbon black and 3 parts by weight of polyvinylidene fluoride as a binder are wet-mixed with N-methyl-2-pyrrolidone which is a solvent to form a slurry (paste form). Next, the slurry was uniformly applied to both sides of a 0.02 mm-thick aluminum foil which was a positive electrode current collector, dried, and then pressure-molded with a roller press to form a strip-shaped positive electrode (2b). Positive electrode (2
b) is combined with the same negative electrode (1) created in Example 1,
A battery element was formed as a spiral wound body with a separator sandwiched between them. The battery element was housed in a nickel-plated iron battery can (4) as in Example 1, and the electrolytic solution was also used in Example 1.
Inject the same electrolyte as the above, and finally crimp the edge of the battery can,
Battery (B) with the same battery dimensions and structure as battery (A)
It was created.

【0019】比較例2 実施例2による電池と過放電性能の比較をするため、従
来技術による電池(Z)を作成する。つまり従来技術で
は実施例2で調整したリチウムコバルト複合酸化物
((LiCoO)だけを正極活物質とする。実施例2
で調整したリチウムコバルト複合酸化物の91重量部に
導電剤としてグラファイトを6重量部、結合剤としてポ
リフッ化ビニリデン3重量部を溶剤であるN−メチル−
2−ピロリドンと湿式混合してスラリー(ペースト状)
にする。次に、このスラリーを正極集電体となる厚さ
0.02mmのアルミニウム箔の両面に均一に塗布し、
乾燥後ローラープレス機で加圧成型して帯状の正極(2
z)を作成する。後は全く実施例2と同じに、負極
(1)と正極(2z)を使用して電池素子を作成し、ニ
ッケルメッキを施した鉄製の電池缶(4)に収納し、電
解液も実施例2と同じ電解液を注入し、最後に電池缶の
縁をかしめて、図1に示す実施例1や実施例2の場合と
同じ電池寸法、同じ電池構造で電池(Z)を作成した。
Comparative Example 2 In order to compare the overdischarge performance with the battery according to Example 2, a conventional battery (Z) is prepared. That is, in the related art, only the lithium cobalt composite oxide ((LiCoO 2 )) prepared in Example 2 is used as the positive electrode active material.
In 91 parts by weight of the lithium-cobalt composite oxide prepared in step 6, 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder are used as a solvent in N-methyl-
Wet-mix with 2-pyrrolidone to form slurry (paste)
To Next, this slurry was evenly applied to both sides of a 0.02 mm-thick aluminum foil that serves as a positive electrode current collector,
After drying, it is pressure-molded with a roller press machine and strip-shaped positive electrode (2
z) is created. Thereafter, a battery element was prepared using the negative electrode (1) and the positive electrode (2z), and stored in a nickel-plated iron battery can (4) in the same manner as in Example 2. The same electrolytic solution as in Example 2 was injected, and finally, the edge of the battery can was caulked to prepare a battery (Z) having the same battery size and the same battery structure as those in Example 1 and Example 2 shown in FIG.

【0020】テスト結果2 実施例2および比較例2で作成した電池(B)および電
池(Z)は、いずれも電池内部の安定化を目的に12時
間のエージング期間を経過させた後、充電電圧を4.1
Vに設定し、いずれも8時間の充電を行い、放電は全て
の電池について800mAの定電流放電にて終止電圧
3.0Vまで行い、それぞれの電池の初期放電容量を求
めた。またさらに、再び充電電圧を4.1Vに設定し、
いずれも8時間の充電を行った後、全ての電池について
5オームの抵抗を介して定抵抗放電を行い、電池電圧が
通常の終止電圧(3V)以下になってもそのまま過放電
を続け、5オームの抵抗を接続したまま2週間放置し
た。その後再び充電電圧を4.1Vに設定し、いずれも
8時間の充電を行い、全ての電池について800mAの
定電流放電にて終止電圧3.0Vまで放電し、それぞれ
の電池の過放電後の回復放電容量を求めた。またその後
電池を解体して負極集電体の銅の溶け出しの有無を調べ
た。その結果を表2に比較した。
Test Result 2 The batteries (B) and (Z) prepared in Example 2 and Comparative Example 2 were each charged with a charging voltage after an aging period of 12 hours for the purpose of stabilizing the inside of the battery. 4.1
The battery was set to V, each was charged for 8 hours, and discharged for all batteries by constant current discharge of 800 mA up to the final voltage of 3.0 V, and the initial discharge capacity of each battery was determined. Furthermore, the charging voltage is set to 4.1V again,
After charging for 8 hours in all cases, constant resistance discharge was performed for all batteries through a resistance of 5 ohms, and over discharge was continued even if the battery voltage dropped below the normal end voltage (3V). It was left for 2 weeks with the resistance of ohms connected. After that, the charging voltage was set to 4.1V again, and each battery was charged for 8 hours, and all batteries were discharged to the final voltage of 3.0V by constant current discharge of 800mA, and the recovery after over-discharge of each battery. The discharge capacity was determined. Further, after that, the battery was disassembled and the presence or absence of the dissolution of copper in the negative electrode current collector was examined. The results are compared in Table 2.

【0021】表2に見られるように、従来技術による電
池(Z)は一旦過放電をしてしまうと、その後は殆ど充
放電機能を無くし、回復不能となる。しかし正極主活物
質がリチウムコバルト複合酸化物の場合も実施例1の場
合と同じように主活物質9重量部に1重量部の比でリチ
ウムチタン複合酸化物を副活物質として混じた場合は、
電池が過放電されても負極集電体の銅が溶け出すことが
なく、過放電後の性能は殆ど劣化することがない。
As can be seen from Table 2, once the battery (Z) according to the prior art is overdischarged, the charge / discharge function is almost lost thereafter and the battery cannot be recovered. However, even when the positive electrode main active material is the lithium cobalt composite oxide, as in the case of Example 1, when the lithium titanium composite oxide is mixed as the secondary active material in the ratio of 1 part by weight to 9 parts by weight of the main active material, ,
Even if the battery is over-discharged, the copper of the negative electrode current collector does not dissolve, and the performance after over-discharge is hardly deteriorated.

【0022】実施例1の場合も、実施例2の場合もリチ
ウムチタン複合酸化物の混合は過放電に対して極めて有
効であると同時に適量の混合は電池容量の増加も見られ
る。しかし、主活物質に対してあまり多く混じると、電
池容量は再びて減る傾向となる。リチウムチタン複合酸
化物の最適な混合量は使用する負極の炭素材料によって
異なるが、本実施例で使用した2800℃で熱処理を施
したメソカーボンマイクロビーズの場合は、全正極活物
質に対して好ましくは3〜30重量%、さらに好ましく
は5〜15重量%の混合が適量である。
In both the case of Example 1 and the case of Example 2, the mixing of the lithium titanium composite oxide is extremely effective against over-discharging, and at the same time, the mixing of an appropriate amount also increases the battery capacity. However, if it is mixed with the main active material too much, the battery capacity tends to decrease again. The optimum mixing amount of the lithium-titanium composite oxide depends on the carbon material of the negative electrode used, but the mesocarbon microbeads heat-treated at 2800 ° C. used in this example are preferable for all positive electrode active materials. Is 3 to 30% by weight, more preferably 5 to 15% by weight.

【0023】本発明の実施例として正極の主活物質とし
てLiMnとLiCoOを使用する場合につい
て示したが、これに限定されるものではなく、他のリチ
ウム含有複合酸化物にもリチウムチタン酸化物(Li
11XTi2−X、0≦X≦0.17)を混合して
同様な結果が得られる。ちなみに他の正極活物質として
有用なリチウム含有複合酸化物には次のような材料が上
げられる。LiNiO、LiCo1−x(M
はCo以外の金属元素)、LiMn2−x(M
はCo、Ni、Fe等)、Li[Mn2−XLi]O
(但し、0≦X≦0.081)等。特に一般式Li
[Mn2−XLi]O(但し、0≦X≦0.08
1)で示されるスピネル系リチウムマンガン酸化物は安
価な材料であり、今後のリチウムイオン二次電池の正極
材料として魅力あるものである。実施例1のLiMn
も上記一般式で示されるスピネル系リチウムマンガ
ン酸化物のx=0における一つであり、実施例の結果の
通り、正極材にリチウムマンガン複合酸化物を使用して
も、235wh/l以上のエネルギー密度(現在商品化
されているコバルトを正極材料とする電池とほぼ同じの
エネルギー密度)を持つたリチウムイオン二次電池がで
きる。加えて本発明によって、リチウムイオン二次電池
の大きな欠点である過放電での性能劣化が改善されるの
で、リチウムイオン二次電池が安価な電源として広く使
用されるようになる。
As an example of the present invention, the case where LiMn 2 O 4 and LiCoO 2 are used as the main active material of the positive electrode has been shown, but the present invention is not limited to this, and other lithium-containing composite oxides can also be used as lithium. Titanium oxide (Li
11X Ti 2-X O 4, 0 ≦ X ≦ 0.17) similar results were mixed to obtain. Incidentally, the following materials are listed as other lithium-containing composite oxides useful as the positive electrode active material. LiNiO 2 , LiCo 1-x M x O 2 (M
The metal element other than Co), LiMn 2-x M x O 4 (M
Is Co, Ni, Fe, etc.), Li [Mn 2−X Li X ] O
4 (however, 0 ≦ X ≦ 0.081) and the like. Especially the general formula Li
[Mn 2−X Li X ] O 4 (however, 0 ≦ X ≦ 0.08
The spinel-based lithium manganese oxide represented by 1) is an inexpensive material and is attractive as a positive electrode material for future lithium-ion secondary batteries. LiMn 2 of Example 1
O 4 is also one of the spinel type lithium manganese oxides represented by the above general formula at x = 0, and as a result of the example, even if the lithium manganese composite oxide is used for the positive electrode material, it is 235 wh / l or more. A lithium-ion secondary battery with the energy density of (about the same energy density as the currently commercialized battery using cobalt as the positive electrode material) can be obtained. In addition, the present invention improves performance deterioration due to over-discharge, which is a major drawback of the lithium ion secondary battery, and thus the lithium ion secondary battery is widely used as an inexpensive power source.

【0024】[0024]

【発明の効果】リチウム含有複合酸化物(例えばLiM
、LiCoO等)にLiTiで代表さ
れるスピネル系リチウムチタン複合酸化物を混合してこ
れを正極活物質とすることにより、リチウムイオン二次
電池の大きな欠点である過放電による性能劣化を無くす
ことができる。その結果、過放電保護回路も不要となる
ので、既存の二次電池を充分に上回るエネルギー密度の
リチウムイオン二次電池が安価な電池として、広範囲な
用途に提供できるようになり、その工業的価値は大であ
る。
The lithium-containing composite oxide (for example, LiM)
With n 2 O 4, LiCoO 2, etc.) LiTi 2 O 4 which the positive electrode active material by mixing typified by spinel type lithium-titanium composite oxides, over some big disadvantage of a lithium ion secondary battery Performance deterioration due to discharge can be eliminated. As a result, an over-discharge protection circuit is not needed, so it becomes possible to provide a lithium-ion secondary battery with an energy density sufficiently higher than that of existing secondary batteries as an inexpensive battery for a wide range of applications, and its industrial value. Is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例における電池の構造を示し
た模式的断面図
FIG. 1 is a schematic cross-sectional view showing the structures of batteries in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1は負極、2は正極、3はセパレータ、4は電池缶、5
は負極リード、7は正極リード、14は絶縁板、15は
ガスケット、28は防爆弁、29は電池蓋体である。
1 is a negative electrode, 2 is a positive electrode, 3 is a separator, 4 is a battery can, 5
Is a negative electrode lead, 7 is a positive electrode lead, 14 is an insulating plate, 15 is a gasket, 28 is an explosion-proof valve, and 29 is a battery lid.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】負極の活物質がリチウムをドープ/脱ドー
プ可能な材料である非水電解液二次電池において、正極
の活物質は2種類以上のリチウム含有複合酸化物の混合
物であって、その1種類は一般式Li1+XTi2−X
(但し、0≦X≦0.17)で示されるスピネル系
リチウムチタン酸化物であることを特徴とする非水電解
液二次電池。
1. In a non-aqueous electrolyte secondary battery in which the negative electrode active material is a material capable of doping / dedoping lithium, the positive electrode active material is a mixture of two or more kinds of lithium-containing composite oxides, One type is the general formula Li 1 + X Ti 2 -X
A non-aqueous electrolyte secondary battery, which is a spinel-type lithium titanium oxide represented by O 4 (where 0 ≦ X ≦ 0.17).
JP6113337A 1994-04-15 1994-04-15 Nonaqueous electrolyte secondary battery Pending JPH07288124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6113337A JPH07288124A (en) 1994-04-15 1994-04-15 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6113337A JPH07288124A (en) 1994-04-15 1994-04-15 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH07288124A true JPH07288124A (en) 1995-10-31

Family

ID=14609694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6113337A Pending JPH07288124A (en) 1994-04-15 1994-04-15 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07288124A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208748A (en) * 1997-01-21 1998-08-07 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
WO1999004442A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Non-aqueous electrolyte secondary cell
JP2001213623A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2001213622A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2005502161A (en) * 2001-08-20 2005-01-20 エフエムシー・コーポレイション Positive electrode active material for secondary battery and method for producing the same
WO2006085691A1 (en) * 2005-02-10 2006-08-17 Showa Denko K.K Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2006324258A (en) * 1996-06-14 2006-11-30 Hitachi Maxell Ltd Lithium secondary battery and its manufacturing method
JP2007080680A (en) * 2005-09-14 2007-03-29 Sanyo Electric Co Ltd Thermal resistant lithium secondary battery
US9048493B2 (en) 2008-12-05 2015-06-02 Samsung Sdi Co., Ltd. Cathode active material, cathode including the cathode active material, and lithium battery including the cathode

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324258A (en) * 1996-06-14 2006-11-30 Hitachi Maxell Ltd Lithium secondary battery and its manufacturing method
JPH10208748A (en) * 1997-01-21 1998-08-07 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
WO1999004442A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Non-aqueous electrolyte secondary cell
US6120938A (en) * 1997-07-15 2000-09-19 Sony Corporation Non-aqueous electrolyte secondary cell
JP4642959B2 (en) * 2000-01-26 2011-03-02 東邦チタニウム株式会社 Method for producing lithium titanate
JP2001213622A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2001213623A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP4642960B2 (en) * 2000-01-26 2011-03-02 東邦チタニウム株式会社 Method for producing lithium titanate
JP2005502161A (en) * 2001-08-20 2005-01-20 エフエムシー・コーポレイション Positive electrode active material for secondary battery and method for producing the same
JP4856847B2 (en) * 2001-08-20 2012-01-18 ユミコア Positive electrode active material for secondary battery and method for producing the same
WO2006085691A1 (en) * 2005-02-10 2006-08-17 Showa Denko K.K Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
US8663845B2 (en) 2005-02-10 2014-03-04 Showa Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
US10033045B2 (en) 2005-02-10 2018-07-24 Showda Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2007080680A (en) * 2005-09-14 2007-03-29 Sanyo Electric Co Ltd Thermal resistant lithium secondary battery
US9048493B2 (en) 2008-12-05 2015-06-02 Samsung Sdi Co., Ltd. Cathode active material, cathode including the cathode active material, and lithium battery including the cathode

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
US5591546A (en) Secondary cell
JP3436600B2 (en) Rechargeable battery
EP2277230A2 (en) High energy lithium ion secondary batteries
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
CA2522107A1 (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
JP3396696B2 (en) Rechargeable battery
JPH1092429A (en) Manufacture of non-aqueous solvent secondary battery and non-aqueous solvent secondary battery
JPH06349493A (en) Secondary battery
JP2012124026A (en) Nonaqueous electrolyte secondary battery
JPH05144472A (en) Secondary battery with nonaqueous electrolyte
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JPH07288124A (en) Nonaqueous electrolyte secondary battery
JP3368029B2 (en) Rechargeable battery
JPH05144473A (en) Secondary battery with nonaqueous electrolyte
JP2002170566A (en) Lithium secondary cell
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JPH10302766A (en) Lithium ion secondary battery
JP2002075460A (en) Lithium secondary cell
JP2003346786A (en) Non-aqueous electrolyte battery and its manufacturing method
JPH07335201A (en) Nonaqueous electrolyte secondary battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JP3030995B2 (en) Non-aqueous electrolyte secondary battery
JPH10112307A (en) Nonaqueous electrolyte secondary battery