JP4642959B2 - Method for producing lithium titanate - Google Patents

Method for producing lithium titanate Download PDF

Info

Publication number
JP4642959B2
JP4642959B2 JP2000017499A JP2000017499A JP4642959B2 JP 4642959 B2 JP4642959 B2 JP 4642959B2 JP 2000017499 A JP2000017499 A JP 2000017499A JP 2000017499 A JP2000017499 A JP 2000017499A JP 4642959 B2 JP4642959 B2 JP 4642959B2
Authority
JP
Japan
Prior art keywords
lithium
tio
lithium titanate
titanium oxide
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000017499A
Other languages
Japanese (ja)
Other versions
JP2001213622A (en
Inventor
徹也 山脇
英樹 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2000017499A priority Critical patent/JP4642959B2/en
Priority to US09/768,269 priority patent/US6645673B2/en
Publication of JP2001213622A publication Critical patent/JP2001213622A/en
Application granted granted Critical
Publication of JP4642959B2 publication Critical patent/JP4642959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、携帯機器用電源やパソコンなどのバックアップ用電源などに用いられるリチウムイオン電池の電極用として有効なチタン酸リチウムの製造方法に係り、さらに具体的には、リチウムイオン電池の負極材料または正極として用いた場合、放電容量が高くかつ充放電サイクル特性に優れたチタン酸リチウムの製造方法ならびにこれを用いたリチウムイオン電池に関する。
【0002】
【従来の技術】
近年のエレクトロニクス技術分野における技術の急速な発展により、電子機器の小型軽量化が進み、そのような機器の駆動用またはバックアップ用の電源である二次電池にも小型かつ軽量で、しかも、高エネルギー密度のものが切望されている。また、最近では、CO削減の要請から電気自動車用や家庭での夜間電力貯蔵用など、より大容量の蓄電システムの開発が急務となっている。このような要望に応える新しい二次電池として、負極材料にリチウム化合物を用いた容積密度の高いリチウムイオン電池が注目されてきている。
【0003】
【発明が解決しようとする課題】
リチウムイオン電池のリチウム化合物の電極材料、特に負極材料には、放電容量、また充放電サイクル特性が従来の金属リチウムや酸化チタン電極に比べ優れていることからLiTi12(ときにはLi4/3Ti5/3で表される)の化学式で表されるチタン酸リチウムが最近注目されており研究が盛んに行われている。該化合物の製造方法として湿式法と乾式法が知られている(例えば特開平9−309727号公報、ジャーナル・オブ・ローテンパラチャー・フィジックス、J.of Low Temp. Physics. Vol.25, p145, 1976)。湿式法では結晶性の優れたチタン酸リチウムが得られるが、複雑な工程と廃水処理などを必要とし、経済的に問題がある。
【0004】
一方、従来公知の乾式法では工程は簡単であるが、前記化学式以外のチタン酸リチウムが副生したり、リチウム元素あるいはリチウム化合物の揮発損失の発生などによるLi/Ti原子比(以下、「Li/Ti比」と記載する。)の制御が困難であったり、製品中への原料酸化チタンの残存があったり、その結果、LiTi12のチタン酸リチウムを効率的に製造し難いという問題がある。
【0005】
また、上述したように、チタン酸リチウムをリチウムイオン電池の負極材料または正極に使用した場合、電池の充放電サイクル特性が従来の負極材料に比べ優れているものの、サイクルを繰り返すと、未だなお容量の低下があり、放電容量が高くかつ充放電サイクル特性に優れた負極材料または正極材料としてのチタン酸リチウムの開発が望まれていた。
【0006】
本発明は上記課題を解決するためになされたものであって、本発明の目的は以下の通りである。
(1) 乾式法において効率の良いチタン酸リチウムを製造する方法の提供。
(2) 焼成反応中におけるリチウム化合物の揮発損失を防止して、Li/Ti比を0.80を中心に0.78〜0.82、好ましくは0.79〜0.80に任意に制御可能とするチタン酸リチウムの製造方法の提供。
(3) 原料酸化チタンの残存を抑制し、純度の高いチタン酸リチウムを製造する方法の提供。
(4) リチウムイオン電池の負極材料または正極材料として用いた場合、放電容量が高くかつ充放電サイクル特性に優れたチタン酸リチウムの製造方法の提供。
(5) 上記チタン酸リチウムを用いた放電容量が高くかつ充放電サイクル特性に優れたリチウムイオン電池用負極または正極ならびにリチウムイオン電池。
【0007】
【課題を解決するための手段】
本発明者らは、ある特定条件で原料化合物を混合し、さらに反応の途中に生成する物質の組成を制御し焼成することによりリチウム化合物の損失が極めて少なく、Li/Ti比の制御が容易であり、原料酸化チタンの残存もなく、チタン酸リチウム化合物を効率的に製造でき、さらにはリチウムイオン電池の負極材料または正極材料として用いた場合、放電容量が高くかつ充放電サイクル特性に優れたチタン酸リチウムが製造できることを見出し本発明の完成に到った。
【0008】
本発明はこれらの知見に基づくものであって、本発明のチタン酸リチウムの製造方法は、炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウムおよび酸化リチウムのうち1種または2種以上のリチウム化合物と酸化チタンと溶媒とを混合することによって上記リチウム化合物の全部または一部を上記溶媒に溶解し、これを乾燥して混合固体物を得、該混合固体物を670℃以上かつ800℃未満の温度で仮焼して、TiOとLiTiOで構成される組成物またはTiO、LiTiOおよびLiTi12で構成される組成物を調製し、その後本焼成することを特徴とする。
【0009】
また、本発明のリチウムイオン電池用負極または正極は、上記のチタン酸リチウムからなることを特徴とする。さらに、本発明のリチウムイオン電池は、上記チタン酸リチウムからなる負極または正極を用いたことを特徴とする。
【0010】
【発明の実施の形態】
以下に本発明の好ましい実施の形態についてより詳しく説明する。
本発明で製造するチタン酸リチウムは、一般式LiTi12で表され、Li/Ti比が0.78〜0.82,Xが3〜5,Yが4〜6の範囲にあり、具体的には、LiTi12で表されるスピネル型の結晶構造を有する単相のチタン酸リチウムあるいは、LiTi12とLiTiOとTiOの混合物もしくは混晶体である。
【0011】
1.リチウム化合物
先ず、本発明で用いられる出発原料であるリチウム化合物は、炭酸リチウム、水酸化リチウム、硝酸リチウム、酸化リチウムから選択される1種または2種以上であるが、これらのうちでも炭酸リチウムおよび水酸化リチウムが好ましく用いられる。原料として用いるこれらのリチウム化合物は高純度のものが好ましく、通常純度99.0重量%以上である。例えば炭酸リチウムを原料に用いる場合、LiCOとして99.0重量%以上、好ましくは99.5重量%以上であって、Na、Ca、Mg等の不純物金属元素が100ppm以下、好ましくは10ppm以下で、Cl、SOが100ppm以下、好ましくは50ppm以下である。また、水分については十分除去したものが望ましく、水分として0.1重量%以下にすることが望ましい。さらに平均粒径は0.01〜100μmであり、特に炭酸リチウムの場合は1〜50μm、好ましくは5〜20μmである。
【0012】
2.酸化チタン
本発明で用いる酸化チタン(TiO)については、これも高純度であることが望ましく、具体的には純度99.0重量%以上、好ましくは99.5重量%以上であり、不純物として酸化チタン微粒子中に含まれるFe、Al、SiおよびNaが各々20ppm未満であり、かつClが200ppm未満である。望ましくは酸化チタン微粒子に含まれるFe、Al、SiおよびNaが各々10ppm未満であり、Clが100ppm未満、さらに望ましくは50ppm未満である。また、平均粒径については、0.05〜30μm、好ましくは0.1〜10μm、特に好ましくは0.1〜1μmである。
【0013】
3.リチウム化合物、酸化チタン、溶媒の混合
次に、上記リチウム化合物を全部または一部溶媒に溶解して、リチウム化合物溶液を調製する。ここで、前記リチウム化合物溶液とは、リチウム化合物がすべて溶媒に溶解した均一溶液、あるいはリチウム化合物の一部が溶媒に溶解し、他の部分は溶媒に懸濁しているものを意味する。溶媒としてはリチウム化合物が溶解するものであれば任意であり、水あるいはアルコール類、またはこれらの混合物があるが水が好ましい。リチウム化合物と溶媒の量比は、使用するリチウム化合物の該溶媒に対する溶解度により異なるが、溶媒に水を使用した場合、リチウム化合物1g当たりの溶媒量は、通常1ml以上、好ましくは5ml以上である。前記リチウム化合物溶液を調製する際の温度に特に制限はないが、溶解を促進するうえで室温から100℃の範囲、好ましくは50〜80℃である。
【0014】
本発明では前記したリチウム化合物溶液と上記酸化チタンを混合および乾燥し混合固体物を調製するが、混合方法は、振動ミル、ボールミル等の粉砕混合機、あるいは攪拌機付きの混合機、さらには回転混合機等により混合する。本発明では、混合の際に溶媒、リチウム化合物および酸化チタンを接触させ、該溶媒にリチウム化合物を溶解させてリチウム化合物溶液を調製すると同時に、これを酸化チタンと混合してもよい。また、前記混合の際、リチウム化合物溶液に使用した以外の溶媒を用いることも可能であり、例えばメタノール、エタノール、2−エチルヘキサノール等のアルコール類、ヘキサン、ヘプタン、シクロヘキサン等の飽和炭化水素化合物、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素化合物、オルトジクロルベンゼン、塩化メチレン、四塩化炭素、ジクロルエタン等のハロゲン化炭化水素化合物、アセトン、エーテル類、アセトニトリル、テトラヒドロフランなどが挙げられる。
【0015】
4.混合固体物の調製
上記のようにリチウム化合物溶液と酸化チタンを混合した後、乾燥し混合固体物を調製する。このとき溶媒を蒸発させるか、リチウム化合物が溶解しないアルコール類を添加し、あるいはそのような溶媒に置換することにより、溶解したリチウム化合物を晶出させる。その後、溶媒中の全体の固形物を乾燥し、リチウム化合物と酸化チタンの混合固体物を得る。このように本発明では、リチウム化合物を全部または一部溶解し酸化チタンと混合するので、リチウム化合物と酸化チタンが均一かつ微細に分散し、仮焼および本焼成時の反応性が良好となり、結果として電池特性に優れたチタン酸リチウムが得られる。
【0016】
5.仮焼
その後、この混合物を圧縮成形等により成形体とした後にこれを仮焼する。成形する場合には、0.5t/cm程度の圧力で行うのが良い。本発明の仮焼では、上記のリチウム化合物と酸化チタンの均一混合物を、加熱処理し、TiOとLiTiOもしくはTiOとLiTiOとLiTi12で構成される組成物、すなわち本発明のチタン酸リチウムの中間生成物を得る。
【0017】
ここで該中間生成物とは、TiOとLiTiOの2つの化合物のみの組成物、あるいはTiOとLiTiOとLiTi12の3つの化合物のみの組成物であり、特に好ましくはTiOとLiTiOの組成物である。このとき加熱処理の温度は、通常600〜800℃、好ましくは670〜800℃、特に好ましくは700〜800℃である。
【0018】
ここで加熱雰囲気は酸素ガス、あるいは酸素含有ガス等の酸化性雰囲気、あるいは酸素ガス分圧が1Pa以下、好ましくは0.5Pa以下の雰囲気で行うことができるが、後者の酸素ガス分圧が1Pa以下の酸素ガスの極めて少ない雰囲気で仮焼することが好ましく、これによってリチウムイオン電池の負極または正極とした際、放電容量が高くかつ充放電サイクル特性の極めて良好なチタン酸リチウムを製造することができる。ここで酸素ガス分圧が1Pa以下の雰囲気とは、真空雰囲気、窒素あるいはアルゴンのような不活性ガス雰囲気、または水素ガス等の還元ガス雰囲気をいう。
【0019】
また、仮焼の時間は、仮焼時の温度あるいは仮焼を行う原料の量、また仮焼に使用する反応炉の能力にも関連するので、一概に特定はできないが、通常30分以上であり、好ましくは4時間以上である。
【0020】
このように、本発明の方法では、先ずリチウム化合物と酸化チタンを、最終的に本発明で得るチタン酸リチウムであるLiTi12が完全に反応し生成する温度より低い温度で仮焼を行う。例えばリチウム化合物として炭酸リチウムを原料として用い、LiTi12が完全に反応し生成する高温で酸化チタンと反応させた場合、炭酸リチウム自身が揮発するかあるいは反応の際、発生した炭酸ガスがリチウム分を飛散させ、結果として、最終的に得られるチタン酸リチウム中のリチウム成分が少なくなるという現象が起きる。これを防ぐために、本発明では、前述したようなリチウム成分の揮発あるいは飛散が起きない比較的低温で反応させ、高温でも安定なLiTiOを中間生成物として先ず生成させる。
【0021】
この場合において、仮焼の温度が600℃未満の場合には、原料のリチウム化合物の一部が残存し、次の本焼成でリチウム分またはリチウム成分の揮発損失が増大する。また、仮焼の温度が800℃以上であると、リチウムまたはリチウム成分の揮発が多く、本焼成後のLi/Ti比に大きなばらつきが生じ、目的とするLi/Ti比を有するチタン酸リチウムが得られない。
【0022】
上記のように本発明では、原料として用いるLiCO、LiOHなどの未反応のリチウム化合物が残留し、仮焼後の本焼成の際にこれらのリチウム化合物が揮発損失しないように、仮焼することによって、原料リチウム化合物が仮焼後の中間生成物中に含まないように加熱処理を行う。すなわち原料リチウム化合物は、仮焼において酸化チタンとすべて反応させ、LiTiOとLiTi12に変換させる。
【0023】
ここで、本発明における上記仮焼後の中間生成物組成は、粉末X線回折測定によって分析し特定する。LiTiOは、該X線チャートの43.4°の位置のピーク、LiTi12は、18°および43°の位置のピーク、またTiO(ルチル型)は27°の位置のピークの有無によりその存在を確認し特定する。また原料のリチウム化合物については例えばLiCOはX線チャートの31.5°のピークの有無によりその存在を確認する。
【0024】
上記仮焼は原料を熱処理炉に装入して行うが、熱処理炉としては加熱炉とその内部に出し入れされる反応管とから構成される。加熱炉としては、電熱線方式、抵抗加熱方式、高周波加熱方式など任意の方式のものを使用することができる。また、反応管の材質は、1000℃近傍までの耐熱性があり、かつ、炭酸リチウムや酸化チタンと反応しないようなものを適宜選定すれば良い。また加熱炉を上述した温度に昇温して仮焼を行うが、このときの昇温速度は加熱炉の能力によっても異なるが、通常0.5〜10℃/分、好ましくは3〜5℃/分である。昇温速度が速すぎる場合上述したようなリチウム成分の揮発損失が起こり、また遅すぎても最終的に得られるチタン酸リチウムの粒度分布が広くなり好ましくない。
【0025】
上記のようにリチウム化合物と酸化チタンの混合固形物を仮焼するが、このときのリチウム化合物と酸化チタンの混合比は、最終的に得るチタン酸リチウムの組成により異なるものの、LiTi12を得る場合、Li/Ti元素比の理論量で0.80である。従来の方法では上記のように、焼成中にリチウム成分が揮発損失するため、この理論量よりもリチウム分を大目に混合し、最終的なチタン酸リチウムのLi/Tiを調製していたが、原料の性状や反応の状況により揮発損失の量にばらつきがあり、結果として目的とする組成のチタン酸リチウムを製造することは困難であった。これに対して本発明の方法では、上記のようにリチウム成分の揮発損失を抑えることができるので、目的とするチタン酸リチウムのLi/Ti元素比に併せて、原料のリチウム化合物および酸化チタンを混合すればよく、目的とするLi/Ti元素比のチタン酸リチウムが効率よく製造することができる。
【0026】
上記のように仮焼を行った後、引き続き連続して本焼成を行うこともできるが、仮焼を行った後得られる中間生成物は、チタン酸リチウムの組成を均一にするために、粉砕、混合し、再成形してから本焼成を行うこともできる。
【0027】
6.本焼成
次いで、前記中間生成物の本焼成を行う。本焼成時の温度は、800〜950℃、好ましくは850〜900℃で行う。本焼成の温度が800℃未満または950℃を上回ると、目的化合物中に残留するTiO量が増加して好ましくない。例えばチタン酸リチウムとしてLiTi12を製造する場合、粉末X線回折測定によってTiOの27°のピークとLiTi12の18°のピークの相対強度比(以下「TiO残留度」という。)から、最終的に得られたチタン酸リチウムに残留するTiOを確認でき、この値が少ないほどリチウムイオン電池の負極または正極に使用した場合に、リチウムイオンのドープ・脱ドープ性能や充放電リサイクル特性等の電池特性が向上される。具体的にTiO残留度は、通常は0.1以下、好ましくは0.05以下、より好ましくは0.02以下である。
【0028】
また、本焼成の時間は、焼成時の温度あるいは焼成を行う中間生成物の量、また焼成に使用する反応炉の能力にも関連するので、一概に特定はできない。しかしながら本発明では、反応中の固体物中の組成を例えば高温X線回折等で経時的に分析し、酸化チタン(TiO)および最終的に得るチタン酸リチウムのピークを解析し、原料の酸化チタンが反応しなくなり、目的のチタン酸リチウムのみになるまで本焼成を継続する。
【0029】
本焼成の時間は、具体的には、通常は30分以上、好ましくは2時間以上、特に好ましくは4時間以上である。例えば850℃で本焼成を行う場合は10時間以上が好ましく、900℃の場合は4〜5時間で十分である。その後、加熱炉を冷却し、チタン酸リチウムを得る。また、得られたチタン酸リチウムを必要に応じて粉砕あるいは解砕し、また分級、篩別により粒度を調整する。
【0030】
ここで、本焼成時の加熱雰囲気は酸素ガス、あるいは酸素含有ガス等の酸化性雰囲気、あるは酸素ガス分圧1Pa以下、好ましくは0.5Pa以下の雰囲気で行うが、後者の酸素ガス分圧が1Pa以下という酸素ガスの極めて少ない雰囲気で本焼成することが好ましく、これによってリチウムイオン電池の負極または正極とした際、放電容量が高くかつ充放電サイクル特性の極めて良好なチタン酸リチウムを製造することができる。ここで酸素ガス分圧が1Pa以下の雰囲気とは、前述と同じく真空雰囲気、窒素あるいはアルゴンのような不活性ガス雰囲気、または水素ガス等の還元ガス雰囲気である。
【0031】
以上のようにリチウム化合物溶液と酸化チタンとを混合、乾燥し混合固形物を得て、これを仮焼して、TiOとLiTiOで構成される組成物またはTiO、LiTiOおよびLiTi12で構成される中間生成物としての組成物を調製し、その後、本焼成することにより、目的とする組成に制御され、リチウムイオン電池の負極材料または正極材料として用いた場合、放電容量が高くかつ充放電サイクル特性に優れたチタン酸リチウムを製造することができる。
【0032】
次に、本発明は、前記チタン酸リチウムからなるリチウムイオン電池用負極または正極であり、リチウム電池用負極または正極は、本発明のチタン酸リチウムに導電剤やバインダーなどの電極合剤を任意に添加して製造することができる。具体的には、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や銅、ニッケル、アルミニウム、銀などの金属粉、金属繊維あるいはポリフェニレン誘導体などの導電性材料を用いることができる。
【0033】
また、バインダーとしては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーなどを用いることができる。具体的には、でんぷん、ポリビニルアルコール、再生セルロース、ポリビニルクロライド、ポリ弗化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレンラバーなどを挙げることができる。さらに、上記の他に、ポリプロピレン、ポリエチレンなどのフィラーを添加することもできる。
【0034】
さらに、本発明は、前記チタン酸リチウムからなる負極または正極を用いることからなるリチウムイオン電池であり、リチウムイオン電池は、前記負極と正極と電解質とから構成される。正極に用いる材料に特に制限はないが、公知のものを使用すればよく、例えば、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム、ニッケル含有コバルト酸リチウム、五酸化バナジウムなどを用いることができる。
【0035】
また、使用する電解質は溶媒とリチウム塩から構成され、溶媒としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、ギ酸メチル、酢酸メチル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、エチルモノグライムなどの有機溶媒を挙げることができる。リチウム塩としては、LiPF、LiClO、LiCFSO、LiN(CFSO、LiBFなどを挙げることができる。このリチウム塩を上記溶媒に溶解させ電解質を構成し、上記正極および負極を組み合わせて本発明のリチウムイオン電池を構成する。
【0036】
以上のように、本発明では、特定の条件で製造することにより、目的の組成のチタン酸リチウムが効率よく得られ、このチタン酸リチウムをリチウムイオン電池の負極材として使用することによって、放電容量が高く、充放電サイクル特性が極めて良好な負極またリチウムイオン電池を提供することができる。
【0037】
【実施例】
以下、具体的な実施例を参照して本発明をさらに詳細に説明する。
[試料番号1]
純度99.9%の酸化チタン粉末(ルチル化率90%)728.15gと、純度99.0%の炭酸リチウム粉末271.85gをアルゴン雰囲気のグローブボックス中で秤量し、Li/Ti比を0.80とした。これら粉末の平均粒径は、10μmであった。
【0038】
秤量した酸化チタン粉末と炭酸リチウム粉末とを内容積5リットルのボールミルに充填し、さらにイオン交換水1.5リットルを注入し、リチウム化合物水溶液を調製し、2時間かけて混合した。次いでこのスラリーを蒸発乾固し、酸化チタンと炭酸リチウムの混合固体物を調製した。その混合固体物から100g取り分けて、直径10.5cm、長さ100cmのアルミナ製の反応管に装入し、これを加熱炉に挿入して平均で4℃/分で昇温し、750℃で4.5時間保持する仮焼を行った。その際、加熱炉に0.08〜0.1Nl/minの流量で酸素分圧0.005Paの窒素ガスを供給し続けた。
【0039】
仮焼により焼成された中間組成物の組成を分析するため、加熱炉から一部取り出し、大気中で磁製乳鉢を用いて粒径4〜12μmに粉砕した。こうして得た粉末について粉末X線回折測定および化学分析よりLi/Ti比を求めた。その結果を表1に示した。なお、表1において「ピーク位置」とは、粉末X線回折チャートにおけるそれぞれの化合物のピークの位置(角度)を示し、表中の数値は、それぞれの化合物の粉末X線回折ピークのうち最強ピークを100とし、その他のピークはこれに対する相対強度を示した。また相対強度は、各ピークの高さから算出した。
【0040】
【表1】

Figure 0004642959
【0041】
加熱炉内の中間組成物は、引き続き加熱炉を昇温して900℃の温度で4.5時間保持する本焼成を行った。その際、加熱炉に0.08〜0.1Nl/minの流量で酸素分圧0.005Paの窒素ガスを供給し続けた。このように本焼成で焼成された焼成品を大気中で磁製乳鉢を用いて粉砕しチタン酸リチウム粉末を得た。こうして得たチタン酸リチウム粉末に対して化学分析よりLi/Ti比を求めた。各仮焼温度および本焼成温度におけるLi/Ti比を表2に示した。また、最終的に得られたチタン酸リチウム粉末について粉末X線回折測定し、ルチル型TiOの27°のピーク強度とLiTi12の18°のピーク強度の比 I(TiO)/I(LiTi12)からTiO残留度を求めた。この結果を表2に示す。この比が小さい程、TiOの残量が少なく、純度の高いチタン酸リチウムが得られていることを表す。
【0042】
【表2】
Figure 0004642959
【0043】
[試料番号2]
本焼成の温度を950℃で行った以外は上記試料番号1と同様に実験を行った。その結果を表1および表2に併記した。
【0044】
[試料番号3]
仮焼および本焼成において加熱炉に0.08〜0.1Nl/minの流量で酸素ガスを供給した以外は試料番号1と同様に実験を行った。仮焼後の組成を表1および得られたチタン酸リチウムのLi/Ti比およびTiO残留度を表2に示した。
[試料番号4〜7]
仮焼および本焼成を表1に示す温度で行った以外は上記試料番号1と同様に実験を行った。その結果を表1および2に併記した。
【0045】
[試料番号8]
純度99.9%の酸化チタン粉末(東邦チタニウム(株)製、ルチル化率90%)291.25gと、純度99.0%の炭酸リチウム粉末(和光純薬工業(株)製)108.75gをアルゴン雰囲気のグローブボックス中で秤量し、Li/Ti比を0.80とした。これら粉末の平均粒径は、0.1〜10μmであった。
【0046】
秤量した酸化チタン粉末と炭酸リチウム粉末とをロッキングミキサーに充填し、2時間かけて混合した。その混合粉末から100g取り分けて直径50mmのチタン製金型に充填し、0.5t/cmの圧力で複数個の成形体を作製した。次に、成形体を直径10.5cm、長さ100cmのアルミナ製の反応管に装入し、これを加熱炉に挿入して平均で4℃/分で昇温し、仮焼しないで800℃の温度で4.5時間保持する焼成を行った。その際、加熱炉に0.08〜0.1Nl/minの流量で酸素を供給し続けた。このように焼成された焼成品を大気中で磁製乳鉢を用いて粉砕しチタン酸リチウム粉末を得た。このようにして得られたチタン酸リチウムのLi/Ti比およびTiO残留度を表2に併記した。
【0047】
[試料番号9]
純度99.9%の酸化チタン粉末(ルチル化率90%)728.15gと、純度99.0%の炭酸リチウム粉末271.85gをアルゴン雰囲気のグローブボックス中で秤量し、Li/Ti比を0.80とした。これら粉末の平均粒径は、10μmであった。秤量した酸化チタン粉末と炭酸リチウム粉末とを内容積5リットルのボールミルに充填し、2時間かけて混合した。その混合物から100g取り分けて、直径10.5cm、長さ100cmのアルミナ製の反応管に装入し、これを加熱炉に挿入して平均で4℃/分で昇温し、750℃で4.5時間保持する仮焼を行った。その際、加熱炉に0.08〜0.1Nl/minの流量で酸素ガスを供給し続けた。こうして得た粉末について粉末X線回折測定および化学分析よりLi/Ti比を求めた。その結果を表1に示した。引き続き加熱炉を昇温して900℃の温度で4.5時間保持する本焼成を行った。その際、加熱炉に0.08〜0.1Nl/minの流量で酸素ガスを供給し続けた。このように本焼成で焼成された焼成品を大気中でめのう乳鉢を用いて粉砕しチタン酸リチウム粉末を得た。こうして得たチタン酸リチウム粉末に対して化学分析よりLi/Ti比を求めた。各仮焼温度および本焼成温度におけるLi/Ti比を表2に併記した。
【0048】
表1および表2から、リチウム化合物と酸化チタンを溶媒を用いて混合し、仮焼後の中間組成物の組成において、TiOとLiTiOで構成される組成物または、TiOとLiTiOおよびLiTi12で構成される組成物が充分に得られている試料番号1,2では、最終的に得られたチタン酸リチウム(LiTi12)のLi/Ti比がほぼ理論値の0.80であり、目的の組成に制御されたものが得られた。なお、試料番号3では、仮焼および本焼成中に酸素を供給したため、Li/Ti比が若干低下した。一方、仮焼後の中間生成物中に原料リチウムであるLiCOが残留した試料番号4〜7、また仮焼を行わなかった試料番号8では、最終的に得られたチタン酸リチウム(LiTi12)のLi/Ti比が0.70付近でリチウム分が非常に少なく、仮焼あるいは本焼成時にリチウム成分は揮発損失し、結果として目的の組成のチタン酸リチウムは得られなかった。さらにリチウム化合物と酸化チタンを溶媒を使用せず混合した試料番号9では、試料番号1,2と比較するとTiO残留度が高く、得られたチタン酸リチウムの純度が低かった。
【0049】
【発明の効果】
以上説明したように本発明のチタン酸リチウムの製造方法では、リチウム化合物と、酸化チタンと、溶媒とを混合することによってリチウム化合物の全部または一部を溶媒に溶解し、これを乾燥して混合固体物を得、該混合固体物を仮焼して、TiOとLiTiOで構成される組成物またはTiO、LiTiOおよびLiTi12で構成される組成物を調製し、その後本焼成するから、リチウムの揮発損失が少なく、目的とするLi/Ti比でかつ純度の高いチタン酸リチウムを得ることができ、またこれを負極材料として用いたリチウムイオン電池は、放電容量が高く、かつ充放電サイクル特性が極めて良好である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing lithium titanate that is effective for use as an electrode of a lithium ion battery used for a power source for portable devices or a backup power source for a personal computer, and more specifically, a negative electrode material for a lithium ion battery or The present invention relates to a method for producing lithium titanate having a high discharge capacity and excellent charge / discharge cycle characteristics when used as a positive electrode, and a lithium ion battery using the same.
[0002]
[Prior art]
Due to the rapid development of technology in the electronics technology field in recent years, electronic devices have become smaller and lighter, and secondary batteries, which are power sources for driving or backing up such devices, are also small and light, yet have high energy. The thing of the density is anxious. Recently, CO 2 Due to the demand for reduction, there is an urgent need to develop a larger-capacity power storage system, such as for electric vehicles and for nighttime power storage at home. As a new secondary battery that meets such demands, a lithium ion battery having a high volume density using a lithium compound as a negative electrode material has attracted attention.
[0003]
[Problems to be solved by the invention]
Lithium ion battery materials, especially negative electrode materials, have superior discharge capacity and charge / discharge cycle characteristics compared to conventional metal lithium and titanium oxide electrodes. 4 Ti 5 O 12 (Sometimes Li 4/3 Ti 5/3 O 4 Lithium titanate represented by the chemical formula of As a method for producing the compound, a wet method and a dry method are known (for example, JP-A-9-309727, Journal of Low Temperature Paraphysics, J. of Low Temp. Physics. Vol. 25, p145). , 1976). Lithium titanate with excellent crystallinity can be obtained by the wet method, but it requires a complicated process and wastewater treatment, which is economically problematic.
[0004]
On the other hand, in the conventional dry method, the process is simple, but the Li / Ti atomic ratio (hereinafter referred to as “Li”) due to the by-production of lithium titanate other than the above chemical formula or the occurrence of volatilization loss of lithium element or lithium compound. / Ti ratio ”) is difficult to control, or the raw material titanium oxide remains in the product. 4 Ti 5 O 12 There is a problem that it is difficult to efficiently produce lithium titanate.
[0005]
In addition, as described above, when lithium titanate is used for a negative electrode material or a positive electrode of a lithium ion battery, the charge / discharge cycle characteristics of the battery are superior to those of a conventional negative electrode material. Development of lithium titanate as a negative electrode material or a positive electrode material having a high discharge capacity and excellent charge / discharge cycle characteristics has been desired.
[0006]
The present invention has been made to solve the above problems, and the object of the present invention is as follows.
(1) Provision of an efficient method for producing lithium titanate in a dry method.
(2) Lithium compound volatilization loss during the firing reaction can be prevented, and the Li / Ti ratio can be arbitrarily controlled to 0.78 to 0.82, preferably 0.79 to 0.80, centering on 0.80. A method for producing lithium titanate is provided.
(3) Providing a method for producing high-purity lithium titanate by suppressing the remaining raw material titanium oxide.
(4) Providing a method for producing lithium titanate having a high discharge capacity and excellent charge / discharge cycle characteristics when used as a negative electrode material or a positive electrode material of a lithium ion battery.
(5) A negative or positive electrode for a lithium ion battery and a lithium ion battery having a high discharge capacity and excellent charge / discharge cycle characteristics using the lithium titanate.
[0007]
[Means for Solving the Problems]
The inventors of the present invention mix the raw material compounds under certain specific conditions, further control the composition of the substance generated during the reaction and calcinate it, so that the loss of the lithium compound is extremely small and the Li / Ti ratio can be easily controlled. Yes, there is no residual raw material titanium oxide, lithium titanate compound can be produced efficiently, and when used as a negative or positive electrode material for lithium ion batteries, titanium has a high discharge capacity and excellent charge / discharge cycle characteristics The inventors have found that lithium acid can be produced and have completed the present invention.
[0008]
This invention is based on these knowledge, Comprising: The manufacturing method of the lithium titanate of this invention is 1 type, or 2 or more types of lithium compounds among lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, and lithium oxide All or a part of the lithium compound is dissolved in the solvent by mixing titanium dioxide with a solvent, and dried to obtain a mixed solid. At temperatures above 670 ° C and below 800 ° C Calcination and TiO 2 And Li 2 TiO 3 Composition composed of or TiO 2 , Li 2 TiO 3 And Li 4 Ti 5 O 12 It is characterized by preparing a composition comprising:
[0009]
Moreover, the negative electrode or positive electrode for lithium ion batteries of this invention consists of said lithium titanate. Furthermore, the lithium ion battery of the present invention is characterized by using a negative electrode or a positive electrode made of the above lithium titanate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in more detail.
The lithium titanate produced in the present invention has the general formula Li X Ti Y O 12 Li / Ti ratio is in the range of 0.78 to 0.82, X is 3 to 5, Y is 4 to 6, and specifically, Li 4 Ti 5 O 12 Single-phase lithium titanate having a spinel-type crystal structure represented by 4 Ti 5 O 12 And Li 2 TiO 3 And TiO 2 Or a mixed crystal.
[0011]
1. Lithium compounds
First, the lithium compound that is a starting material used in the present invention is one or more selected from lithium carbonate, lithium hydroxide, lithium nitrate, and lithium oxide. Among these, lithium carbonate and hydroxide Lithium is preferably used. These lithium compounds used as raw materials are preferably of high purity and usually have a purity of 99.0% by weight or more. For example, when using lithium carbonate as a raw material, Li 2 CO 3 99.0% by weight or more, preferably 99.5% by weight or more, and impurity metal elements such as Na, Ca and Mg are 100 ppm or less, preferably 10 ppm or less, and Cl, SO 4 Is 100 ppm or less, preferably 50 ppm or less. Further, it is desirable that the moisture is sufficiently removed, and it is desirable that the moisture is 0.1% by weight or less. Further, the average particle diameter is 0.01 to 100 μm, and in the case of lithium carbonate, it is 1 to 50 μm, preferably 5 to 20 μm.
[0012]
2. Titanium oxide
Titanium oxide (TiO2) used in the present invention 2 )), It is desirable that it is also highly pure. Specifically, the purity is 99.0% by weight or more, preferably 99.5% by weight or more, and Fe, Al, Si and Na are each less than 20 ppm, and Cl is less than 200 ppm. Desirably, Fe, Al, Si and Na contained in the titanium oxide fine particles are each less than 10 ppm, and Cl is less than 100 ppm, and more desirably less than 50 ppm. Moreover, about an average particle diameter, it is 0.05-30 micrometers, Preferably it is 0.1-10 micrometers, Most preferably, it is 0.1-1 micrometer.
[0013]
3. Mixture of lithium compound, titanium oxide and solvent
Next, all or part of the lithium compound is dissolved in a solvent to prepare a lithium compound solution. Here, the lithium compound solution means a homogeneous solution in which all of the lithium compound is dissolved in a solvent, or a solution in which a part of the lithium compound is dissolved in the solvent and the other part is suspended in the solvent. Any solvent can be used as long as it dissolves the lithium compound, and water, alcohols, or a mixture thereof can be used, but water is preferable. The amount ratio of the lithium compound and the solvent varies depending on the solubility of the lithium compound to be used in the solvent, but when water is used as the solvent, the amount of the solvent per 1 g of the lithium compound is usually 1 ml or more, preferably 5 ml or more. Although there is no restriction | limiting in particular in the temperature at the time of preparing the said lithium compound solution, When promoting melt | dissolution, it is the range of room temperature to 100 degreeC, Preferably it is 50-80 degreeC.
[0014]
In the present invention, the above-described lithium compound solution and the above titanium oxide are mixed and dried to prepare a mixed solid, and the mixing method is a pulverizing mixer such as a vibration mill or a ball mill, a mixer with a stirrer, or a rotary mixing. Mix by machine. In the present invention, a solvent, a lithium compound, and titanium oxide may be brought into contact with each other during mixing, and the lithium compound may be dissolved in the solvent to prepare a lithium compound solution and simultaneously mixed with titanium oxide. In addition, it is possible to use a solvent other than that used for the lithium compound solution during the mixing, for example, alcohols such as methanol, ethanol, 2-ethylhexanol, saturated hydrocarbon compounds such as hexane, heptane, cyclohexane, Examples thereof include aromatic hydrocarbon compounds such as benzene, toluene, xylene and ethylbenzene, halogenated hydrocarbon compounds such as orthodichlorobenzene, methylene chloride, carbon tetrachloride and dichloroethane, acetone, ethers, acetonitrile and tetrahydrofuran.
[0015]
4). Preparation of mixed solids
The lithium compound solution and titanium oxide are mixed as described above, and then dried to prepare a mixed solid. At this time, the dissolved lithium compound is crystallized by evaporating the solvent, adding alcohols in which the lithium compound does not dissolve, or substituting with such a solvent. Thereafter, the entire solid in the solvent is dried to obtain a mixed solid of lithium compound and titanium oxide. As described above, in the present invention, all or part of the lithium compound is dissolved and mixed with titanium oxide, so that the lithium compound and titanium oxide are uniformly and finely dispersed, and the reactivity during calcination and main firing is improved. As a result, lithium titanate having excellent battery characteristics can be obtained.
[0016]
5. Calcination
Then, after making this mixture into a molded object by compression molding etc., this is calcined. When molding, 0.5 t / cm 2 It is better to perform at a moderate pressure. In the calcining of the present invention, the above-mentioned uniform mixture of lithium compound and titanium oxide is heat-treated, and TiO 2 And Li 2 TiO 3 Or TiO 2 And Li 2 TiO 3 And Li 4 Ti 5 O 12 In other words, an intermediate product of the lithium titanate of the present invention is obtained.
[0017]
Here, the intermediate product is TiO. 2 And Li 2 TiO 3 The composition of only two compounds of the above, or TiO 2 And Li 2 TiO 3 And Li 4 Ti 5 O 12 And a composition of only three compounds, particularly preferably TiO 2 And Li 2 TiO 3 Of the composition. At this time, the temperature of the heat treatment is usually 600 to 800 ° C, preferably 670 to 800 ° C, particularly preferably 700 to 800 ° C.
[0018]
Here, the heating atmosphere can be performed in an oxidizing atmosphere such as oxygen gas or oxygen-containing gas, or in an atmosphere having an oxygen gas partial pressure of 1 Pa or less, preferably 0.5 Pa or less, but the latter oxygen gas partial pressure is 1 Pa. It is preferable to calcine in an atmosphere with very little oxygen gas as described below. This makes it possible to produce lithium titanate having a high discharge capacity and extremely good charge / discharge cycle characteristics when used as a negative electrode or a positive electrode of a lithium ion battery. it can. Here, the atmosphere having an oxygen gas partial pressure of 1 Pa or less refers to a vacuum atmosphere, an inert gas atmosphere such as nitrogen or argon, or a reducing gas atmosphere such as hydrogen gas.
[0019]
In addition, the calcination time is related to the temperature at the time of calcination or the amount of the raw material to be calcined, and the capacity of the reaction furnace used for the calcination. Yes, preferably 4 hours or longer.
[0020]
Thus, in the method of the present invention, first, a lithium compound and titanium oxide are obtained, and finally Li Li which is lithium titanate obtained in the present invention. 4 Ti 5 O 12 Calcination is carried out at a temperature lower than the temperature at which the complete reaction occurs. For example, using lithium carbonate as a raw material as a lithium compound, Li 4 Ti 5 O 12 When it reacts with titanium oxide at a high temperature where it completely reacts, the lithium carbonate itself volatilizes or the generated carbon dioxide gas scatters during the reaction, resulting in the final titanic acid obtained. A phenomenon occurs in which the lithium component in lithium decreases. In order to prevent this, the present invention reacts at a relatively low temperature at which the above-described volatilization or scattering of the lithium component does not occur, and is stable even at a high temperature. 2 TiO 3 Is first produced as an intermediate product.
[0021]
In this case, when the calcining temperature is less than 600 ° C., a part of the raw material lithium compound remains, and the volatilization loss of the lithium component or the lithium component increases in the next main firing. Further, if the calcining temperature is 800 ° C. or higher, the volatilization of lithium or the lithium component is large, resulting in a large variation in the Li / Ti ratio after the main firing, so that lithium titanate having a target Li / Ti ratio is obtained. I can't get it.
[0022]
As described above, in the present invention, Li used as a raw material 2 CO 3 In order to prevent unreacted lithium compounds such as LiOH from remaining and volatilization loss of these lithium compounds during the main firing after calcination, the raw material lithium compound is an intermediate product after calcination. Heat treatment is performed so as not to be included. That is, the raw material lithium compound is all reacted with titanium oxide in calcination, and Li 2 TiO 3 And Li 4 Ti 5 O 12 To convert.
[0023]
Here, the intermediate product composition after the calcination in the present invention is analyzed and specified by powder X-ray diffraction measurement. Li 2 TiO 3 Is a peak at a position of 43.4 ° in the X-ray chart, Li 4 Ti 5 O 12 Are peaks at 18 ° and 43 °, and TiO 2 (Rutyl type) is identified by confirming its presence by the presence or absence of a peak at 27 °. For the lithium compound as a raw material, for example, Li 2 CO 3 Confirms its presence by the presence or absence of a 31.5 ° peak on the X-ray chart.
[0024]
The calcining is performed by charging the raw material into a heat treatment furnace, and the heat treatment furnace is composed of a heating furnace and a reaction tube that is taken in and out. As the heating furnace, any system such as a heating wire system, a resistance heating system, and a high-frequency heating system can be used. Further, the material of the reaction tube may be appropriately selected as long as it has heat resistance up to about 1000 ° C. and does not react with lithium carbonate or titanium oxide. In addition, the temperature of the heating furnace is raised to the above-described temperature and calcining is performed. The rate of temperature increase at this time varies depending on the capacity of the heating furnace, but is usually 0.5 to 10 ° C / min, preferably 3 to 5 ° C / Min. When the rate of temperature increase is too high, the above-described volatilization loss of the lithium component occurs, and when it is too slow, the particle size distribution of the finally obtained lithium titanate becomes wide, which is not preferable.
[0025]
The mixed solid of lithium compound and titanium oxide is calcined as described above. The mixing ratio of the lithium compound and titanium oxide at this time varies depending on the composition of the finally obtained lithium titanate, but Li 4 Ti 5 O 12 Is 0.80 in terms of the theoretical amount of Li / Ti element ratio. In the conventional method, as described above, the lithium component volatilizes and loses during firing. Therefore, the lithium content is mixed more than the theoretical amount to prepare the final Li / Ti of lithium titanate. The amount of volatilization loss varies depending on the properties of the raw materials and reaction conditions, and as a result, it has been difficult to produce lithium titanate having the desired composition. On the other hand, in the method of the present invention, since the volatilization loss of the lithium component can be suppressed as described above, the raw material lithium compound and titanium oxide are combined with the target Li / Ti element ratio of lithium titanate. What is necessary is just to mix, and the lithium titanate of the target Li / Ti element ratio can be manufactured efficiently.
[0026]
After the calcination as described above, the main calcination can be performed continuously, but the intermediate product obtained after the calcination is pulverized in order to make the composition of lithium titanate uniform. It is also possible to carry out the main firing after mixing and remolding.
[0027]
6). Main firing
Subsequently, the intermediate product is subjected to main baking. The main firing temperature is 800 to 950 ° C, preferably 850 to 900 ° C. When the temperature of the main firing is less than 800 ° C. or exceeds 950 ° C., TiO remaining in the target compound 2 The amount increases, which is not preferable. For example, lithium titanate as Li 4 Ti 5 O 12 TiO 2 by powder X-ray diffraction measurement 2 27 ° peak and Li 4 Ti 5 O 12 The relative intensity ratio of the 18 ° peak (hereinafter referred to as “TiO 2 It is called “residuality”. ) To remain in the finally obtained lithium titanate TiO 2 The smaller this value, the better the battery characteristics such as lithium ion doping / dedoping performance and charge / discharge recycling characteristics when used for the negative or positive electrode of a lithium ion battery. Specifically TiO 2 The residual degree is usually 0.1 or less, preferably 0.05 or less, more preferably 0.02 or less.
[0028]
Further, the time for the main calcination cannot be generally specified because it is related to the temperature at the time of calcination, the amount of the intermediate product for calcination, and the ability of the reaction furnace used for the calcination. However, in the present invention, the composition in the solid substance during the reaction is analyzed over time by, for example, high-temperature X-ray diffraction, and titanium oxide (TiO 2 ) And finally the peak of lithium titanate obtained, and the main firing is continued until the raw material titanium oxide stops reacting and becomes only the target lithium titanate.
[0029]
Specifically, the firing time is usually 30 minutes or longer, preferably 2 hours or longer, particularly preferably 4 hours or longer. For example, when the main baking is performed at 850 ° C., 10 hours or more is preferable, and in the case of 900 ° C., 4 to 5 hours is sufficient. Thereafter, the heating furnace is cooled to obtain lithium titanate. The obtained lithium titanate is pulverized or crushed as necessary, and the particle size is adjusted by classification and sieving.
[0030]
Here, the heating atmosphere during the main baking is an oxidizing atmosphere such as oxygen gas or an oxygen-containing gas, or an oxygen gas partial pressure of 1 Pa or less, preferably 0.5 Pa or less. Is preferably calcined in an atmosphere of very low oxygen gas of 1 Pa or less, which produces lithium titanate with high discharge capacity and very good charge / discharge cycle characteristics when used as a negative or positive electrode of a lithium ion battery. be able to. Here, the atmosphere having an oxygen gas partial pressure of 1 Pa or less is a vacuum atmosphere, an inert gas atmosphere such as nitrogen or argon, or a reducing gas atmosphere such as hydrogen gas, as described above.
[0031]
As described above, the lithium compound solution and titanium oxide are mixed and dried to obtain a mixed solid, which is calcined to obtain TiO 2. 2 And Li 2 TiO 3 Composition composed of or TiO 2 , Li 2 TiO 3 And Li 4 Ti 5 O 12 A composition as an intermediate product composed of the following is prepared, and then subjected to main firing to control the target composition. When used as a negative electrode material or a positive electrode material of a lithium ion battery, the discharge capacity is high and Lithium titanate excellent in charge / discharge cycle characteristics can be produced.
[0032]
Next, the present invention is a negative electrode or positive electrode for a lithium ion battery comprising the lithium titanate, and the negative electrode or positive electrode for a lithium battery optionally includes an electrode mixture such as a conductive agent or a binder in the lithium titanate of the present invention. It can be manufactured by adding. Specifically, conductive materials such as graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, and silver, metal fiber, or polyphenylene derivative can be used.
[0033]
Further, as the binder, polysaccharides, thermoplastic resins, polymers having rubber elasticity, and the like can be used. Specific examples include starch, polyvinyl alcohol, regenerated cellulose, polyvinyl chloride, polyvinylidene fluoride, polyethylene, polypropylene, and ethylene-propylene rubber. In addition to the above, fillers such as polypropylene and polyethylene can be added.
[0034]
Furthermore, this invention is a lithium ion battery which consists of using the said negative electrode or positive electrode which consists of said lithium titanate, and a lithium ion battery is comprised from the said negative electrode, a positive electrode, and an electrolyte. Although there is no restriction | limiting in particular in the material used for a positive electrode, What is necessary is just to use a well-known thing, For example, lithium manganate, lithium cobaltate, lithium nickelate, nickel containing lithium cobaltate, vanadium pentoxide etc. can be used.
[0035]
The electrolyte used is composed of a solvent and a lithium salt, and the solvents are propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, methyl formate, methyl acetate, 1,2-dimethoxyethane, tetrahydrofuran. Organic solvents such as 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, and ethyl monoglyme. As the lithium salt, LiPF 6 LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 And so on. The lithium salt is dissolved in the solvent to form an electrolyte, and the positive electrode and the negative electrode are combined to form the lithium ion battery of the present invention.
[0036]
As described above, in the present invention, lithium titanate having a target composition can be efficiently obtained by producing it under specific conditions. By using this lithium titanate as a negative electrode material for a lithium ion battery, a discharge capacity can be obtained. Therefore, it is possible to provide a negative electrode or a lithium ion battery that has a high charge / discharge cycle characteristic.
[0037]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples.
[Sample No. 1]
728.15 g of titanium oxide powder having a purity of 99.9% (rutile ratio 90%) and 271.85 g of lithium carbonate powder having a purity of 99.0% were weighed in a glove box in an argon atmosphere, and the Li / Ti ratio was 0. .80. The average particle size of these powders was 10 μm.
[0038]
The weighed titanium oxide powder and lithium carbonate powder were filled in a ball mill having an internal volume of 5 liters, and further 1.5 liters of ion-exchanged water was injected to prepare an aqueous lithium compound solution, which was mixed for 2 hours. The slurry was then evaporated to dryness to prepare a mixed solid of titanium oxide and lithium carbonate. 100 g of the mixed solid was taken out and charged into an alumina reaction tube having a diameter of 10.5 cm and a length of 100 cm, which was inserted into a heating furnace and heated at an average temperature of 4 ° C./min. Calcination was performed for 4.5 hours. At that time, nitrogen gas having an oxygen partial pressure of 0.005 Pa was continuously supplied to the heating furnace at a flow rate of 0.08 to 0.1 Nl / min.
[0039]
In order to analyze the composition of the intermediate composition fired by calcination, a part was taken out from the heating furnace and pulverized to a particle size of 4 to 12 μm using a magnetic mortar in the atmosphere. The Li / Ti ratio of the powder thus obtained was determined by powder X-ray diffraction measurement and chemical analysis. The results are shown in Table 1. In Table 1, “peak position” indicates the peak position (angle) of each compound in the powder X-ray diffraction chart, and the numerical values in the table are the strongest peaks among the powder X-ray diffraction peaks of the respective compounds. Was 100, and the other peaks showed relative intensities. The relative intensity was calculated from the height of each peak.
[0040]
[Table 1]
Figure 0004642959
[0041]
The intermediate composition in the heating furnace was subsequently subjected to main baking in which the temperature of the heating furnace was raised and maintained at 900 ° C. for 4.5 hours. At that time, nitrogen gas having an oxygen partial pressure of 0.005 Pa was continuously supplied to the heating furnace at a flow rate of 0.08 to 0.1 Nl / min. The fired product thus fired in the main firing was pulverized in the atmosphere using a magnetic mortar to obtain a lithium titanate powder. The Li / Ti ratio was determined from the thus obtained lithium titanate powder by chemical analysis. Table 2 shows the Li / Ti ratio at each calcination temperature and main calcination temperature. In addition, the finally obtained lithium titanate powder was subjected to powder X-ray diffraction measurement to obtain rutile TiO. 2 27 ° peak intensity and Li 4 Ti 5 O 12 The ratio of the peak intensity at 18 ° I (TiO 2 ) / I (Li 4 Ti 5 O 12 ) To TiO 2 Residual degree was determined. The results are shown in Table 2. The smaller this ratio, the more TiO 2 This means that lithium titanate with high purity is obtained.
[0042]
[Table 2]
Figure 0004642959
[0043]
[Sample No. 2]
The experiment was performed in the same manner as the sample number 1 except that the main baking temperature was 950 ° C. The results are shown in Tables 1 and 2.
[0044]
[Sample No. 3]
Experiments were performed in the same manner as Sample No. 1 except that oxygen gas was supplied to the heating furnace at a flow rate of 0.08 to 0.1 Nl / min in the calcination and main firing. Table 1 shows the composition after calcination, and Li / Ti ratio and TiO of the obtained lithium titanate. 2 The degree of residue is shown in Table 2.
[Sample Nos. 4-7]
The experiment was performed in the same manner as Sample No. 1 except that the calcination and the main calcination were performed at the temperatures shown in Table 1. The results are shown in Tables 1 and 2.
[0045]
[Sample No. 8]
291.9 g of titanium oxide powder having a purity of 99.9% (manufactured by Toho Titanium Co., Ltd., rutile ratio 90%) and 108.75 g of lithium carbonate powder having a purity of 99.0% (manufactured by Wako Pure Chemical Industries, Ltd.) Were weighed in a glove box in an argon atmosphere to give a Li / Ti ratio of 0.80. The average particle size of these powders was 0.1 to 10 μm.
[0046]
The weighed titanium oxide powder and lithium carbonate powder were filled in a rocking mixer and mixed for 2 hours. 100 g of the mixed powder was separated and filled in a titanium mold having a diameter of 50 mm, and 0.5 t / cm 2 A plurality of molded bodies were produced under the pressure of Next, the molded body was placed in an alumina reaction tube having a diameter of 10.5 cm and a length of 100 cm, and this was inserted into a heating furnace and heated at an average temperature of 4 ° C./min. The baking which hold | maintained at the temperature of 4.5 hours was performed. At that time, oxygen was continuously supplied to the heating furnace at a flow rate of 0.08 to 0.1 Nl / min. The fired product thus fired was pulverized in the atmosphere using a magnetic mortar to obtain a lithium titanate powder. The Li / Ti ratio and TiO of the lithium titanate thus obtained 2 The degree of residue is also shown in Table 2.
[0047]
[Sample No. 9]
728.15 g of titanium oxide powder having a purity of 99.9% (rutile ratio 90%) and 271.85 g of lithium carbonate powder having a purity of 99.0% were weighed in a glove box in an argon atmosphere, and the Li / Ti ratio was 0. .80. The average particle size of these powders was 10 μm. The weighed titanium oxide powder and lithium carbonate powder were filled into a 5-liter ball mill and mixed for 2 hours. 100 g of the mixture was taken out and charged into an alumina reaction tube having a diameter of 10.5 cm and a length of 100 cm, which was inserted into a heating furnace and heated at an average temperature of 4 ° C./min. Calcination was performed for 5 hours. At that time, oxygen gas was continuously supplied to the heating furnace at a flow rate of 0.08 to 0.1 Nl / min. The Li / Ti ratio of the powder thus obtained was determined by powder X-ray diffraction measurement and chemical analysis. The results are shown in Table 1. Subsequently, the main furnace was heated and heated at 900 ° C. for 4.5 hours. At that time, oxygen gas was continuously supplied to the heating furnace at a flow rate of 0.08 to 0.1 Nl / min. The fired product thus fired in the main firing was pulverized in the air using an agate mortar to obtain a lithium titanate powder. The Li / Ti ratio was determined from the thus obtained lithium titanate powder by chemical analysis. Table 2 shows the Li / Ti ratio at each calcining temperature and main firing temperature.
[0048]
From Table 1 and Table 2, a lithium compound and titanium oxide are mixed using a solvent, and in the composition of the intermediate composition after calcination, TiO 2 And Li 2 TiO 3 Or a composition composed of TiO 2 And Li 2 TiO 3 And Li 4 Ti 5 O 12 In Sample Nos. 1 and 2 in which a composition composed of the above is sufficiently obtained, the finally obtained lithium titanate (Li 4 Ti 5 O 12 ) Was approximately the theoretical value of 0.80, and the desired composition was obtained. In Sample No. 3, since oxygen was supplied during calcination and main calcination, the Li / Ti ratio slightly decreased. On the other hand, Li which is raw material lithium in the intermediate product after calcination 2 CO 3 In sample Nos. 4 to 7 in which sapphire remained and sample No. 8 in which no calcination was performed, lithium titanate (Li 4 Ti 5 O 12 ) In the vicinity of 0.70, the lithium content was very small, and the lithium component volatilized and lost during calcination or main calcination. As a result, lithium titanate having the desired composition could not be obtained. Furthermore, in sample number 9 in which a lithium compound and titanium oxide were mixed without using a solvent, TiO 2 was compared with sample numbers 1 and 2. 2 The residual degree was high, and the purity of the obtained lithium titanate was low.
[0049]
【The invention's effect】
As described above, in the method for producing lithium titanate according to the present invention, a lithium compound, titanium oxide, and a solvent are mixed to dissolve all or part of the lithium compound in a solvent, and this is dried and mixed. A solid material is obtained, and the mixed solid material is calcined to obtain TiO 2 And Li 2 TiO 3 Composition composed of or TiO 2 , Li 2 TiO 3 And Li 4 Ti 5 O 12 A composition composed of the following is prepared, and then subjected to main firing, so that lithium volatilization loss is small, and a target lithium / titanium ratio and high purity lithium titanate can be obtained. The lithium ion battery used has a high discharge capacity and very good charge / discharge cycle characteristics.

Claims (2)

炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウムおよび酸化リチウムのうち1種または2種以上のリチウム化合物と、酸化チタンと、溶媒とを混合することによって上記リチウム化合物の全部または一部を上記溶媒に溶解し、これを乾燥して混合固体物を得、該混合固体物を670℃以上かつ800℃未満の温度で仮焼して、TiOとLiTiOで構成される組成物またはTiO、LiTiOおよびLiTi12で構成される組成物を調製し、その後本焼成することを特徴とするチタン酸リチウムの製造方法。Lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, and lithium oxide are mixed with one or more lithium compounds, titanium oxide, and a solvent to mix all or part of the lithium compounds with the solvent. And is dried to obtain a mixed solid, and the mixed solid is calcined at a temperature of 670 ° C. or higher and lower than 800 ° C., and is composed of TiO 2 and Li 2 TiO 3 A method for producing lithium titanate, comprising preparing a composition composed of 2 , Li 2 TiO 3 and Li 4 Ti 5 O 12 and then firing the composition. 前記本焼成を800℃以上かつ950℃以下の温度で行うことを特徴とする請求項1に記載のチタン酸リチウムの製造方法。The method for producing lithium titanate according to claim 1, wherein the main baking is performed at a temperature of 800 ° C or higher and 950 ° C or lower.
JP2000017499A 1999-02-16 2000-01-26 Method for producing lithium titanate Expired - Lifetime JP4642959B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000017499A JP4642959B2 (en) 2000-01-26 2000-01-26 Method for producing lithium titanate
US09/768,269 US6645673B2 (en) 1999-02-16 2001-01-25 Process for producing lithium titanate and lithium ion battery and negative electrode therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017499A JP4642959B2 (en) 2000-01-26 2000-01-26 Method for producing lithium titanate

Publications (2)

Publication Number Publication Date
JP2001213622A JP2001213622A (en) 2001-08-07
JP4642959B2 true JP4642959B2 (en) 2011-03-02

Family

ID=18544491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017499A Expired - Lifetime JP4642959B2 (en) 1999-02-16 2000-01-26 Method for producing lithium titanate

Country Status (1)

Country Link
JP (1) JP4642959B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642960B2 (en) * 2000-01-26 2011-03-02 東邦チタニウム株式会社 Method for producing lithium titanate
JP4496688B2 (en) * 2001-09-06 2010-07-07 株式会社ジーエス・ユアサコーポレーション Secondary battery
KR100442776B1 (en) * 2001-12-14 2004-08-04 한국과학기술원 Method of Making Li4/3Ti5/3O4 Film Electrode for Use in Rechargeable Lithium Microbattery
CN100345766C (en) * 2006-01-06 2007-10-31 北京科技大学 Process for preparing nano lithium titanium oxide material by low temp. solid phase reaction
FR2902929B1 (en) * 2006-06-26 2009-05-22 Commissariat Energie Atomique AQUEOUS DISPERSION BASED ON STARCH AND MIXED OXIDE OF LITHIUM AND TITANIUM, FOR A LITHIUM ACCUMULATOR ELECTRODE.
KR100808065B1 (en) 2006-10-24 2008-02-28 요업기술원 Synthesis of metal oxide for super capacitor
JP4521431B2 (en) * 2007-08-10 2010-08-11 株式会社東芝 Battery active material, non-aqueous electrolyte battery and battery pack
JP5184846B2 (en) * 2007-08-28 2013-04-17 株式会社東芝 Nonaqueous electrolyte battery and battery pack
JP5178111B2 (en) * 2007-09-26 2013-04-10 株式会社東芝 Non-aqueous electrolyte battery and pack battery
JP5312099B2 (en) 2009-02-26 2013-10-09 国立大学法人東京工業大学 Method for producing positive electrode active material and positive electrode active material
KR101051947B1 (en) * 2009-10-28 2011-07-26 (주) 퓨리켐 A method of manufacturing a LTO / AC composite material in which LTO is formed on an AC surface, and a method of manufacturing an electrochemical capacitor using the LTO / AC composite material produced thereby
JP2011113795A (en) 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd Manufacturing method of lithium titanate for lithium secondary battery active material
JP2011111361A (en) 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd Method for producing lithium titanate for lithium secondary battery active material
KR101250587B1 (en) 2010-04-20 2013-04-03 연세대학교 산학협력단 Method of manufacturing transition metal oxide/carbon nanotube composite and the composite
EP2571811A4 (en) * 2010-05-21 2016-02-17 Du Pont Process for making titanium compounds
CN103080010B (en) 2010-08-31 2016-05-04 户田工业株式会社 Lithium titanate particle powder and manufacture method thereof, containing Mg lithium titanate particle powder and manufacture method, anode for nonaqueous electrolyte secondary battery active material particle powder and rechargeable nonaqueous electrolytic battery
TWI441779B (en) * 2010-12-20 2014-06-21 Ind Tech Res Inst Material of phosphorus-doped lithium titanium oxide with spinel structure and method of manufacturing the same
JP5708939B2 (en) * 2011-03-31 2015-04-30 戸田工業株式会社 Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
EP2703356A4 (en) 2011-04-28 2015-01-14 Ishihara Sangyo Kaisha Titanium raw material for lithium titanate production and method for producing lithium titanate using same
CN103429536B (en) 2011-04-28 2017-05-10 石原产业株式会社 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
CA2834140A1 (en) 2011-04-28 2012-11-01 Ishihara Sangyo Kaisha, Ltd. Process for manufacturing lithium titanium oxides
KR20120140396A (en) * 2011-06-21 2012-12-31 삼성정밀화학 주식회사 Method of preparation of electrode active materials for enhancing performance of lithium secondary batteries and lithium secondary batteries containing electrode active materials prepared by the same
CN103390746B (en) * 2012-05-07 2016-08-03 电子科技大学 A kind of method improving lithium ionic cell cathode material lithium titanate performance
CN103545498B (en) * 2012-07-13 2016-05-18 神华集团有限责任公司 Lithium titanate-titanium dioxide composite material, preparation method thereof and negative electrode active material of rechargeable lithium ion battery formed by lithium titanate-titanium dioxide composite material
JP5998411B2 (en) * 2012-07-27 2016-09-28 東邦チタニウム株式会社 Method for producing sintered lithium lanthanum titanium oxide
CN103011265A (en) * 2012-12-26 2013-04-03 彩虹集团公司 Preparation method of lithium titanate
US9966599B2 (en) 2013-06-04 2018-05-08 Ishihara Sangyo Kaisha, Ltd. Process for manufacturing lithium titanium oxides
CN104157867B (en) * 2014-07-17 2017-02-08 中国科学院化学研究所 Preparation method of Li4Ti5O12/C micro-sphere cathode material
KR101755786B1 (en) * 2015-04-14 2017-07-10 한국기초과학지원연구원 Synthesis method of lithium-titanium oxide using solid-state method
CN114725358A (en) * 2022-05-07 2022-07-08 中国人民解放军陆军工程大学 Lithium titanate graphene electrode and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275263A (en) * 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of its negative electrode
JPH07288124A (en) * 1994-04-15 1995-10-31 Haibaru:Kk Nonaqueous electrolyte secondary battery
JPH0822841A (en) * 1994-04-21 1996-01-23 Haibaru:Kk Secondary battery
JPH1064592A (en) * 1996-06-14 1998-03-06 Hitachi Maxell Ltd Lithium secondary battery
JPH10139430A (en) * 1996-11-13 1998-05-26 Murata Mfg Co Ltd Production of lithium-titanium complex oxide
JPH10139429A (en) * 1996-11-13 1998-05-26 Murata Mfg Co Ltd Production of lithium-titanium complex oxide
JPH10247496A (en) * 1997-03-04 1998-09-14 Japan Storage Battery Co Ltd Lithium battery and its active material
WO1999003784A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Lithium hydrogentitanates and process for the preparation thereof
JP2000302547A (en) * 1999-02-16 2000-10-31 Toho Titanium Co Ltd Production of lithium titanate, lithium ion battery and its negative electrode
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2001213623A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275263A (en) * 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of its negative electrode
JPH07288124A (en) * 1994-04-15 1995-10-31 Haibaru:Kk Nonaqueous electrolyte secondary battery
JPH0822841A (en) * 1994-04-21 1996-01-23 Haibaru:Kk Secondary battery
JPH1064592A (en) * 1996-06-14 1998-03-06 Hitachi Maxell Ltd Lithium secondary battery
JPH10139430A (en) * 1996-11-13 1998-05-26 Murata Mfg Co Ltd Production of lithium-titanium complex oxide
JPH10139429A (en) * 1996-11-13 1998-05-26 Murata Mfg Co Ltd Production of lithium-titanium complex oxide
JPH10247496A (en) * 1997-03-04 1998-09-14 Japan Storage Battery Co Ltd Lithium battery and its active material
WO1999003784A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Lithium hydrogentitanates and process for the preparation thereof
JP2000302547A (en) * 1999-02-16 2000-10-31 Toho Titanium Co Ltd Production of lithium titanate, lithium ion battery and its negative electrode
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2001213623A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof

Also Published As

Publication number Publication date
JP2001213622A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
JP4642959B2 (en) Method for producing lithium titanate
JP4540167B2 (en) Method for producing lithium titanate
JP4642960B2 (en) Method for producing lithium titanate
EP2911223B1 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
KR101369658B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP3691279B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3869182B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
US20010031401A1 (en) Process for producing lithium titanate and lithium ion battery and negative electrode therein
US20120021292A1 (en) Anode active material for lithium secondary battery and method for preparing the same
WO2007034823A1 (en) Method for producing positive electrode active material and nonaqueous electrolyte battery using same
JP2009266712A (en) Positive active material for lithium secondary battery and its manufacturing method
JPH09175825A (en) Production of compound oxide using sol-gel method
JP5804427B2 (en) Method for producing positive electrode active material for secondary battery
JP2012030989A (en) Titanium dioxide, method of manufacturing the same, electrode for lithium ion battery using the same, and lithium ion battery
JP6434555B2 (en) Negative electrode active material composite for lithium ion secondary battery and method for producing the same
JP3775552B2 (en) Positive electrode active material and non-aqueous secondary battery
JP2002151078A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
JP2001048545A (en) Production of lithium-manganese multiple oxide and secondary battery using the same
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP6098670B2 (en) Method for producing titanium dioxide
KR20210077071A (en) (Positive electrode material for lithium secondary battery and method for preparing the same
JP2000264636A (en) Lithium manganese spinel oxide particle powder and its production
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Ref document number: 4642959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term