JPH10112307A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10112307A
JPH10112307A JP8302299A JP30229996A JPH10112307A JP H10112307 A JPH10112307 A JP H10112307A JP 8302299 A JP8302299 A JP 8302299A JP 30229996 A JP30229996 A JP 30229996A JP H10112307 A JPH10112307 A JP H10112307A
Authority
JP
Japan
Prior art keywords
battery
lithium
positive electrode
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8302299A
Other languages
Japanese (ja)
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIBARU KK
Original Assignee
HAIBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIBARU KK filed Critical HAIBARU KK
Priority to JP8302299A priority Critical patent/JPH10112307A/en
Publication of JPH10112307A publication Critical patent/JPH10112307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance the cycle characteristics of a nonaqueous electrolyte secondary battery. SOLUTION: A positive electrode uses manganese oxide having spinel skeletal structure as a main active material, a negative electrode is constituted with two layers of an intercalated carbon layer 31 and a metallic lithium layer 32. After charging terminal voltage reached 4.2V, negative electrode potential is always kept in the potential at which lithium metal deposits (0V vs Li<+> /Li or less), and positive electrode potential is 4.2V (vs Li<+> /Ii) or less. Manganese does not elute from the positive electrode, and the capacity deterioration attendant on charge/discharge cycles is sufficiently retarded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、非水電解液二次電池
のサイクル特性の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of cycle characteristics of a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】高エネルギー密度の二次電池を目指し
て、リチウム金属を負極とする非水電解液二次電池の研
究が長い間なされてきた。しかし、リチウム金属を負極
とする非水電解液二次電池は充放電深度(充放電する容
量×100÷電池の総容量)が浅い(20〜30%)場
合は良好なサイクル特性が得られるが、充放電深度が深
い(80〜100%)場合のサイクル特性は極端に悪
い。つまり、十分な充放電回数を得ようとすれば電池に
蓄えられる総エネルギーの20〜30%しか使用出来な
い。これでは高エネルギー密度電池としての意味が全く
ない。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium metal as a negative electrode have been studied for a long time with the aim of secondary batteries having a high energy density. However, in the case of a non-aqueous electrolyte secondary battery using lithium metal as a negative electrode, good cycle characteristics can be obtained when the charge / discharge depth (charge / discharge capacity × 100 ÷ total capacity of the battery) is small (20 to 30%). When the charge / discharge depth is deep (80 to 100%), the cycle characteristics are extremely poor. That is, only 20 to 30% of the total energy stored in the battery can be used to obtain a sufficient number of times of charging and discharging. This has no meaning as a high energy density battery.

【0003】リチウム金属の負極は充放電の繰り返しで
は金属リチウムが析出溶解を繰り返すわけであるが、充
放電深度が深い場合にサイクル特性が悪い理由はリチウ
ム金属の析出状態に起因している。リチウム金属層が極
めて薄い数ミクロンの範囲で析出溶解を繰り返す(放電
深度が浅い)場合は金属リチウム層は緻密な析出物であ
るが、数十ミクロンにおよぶ厚い範囲で析出溶解を繰り
返す(放電深度が深い)場合は析出物がパウダー状とな
り、次第に負極としての機能をなくしてしまうからであ
る。
In a lithium metal negative electrode, metal lithium repeatedly precipitates and dissolves when charge and discharge are repeated. The reason why cycle characteristics are poor when the charge and discharge depth is deep is due to the state of lithium metal deposition. When the lithium metal layer repeats precipitation and dissolution in a very thin range of several microns (shallow depth of discharge), the metal lithium layer is a dense precipitate, but repeats deposition and dissolution in a thick range of several tens of microns (depth of discharge) In the case of (deep), the precipitate becomes powdery, and the function as a negative electrode is gradually lost.

【0004】そこでリチウム金属に代えて、負極に炭素
を活物質として使用し、炭素中へのリチウムイオンのイ
ンタカレーションを利用する非水電解液二次電池が開発
され、非水電解液二次電池がようやく実用の段階に入っ
た。この電池は本発明者らが世界で初めて商品化に成功
し、「リチウムイオン二次電池」と名付けて1990年
に世の中に初めて紹介したもので(雑誌Progres
s InBatteries &Solar Cell
s,Vol.9,1990,p209参照)、現在では
「次世代の二次電池」と呼ばれるほどに認知され、携帯
電話機、ビデオカメラ、ノート型パソコン等の電源とし
て急速に使われ始めている。
Therefore, a non-aqueous electrolyte secondary battery using carbon as an active material instead of lithium metal and utilizing the intercalation of lithium ions into carbon has been developed. The battery has finally entered the practical stage. This battery was successfully commercialized for the first time in the world by the present inventors, and was first introduced to the world in 1990 under the name of "lithium ion secondary battery" (Progress magazine).
s InBatteries & Solar Cell
s, Vol. 9, 1990, p209), which is now recognized as being called the "next-generation secondary battery" and is rapidly being used as a power source for mobile phones, video cameras, notebook computers, and the like.

【0005】本発明者らが最初に完成したリチウムイオ
ン二次電池は、負極活物質には擬黒鉛炭素であるコーク
スを使用し、正極活物質にはLiCoOを使用したも
のであった。斯かるリチウムイオン二次電池の電池反応
は次の(1)及び(2)式による正極反応及び負極反応
で示される。 充電では正極反応(1)式および負極反応(2)式はそ
れぞれ右へ進み、正極ではLiCoOからLiが脱
ドープされ、負極ではCにLiがドープされる(リ
チウムイオンが炭素中にインタカレートする)。放電で
は逆に(1)式および(2)式はそれぞれ左へ進み、負
極ではLiy CからLiが脱ドープされ、Li
は正極に戻る。従って斯かるリチウムイオン二次電池の
設計に当たっては正極中のLiCoOからの実際上の
脱ドープ可能なリチウム量(X)と負極中の活物質炭素
(C)への実際上のドーピング可能なリチウム量
(Y)をバランスさせる。通常の設計ではX≦Yとする
ので、正常な充電では正極中より脱ドープされるリチウ
ムは全量が活物質炭素(C)にドーピングされ得るの
で、負極への金属リチウムの析出は無く(但し、過充電
の場合は負極への金属リチウムの析出がある)、前述の
金属リチウム負極の欠点は回避され、安定したサイクル
特性が得られる。しかし、この電池では正極活物質とし
て高価なコバルトを主原料とするので、電池価格が高い
ことが大きな欠点である。
[0005] The lithium ion secondary battery first completed by the present inventors uses coke, which is pseudo-graphite carbon, as the negative electrode active material, and uses LiCoO 2 as the positive electrode active material. The battery reaction of such a lithium ion secondary battery is represented by a positive electrode reaction and a negative electrode reaction according to the following equations (1) and (2). In charging, the positive electrode reaction formula (1) and the negative electrode reaction formula (2) each proceed to the right, and Li + is dedoped from LiCoO 2 at the positive electrode, and C 6 is doped with Li + at the negative electrode (the lithium ion is carbon Intercalate to Conversely, in discharge, the expressions (1) and (2) go to the left, respectively. At the negative electrode, Li + is dedoped from Liy C 6 , and Li +
Returns to the positive electrode. Therefore, in designing such a lithium ion secondary battery, the actual amount of dedopable lithium (X) from LiCoO 2 in the positive electrode and the practical doping of active material carbon (C 6 ) in the negative electrode are considered. Balance the amount of lithium (Y). Since X ≦ Y in a normal design, the amount of lithium that is dedoped from the positive electrode during normal charging can be doped into the active material carbon (C 6 ), and there is no deposition of metallic lithium on the negative electrode (however, In the case of overcharging, metal lithium is deposited on the negative electrode), and the above-mentioned disadvantages of the metal lithium negative electrode are avoided, and stable cycle characteristics are obtained. However, in this battery, since expensive cobalt is used as a main material as a positive electrode active material, a high drawback is that the battery price is high.

【0006】そこで安価なリチウムイオン二次電池を実
現するために、安価な正極活物質として、スピネル構造
のリチウム含有マンガン酸化物(LiMn等)が
提案された。斯かるリチウム含有マンガン酸化物を正極
活物質とするリチウムイオン二次電池の電池反応は、次
の(3)式による正極反応と前記(2)式による負極反
応で示される。 正極反応:LiMn → Li−zMn+zLi +e・・ ・・・(3) (0<z≦1) 負極反応:C+yLi +e →Liy C・・・・・・・・・・(2 ) (0<y≦1) 従来は、斯かるリチウムイオン二次電池の設計に当たっ
ても、正極中のリチウム含有マンガン酸化物の実際上の
脱ドープ可能なリチウム量(Z)と負極中の活物質炭素
(C)の実際上のドーピング可能なリチウム量(Y)
をバランスさせ、通常の設計ではZ≦Yとする。従って
正極中より脱ドープされるリチウムは全量が活物質炭素
(C)にドーピングされ得るので、負極への金属リチ
ウムの析出は無く、前述の金属リチウム負極の欠点は回
避される。
Therefore, in order to realize an inexpensive lithium ion secondary battery, a lithium-containing manganese oxide having a spinel structure (such as LiMn 2 O 4 ) has been proposed as an inexpensive cathode active material. A battery reaction of a lithium ion secondary battery using such a lithium-containing manganese oxide as a positive electrode active material is represented by a positive electrode reaction according to the following formula (3) and a negative electrode reaction according to the above formula (2). Positive reaction: LiMn 2 O 4 → Li 1 -zMn 2 O 4 + zLi + + e - ·· ··· (3) (0 <z ≦ 1) negative reaction: C 6 + yLi + + e - → Liy C 6 ··· (2) (0 <y ≦ 1) Conventionally, even when designing such a lithium ion secondary battery, the amount of lithium that can be actually dedoped in the lithium-containing manganese oxide in the positive electrode (Z) and the actual dopable lithium amount (Y) of the active material carbon (C 6 ) in the negative electrode
And Z ≦ Y in a normal design. Therefore, the active material carbon (C 6 ) can be entirely doped with lithium that is undoped from the positive electrode, so that no metal lithium is deposited on the negative electrode, and the above-described disadvantages of the metal lithium negative electrode are avoided.

【0007】ところが、スピネル系リチウム含有マンガ
ン酸化物を主たる正極活物質とするリチウムイオン二次
電池はLiCoO2を正極活物質とするリチウムイオン
二次電池に比べてサイクル特性が悪く、充放電サイクル
にともなう容量劣化が大きい。スピネル系リチウム含有
マンガン酸化物を主たる正極活物質とするリチウムイオ
ン二次電池は、サイクル特性に於いて負極では無く、正
極に新たな問題があることがわかった。スピネル結晶構
造のリチウマンガン酸化物を主たる正極活物質とし、炭
素質材料を負極とした従来の設計による電池は、充放電
の繰り返しテストを終えた電池を解体して負極表面を分
析すると、かなりの量のマンガンの存在が確認される。
サイクル特性が悪い原因は、充放電の繰り返しにおいて
正極から徐々にマンガンが溶け出して負極に析出するた
めと考えられる。マンガンの溶け出しは不可逆反応であ
り、充放電の繰り返しにおいて正極からのマンガンの溶
出量が積算され、マンガンの溶出量に比例して電池容量
が減少するものと考えられる。
However, a lithium ion secondary battery using a spinel lithium-containing manganese oxide as a main positive electrode active material has poorer cycle characteristics than a lithium ion secondary battery using LiCoO2 as a positive electrode active material, and is accompanied by a charge / discharge cycle. Large capacity deterioration. It has been found that the lithium ion secondary battery using the spinel-based lithium-containing manganese oxide as the main positive electrode active material has a new problem not in the negative electrode but in the positive electrode in cycle characteristics. Batteries with a conventional design using lithium cathode as a main cathode active material with a spinel crystal structure and a carbonaceous material as the anode, a considerable amount of disassembly of the battery after repeated charge / discharge tests and analysis of the anode surface shows a considerable The presence of an amount of manganese is confirmed.
It is considered that the cause of the poor cycle characteristics is that manganese gradually elutes from the positive electrode and deposits on the negative electrode during repeated charging and discharging. It is considered that the leaching of manganese is an irreversible reaction, and the amount of manganese eluted from the positive electrode is integrated during repeated charge and discharge, and the battery capacity is reduced in proportion to the amount of manganese eluted.

【0008】これまでには斯かるサイクル特性の改善の
ために、LiMnのMnの一部を他の元素で置き
換えた一般式LiMn−yByO(BはLi、N
i、Co、Fe、Cr等、0≦y≦0.3)で示される
スピネル構造のリチウム含有マンガン酸化物が提案され
ているが、十分な解決には至っていない。
Heretofore, in order to improve such cycle characteristics, a general formula LiMn 2 -yByO 4 (where B is Li, N) in which part of Mn of LiMn 2 O 4 is replaced by another element.
Lithium-containing manganese oxides having a spinel structure represented by i, Co, Fe, Cr, etc. (0 ≦ y ≦ 0.3) have been proposed, but have not been sufficiently solved.

【0009】[0009]

【発明が解決しようとする課題】本発明はスピネル系リ
チウム含有マンガン酸化物を主たる正極活物質とする非
水電解液二次電池において、充放電サイクルにともなう
容量劣化を十分に少ないものにしようとするものであ
る。
DISCLOSURE OF THE INVENTION The present invention is intended to provide a nonaqueous electrolyte secondary battery mainly comprising a spinel-based lithium-containing manganese oxide as a positive electrode active material, in which capacity deterioration accompanying charge / discharge cycles is sufficiently reduced. Is what you do.

【0010】[0010]

【課題を解決するための手段】正極はスピネル骨格構造
のマンガン酸化物を主たる活物質とし、負極はリチウム
がインタカレートした炭素の層と金属リチウムの層の二
層で構成する。
The positive electrode comprises a manganese oxide having a spinel skeleton structure as a main active material, and the negative electrode comprises two layers of a lithium intercalated carbon layer and a metallic lithium layer.

【0011】[0011]

【作用】本発明者はスピネル結晶構造のリチウマンガン
酸化物は充電時にその電位が4.2V(vsLi/L
i)以上になるとマンガンの溶出が急増することを見い
出した。なお、V(vsLi/Li)はリチウム金属
に対する電位を意味する単位として使用する。このこと
から、前述の電池内に於ける正極からのマンガンの溶出
理由は、電池電圧はたとえ4.2V以下に常に保たれて
いても、電池内では正極電位が4.2V(vsLi
Li)以上となる場合が生じて、正極からマンガンが溶
出していると考えられる。
The present inventor has reported that the lithium manganese oxide having a spinel crystal structure has a potential of 4.2 V (vs Li + / L) during charging.
i) It was found that the elution of manganese increased rapidly above the above. Note that V (vsLi + / Li) is used as a unit meaning a potential with respect to lithium metal. From this, the reason for the elution of manganese from the positive electrode in the battery described above is that even if the battery voltage is always kept at 4.2 V or less, the positive electrode potential is 4.2 V (vs Li + /
It is considered that manganese is eluted from the positive electrode in some cases because Li) or more.

【0012】そこで、本発明では電池電圧を4.2V以
下に保つ限り、常に電池内では正極電位が4.2V(v
sLi/Li)以下となる様に考案したものである。
更に具体的には本発明による電池では、その負極は図2
に示す電極断面図のように、金属の集電体(30)の上
にリチウムがインターカレートした炭素層(31)と金
属リチウム層(32)の二層が形成されている電極であ
る。本発明による電池の具体的な作成方法は、従来のリ
チウムイオン二次電池の設計思想からはなれ、正極中か
らの脱ドープ可能なリチウム量(Z)と負極中の活物質
炭素(C)へのドーピング可能なリチウム量(Y)と
の関係をY≒0.7〜0.8Zで設計する。従って本発
明による電池を充電すると、正極中よりリチウムが約7
0〜80%脱ドープされた時点で、負極では活物質炭素
(C)へのリチウムのドーピングは終了し、その後は
負極では金属リチウムが析出する。つまり、電池が約7
0〜80%以上充電された状態では、負極は図2に示す
電極断面図のように、リチウムがインターカレートした
炭素層(31)と金属リチウム層(32)の二層で構成
されている。こうすることにより、電池電圧を4.2V
以上にしない限り、常に電池内では正極電位が4.2V
(vsLi/Li)以下となる。図4によって、本発
明による電池では正極電位が4.2V(vsLi/L
i)以上にならないことを説明しよう。
Therefore, in the present invention, as long as the battery voltage is kept at 4.2 V or less, the positive electrode potential is always 4.2 V (v) in the battery.
sLi + / Li).
More specifically, in the battery according to the present invention, the negative electrode
As shown in the cross-sectional view of the electrode shown in FIG. 1, an electrode in which two layers of a carbon layer (31) intercalated with lithium and a metal lithium layer (32) are formed on a metal current collector (30). The specific method for producing the battery according to the present invention is different from the design concept of the conventional lithium ion secondary battery, and is based on the amount of dedoped lithium (Z) from the positive electrode and the active material carbon (C 6 ) in the negative electrode. Is designed so that Y ≒ 0.7-0.8Z. Therefore, when the battery according to the present invention is charged, about 7% of lithium is contained in the positive electrode.
At the point of 0 to 80% dedoping, doping of active material carbon (C 6 ) with lithium in the negative electrode ends, and thereafter, metallic lithium is precipitated in the negative electrode. That is, about 7 batteries
In the state charged by 0 to 80% or more, the negative electrode is composed of two layers of a lithium intercalated carbon layer (31) and a metal lithium layer (32) as shown in the electrode cross-sectional view of FIG. . By doing so, the battery voltage becomes 4.2 V
Unless otherwise described, the positive electrode potential is always 4.2 V in the battery.
(Vs Li + / Li) or less. According to FIG. 4, in the battery according to the present invention, the positive electrode potential was 4.2 V (vs Li + / L
i) Explain that there is nothing more.

【0013】図4は充電電圧を4.2Vに設定し、50
0mAの電流で外径17.5mmで高さ65mmの本発
明による電池を充電する場合を示したものであり、図4
(a)には端子電圧の変化(BP)と充電電流の変化
(C)を示し、図4(b)には正極の電位変化(CP)
及び負極の電位変化(AP)を示した。図4(a)に示
すように端子電圧は充電時間と共に上昇し、2時間6分
で、つまり2.1時間×500mA=1050mAh
(これは総充電可能量の約80%に相当する)が充電さ
れた時点で端子電圧は充電設定電圧4.2Vに達し、そ
の後は4.2Vに維持されて充電が続行する。一方充電
電流は端子電圧が充電設定電圧4.2Vに達するまで5
00mAが流れ続け、端子電圧が充電設定電圧4.2V
に達した後は減少して充電末期には殆ど流れなくなり充
電が完了する。図4に示した本発明による電池は正極中
のLiMnの実際上の脱ドープ可能なリチウム量
(Z)と負極中の活物質炭素(C)の実際上のドーピ
ング可能なリチウム量(Y)との関係をY≒0.8Zで
設計しているので、正極中より約80%のリチウムが脱
ドープされた時点、即ち端子電圧が充電設定電圧4.2
Vに達する時点では、負極では活物質炭素(C)への
リチウムのドーピングは終了している。従って、端子電
圧が充電設定電圧4.2Vに達した以後の負極の電位
(AP)は、図4(b)に示したようにリチウムの析出
電位、即ち0V(vsLi/Li)以下に到達してお
り、負極では金属リチウムが析出している。つまり、電
池が約80%以上充電された状態では、負極はリチウム
がインターカレートした炭素層と金属リチウム層の二層
で構成されている。また端子電圧は正極電位と負極電位
の差(BP=CP−AP)であり、端子電圧が充電設定
電圧4.2Vに達した以後は負極電位はAP<0V(v
sLi/Li)となっているので、正極電位はCP=
BP+AP=4.2V+AP<4.2V(vsLi
Li)となる。
FIG. 4 shows the case where the charging voltage is set to 4.2 V,
FIG. 4 shows a case where a battery according to the present invention having an outer diameter of 17.5 mm and a height of 65 mm is charged at a current of 0 mA.
4A shows a change in terminal voltage (BP) and a change in charging current (C), and FIG. 4B shows a change in positive electrode potential (CP).
And the potential change (AP) of the negative electrode. As shown in FIG. 4A, the terminal voltage increases with the charging time, and is 2 hours and 6 minutes, that is, 2.1 hours × 500 mA = 1050 mAh.
(This corresponds to about 80% of the total chargeable amount.) When the terminal voltage reaches the charging set voltage of 4.2 V, the terminal voltage is maintained at 4.2 V and charging continues thereafter. On the other hand, the charging current is 5 until the terminal voltage reaches the charging set voltage 4.2V.
00mA continues to flow, and the terminal voltage becomes the charging set voltage 4.2V.
After that, the charge decreases and almost no current flows at the end of charging, and charging is completed. The battery according to the invention shown in FIG. 4 has a practical undoped lithium amount (Z) of LiMn 2 O 4 in the positive electrode and an actual dopable lithium amount of active material carbon (C 6 ) in the negative electrode. Since the relationship with (Y) is designed so that Y ≒ 0.8Z, about 80% of the lithium in the positive electrode is de-doped, that is, the terminal voltage becomes 4.2%.
At the time when the voltage reaches V, doping of the active material carbon (C 6 ) with lithium in the negative electrode has been completed. Therefore, the potential (AP) of the negative electrode after the terminal voltage reaches the charging set voltage 4.2V reaches the deposition potential of lithium, that is, 0 V (vs Li + / Li) or less, as shown in FIG. In the negative electrode, metallic lithium is precipitated. That is, when the battery is charged by about 80% or more, the negative electrode is composed of two layers of the lithium-intercalated carbon layer and the lithium metal layer. The terminal voltage is a difference between the positive electrode potential and the negative electrode potential (BP = CP−AP). After the terminal voltage reaches the charging set voltage 4.2V, the negative electrode potential is AP <0V (v
sLi + / Li), the positive electrode potential is CP =
BP + AP = 4.2V + AP <4.2V (vs. Li + /
Li).

【0014】以上の様に本発明による電池の特徴は約8
0%以上の充電状態にある場合は、負極はリチウムがイ
ンターカレートした炭素層と金属リチウム層の二層で構
成されているため、負極電位は常にリチウム金属の電位
であり、電池の端子電圧と電池内での正極電位(vsL
/Li)は同じとなる。従って電池電圧を4.2V
以上にしない限り、常に電池内では正極電位が4.2V
(vsLi/Li)以下となる。また本発明の電池で
は容量の約20%はリチウム金属が負極活物質として機
能することになるが、20%の容量を賄うリチウム金属
は極めて薄い数ミクロンの範囲での析出溶解で済むの
で、金属リチウム層の析出は緻密なものであり、実用的
なサイクル特性を実現する上では大きな障害とはならな
い。
As described above, the characteristics of the battery according to the present invention are about 8
When the battery is in a charged state of 0% or more, the negative electrode is always composed of a lithium metal intercalated carbon layer and a metallic lithium layer. And the positive electrode potential in the battery (vsL
i + / Li) are the same. Therefore, when the battery voltage is 4.2V
Unless otherwise described, the positive electrode potential is always 4.2 V in the battery.
(Vs Li + / Li) or less. In the battery of the present invention, lithium metal functions as a negative electrode active material for about 20% of the capacity. However, lithium metal, which covers the capacity of 20%, can be deposited and dissolved in a very thin range of several microns. The deposition of the lithium layer is dense and does not become a major obstacle in realizing practical cycle characteristics.

【0015】因に、従来の設計による電池(電池サイ
ズ:外径17.5mm、高さ65mm)では充電時の端
子電圧、充電電流、正極電位及び負極電位のそれぞれの
変化は図5に示したようになる。図5(b)に示すよう
に、実際、端子電圧が充電設定電圧4.2Vに達した時
点では、充電は完了していないわけで、負極の炭素はま
だリチウムをドーピング出来る得る状態にあり、負極電
位(AP)はリチウムの析出電位(0V)には到達して
いないため、AP>0Vである。従って、正極電位(C
P)は端子電圧が充電設定電圧4.2Vに達する前後か
ら、4.2V(vsLi/Li)以上となり、正極か
らマンガンの溶出が起こる。
FIG. 5 shows the changes in terminal voltage, charging current, positive electrode potential and negative electrode potential during charging in a battery of a conventional design (battery size: outer diameter 17.5 mm, height 65 mm). Become like As shown in FIG. 5B, when the terminal voltage actually reaches the charging set voltage of 4.2 V, the charging is not completed, and the carbon of the negative electrode is still in a state where lithium can be doped. Since the negative electrode potential (AP) has not reached the lithium deposition potential (0 V), AP> 0 V. Therefore, the positive electrode potential (C
P) becomes 4.2 V (vs. Li + / Li) or more before and after the terminal voltage reaches the charging set voltage of 4.2 V, and manganese elutes from the positive electrode.

【0016】[0016]

【実施例】以下実施例により本発明をさらに詳しく説明
する。
The present invention will be described in more detail with reference to the following examples.

【0017】実施例1 図6および図7を参照しながら本発明の具体的な電池に
ついて説明する。まず負極活物質とする炭素材料として
2800℃で熱処理を施したメソカーボンマイクロビー
ズ(d002=3.36Å)の70重量部にピッチコー
クス20重量部を乾式混合して、更に結着材としてポリ
フッ化ビニリデン(PVDF)を10重量部を溶解させ
たN−メチル−2−ピロリンと湿式混合してスラリー
(ペースト状)にした。そしてこのスラリーを負極集電
体(21)とする厚さ0.01mmの銅箔の両面に均一
に塗布し、乾燥温度110℃で溶剤(N−メチル−2−
ピロリドン)が完全に除かれるまで乾燥し、銅箔の両面
に炭素層を形成した塗工体を得た。更に塗工体はローラ
ープレス機で加圧成型した後、幅を56mmに調整して
帯状の負極体として用意した。該負極体からは一定の面
積を切り取り、重量測定を行って炭素層の重量を測定
し、また金属リチウムと組み合わせてテストセルを作成
し、炭素層へのドーピング可能なリチウム量(Y)を測
定した。炭素層の重量は21.7mg/cmから2
2.7mg/cmの範囲であり、炭素層へのドーピン
グ可能なリチウム量(Y)は約6.25 mAh/cm
であった。
Example 1 A specific battery of the present invention will be described with reference to FIGS. 6 and 7. First, 70 parts by weight of mesocarbon microbeads (d002 = 3.36 °) heat-treated at 2800 ° C. as a carbon material to be used as a negative electrode active material were dry-mixed with 20 parts by weight of pitch coke, and polyfluoride was used as a binder. Vinylidene (PVDF) was wet-mixed with N-methyl-2-pyrroline in which 10 parts by weight were dissolved to form a slurry (paste). The slurry is uniformly applied to both sides of a 0.01 mm-thick copper foil serving as a negative electrode current collector (21), and dried at a drying temperature of 110 ° C in a solvent (N-methyl-2-).
(Pyrrolidone) was completely removed to obtain a coated body in which carbon layers were formed on both surfaces of a copper foil. Further, the coated body was press-molded with a roller press, and the width was adjusted to 56 mm to prepare a strip-shaped negative electrode body. A predetermined area is cut out from the negative electrode body, the weight of the carbon layer is measured by performing weight measurement, and a test cell is prepared by combining with the lithium metal, and the amount of lithium (Y) that can be doped into the carbon layer is measured. did. The weight of the carbon layer is 21.7 mg / cm 2 to 2
In the range of 2.7 mg / cm 2, the amount of lithium (Y) that can be doped into the carbon layer is about 6.25 mAh / cm 2.
It was 2 .

【0018】次に市販の二酸化マンガン〔MnO2〕を
400℃で19時間焼成したものと炭酸リチウム〔Li
2CO3〕を1.94モル:0.53モルの比で混合
し、空気中860℃で12時間焼成して正極活物質とす
るスピネル結晶のリチウムマンガン酸化物(LiMn2
O4)を合成した。焼成後のリチウムマンガン酸化物は
粉砕機で平均粒径0.015mmの粉末とし、これを8
8重量部、グラファイトを6重量部、結着材としてポリ
フッ化ビニリデン6重量部を溶剤であるN−メチル−2
−ピロリドンと湿式混合してスラリー(ペースト状)に
した。次にこのスラリーを、正極集電体(22)とする
厚さ0.02mmのアルミニウム箔の両面に、乾燥塗付
量が73mg/cm程度となるように均一に塗布し、
乾燥温度110℃で溶剤(N−メチル−2−ピロリド
ン)が完全に除かれるまで乾燥し、ローラープレス機で
加圧成型した後、幅を55mmに調整して、アルミニウ
ム箔の両面にスピネル結晶のリチウムマンガン酸化物
(LiMn2O4)を含む正極活物質層が形成された帯
状の正極体を5本作成した。当該正極体からは一定の面
積を切り取り、重量測定を行って正極活物質層の重量を
測定し、また金属リチウムと組み合わせてテストセルを
作成し、各正極体の正極活物質層からの脱ドープ可能な
リチウム量(Z)を測定した。正極活物質層の重量は7
2mg/cmから74mg/cmの範囲内であり、
正極活物質層の脱ドーピング可能なリチウム量(Y)は
正極活物質層の重量に完全に比例し、平均7.8mAh
/cmであった。
Next, commercially available manganese dioxide [MnO2] calcined at 400 ° C. for 19 hours and lithium carbonate [Li
2CO3] in a ratio of 1.94 mol: 0.53 mol, and calcined in air at 860 ° C. for 12 hours to produce lithium manganese oxide (LiMn2) of a spinel crystal as a positive electrode active material.
O4) was synthesized. The lithium manganese oxide after calcination was converted into a powder having an average particle size of 0.015 mm by a pulverizer.
8 parts by weight, 6 parts by weight of graphite, 6 parts by weight of polyvinylidene fluoride as a binder, N-methyl-2 as a solvent
-Slurry (paste) by wet mixing with pyrrolidone. Next, this slurry is uniformly applied to both surfaces of a 0.02 mm-thick aluminum foil serving as a positive electrode current collector (22) such that a dry coating amount is about 73 mg / cm 2 .
After drying at a drying temperature of 110 ° C. until the solvent (N-methyl-2-pyrrolidone) is completely removed, the mixture was pressed and molded by a roller press, and the width was adjusted to 55 mm. Five strip-shaped positive electrode bodies on which a positive electrode active material layer containing lithium manganese oxide (LiMn2O4) was formed were prepared. A certain area is cut out from the positive electrode body, the weight of the positive electrode active material layer is measured by performing weight measurement, and a test cell is prepared in combination with lithium metal, and each positive electrode body is dedoped from the positive electrode active material layer. The possible lithium amount (Z) was measured. The weight of the positive electrode active material layer is 7
2 mg / cm 2 to 74 mg / cm 2 ,
The amount (Y) of undoped lithium in the positive electrode active material layer is completely proportional to the weight of the positive electrode active material layer, and is 7.8 mAh on average.
/ Cm 2 .

【0019】用意された負極と正極はその間に多孔質ポ
リプロピレン製のセパレータを挟んで、ロール状に巻上
げて平均外径16.9mmの電池素子(20)を作成す
る。作成した電池素子(20)は図6(a)に示すよう
に、電池缶(1)に収納する。本実施例では最終完成電
池の電池缶の外径寸法(L2)がA=17.5mmの電
池を作成しようとするものであるが、ここで使用する電
池缶は開口部の外径(L1)と中央部の外径(L2)が
何れもB=18.0mm、高さが65mmのニッケル鍍
金を施した鉄製の電池缶である。ちなみに当該電池缶の
内径は17.4mmであり、電池素子外径は缶内径より
0.5mm小さいので電池素子の電池缶への挿入は容易
に行える。電池素子(20)を電池缶(1)に収納した
後、図6(b)に示すように電池缶の外径(開口部付近
の外径を除く)を17.5mmまで減少させる。
The prepared negative electrode and positive electrode are wound up in a roll with a porous polypropylene separator interposed therebetween to form a battery element (20) having an average outer diameter of 16.9 mm. The prepared battery element (20) is housed in a battery can (1) as shown in FIG. In the present embodiment, the outer diameter (L2) of the battery can of the final completed battery is to prepare a battery with A = 17.5 mm. The battery can used here has the outer diameter (L1) of the opening. And an outer diameter (L2) of the central portion is B = 18.0 mm, and the height is 65 mm. Incidentally, the inner diameter of the battery can is 17.4 mm, and the outer diameter of the battery element is smaller than the inner diameter of the can by 0.5 mm, so that the battery element can be easily inserted into the battery can. After storing the battery element (20) in the battery can (1), the outer diameter (excluding the outer diameter near the opening) of the battery can is reduced to 17.5 mm as shown in FIG.

【0020】その後図6(c)に示すように缶底から6
0.5mmの位置(電池缶開口部近く)で電池缶を細く
しぼり込んでガスケットを支える細溝(2)を付ける。
その後図7の(a)から(c)の行程にしたがって電池
を組み立てる。つまり、図7(a)に示すように電池缶
開口部にガスケット(3)を設置し、負極リードと正極
リードはそれぞれ缶底とアルミニウム製の防爆機能を有
する閉塞蓋体(4)に溶接する。その後、電解液を注入
し、閉塞蓋体(4)をガスケットの内側に納め、ドーナ
ツ型のPTC素子(5)を閉塞蓋体に接触させて重ね、
更に正極外部端子(6)を重ね、電池缶の開口部の外径
(L1)を絞り込んで電池缶中央部の外径(L2)と同
じにする(図7(b))。最後にPTC素子の機能に支
障を来さない程度の締め付け圧力と成るようにかしめ機
を調整して、電池缶の縁をかしめて密閉し、図7(c)
に示す電池構造で外径17.5mm、高さ65mmの電
池(A)を5個作成した。
Thereafter, as shown in FIG.
At a position of 0.5 mm (near the opening of the battery can), the battery can is squeezed finely to form a narrow groove (2) for supporting the gasket.
Thereafter, the battery is assembled according to the steps (a) to (c) in FIG. That is, as shown in FIG. 7 (a), a gasket (3) is placed at the opening of the battery can, and the negative electrode lead and the positive electrode lead are respectively welded to the can bottom and an aluminum explosion-proof lid (4). . Thereafter, an electrolytic solution is injected, the closure lid (4) is placed inside the gasket, and the donut-shaped PTC element (5) is brought into contact with the closure lid and stacked.
Further, the positive electrode external terminal (6) is overlapped, and the outer diameter (L1) of the opening of the battery can is narrowed to be the same as the outer diameter (L2) of the central part of the battery can (FIG. 7B). Finally, the caulking machine is adjusted so that the tightening pressure does not impair the function of the PTC element, and the edge of the battery can is caulked and sealed.
5 batteries (A) having an outer diameter of 17.5 mm and a height of 65 mm having the battery structure shown in FIG.

【0021】比較例1 本発明による電池と比較するために、従来の設計方法で
電池を作成する。従来の設計方法では正極中の脱ドープ
可能なリチウム量(Z)と負極中の活物質炭素(C
へのドーピング可能なリチウム量(Y)の関係はZ≦Y
とする。実施例1と同じ手順によって、炭素層の重量が
が25.5mg/cmから26.5mg/cmの範
囲で、、炭素層へのドーピング可能なリチウム量(Y)
が約6.95mAh/cmの負極体を作成した。
Comparative Example 1 For comparison with the battery according to the present invention, a battery is prepared by a conventional design method. In the conventional design method, the amount of undoped lithium (Z) in the positive electrode and the active material carbon (C 6 ) in the negative electrode
The relationship between the amount of lithium (Y) that can be doped into
And By the same procedure as in Example 1, can be doped lithium content by weight of the carbon layer is from 25.5 mg / cm 2 to 26.5 mg / cm 2 in the range ,, carbon layer (Y)
Produced a negative electrode body of about 6.95 mAh / cm 2 .

【0022】正極体は乾燥塗付量が65mg/cm
度となるように塗布する以外は、全く実施例1と同じに
して帯状の正極体を5本作成した。当該正極体からも一
定の面積を切り取り、重量測定を行って正極活物質層の
重量を測定し、また金属リチウムと組み合わせてテスト
セルを作成し、各正極体の正極活物質層の実際上の脱ド
ープ可能なリチウム量(Z)を測定した。正極活物質層
の重量は64mg/cmから66mg/cmの範囲
内であり、正極活物質層の脱ドーピング可能なリチウム
量(Y)は正極活物質層の重量に完全に比例し、平均
6.93mAh/cmであった。
Five positive electrode bodies were prepared in the same manner as in Example 1, except that the dry coating amount was about 65 mg / cm 2 . A certain area is also cut out from the positive electrode body, the weight of the positive electrode active material layer is measured by performing weight measurement, and a test cell is prepared in combination with lithium metal, and the actual size of the positive electrode active material layer of each positive electrode body is measured. The amount (Z) of lithium that can be de-doped was measured. The weight of the positive electrode active material layer is in the range of 64 mg / cm 2 to 66 mg / cm 2 , and the amount (Y) of undoped lithium in the positive electrode active material layer is completely proportional to the weight of the positive electrode active material layer, 6.93 mAh / cm 2 .

【0023】用意された負極と正極で全く実施例1と同
じにして、平均外径16.9mmの電池素子(20)を
作成し、図7(c)に示す電池構造で外径17.5m
m、高さ65mmの電池(B)を5個作成した。
A battery element (20) having an average outer diameter of 16.9 mm was prepared in exactly the same manner as in Example 1 using the prepared negative electrode and positive electrode, and the battery structure shown in FIG.
Five batteries (B) having a height of 65 mm and a height of 65 mm were prepared.

【0024】充放電サイクル試験結果 こうして実施例1および比較例1で作成した電池(A)
および電池(B)は、いずれも電池内部の安定化を目的
に、まず充電電圧を4.1Vに設定して500mAの電
流で8時間充電し、500mAの電流で終止電圧2.5
Vまで放電した。次に充電電圧を4.2Vに設定して5
00mAの電流で4時間充電し、放電は500mAの電
流で終止電圧2.5Vまで行なう方法で300回の充放
電を繰り返し、その結果を図1に示した。
Charge / discharge cycle test result Battery (A) prepared in Example 1 and Comparative Example 1
For the purpose of stabilizing the inside of the battery, the charging voltage was set to 4.1 V, and the battery (B) was charged at a current of 500 mA for 8 hours, and a final voltage of 2.5 mA was supplied at a current of 500 mA.
Discharged to V. Next, the charging voltage was set to 4.2 V and 5
The battery was charged with a current of 00 mA for 4 hours, and the discharge was repeated 300 times with a current of 500 mA up to a final voltage of 2.5 V. The results are shown in FIG.

【0025】図1に示すとおり、本発明による電池
(A)では300回目の放電に於いても、放電容量は初
期容量(10回目の放電容量)に対して80%以上が維
持される。これに対し比較例による電池(B)では30
0回目の放電容量は初期容量(10回目の放電容量)に
対して67%まで低下してしまった。本結果が示すとお
り、本発明によれば充放電サイクル特性が大きく改善さ
れる。
As shown in FIG. 1, in the battery (A) according to the present invention, even at the 300th discharge, the discharge capacity is maintained at 80% or more of the initial capacity (the 10th discharge capacity). On the other hand, in the battery (B) according to the comparative example, 30
The 0th discharge capacity was reduced to 67% of the initial capacity (the 10th discharge capacity). As shown by the results, according to the present invention, the charge / discharge cycle characteristics are greatly improved.

【0026】電池解体による負極の観察 実施例および比較例で作成した電池(A)および電池
(B)の各2個を10回の充放電サイクルが終了した時
点で、充電電圧を4.2Vに設定して500mAの電流
で2.5時間充電して充電を停止した後、電池を解体し
て負極表面を観察した。なお2.5時間で充電された電
気量は、前サイクルで満充電状態から放電させた放電量
に対して電池(A)では88%、電池(B)では90%
で、何れも満充電されるには至っていない。更に電池
(B)の他の1個は10回の充放電サイクルが終了した
時点で、充電電圧を4.2Vに設定して500mAの電
流で4時間充電し、この電池についても同様に電池を解
体して負極表面を観察した。なお500mAの電流で4
時間充電した場合は充電された電気量は、前サイクルで
の放電量に対して100%であり、満充電されていた。
Observation of Negative Electrode by Disassembly of Battery When the charge and discharge cycle of each of the two batteries (A) and (B) prepared in Examples and Comparative Examples was completed 10 times, the charge voltage was increased to 4.2 V. After charging was stopped for 2.5 hours at a set current of 500 mA, the battery was disassembled and the negative electrode surface was observed. The amount of electricity charged in 2.5 hours is 88% for the battery (A) and 90% for the battery (B) with respect to the discharge amount discharged from the fully charged state in the previous cycle.
Therefore, none of them are fully charged. Another battery (B) was charged at a current of 500 mA for 4 hours with the charging voltage set to 4.2 V at the end of the ten charge / discharge cycles. After disassembly, the negative electrode surface was observed. Note that a current of 500 mA
When the battery was charged for an hour, the charged amount of electricity was 100% of the amount of discharge in the previous cycle, indicating that the battery was fully charged.

【0027】電池(A)より取り出した負極は表面が銀
白色であり、表面の銀白色の薄い層を削り取ると、その
下には黄金色の層が現われた。銀白色の薄い層は金属リ
チウムの層であり、黄金色の層はリチウムがインターカ
レートした炭素層である。つまり、容量の88%しか充
電されていない状態においても、電池(A)から取り出
した負極は図2に示すような電極断面の構造であり、金
属の集電体(30)の上にリチウムがインターカレート
した炭素層(31)と金属リチウム層(32)の二層が
形成されている電極であることが確認された。一方、電
池(B)より取り出した負極はいずれも表面が黄金色で
あり、電池(A)より取り出した負極で観察された様な
銀白色の表面層は観察されなかった。つまり、容量の9
0%が充電された電池(B)及び容量の100%が充電
された電池(B)のいずれから取り出した負極も、図3
に示すような電極断面の構造であり、金属の集電体(3
0)の上にリチウムがインターカレートした炭素層(3
1)だけが形成されている電極であることが確認され
た。
The surface of the negative electrode taken out of the battery (A) was silver-white, and when a thin silver-white layer on the surface was scraped off, a golden layer appeared below it. The silver-white thin layer is a layer of metallic lithium, and the golden layer is a carbon layer in which lithium is intercalated. That is, even when only 88% of the capacity is charged, the negative electrode taken out of the battery (A) has a structure of the electrode cross section as shown in FIG. 2, and lithium is deposited on the metal current collector (30). It was confirmed that the electrode had two layers of the intercalated carbon layer (31) and the lithium metal layer (32). On the other hand, the surface of each of the negative electrodes taken out of the battery (B) was golden, and the silver-white surface layer observed in the negative electrode taken out of the battery (A) was not observed. That is, the capacity of 9
The negative electrodes taken out from both the battery (B) charged with 0% and the battery (B) charged with 100% of the capacity are shown in FIG.
The structure of the electrode cross section shown in FIG.
0) on the lithium-intercalated carbon layer (3
It was confirmed that only the electrode 1) was formed.

【0028】以上の負極の観察結果から、本発明により
充放電サイクル特性が大きく改善される理由は次のよう
に考えられる。図4は充電電圧を4.2Vに設定し、5
00mAの電流で外径17.5mmで高さ65mmの本
発明による電池(A)を充電する場合を示したものであ
り、図4(a)には端子電圧の変化(BP)と充電電流
の変化(C)を示し、図4(b)には正極の電位変化
(CP)及び負極の電位変化(AP)を示している。図
4(a)に示すように端子電圧は2.1時間(約105
0mAh:これは総充電量の約80%に相当する)充電
された時点で4.2Vに達し、その後は4.2Vに維持
されて充電が続行する。一方充電電流は端子電圧が充電
設定電圧4.2Vに達するまで500mAが流れ続け、
端子電圧が充電設定電圧4.2Vに達した後は減少して
充電末期には殆ど流れなくなり充電が完了する。従っ
て、電池(A)では充電時間が2.5時間経過した時点
では端子電圧は既に4.2Vに達し、負極の電位(A
P)は、図4(b)に示すように0V(vsLi/L
i)以下に到達しており、負極では金属リチウムが析出
している。本発明による電池は正極中のLiMn
の実際上の脱ドープ可能なリチウム量(Z)と負極中の
活物質炭素(C)の実際上のドーピング可能なリチウ
ム量(Y)との関係をY≒0.8Zで設計しているの
で、正極中より約80%のリチウムが脱ドープされた時
点で、既に負極では活物質炭素(C)へのリチウムの
ドーピングは終了する。電池(A)が2.5時間充電さ
れた場合は、既に80%以上の容量が充電されるので、
負極では金属リチウムが析出している。従って電池解体
による負極の観察結果で明らかなように、2.5時間充
電した電池(A)より取り出した負極は図2に示すよう
な電極断面の構造であり、金属の集電体(30)の上に
リチウムがインターカレートした炭素層(31)と金属
リチウム層(32)の二層が形成されている電極とな
る。充電端子電圧が4.2Vに達した後では、負極電位
は常にリチウム金属の析出している電位(0VvsLi
/Li以下)であり、常に電池内では正極電位が4.
2V(vsLi/Li)以下となる。したがって正極
よりマンガンが溶け出すことが無く、充放電サイクルに
ともなう容量劣化が十分に少ないものとなると考えられ
る。
From the above observation results of the negative electrode, the reason why the charge / discharge cycle characteristics are greatly improved by the present invention is considered as follows. FIG. 4 shows that the charging voltage was set to 4.2 V and 5
FIG. 4A shows a case where a battery (A) according to the present invention having an outer diameter of 17.5 mm and a height of 65 mm is charged with a current of 00 mA. FIG. 4A shows a change in terminal voltage (BP) and a change in charging current. FIG. 4B shows a change in potential of the positive electrode (CP) and a change in potential of the negative electrode (AP). As shown in FIG. 4A, the terminal voltage is 2.1 hours (about 105 hours).
(0 mAh: this corresponds to about 80% of the total charged amount) When the battery is charged, the voltage reaches 4.2 V, and thereafter, the voltage is maintained at 4.2 V and the charging is continued. On the other hand, the charging current continues to flow at 500 mA until the terminal voltage reaches the charging set voltage of 4.2 V,
After the terminal voltage reaches the charging set voltage of 4.2 V, the voltage decreases and hardly flows at the end of charging, and charging is completed. Therefore, in the battery (A), when the charging time has passed 2.5 hours, the terminal voltage has already reached 4.2 V, and the potential of the negative electrode (A
P) is 0 V (vs Li + / L) as shown in FIG.
i) The following has been reached, and metallic lithium is deposited on the negative electrode. The battery according to the present invention has LiMn 2 O 4 in the positive electrode.
The relationship between the actual amount of lithium that can be undoped (Z) and the actual amount of lithium that can be doped with active material carbon (C 6 ) (Y) in the negative electrode (Y) is designed so that Y ≒ 0.8Z. Therefore, when about 80% of the lithium in the positive electrode is dedoped, doping of the active material carbon (C 6 ) with lithium in the negative electrode has already been completed. When the battery (A) is charged for 2.5 hours, the capacity of 80% or more is already charged.
At the negative electrode, metallic lithium is precipitated. Therefore, as is clear from the observation result of the negative electrode by dismantling the battery, the negative electrode taken out from the battery (A) charged for 2.5 hours has a structure of the electrode cross section as shown in FIG. The electrode has a carbon layer (31) with lithium intercalated thereon and a lithium metal layer (32) formed thereon. After the charging terminal voltage reaches 4.2 V, the negative electrode potential is always the potential at which lithium metal is deposited (0 V vs. Li).
+ / Li or less), and the positive electrode potential is always 4.
2 V (vs Li + / Li) or less. Therefore, it is considered that manganese does not dissolve out of the positive electrode, and the capacity deterioration due to the charge / discharge cycle becomes sufficiently small.

【0029】しかし、従来の設計による電池(B)で
は、正極電位が、特に充電末期に4.2V(vsLi
/Li)以上となる。図5には充電電圧を4.2Vに設
定し、500mAの電流で、電池(B)充電する場合を
示したものであり、図5(a)には端子電圧の変化(B
P)と充電電流の変化(C)を示し、図5(b)には正
極の電位変化(CP)及び負極の電位変化(AP)を示
した。端子電圧は図5(a)に示すように充電時間と共
に上昇し、約1.9時間で充電設定電圧4.2Vに達
し、4.2Vに維持される。充電電流は端子電圧が充電
設定電圧4.2Vに達するまで500mAが流れ続け、
端子電圧が充電設定電圧4.2Vに達した後は減少して
充電末期には殆ど流れなくなり充電が完了する。このよ
うに端子電圧の変化(BP)と充電電流の変化(C)を
見る限り、電池(B)は図4に示した本発明による電池
(A)の場合と殆ど類似したものである。しかしこの
時、端子電圧は正極電位と負極電位の差(BP=CP−
AP)として現われるので、端子電圧が4.2Vに達し
た時点で、負極電位がAP>0V(vsLi/Li)
であれば、正極電位はCP=BP+AP=4.2V+A
P>4.2V(vsLi/Li)となるわけである。
従来の設計では正極中の脱ドープ可能なリチウム量
(Z)と負極中の活物質炭素(C)へのドーピング可
能なリチウム量(Y)をZ≦Yとするので、図5(b)
に示すように、実際、端子電圧が充電設定電圧4.2V
に達した時点では、充電は完了していないわけで、負極
の炭素はまだリチウムをドーピング出来る得る状態にあ
り、負極電位(AP)はリチウムの析出電位(0V)に
は到達していないため、AP>0Vである。従って、正
極電位(CP)は端子電圧が充電設定電圧4.2Vに達
する前後から、4.2V(vsLi/Li)以上とな
り、正極からマンガンの溶出が起こる。このため正極か
らのマンガンの溶出量に比例して、充放電サイクルにと
もない容量が劣化するものと考えられる。
However, in the battery (B) according to the conventional design, the positive electrode potential is 4.2 V (vs Li +
/ Li) or more. FIG. 5 shows a case where the battery (B) is charged with a charging voltage of 4.2 V and a current of 500 mA, and FIG. 5 (a) shows a change in the terminal voltage (B).
P) and a change in charging current (C), and FIG. 5B shows a change in potential of the positive electrode (CP) and a change in potential of the negative electrode (AP). As shown in FIG. 5A, the terminal voltage rises with the charging time, reaches a charging set voltage of 4.2 V in about 1.9 hours, and is maintained at 4.2 V. The charging current continues to flow at 500 mA until the terminal voltage reaches the charging set voltage of 4.2 V,
After the terminal voltage reaches the charging set voltage of 4.2 V, the voltage decreases and hardly flows at the end of charging, and charging is completed. As can be seen from the change in terminal voltage (BP) and the change in charging current (C), the battery (B) is almost similar to the battery (A) according to the present invention shown in FIG. However, at this time, the terminal voltage is the difference between the positive electrode potential and the negative electrode potential (BP = CP−
AP), when the terminal voltage reaches 4.2 V, the negative electrode potential becomes AP> 0 V (vs. Li + / Li).
Then, the positive electrode potential is CP = BP + AP = 4.2V + A
That is, P> 4.2 V (vs Li + / Li).
In the conventional design, the amount of lithium (Z) that can be dedoped in the positive electrode and the amount of lithium that can be doped into the active material carbon (C 6 ) in the negative electrode (Y) are set to Z ≦ Y.
As shown in the figure, the terminal voltage is actually 4.2 V
At the time when the charge reaches, the charge is not completed, the carbon of the negative electrode is still in a state where lithium can be doped, and the negative electrode potential (AP) has not reached the lithium deposition potential (0 V). AP> 0V. Therefore, the positive electrode potential (CP) becomes equal to or higher than 4.2 V (vs Li + / Li) from before and after the terminal voltage reaches the charging set voltage 4.2 V, and manganese is eluted from the positive electrode. For this reason, it is considered that the capacity deteriorates with the charge / discharge cycle in proportion to the amount of manganese eluted from the positive electrode.

【0030】[0030]

【発明の効果】本発明による電池はスピネル系リチウム
含有マンガン酸化物を主たる正極活物質とするので原材
料費が安価で済み、負極には、金属の集電体の上にリチ
ウムがインターカレートした炭素層と金属リチウム層の
二層が形成されている電極であるため、常に電池内では
正極電位が4.2V(vsLi/Li)以下となる。
したがって正極よりマンガンが溶け出すことが無く、充
放電サイクルにともなう容量劣化が十分に少ないものと
なる。その結果、良好なサイクル特性をもつ、安価なリ
チウムイオン二次電池が提供出来るようになり、その工
業的価値は大である。
The battery according to the present invention uses a spinel-based lithium-containing manganese oxide as the main positive electrode active material, so that the raw material cost is low, and the negative electrode has lithium intercalated on a metal current collector. Since the electrode has two layers of a carbon layer and a metal lithium layer, the positive electrode potential is always 4.2 V (vs Li + / Li) or less in the battery.
Therefore, manganese does not dissolve from the positive electrode, and the capacity deterioration due to the charge / discharge cycle is sufficiently small. As a result, an inexpensive lithium ion secondary battery having good cycle characteristics can be provided, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】サイクル特性図FIG. 1 is a cycle characteristic diagram.

【図2】本発明電池における負極の断面図FIG. 2 is a sectional view of a negative electrode in the battery of the present invention.

【図3】従来電池における負極の断面図FIG. 3 is a cross-sectional view of a negative electrode in a conventional battery.

【図4】充電時の端子電圧、電流及び電極電位の各変化FIG. 4 Changes in terminal voltage, current, and electrode potential during charging

【図5】充電時の端子電圧、電流及び電極電位の各変化FIG. 5: Changes in terminal voltage, current, and electrode potential during charging

【図6】各組み立て工程における電池の断面図FIG. 6 is a cross-sectional view of a battery in each assembly process.

【図7】各組み立て工程における電池の断面図FIG. 7 is a cross-sectional view of a battery in each assembly process.

【符号の説明】[Explanation of symbols]

1は電池缶、2は細溝、3はガスケット4は閉塞蓋体、
5はPTC 6は正極外部端子、20は電極素子、30は集電体、3
1は炭素層、32は金属リチウム層、33は炭素粒子、
34はバインダーである。
1 is a battery can, 2 is a narrow groove, 3 is a gasket 4 is a closure lid,
5 is PTC 6 is a positive electrode external terminal, 20 is an electrode element, 30 is a current collector, 3
1 is a carbon layer, 32 is a metal lithium layer, 33 is carbon particles,
34 is a binder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】負極、正極、セパレーター及び非水電解液
で構成される電池であって、前記正極がスピネル骨格構
造のマンガン酸化物が主たる正極活物質である二次電池
において、90%以下の充電状態でも前記負極は金属の
集電体の上にリチウムがインタカレートした炭素層と金
属リチウム層の二層が形成されている電極であることを
特徴とする非水電解液二次電池。
1. A secondary battery comprising a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode comprises 90% or less of a positive electrode active material mainly composed of a manganese oxide having a spinel skeleton structure. A non-aqueous electrolyte secondary battery in which the negative electrode is an electrode in which a two-layer of a carbon layer in which lithium is intercalated and a lithium metal layer is formed on a metal current collector even in a charged state.
JP8302299A 1996-10-07 1996-10-07 Nonaqueous electrolyte secondary battery Pending JPH10112307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8302299A JPH10112307A (en) 1996-10-07 1996-10-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8302299A JPH10112307A (en) 1996-10-07 1996-10-07 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10112307A true JPH10112307A (en) 1998-04-28

Family

ID=17907311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8302299A Pending JPH10112307A (en) 1996-10-07 1996-10-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10112307A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373646A (en) * 2001-06-14 2002-12-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
EP1282179A2 (en) * 2001-07-31 2003-02-05 Nec Corporation Negative electrode for rechargeable battery
WO2003085756A1 (en) * 2002-04-10 2003-10-16 Nec Corporation Nonaqueous electrolyte cell
WO2014003825A1 (en) * 2012-06-25 2014-01-03 Battelle Memorial Institute Hybrid anodes for energy storage devices
KR101442403B1 (en) * 2013-03-27 2014-09-23 고려대학교 산학협력단 Method of manufacturing lithium secondary battery
KR20140127801A (en) * 2012-02-07 2014-11-04 바텔리 메모리얼 인스티튜트 Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373646A (en) * 2001-06-14 2002-12-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
EP1282179A2 (en) * 2001-07-31 2003-02-05 Nec Corporation Negative electrode for rechargeable battery
EP1282179A3 (en) * 2001-07-31 2005-06-29 Nec Corporation Negative electrode for rechargeable battery
WO2003085756A1 (en) * 2002-04-10 2003-10-16 Nec Corporation Nonaqueous electrolyte cell
US7118831B2 (en) 2002-04-10 2006-10-10 Nec Corporation Nonaqueous electrolyte cell
KR20140127801A (en) * 2012-02-07 2014-11-04 바텔리 메모리얼 인스티튜트 Methods and energy storage devices utilizing electrolytes having surface-smoothing additives
WO2014003825A1 (en) * 2012-06-25 2014-01-03 Battelle Memorial Institute Hybrid anodes for energy storage devices
CN104521034A (en) * 2012-06-25 2015-04-15 巴特尔纪念研究院 Hybrid anodes for energy storage devices
US10673069B2 (en) 2012-06-25 2020-06-02 Battelle Memorial Institute Hybrid anodes for energy storage devices
KR101442403B1 (en) * 2013-03-27 2014-09-23 고려대학교 산학협력단 Method of manufacturing lithium secondary battery

Similar Documents

Publication Publication Date Title
EP2541654B1 (en) High-capacity positive electrode active material and lithium secondary battery comprising same
JP5232631B2 (en) Non-aqueous electrolyte battery
US5591546A (en) Secondary cell
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
JP4879226B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JPH07235291A (en) Secondary battery
JP2012124026A (en) Nonaqueous electrolyte secondary battery
JP3717544B2 (en) Lithium secondary battery
JP2000082498A (en) Nonaqueous electrolyte secondary battery
JPH07153495A (en) Secondary battery
KR101520118B1 (en) Method for improving cycle performance of lithium secondary battery
WO2015129376A1 (en) Rolled electrode set and nonaqueous-electrolyte battery
JPH10112307A (en) Nonaqueous electrolyte secondary battery
JPH07153496A (en) Secondary battery
JPH07288124A (en) Nonaqueous electrolyte secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JP3432922B2 (en) Solid electrolyte secondary battery
JPH10270079A (en) Nonaqueous electrolyte battery
JPH0945330A (en) Nonaqueous secondary battery
US20210167384A1 (en) Positive active material for lithium-sulfur battery and method of fabricating the same
JP2008300178A (en) Nonaqueous secondary battery
JP6125719B1 (en) Charging system and method for charging non-aqueous electrolyte battery
JPH09129240A (en) Nonaqueous electrolytic secondary battery
JPH07335201A (en) Nonaqueous electrolyte secondary battery
TWI713246B (en) Anode material for lithium ion battery and preparation method thereof