JP4642960B2 - Method for producing lithium titanate - Google Patents

Method for producing lithium titanate Download PDF

Info

Publication number
JP4642960B2
JP4642960B2 JP2000017641A JP2000017641A JP4642960B2 JP 4642960 B2 JP4642960 B2 JP 4642960B2 JP 2000017641 A JP2000017641 A JP 2000017641A JP 2000017641 A JP2000017641 A JP 2000017641A JP 4642960 B2 JP4642960 B2 JP 4642960B2
Authority
JP
Japan
Prior art keywords
lithium
tio
lithium titanate
calcination
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000017641A
Other languages
Japanese (ja)
Other versions
JP2001213623A (en
Inventor
徹也 山脇
英樹 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2000017641A priority Critical patent/JP4642960B2/en
Priority to US09/768,269 priority patent/US6645673B2/en
Publication of JP2001213623A publication Critical patent/JP2001213623A/en
Application granted granted Critical
Publication of JP4642960B2 publication Critical patent/JP4642960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、携帯機器用電源やパソコンなどのバックアップ用電源などに用いられるリチウムイオン電池の電極用として有効な、さらに具体的には、リチウムイオン電池の負極材料として用いた場合、放電容量が高くかつ充放電サイクル特性に優れたチタン酸リチウムの製造方法ならびにこれを用いたリチウムイオン電池に関する。
【0002】
【従来の技術】
近年のエレクトロニクス技術分野における技術の急速な発展により、電子機器の小型軽量化が進み、そのような機器の駆動用またはバックアップ用の電源である二次電池にも小型かつ軽量で、しかも、高エネルギー密度のものが切望されている。また、最近では、CO2削減の要請から電気自動車用や家庭での夜間電力貯蔵用など、より大容量の蓄電システムの開発が急務となっている。このような要望に応える新しい二次電池として、負極材料にリチウム化合物を用いた容積密度の高いリチウムイオン電池が注目されてきている。
【0003】
リチウムイオン電池のリチウム化合物の電極材料、特に負極材料、あるいは正極には、放電容量、また充放電サイクル特性が従来の金属リチウムや酸化チタン電極に比べ優れていることからLiTi12(ときにはLi4/3Ti5/3で表される)の化学式で表されるチタン酸リチウムが最近注目されており研究が盛んに行われている。該化合物の製造方法として湿式法と乾式法が知られている(例えば特開平9−309727号公報、ジャーナル・オブ・ローテンパラチャー・フィジックス、J.of Low Temp. Physics. Vol.25, p145, 1976)。湿式法では結晶性の優れたチタン酸リチウムが得られるが、複雑な工程と廃水処理などを必要とし、経済的に問題がある。
【0004】
【発明が解決しようとする課題】
一方、従来公知の乾式法では工程は簡単であるが、前記化学式以外のチタン酸リチウムが副生したり、リチウム元素あるいはリチウム化合物の揮発損失の発生などによるLi/Ti原子比(以下、「Li/Ti比」と記載する。)の制御が困難であったり、製品中への原料酸化チタンの残存があったりし、その結果、LiTi12のチタン酸リチウムを効率的に製造し難いという問題がある。
【0005】
また、上述したように、チタン酸リチウムをリチウムイオン電池の負極材料に使用した場合、電池の充放電サイクル特性が従来の負極材料に比べ優れているものの、サイクルを繰り返すと、未だなお容量の低下があり、放電容量が高くかつ充放電サイクル特性に優れた負極材料、または正極材料としてのチタン酸リチウムの開発が望まれていた。
【0006】
本発明は上記課題を解決するためになされたものであって、本発明の目的は以下の通りである。
(1)乾式法において効率の良いチタン酸リチウムを製造する方法の提供。
(2)焼成反応中におけるリチウム化合物の揮発損失を防止して、Li/Ti比を、0.80を中心に0.78〜0.82、好ましくは0.79〜0.80に任意に制御可能とするチタン酸リチウムの製造方法の提供。
(3)原料酸化チタンの残存を抑制するチタン酸リチウムの製造方法の提供。
(4)リチウムイオン電池の負極材料として用いた場合、放電容量が高くかつ充放電サイクル特性に優れたチタン酸リチウムの製造方法の提供。
(5)上記チタン酸リチウムを用いた放電容量が高くかつ充放電サイクル特性に優れたリチウムイオン電池用負極または正極、ならびにリチウムイオン電池の提供。
【0007】
【課題を解決するための手段】
本発明者らは、ある特定条件で反応の途中に生成する物質の組成を制御し、さらに特定の条件で焼成することによりリチウム化合物の損失が極めて少なく、Li/Ti比の制御が容易であり、原料酸化チタンの残存もなく、チタン酸リチウム化合物を効率的に製造でき、さらにはリチウムイオン電池の負極材料または正極材料として用いた場合、放電容量が高くかつ充放電サイクル特性に優れたチタン酸リチウムが製造できることを見出し本発明の完成に到った。
【0008】
本発明はこれらの知見に基づくものであって、本発明のチタン酸リチウムの製造方法は、炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウムおよび酸化リチウムのうち1種または2種以上のリチウム化合物と酸化チタンとの混合物を670℃以上かつ800℃未満の温度で仮焼して、TiOとLiTiOで構成される組成物またはTiO、LiTiOおよびLiTi12で構成される組成物を調製し、その後、酸素ガス分圧が1Pa以下の雰囲気下で本焼成することを特徴とする。
【0009】
また、本発明のリチウムイオン電池用負極または正極は、上記のチタン酸リチウムからなることを特徴とする。さらに、本発明のリチウムイオン電池は、上記チタン酸リチウムからなる負極まやは正極を用いてなることを特徴とする。
【0010】
【発明の実施の形態】
以下に本発明の方法についてより詳しく説明する。
本発明で製造するチタン酸リチウムは、一般式LiTi12で表され、Li/Ti比が0.78〜0.82,Xが3〜5,Yが4〜6の範囲にあり、具体的には、LiTi12で表されるスピネル型の結晶構造を有する単相のチタン酸リチウムあるいは、LiTi12とLiTiOとTiOの混合物もしくは混晶体である。
【0011】
先ず、本発明で用いられる出発原料であるリチウム化合物は、炭酸リチウム、水酸化リチウム、硝酸リチウム、酸化リチウムから選択される1種または2種以上であるが、これらのうちでも炭酸リチウムおよび水酸化リチウムが好ましく用いられる。原料として用いるこれらのリチウム化合物は高純度のものが好ましく、通常純度99.0重量%以上である。例えば炭酸リチウムを原料に用いる場合、LiCOとして99.0重量%以上、好ましくは99.5重量%以上であって、Na、Ca、Mg等の不純物金属元素が100ppm以下、好ましくは10ppm以下で、Cl、SOが100ppm以下、好ましくは50ppm以下である。また、水分は十分除去したものが望ましく、水分として0.1重量%以下にすることが望ましい。さらに平均粒径は0.01〜100μmであり、特に炭酸リチウムの場合は1〜50μm、好ましくは5〜20μmである。
【0012】
次に、本発明で用いる酸化チタン(TiO)については、高純度であることが望ましく、具体的には純度99.0重量%以上、好ましくは99.5重量%以上であり、不純物として酸化チタン微粒子中に含まれるFe、Al、SiおよびNaが各々20ppm未満であり、かつClが200ppm未満であることが望ましい。望ましくは酸化チタン微粒子に含まれるFe、Al、SiおよびNaが各々10ppm未満であり、Clが100ppm未満、さらに望ましくは50ppm未満であるのが良い。また、平均粒径については、0.05〜30μm、好ましくは0.1〜10μm、特に好ましくは0.1〜1μmが良い。
【0013】
本発明では上記のリチウム化合物と酸化チタンを仮焼する前に混合し混合物を調製するが、混合方法は、振動ミル、ボールミル等の粉砕混合機、あるいは攪拌機付きの混合機、さらには回転混合機等により混合する。前記混合は粉末のまま乾式で行うか、あるいは溶媒に上記リチウム化合物と酸化チタンを懸濁させ湿式で行う。乾式で原料を混合する場合、水分のない不活性ガス雰囲気中で行うことが望ましいが、大気中で行う場合、絶対湿度が3〜5g/mの乾燥空気を流して行うなど原料の吸湿を防止する手段を講じることが望ましい。また、湿式で混合を行う場合、使用する溶媒は、水、メタノール、エタノール、2−エチルヘキサノール等のアルコール類、ヘキサン、ヘプタン、シクロヘキサン等の飽和炭化水素化合物、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素化合物、オルトジクロルベンゼン、塩化メチレン、四塩化炭素、ジクロルエタン等のハロゲン化炭化水素化合物、アセトン、エーテル類、アセトニトリル、テトラヒドロフランなどであり、これらのうち水、アルコール類が好ましく用いられる。
【0014】
また、湿式混合した後の混合物は、使用した溶媒を真空乾燥等の手段により十分除去した後仮焼する。また、上記湿式混合のうち、溶媒として水を使用する場合、炭酸リチウム、水酸化リチウムなどのリチウム化合物は水に対して溶解性があるので、リチウム化合物と酸化チタンを水に懸濁させ、リチウム化合物を一部または全部溶解させる。その後、上記の混合手段により混合し、次いで溶媒を蒸発させるか、あるいはリチウム化合物が溶解しない上記以外のアルコール類等を添加することにより、その溶媒に溶解したリチウム化合物を晶出させ、その後、乾燥しリチウム化合物と酸化チタンの混合物を得ることもできる。このような混合方法の場合、リチウム化合物と酸化チタンが均一かつ微細に分散するため、仮焼および本焼成時の反応性が良好となり、結果として電池特性に優れたチタン酸リチウムが得られる。
【0015】
その後、この混合物を圧縮成形等により成形体とした後に仮焼する。成形する場合、0.5t/cm程度の圧力で行う。本発明の仮焼では、上記のリチウム化合物と酸化チタンの均一混合物を、加熱処理し、TiOとLiTiOもしくはTiOとLiTiOとLiTi12で構成させる組成物、すなわち本発明のチタン酸リチウムの中間生成物を得る。ここで中間生成物とは、TiOとLiTiOの2つの化合物のみの組成物、あるいはTiOとLiTiOとLiTi12の3つの化合物のみの組成物であり、特に好ましくはTiOとLiTiOの組成物である。このとき加熱処理の温度は、通常600〜800℃、好ましくは670〜800℃、特に好ましくは700〜800℃が良い。ここで、加熱雰囲気は酸素ガス、あるいは酸素含有ガス等の酸化性雰囲気、あるは酸素ガス分圧が1Pa以下、好ましくは0.5Pa以下、特に好ましくは0.1Pa以下の雰囲気で行う。本発明では、後述する本焼成と同様に、仮焼においても後者の酸素ガス分圧が1Pa以下の酸素ガスの極めて少ない雰囲気で仮焼することが好ましく、これによってリチウムイオン電池の負極とした際、放電容量が高くかつ充放電サイクル特性の極めて良好なチタン酸リチウムを製造することができる。ここで酸素ガス分圧が1Pa以下の雰囲気とは、真空雰囲気、窒素あるいはアルゴンのような不活性ガス雰囲気、または水素ガス等の還元ガス雰囲気である。
【0016】
また、仮焼の時間は仮焼時の温度あるいは仮焼を行う原料の量、また仮焼に使用する反応炉の能力にも関連するので、一概に特定はできないが、通常30分以上であり、好ましくは4時間以上である。
【0017】
このように、本発明の方法では、先ずリチウム化合物と酸化チタンに対して、最終的に本発明で得るチタン酸リチウムであるLiTi12が完全に反応し生成する温度より低い温度で仮焼を行う。例えばリチウム化合物として炭酸リチウムを原料とし、LiTi12が完全に反応し生成する高温で酸化チタンと反応させた場合、炭酸リチウム自身が揮発するかあるいは反応の際、発生した炭酸ガスがリチウム分を飛散させ、結果として、最終的に得られるチタン酸リチウム中のリチウム成分が少なくなるという現象が起きる。これを防ぐために、本発明では、前述したようなリチウム成分の揮発あるいは飛散が起きない比較的低温で反応させ、高温でも安定なLiTiOを中間生成物として先ず生成させる。また、仮焼の温度が600℃未満の場合には、原料のリチウム化合物の一部が残存し、次の本焼成でリチウム分またはリチウム成分の揮発損失が増大する。また、仮焼の温度が800℃以上であると、リチウムまたはリチウム成分の揮発が多く、本焼成後のLi/Ti比に大きなばらつきが生じ、目的とするLi/Ti比を有するチタン酸リチウムが得られない。
【0018】
上記のように本発明では、原料として用いるLiCO、LiOHなどの未反応のリチウム化合物が残留し、仮焼後の本焼成の際にこれらのリチウム化合物が揮発損失しないように、仮焼することによって、原料リチウム化合物が仮焼後の中間生成物中に含まないように加熱処理を行う。すなわち原料リチウム化合物は、仮焼において酸化チタンとすべて反応させ、LiTiOとLiTi12に変換させる。
【0019】
ここで、本発明における上記仮焼後の中間生成物組成は、粉末X線回折測定によって分析し特定する。LiTiOは、X線チャートの43.4°の位置のピーク、LiTi12は、18°および43°の位置のピーク、またTiO(ルチル型)は27°の位置のピークの有無によりその存在を確認し特定する。また原料のリチウム化合物については、例えばLiCOはX線チャートの31.5°のピークの有無によりその存在を確認する。
【0020】
上記仮焼は原料を熱処理炉に装入して行うが、熱処理炉としては加熱炉とその内部に出し入れされる反応管とから構成される。加熱炉としては、電熱線方式、抵抗加熱方式、高周波加熱方式など任意の方式のものを使用することができる。また、反応管の材質は、1000℃近傍までの耐熱性があり、かつ、炭酸リチウムや酸化チタンと反応しないようなものを適宜選定すれば良い。また加熱炉を上述した温度に昇温して仮焼を行うが、このときの昇温速度は加熱炉の能力によっても異なるが、通常0.5〜10℃/分、好ましくは3〜5℃/分である。昇温速度が速すぎる場合上述したようなリチウム成分の揮発損失が起こり、また、遅すぎても最終的に得られるチタン酸リチウムの粒度分布が広くなり好ましくない。
【0021】
上記のようにリチウム化合物と酸化チタンを混合し、次いで仮焼するが、このときのリチウム化合物と酸化チタンの混合比は最終的に得るチタン酸リチウムの組成により異なるが、LiTi12を得る場合、Li/Ti元素比の理論量で0.80である。従来の方法では上記のように、焼成中にリチウム成分が揮発損失するため、この理論量よりもリチウム分を大目に混合し、最終的なチタン酸リチウムのLi/Tiを調製していたが、原料の性状や反応の状況により揮発損失の量にばらつきがあり、結果として目的とする組成のチタン酸リチウムを製造することは困難であった。これに対して本発明の方法では、上記のようにリチウム成分の揮発損失を抑えることができるので、目的とするチタン酸リチウムのLi/Ti元素比に併せて、原料のリチウム化合物および酸化チタンを混合すればよく、目的とするLi/Ti元素比のチタン酸リチウムが効率よく製造することができる。
【0022】
上記のように仮焼を行った後、引き続き連続して本焼成を行うこともできるが、仮焼を行った後得られる中間生成物は、チタン酸リチウムの組成を均一にするために、粉砕、混合し、再成形してから本焼成を行うこともできる。
【0023】
次いで、酸素ガス分圧が1Pa以下、好ましくは0.5Pa、特に好ましくは0.1Pa以下の雰囲気下で前記中間生成物の本焼成を行う。ここで、酸素ガス分圧が0.1Pa以下の雰囲気とは、真空雰囲気、窒素あるいはアルゴンのような不活性ガス雰囲気、または水素ガス等の還元ガス雰囲気であり、好ましくは酸素ガス分圧が1Pa以下の不活性ガス雰囲気であり、特に好ましくは酸素ガス分圧が1Pa以下の窒素ガス雰囲気である。このように酸素ガスの極めて少ない雰囲気で本焼成することによって、結果としてリチウムイオン電池の負極または正極とした際、放電容量が高くかつ充放電サイクル特性の極めて優れたチタン酸リチウムを製造することができる。
【0024】
また、本焼成は、800〜950℃、好ましくは850〜900℃の温度で行う。本焼成の温度が800℃未満または950℃を上回ると、目的化合物中に残留するTiO量が増加して好ましくない。例えばチタン酸リチウムとしてLiTi12を製造する場合、粉末X線回折測定によってTiOの27°のピークとLiTi12の18°のピークの相対強度比(以下「TiO残留度」という。)から、最終的に得られたチタン酸リチウムに残留するTiOを確認でき、この値が少ないほどリチウムイオン電池の負極または正極に使用した場合、リチウムイオンのドープ・脱ドープ性能や充放電リサイクル特性等の電池特性が向上できる。具体的にTiO残留度は通常0.1以下、好ましくは0.05以下、より好ましくは0.02以下である。
【0025】
また、本焼成の時間は、焼成時の温度あるいは焼成を行う中間生成物の量、また焼成に使用する反応炉の能力にも関連するので、一概に特定はできない。しかしながら本発明では、反応中の固体物中の組成を例えば高温X線回折等で経時的に分析し、酸化チタン(TiO)および最終的に得るチタン酸リチウムのピークを解析し、原料の酸化チタンが反応しなくなり、目的のチタン酸リチウムのみになるまで本焼成を継続する。具体的に本焼成の時間は、通常30分以上、好ましくは2時間以上、特に好ましくは4時間以上である。例えば850℃で本焼成を行う場合は10時間以上が好ましく、900℃の場合は4〜5時間で十分である。その後、加熱炉を冷却し、チタン酸リチウムを得る、また得られたチタン酸リチウムを必要に応じて粉砕あるいは解砕し、また分級、篩別により粒度を調整する。
【0026】
以上のようにリチウム化合物と酸化チタンとの混合物を仮焼して、TiOとLiTiOで構成される組成物またはTiO、LiTiOおよびLiTi12で構成される中間生成物としての組成物を調製し、その後、酸素ガス分圧が1Pa以下の雰囲気で本焼成することにより、目的とする組成に制御され、リチウムイオン電池の負極材料または正極材料として用いた場合、放電容量が高くかつ充放電サイクル特性に優れたチタン酸リチウムを製造することができる。
【0027】
次に、本発明は、前記チタン酸リチウムからなるリチウムイオン電池用負極であり、リチウム電池用負極は、本発明のチタン酸リチウムに導電剤やバインダーなどの電極合剤を任意に添加して製造することができる。具体的には、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や銅、ニッケル、アルミニウム、銀などの金属粉、金属繊維あるいはポリフェニレン誘導体などの導電性材料を用いることができる。また、バインダーとしては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーなどを用いることができる。具体的には、でんぷん、ポリビニルアルコール、再生セルロース、ポリビニルクロライド、ポリ弗化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレンラバーなどを挙げることができる。さらに、上記の他に、ポリプロピレン、ポリエチレンなどのフィラーを添加することもできる。
【0028】
さらに、本発明は、前記チタン酸リチウムからなる負極を用いたリチウムイオン電池であり、リチウムイオン電池は、前記負極と正極と電解質とから構成される。正極に用いる材料に特に制限はないが、公知のものを使用すればよく、例えば、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム、ニッケル含有コバルト酸リチウム、五酸化バナジウムなどを用いることができる。また使用する電解質は溶媒とリチウム塩から構成され、溶媒としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、ギ酸メチル、酢酸メチル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、エチルモノグライムなどの有機溶媒を挙げることができる。リチウム塩としては、LiPF、LiClO、LiCFSO、LiN(CFSO、LiBFなどを挙げることができる。このリチウム塩を上記溶媒に溶解させ電解質を構成し、上記正極および負極を組み合わせて本発明のリチウムイオン電池を構成する。
【0029】
以上のように、本発明では、特定の条件で製造することにより、目的の組成のチタン酸リチウムが効率よく得られ、このチタン酸リチウムをリチウムイオン電池の負極材として使用することによって、放電容量が高く、充放電サイクル特性が極めて良好な負極またリチウムイオン電池を提供することができる。
【0030】
【実施例】
以下、具体的な実施例を参照して本発明をさらに詳細に説明する。
[試料番号1]
純度99.9%の酸化チタン粉末(ルチル化率90%)728.15gと、純度99.0%の炭酸リチウム粉末271.85gをアルゴン雰囲気のグローブボックス中で秤量し、Li/Ti比を0.80とした。これら粉末の平均粒径は、10μmであった。
【0031】
秤量した酸化チタン粉末と炭酸リチウム粉末とを内容積5リットルのボールミルに充填し、さらにイオン交換水1.5リットルを注入し、2時間かけて混合した。次いでこのスラリーを蒸発乾固し、酸化チタンと炭酸リチウムの混合固体物を調製した。その混合固体物から100g取り分けて、直径10.5cm、長さ100cmのアルミナ製の反応管に装入し、これを加熱炉に挿入して平均で4℃/分で昇温し、750℃で4.5時間保持する仮焼を行った。その際、加熱炉に0.08〜0.1Nl/minの流量で酸素分圧0.005Paの窒素ガスを供給し続けた。
【0032】
仮焼により焼成された中間組成物の組成を分析するため、加熱炉から一部取り出し、大気中で磁製乳鉢を用いて粒径4〜12μmに粉砕した。こうして得た粉末について粉末X線回折測定および化学分析よりLi/Ti比を求めた。その結果を表1に示した。なお、表1において「ピーク位置」とは、粉末X線回折チャートにおけるそれぞれの化合物のピークの位置(角度)を示し、表中の数値は、それぞれの化合物の粉末X線回折ピークのうち最強ピークを100とし、その他のピークはこれに対する相対強度を示した。また相対強度は、各ピークの高さから算出した。
【0033】
【表1】

Figure 0004642960
【0034】
加熱炉内の中間組成物は、引き続きに加熱炉を昇温して850℃の温度で4.5時間保持する本焼成を行った。その際、加熱炉に0.08〜0.1Nl/minの流量で酸素分圧0.005Paの窒素ガスを供給し続けた。このように本焼成で焼成された成形体を大気中で磁製乳鉢を用いて粉砕しチタン酸リチウム粉末を得た。こうして得たチタン酸リチウム粉末に対して化学分析よりLi/Ti比を求めた。各仮焼温度および本焼成温度におけるLi/Ti比を表2に示した。また、最終的に得られたチタン酸リチウム粉末について粉末X線回折測定しルチル型TiOの27°のピーク強度とLiTi12の18°のピーク強度の比 I(TiO)/I(LiTi12)からTiO残留度を求めた。この結果を表2に示す。この比が小さい程、TiOの残量が少なく、純度の高いチタン酸リチウムが得られていることを表す。
【0035】
【表2】
Figure 0004642960
【0036】
[試料番号2]
本焼成の温度を900℃で行った以外は上記試料番号1と同様に実験を行った。その結果を表1および表2に併記した。
【0037】
[試料番号3]
本焼成の温度を950℃で行った以外は上記試料番号3と同様に実験を行った。その結果を表1および表2に併記た。
【0038】
[試料番号4]
酸化チタン粉末と炭酸リチウム粉末の混合の際、イオン交換水を使用せず、乾式混合した後の混合粉末をそのまま仮焼した以外は実施例1と同様に実験を行った。仮焼後の組成を表1および得られたチタン酸リチウムのLi/Ti比およびTiO残留度を表2に併記した。
【0039】
[試料番号5〜8]
仮焼時および本焼成を表1に示す温度で行った以外は上記試料番号1と同様に実験を行った。その結果を表1および2に併記した。
【0040】
[試料番号9]
純度99.9%の酸化チタン粉末(東邦チタニウム(株)製、ルチル化率90%)291.25gと、純度99.0%の炭酸リチウム粉末(和光純薬工業(株)製)108.75gをアルゴン雰囲気のグローブボックス中で秤量し、Li/Ti比を0.80とした。これら粉末の平均粒径は、0.1〜10μmであった。
【0041】
秤量した酸化チタン粉末と炭酸リチウム粉末とをロッキングミキサーに充填し、2時間かけて混合した。その混合粉末から100g取り分けて直径50mmのチタン製金型に充填し、0.5t/cmの圧力で複数個の成形体を作製した。次に、成形体を直径10.5cm、長さ100cmのアルミナ製の反応管に装入し、これを加熱炉に挿入して平均で4℃/分で昇温し、仮焼しないで800℃の温度で4.5時間保持する焼成を行った。その際、加熱炉に0.08〜0.1Nl/minの流量で酸素を供給し続けた。このように焼成された成形体を大気中で磁製乳鉢を用いて粉砕しチタン酸リチウム粉末を得た。このようにして得られたチタン酸リチウムのLi/Ti比およびTiO残留度を表2に併記した。
【0042】
[試料番号10]
仮焼および本焼成を加熱炉に0.08〜0.1Nl/minの流量で酸素を供給しながら行った以外は実施例4と同様に実験を行った。仮焼後の組成を表1および得られたチタン酸リチウムのLi/Ti比およびTiO残留度を表2に併記した。
【0043】
表1および2から、仮焼後の中間組成物の組成において、TiOとLiTiOで構成される組成物または、TiOとLiTiOおよびで構成される組成物が得られている試料番号1〜4では、最終的に得られたチタン酸リチウム(LiTi12)のLi/Ti比がほぼ理論値の0.80であり、目的の組成に制御されたものが得られた。逆に、仮焼後の中間生成物中に原料リチウムであるLiCOが残留した試料番号5〜8、また、仮焼を行わなかった試料番号9では、最終的に得られたチタン酸リチウム(LiTi12)のLi/Ti比が0.70付近と、リチウム分が非常に少なく、仮焼あるいは本焼成時にリチウム成分は揮発損失し、結果として目的の組成のチタン酸リチウムは得られなかった。
【0044】
(リチウムイオン電池特性評価)
試料番号1および試料番号10で調製したチタン酸リチウムについて、以下の条件でリチウムイオン電池特性を評価した。
【0045】
負極の作成:
チタン酸リチウム粉末、アセチレンブラックおよびポリテトラフルオロエチレンを重量比で8:1:1の割合で混練し加圧成形した後、200℃で12時間減圧乾燥し、負極とした。
【0046】
評価用電池の作成:
正極となる対極に、リチウム−アルミニウム合金を用い、参照極にはリチウム箔を使用した。セパレータにはポリエチレン製細孔膜、電解質として、LiPFをプロピレンカーボネート、エチレンカーボネートおよび1,2−ジメトキシエタンの混合溶媒に1モル/dmの濃度で溶解し調製した。
【0047】
充放電容量の測定:
充電は1mA/cmの電流密度で電位が2.5Vに達するまで行い、放電は同じ電流密度で電位が1.2Vに達するまで行った。この充放電操作を繰り返し行い、得られた充放電曲線から放電容量およびクーロン効率を求めた。その結果を表3に示す。
【0048】
【表3】
Figure 0004642960
【0049】
表3から、本発明のチタン酸リチウムを負極として用いたリチウムイオン電池は、放電容量が大きく、また充放電操作を繰り返し実施しても放電容量およびクーロン効率が低下せず非常に安定しており、充放電サイクル特性に極めて優れていることが判る。一方、仮焼および本焼成の際に酸素を供給した試料番号10では、試料番号1と比較すると放電容量およびクーロン効率の双方において劣った結果となった。
【0050】
【発明の効果】
以上説明したように本発明のチタン酸リチウムの製造方法では、リチウム化合物と酸化チタンとの混合物を仮焼して、TiOとLiTiOで構成される組成物または、TiOとLiTiOおよびで構成される組成物の中間生成物を調製し、その後、酸素ガス分圧が1Pa以下の雰囲気下で本焼成するから、リチウムの揮発損失が少なく目的とするLi/Ti比を得ることができ、またこれを負極材料として用いたリチウムイオン電池は、放電容量が高く、かつ充放電サイクル特性が極めて良好である。[0001]
BACKGROUND OF THE INVENTION
The present invention is effective for an electrode of a lithium ion battery used for a power source for portable equipment or a backup power source of a personal computer, and more specifically, when used as a negative electrode material for a lithium ion battery, the discharge capacity is high. The present invention also relates to a method for producing lithium titanate having excellent charge / discharge cycle characteristics and a lithium ion battery using the same.
[0002]
[Prior art]
Due to the rapid development of technology in the electronics technology field in recent years, electronic devices have become smaller and lighter, and secondary batteries, which are power sources for driving or backing up such devices, are also small and light, yet have high energy. The thing of the density is anxious. In recent years, there has been an urgent need to develop a power storage system with a larger capacity, such as for electric vehicles and for nighttime power storage at home due to the demand for CO2 reduction. As a new secondary battery that meets such demands, a lithium ion battery having a high volume density using a lithium compound as a negative electrode material has attracted attention.
[0003]
A lithium compound electrode material of a lithium ion battery, particularly a negative electrode material, or a positive electrode has a discharge capacity and charge / discharge cycle characteristics superior to those of conventional metal lithium and titanium oxide electrodes, so that Li 4 Ti 5 O 12 ( Lithium titanate represented by the chemical formula of Li 4/3 Ti 5/3 O 4 ( sometimes represented by Li 4/3 Ti 5/3 O 4 ) has recently attracted attention and has been actively studied. As a method for producing the compound, a wet method and a dry method are known (for example, JP-A-9-309727, Journal of Low Temperature Paraphysics, J. of Low Temp. Physics. Vol. 25, p145). , 1976). Lithium titanate with excellent crystallinity can be obtained by the wet method, but it requires a complicated process and wastewater treatment, which is economically problematic.
[0004]
[Problems to be solved by the invention]
On the other hand, in the conventional dry method, the process is simple, but the Li / Ti atomic ratio (hereinafter referred to as “Li”) due to generation of lithium titanate other than the above chemical formula as a by-product or generation of volatilization loss of lithium element or lithium compound. / Ti ratio ”) is difficult to control, or the raw material titanium oxide remains in the product, and as a result, Li 4 Ti 5 O 12 lithium titanate is efficiently produced. There is a problem that it is difficult.
[0005]
In addition, as described above, when lithium titanate is used as a negative electrode material for a lithium ion battery, the charge / discharge cycle characteristics of the battery are superior to those of a conventional negative electrode material. There has been a demand for development of a negative electrode material having a high discharge capacity and excellent charge / discharge cycle characteristics, or lithium titanate as a positive electrode material.
[0006]
The present invention has been made to solve the above problems, and the object of the present invention is as follows.
(1) Providing a method for producing lithium titanate that is efficient in the dry process.
(2) Lithium compound volatilization loss during the firing reaction is prevented, and the Li / Ti ratio is arbitrarily controlled to 0.78 to 0.82, preferably 0.79 to 0.80, centering on 0.80. Providing a method for producing lithium titanate that can be realized.
(3) Providing a method for producing lithium titanate that suppresses the remaining raw material titanium oxide.
(4) Providing a method for producing lithium titanate having a high discharge capacity and excellent charge / discharge cycle characteristics when used as a negative electrode material for a lithium ion battery.
(5) Providing a negative or positive electrode for a lithium ion battery having a high discharge capacity and excellent charge / discharge cycle characteristics using the lithium titanate, and a lithium ion battery.
[0007]
[Means for Solving the Problems]
The inventors of the present invention control the composition of a substance generated during the reaction under a specific condition, and further calcination under the specific condition, so that the loss of the lithium compound is extremely small and the control of the Li / Ti ratio is easy. Titanic acid that can efficiently produce lithium titanate compound without residual titanium oxide, and has high discharge capacity and excellent charge / discharge cycle characteristics when used as a negative electrode material or a positive electrode material of a lithium ion battery The inventors have found that lithium can be produced and have completed the present invention.
[0008]
This invention is based on these knowledge, Comprising: The manufacturing method of the lithium titanate of this invention is 1 type, or 2 or more types of lithium compounds among lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, and lithium oxide And a mixture of TiO 2 and Li 2 TiO 3 or TiO 2 , Li 2 TiO 3 and Li 4 Ti 5 O 12 by calcining a mixture of TiO 2 and titanium oxide at a temperature of 670 ° C. or higher and lower than 800 ° C. A composition composed of the following: is prepared, and then subjected to main firing in an atmosphere having an oxygen gas partial pressure of 1 Pa or less.
[0009]
Moreover, the negative electrode or positive electrode for lithium ion batteries of this invention consists of said lithium titanate. Furthermore, the lithium ion battery of the present invention is characterized by using a negative electrode or a positive electrode made of the above lithium titanate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in more detail.
The lithium titanate produced in the present invention is represented by the general formula Li X Ti Y O 12 , and the Li / Ti ratio is in the range of 0.78 to 0.82, X is 3 and Y is 4 to 6. , specifically, Li 4 Ti 5 O 12 or lithium titanate single phase having a spinel type crystal structure represented by, Li 4 Ti 5 O 12 and Li 2 TiO 3 and a mixture of TiO 2 or mixed crystal It is.
[0011]
First, the lithium compound that is a starting material used in the present invention is one or more selected from lithium carbonate, lithium hydroxide, lithium nitrate, and lithium oxide. Among these, lithium carbonate and hydroxide Lithium is preferably used. These lithium compounds used as raw materials are preferably of high purity and usually have a purity of 99.0% by weight or more. For example, when lithium carbonate is used as a raw material, it is 99.0% by weight or more, preferably 99.5% by weight or more as Li 2 CO 3 , and impurity metal elements such as Na, Ca and Mg are 100 ppm or less, preferably 10 ppm. In the following, Cl and SO 4 are 100 ppm or less, preferably 50 ppm or less. Further, it is desirable that the water is sufficiently removed, and the water content is preferably 0.1% by weight or less. Further, the average particle diameter is 0.01 to 100 μm, and in the case of lithium carbonate, it is 1 to 50 μm, preferably 5 to 20 μm.
[0012]
Next, it is desirable that the titanium oxide (TiO 2 ) used in the present invention has a high purity. Specifically, the purity is 99.0% by weight or more, preferably 99.5% by weight or more. Desirably, Fe, Al, Si and Na contained in the titanium fine particles are each less than 20 ppm and Cl is less than 200 ppm. Desirably, Fe, Al, Si and Na contained in the titanium oxide fine particles are each less than 10 ppm, and Cl is less than 100 ppm, more desirably less than 50 ppm. The average particle size is 0.05 to 30 μm, preferably 0.1 to 10 μm, and particularly preferably 0.1 to 1 μm.
[0013]
In the present invention, the above lithium compound and titanium oxide are mixed before calcining to prepare a mixture. The mixing method may be a pulverizing mixer such as a vibration mill or a ball mill, a mixer with a stirrer, or a rotary mixer. Mix by etc. The mixing is carried out dry in the form of powder, or is carried out wet by suspending the lithium compound and titanium oxide in a solvent. When mixing raw materials in a dry process, it is desirable to carry out in an inert gas atmosphere without moisture. However, in the air, moisture absorption of the raw materials is performed by flowing dry air with an absolute humidity of 3 to 5 g / m 3. It is desirable to take measures to prevent it. In addition, when performing wet mixing, the solvent used is water, alcohols such as methanol, ethanol, 2-ethylhexanol, saturated hydrocarbon compounds such as hexane, heptane, cyclohexane, benzene, toluene, xylene, ethylbenzene, etc. Aromatic hydrocarbon compounds, halogenated hydrocarbon compounds such as orthodichlorobenzene, methylene chloride, carbon tetrachloride, dichloroethane, acetone, ethers, acetonitrile, tetrahydrofuran, etc. Among these, water and alcohols are preferably used .
[0014]
The mixture after wet mixing is calcined after the used solvent is sufficiently removed by means such as vacuum drying. In addition, when water is used as the solvent in the above wet mixing, lithium compounds such as lithium carbonate and lithium hydroxide are soluble in water. Therefore, the lithium compound and titanium oxide are suspended in water and lithium is added. Part or all of the compound is dissolved. Thereafter, the mixture is mixed by the above-mentioned mixing means, and then the solvent is evaporated, or by adding an alcohol other than the above that does not dissolve the lithium compound, the lithium compound dissolved in the solvent is crystallized, and then dried. A mixture of lithium compound and titanium oxide can also be obtained. In the case of such a mixing method, since the lithium compound and titanium oxide are uniformly and finely dispersed, the reactivity during calcination and main calcination is improved, and as a result, lithium titanate having excellent battery characteristics is obtained.
[0015]
Thereafter, this mixture is formed into a molded body by compression molding or the like and then calcined. When molding, it is performed at a pressure of about 0.5 t / cm 2 . In the calcining of the present invention, a composition in which a uniform mixture of the above lithium compound and titanium oxide is subjected to heat treatment and is composed of TiO 2 and Li 2 TiO 3 or TiO 2 and Li 2 TiO 3 and Li 4 Ti 5 O 12 . That is, an intermediate product of the lithium titanate of the present invention is obtained. And here the intermediate product is a composition of a composition of two compounds of TiO 2 and Li 2 TiO 3 only, or three compounds of TiO 2 and Li 2 TiO 3 and Li 4 Ti 5 O 12 only, Particularly preferred is a composition of TiO 2 and Li 2 TiO 3 . At this time, the temperature of the heat treatment is usually 600 to 800 ° C, preferably 670 to 800 ° C, particularly preferably 700 to 800 ° C. Here, the heating atmosphere is an oxidizing atmosphere such as oxygen gas or an oxygen-containing gas, or an oxygen gas partial pressure is 1 Pa or less, preferably 0.5 Pa or less, particularly preferably 0.1 Pa or less. In the present invention, as in the case of the main firing described later, it is preferable that the latter is calcined in an atmosphere with an oxygen gas partial pressure of 1 Pa or less in an extremely small amount of oxygen gas, thereby forming a negative electrode for a lithium ion battery. Thus, lithium titanate having a high discharge capacity and extremely good charge / discharge cycle characteristics can be produced. Here, the atmosphere having an oxygen gas partial pressure of 1 Pa or less is a vacuum atmosphere, an inert gas atmosphere such as nitrogen or argon, or a reducing gas atmosphere such as hydrogen gas.
[0016]
In addition, the calcination time is related to the temperature at the time of calcination or the amount of the raw material to be calcined, and the capacity of the reactor used for the calcination. , Preferably 4 hours or longer.
[0017]
As described above, in the method of the present invention, first, Li 4 Ti 5 O 12 which is the lithium titanate finally obtained in the present invention is completely reacted with the lithium compound and titanium oxide at a temperature lower than the temperature at which it is generated. Perform calcination. For example, when lithium carbonate is used as a lithium compound as a raw material and is reacted with titanium oxide at a high temperature at which Li 4 Ti 5 O 12 completely reacts, lithium carbonate itself volatilizes or carbon dioxide gas generated during the reaction As a result, the lithium component is scattered, resulting in a phenomenon that the lithium component in the finally obtained lithium titanate is reduced. In order to prevent this, in the present invention, the reaction is performed at a relatively low temperature at which the lithium component does not volatilize or scatter as described above, and Li 2 TiO 3 that is stable even at a high temperature is first generated as an intermediate product. When the calcining temperature is less than 600 ° C., a part of the raw material lithium compound remains, and the volatilization loss of the lithium component or lithium component increases in the next main firing. Further, if the calcining temperature is 800 ° C. or higher, the volatilization of lithium or the lithium component is large, resulting in a large variation in the Li / Ti ratio after the main firing, so that lithium titanate having a target Li / Ti ratio is obtained. I can't get it.
[0018]
As described above, in the present invention, unreacted lithium compounds such as Li 2 CO 3 and LiOH used as raw materials remain, and calcining is performed so that these lithium compounds do not volatilize during the main baking after the calcining. Thus, heat treatment is performed so that the raw material lithium compound is not included in the intermediate product after calcination. That is, the raw material lithium compound is completely reacted with titanium oxide in the calcination to be converted into Li 2 TiO 3 and Li 4 Ti 5 O 12 .
[0019]
Here, the intermediate product composition after the calcination in the present invention is analyzed and specified by powder X-ray diffraction measurement. Li 2 TiO 3 has a peak at 43.4 ° on the X-ray chart, Li 4 Ti 5 O 12 has peaks at 18 ° and 43 °, and TiO 2 (rutile type) has a peak at 27 °. The presence is confirmed and identified by the presence or absence of a peak. As for the raw material lithium compound, for example, the presence of Li 2 CO 3 is confirmed by the presence or absence of a 31.5 ° peak on the X-ray chart.
[0020]
The calcining is performed by charging the raw material into a heat treatment furnace, and the heat treatment furnace is composed of a heating furnace and a reaction tube that is taken in and out. As the heating furnace, any system such as a heating wire system, a resistance heating system, and a high-frequency heating system can be used. Further, the material of the reaction tube may be appropriately selected as long as it has heat resistance up to about 1000 ° C. and does not react with lithium carbonate or titanium oxide. In addition, the temperature of the heating furnace is raised to the above-described temperature and calcining is performed. The rate of temperature increase at this time varies depending on the capacity of the heating furnace, but is usually 0.5 to 10 ° C / min, preferably 3 to 5 ° C / Min. When the rate of temperature increase is too fast, the above-described volatilization loss of the lithium component occurs, and when it is too slow, the particle size distribution of the finally obtained lithium titanate becomes wide, which is not preferable.
[0021]
The lithium compound and titanium oxide are mixed as described above, and then calcined. The mixing ratio of the lithium compound and titanium oxide at this time varies depending on the composition of the finally obtained lithium titanate, but Li 4 Ti 5 O 12 Is 0.80 in terms of the theoretical amount of Li / Ti element ratio. In the conventional method, as described above, the lithium component volatilizes and loses during firing. Therefore, the lithium content is mixed more than the theoretical amount to prepare the final Li / Ti of lithium titanate. The amount of volatilization loss varies depending on the properties of the raw materials and reaction conditions, and as a result, it has been difficult to produce lithium titanate having the desired composition. On the other hand, in the method of the present invention, since the volatilization loss of the lithium component can be suppressed as described above, the raw material lithium compound and titanium oxide are combined with the target Li / Ti element ratio of lithium titanate. What is necessary is just to mix, and the lithium titanate of the target Li / Ti element ratio can be manufactured efficiently.
[0022]
After the calcination as described above, the main calcination can be performed continuously, but the intermediate product obtained after the calcination is pulverized in order to make the composition of lithium titanate uniform. It is also possible to carry out the main firing after mixing and remolding.
[0023]
Next, the intermediate product is baked in an atmosphere having an oxygen gas partial pressure of 1 Pa or less, preferably 0.5 Pa, particularly preferably 0.1 Pa or less. Here, the atmosphere having an oxygen gas partial pressure of 0.1 Pa or less is a vacuum atmosphere, an inert gas atmosphere such as nitrogen or argon, or a reducing gas atmosphere such as hydrogen gas, preferably an oxygen gas partial pressure of 1 Pa. The following inert gas atmosphere is preferable, and a nitrogen gas atmosphere with an oxygen gas partial pressure of 1 Pa or less is particularly preferable. In this way, the main firing in an atmosphere with very little oxygen gas can produce lithium titanate having a high discharge capacity and excellent charge / discharge cycle characteristics when it is used as a negative electrode or a positive electrode of a lithium ion battery as a result. it can.
[0024]
Moreover, this baking is performed at the temperature of 800-950 degreeC, Preferably 850-900 degreeC. When the temperature of the main calcination is less than 800 ° C. or exceeds 950 ° C., the amount of TiO 2 remaining in the target compound increases, which is not preferable. For example, when Li 4 Ti 5 O 12 is produced as lithium titanate, the relative intensity ratio between the 27 ° peak of TiO 2 and the 18 ° peak of Li 4 Ti 5 O 12 (hereinafter referred to as “TiO 2 ” by powder X-ray diffraction measurement). TiO 2 remaining in the finally obtained lithium titanate can be confirmed from the “residuality”.) The smaller this value, the more lithium ion doped or dedoped the lithium ion battery when used for the negative electrode or the positive electrode Battery characteristics such as performance and charge / discharge recycling characteristics can be improved. Specifically, the TiO 2 residual degree is usually 0.1 or less, preferably 0.05 or less, more preferably 0.02 or less.
[0025]
Further, the time for the main calcination cannot be generally specified because it is related to the temperature at the time of calcination, the amount of the intermediate product for calcination, and the ability of the reaction furnace used for the calcination. However, in the present invention, the composition in the solid substance during the reaction is analyzed over time by, for example, high-temperature X-ray diffraction, etc., and the peaks of titanium oxide (TiO 2 ) and finally obtained lithium titanate are analyzed to oxidize the raw material. The main baking is continued until the titanium does not react and only the target lithium titanate is obtained. Specifically, the firing time is usually 30 minutes or longer, preferably 2 hours or longer, particularly preferably 4 hours or longer. For example, when the main baking is performed at 850 ° C., 10 hours or more is preferable, and in the case of 900 ° C., 4 to 5 hours is sufficient. Thereafter, the heating furnace is cooled to obtain lithium titanate, and the obtained lithium titanate is pulverized or crushed as necessary, and the particle size is adjusted by classification and sieving.
[0026]
As described above, a mixture of a lithium compound and titanium oxide is calcined and a composition composed of TiO 2 and Li 2 TiO 3 or composed of TiO 2 , Li 2 TiO 3 and Li 4 Ti 5 O 12 . When a composition as an intermediate product is prepared, and then subjected to main firing in an atmosphere having an oxygen gas partial pressure of 1 Pa or less, thereby being controlled to the intended composition and used as a negative electrode material or a positive electrode material of a lithium ion battery Thus, lithium titanate having a high discharge capacity and excellent charge / discharge cycle characteristics can be produced.
[0027]
Next, the present invention is a negative electrode for a lithium ion battery comprising the lithium titanate, and the negative electrode for a lithium battery is produced by arbitrarily adding an electrode mixture such as a conductive agent or a binder to the lithium titanate of the present invention. can do. Specifically, conductive materials such as graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, and silver, metal fiber, or polyphenylene derivative can be used. Further, as the binder, polysaccharides, thermoplastic resins, polymers having rubber elasticity, and the like can be used. Specific examples include starch, polyvinyl alcohol, regenerated cellulose, polyvinyl chloride, polyvinylidene fluoride, polyethylene, polypropylene, and ethylene-propylene rubber. In addition to the above, fillers such as polypropylene and polyethylene can be added.
[0028]
Furthermore, this invention is a lithium ion battery using the negative electrode which consists of the said lithium titanate, and a lithium ion battery is comprised from the said negative electrode, a positive electrode, and electrolyte. Although there is no restriction | limiting in particular in the material used for a positive electrode, What is necessary is just to use a well-known thing, For example, lithium manganate, lithium cobaltate, lithium nickelate, nickel containing lithium cobaltate, vanadium pentoxide etc. can be used. The electrolyte used is composed of a solvent and a lithium salt. Examples of the solvent include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, methyl formate, methyl acetate, 1,2-dimethoxyethane, tetrahydrofuran, Examples include organic solvents such as 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, and ethyl monoglyme. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 and the like. The lithium salt is dissolved in the solvent to form an electrolyte, and the positive electrode and the negative electrode are combined to form the lithium ion battery of the present invention.
[0029]
As described above, in the present invention, lithium titanate having a target composition can be efficiently obtained by producing it under specific conditions. By using this lithium titanate as a negative electrode material for a lithium ion battery, a discharge capacity can be obtained. Therefore, it is possible to provide a negative electrode or a lithium ion battery that has a high charge / discharge cycle characteristic.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples.
[Sample No. 1]
728.15 g of titanium oxide powder having a purity of 99.9% (rutile ratio 90%) and 271.85 g of lithium carbonate powder having a purity of 99.0% were weighed in a glove box in an argon atmosphere, and the Li / Ti ratio was 0. .80. The average particle size of these powders was 10 μm.
[0031]
A weighed titanium oxide powder and lithium carbonate powder were filled in a ball mill having an internal volume of 5 liters, and 1.5 liters of ion-exchanged water were further injected and mixed for 2 hours. The slurry was then evaporated to dryness to prepare a mixed solid of titanium oxide and lithium carbonate. 100 g of the mixed solid was taken out and charged into an alumina reaction tube having a diameter of 10.5 cm and a length of 100 cm, which was inserted into a heating furnace and heated at an average temperature of 4 ° C./min. Calcination was performed for 4.5 hours. At that time, nitrogen gas having an oxygen partial pressure of 0.005 Pa was continuously supplied to the heating furnace at a flow rate of 0.08 to 0.1 Nl / min.
[0032]
In order to analyze the composition of the intermediate composition fired by calcination, a part was taken out from the heating furnace and pulverized to a particle size of 4 to 12 μm using a magnetic mortar in the atmosphere. The Li / Ti ratio of the powder thus obtained was determined by powder X-ray diffraction measurement and chemical analysis. The results are shown in Table 1. In Table 1, “peak position” indicates the peak position (angle) of each compound in the powder X-ray diffraction chart, and the numerical values in the table are the strongest peaks among the powder X-ray diffraction peaks of the respective compounds. Was 100, and the other peaks showed relative intensities. The relative intensity was calculated from the height of each peak.
[0033]
[Table 1]
Figure 0004642960
[0034]
The intermediate composition in the heating furnace was subsequently baked by heating the heating furnace and holding at 850 ° C. for 4.5 hours. At that time, nitrogen gas having an oxygen partial pressure of 0.005 Pa was continuously supplied to the heating furnace at a flow rate of 0.08 to 0.1 Nl / min. Thus, the molded object baked by this baking was grind | pulverized using the magnetic mortar in air | atmosphere, and the lithium titanate powder was obtained. The Li / Ti ratio was determined from the thus obtained lithium titanate powder by chemical analysis. Table 2 shows the Li / Ti ratio at each calcination temperature and main calcination temperature. Further, the finally obtained lithium titanate powder was measured by powder X-ray diffraction, and the ratio of the peak intensity of 27 ° of rutile TiO 2 and the peak intensity of 18 ° of Li 4 Ti 5 O 12 I (TiO 2 ) / The residual TiO 2 content was determined from I (Li 4 Ti 5 O 12 ). The results are shown in Table 2. The smaller this ratio, the smaller the remaining amount of TiO 2 and the higher the purity of lithium titanate.
[0035]
[Table 2]
Figure 0004642960
[0036]
[Sample No. 2]
The experiment was performed in the same manner as the sample number 1 except that the main baking temperature was 900 ° C. The results are shown in Tables 1 and 2.
[0037]
[Sample No. 3]
The experiment was performed in the same manner as the sample No. 3 except that the main baking temperature was 950 ° C. The results are shown in Tables 1 and 2.
[0038]
[Sample No. 4]
When mixing the titanium oxide powder and the lithium carbonate powder, an experiment was performed in the same manner as in Example 1 except that the ion-exchanged water was not used and the mixed powder after dry mixing was calcined as it was. Table 1 shows the composition after calcination, and Table 2 shows the Li / Ti ratio and TiO 2 residual degree of the obtained lithium titanate.
[0039]
[Sample Nos. 5-8]
The experiment was performed in the same manner as Sample No. 1 except that the calcination and the main calcination were performed at the temperatures shown in Table 1. The results are shown in Tables 1 and 2.
[0040]
[Sample No. 9]
291.9 g of titanium oxide powder having a purity of 99.9% (manufactured by Toho Titanium Co., Ltd., rutile ratio 90%) and 108.75 g of lithium carbonate powder having a purity of 99.0% (manufactured by Wako Pure Chemical Industries, Ltd.) Were weighed in a glove box in an argon atmosphere to give a Li / Ti ratio of 0.80. The average particle size of these powders was 0.1 to 10 μm.
[0041]
The weighed titanium oxide powder and lithium carbonate powder were filled in a rocking mixer and mixed for 2 hours. 100 g of the mixed powder was separated and filled in a titanium mold having a diameter of 50 mm, and a plurality of molded bodies were produced at a pressure of 0.5 t / cm 2 . Next, the molded body was placed in an alumina reaction tube having a diameter of 10.5 cm and a length of 100 cm, and this was inserted into a heating furnace and heated at an average temperature of 4 ° C./min. The baking which hold | maintained at the temperature of 4.5 hours was performed. At that time, oxygen was continuously supplied to the heating furnace at a flow rate of 0.08 to 0.1 Nl / min. The fired compact was pulverized in the atmosphere using a magnetic mortar to obtain a lithium titanate powder. The Li / Ti ratio and TiO 2 residual degree of the lithium titanate thus obtained are also shown in Table 2.
[0042]
[Sample No. 10]
The experiment was performed in the same manner as in Example 4 except that the calcination and the main calcination were performed while supplying oxygen to the heating furnace at a flow rate of 0.08 to 0.1 Nl / min. Table 1 shows the composition after calcination, and Table 2 shows the Li / Ti ratio and TiO 2 residual degree of the obtained lithium titanate.
[0043]
From Tables 1 and 2, in the composition of the intermediate composition after calcination, a composition composed of TiO 2 and Li 2 TiO 3 or a composition composed of TiO 2 and Li 2 TiO 3 was obtained. In Sample Nos. 1 to 4, the Li / Ti ratio of the finally obtained lithium titanate (Li 4 Ti 5 O 12 ) is approximately the theoretical value of 0.80, and is controlled to the target composition. Obtained. Conversely, in sample numbers 5 to 8 in which Li 2 CO 3 as the raw material lithium remained in the intermediate product after calcination, and in sample number 9 where calcination was not performed, finally obtained titanic acid Li / Ti ratio of lithium (Li 4 Ti 5 O 12 ) is around 0.70 and the lithium content is very small, and the lithium component is volatilized and lost during calcination or main firing. As a result, lithium titanate having the desired composition Was not obtained.
[0044]
(Lithium ion battery characteristics evaluation)
About the lithium titanate prepared by sample number 1 and sample number 10, the lithium ion battery characteristics were evaluated under the following conditions.
[0045]
Create negative electrode:
Lithium titanate powder, acetylene black and polytetrafluoroethylene were kneaded at a weight ratio of 8: 1: 1 and subjected to pressure molding, and then dried under reduced pressure at 200 ° C. for 12 hours to obtain a negative electrode.
[0046]
Creating an evaluation battery:
A lithium-aluminum alloy was used for the counter electrode serving as the positive electrode, and a lithium foil was used for the reference electrode. A separator was prepared by dissolving LiPF 6 in a mixed solvent of propylene carbonate, ethylene carbonate and 1,2-dimethoxyethane at a concentration of 1 mol / dm 3 as a polyethylene microporous membrane and electrolyte.
[0047]
Measurement of charge / discharge capacity:
Charging was performed at a current density of 1 mA / cm 2 until the potential reached 2.5 V, and discharging was performed at the same current density until the potential reached 1.2 V. This charge / discharge operation was repeated, and the discharge capacity and coulomb efficiency were determined from the obtained charge / discharge curve. The results are shown in Table 3.
[0048]
[Table 3]
Figure 0004642960
[0049]
From Table 3, the lithium ion battery using the lithium titanate of the present invention as a negative electrode has a large discharge capacity, and even after repeated charge and discharge operations, the discharge capacity and coulomb efficiency do not decrease and are very stable. It can be seen that the charge / discharge cycle characteristics are extremely excellent. On the other hand, Sample No. 10 to which oxygen was supplied during calcination and main firing had inferior results in both discharge capacity and Coulomb efficiency as compared with Sample No. 1.
[0050]
【The invention's effect】
As described above, in the method for producing lithium titanate of the present invention, a mixture of a lithium compound and titanium oxide is calcined and a composition composed of TiO 2 and Li 2 TiO 3 or TiO 2 and Li 2 is used. An intermediate product of a composition composed of TiO 3 and is prepared, and then subjected to main firing in an atmosphere having an oxygen gas partial pressure of 1 Pa or less, so that a desired Li / Ti ratio is obtained with little lithium volatilization loss. In addition, a lithium ion battery using this as a negative electrode material has a high discharge capacity and very good charge / discharge cycle characteristics.

Claims (3)

炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウムおよび酸化リチウムのうち1種または2種以上のリチウム化合物と酸化チタンとの混合物を670℃以上かつ800℃未満の温度で仮焼して、TiOとLiTiOで構成される組成物またはTiO、LiTiOおよびLiTi12で構成される組成物を調製し、その後、酸素ガス分圧が1Pa以下の雰囲気下で本焼成することを特徴とするチタン酸リチウムの製造方法。A mixture of one or two or more lithium compounds and lithium oxide among lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate and lithium oxide is calcined at a temperature of 670 ° C. or higher and lower than 800 ° C. to obtain TiO 2 And a composition composed of Li 2 TiO 3 or a composition composed of TiO 2 , Li 2 TiO 3 and Li 4 Ti 5 O 12 , and then in an atmosphere with an oxygen gas partial pressure of 1 Pa or less. A method for producing lithium titanate, characterized by firing. 前記本焼成を800℃以上かつ950℃以下の温度で行うことを特徴とする請求項1に記載のチタン酸リチウムの製造方法。The method for producing lithium titanate according to claim 1, wherein the main baking is performed at a temperature of 800 ° C or higher and 950 ° C or lower. 前記本焼成を酸素ガス分圧が0.1Pa以下の不活性ガス雰囲気下で行うことを特徴とする請求項1に記載のチタン酸リチウムの製造方法。  The method for producing lithium titanate according to claim 1, wherein the main baking is performed in an inert gas atmosphere having an oxygen gas partial pressure of 0.1 Pa or less.
JP2000017641A 1999-02-16 2000-01-26 Method for producing lithium titanate Expired - Lifetime JP4642960B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000017641A JP4642960B2 (en) 2000-01-26 2000-01-26 Method for producing lithium titanate
US09/768,269 US6645673B2 (en) 1999-02-16 2001-01-25 Process for producing lithium titanate and lithium ion battery and negative electrode therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017641A JP4642960B2 (en) 2000-01-26 2000-01-26 Method for producing lithium titanate

Publications (2)

Publication Number Publication Date
JP2001213623A JP2001213623A (en) 2001-08-07
JP4642960B2 true JP4642960B2 (en) 2011-03-02

Family

ID=18544609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017641A Expired - Lifetime JP4642960B2 (en) 1999-02-16 2000-01-26 Method for producing lithium titanate

Country Status (1)

Country Link
JP (1) JP4642960B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642959B2 (en) * 2000-01-26 2011-03-02 東邦チタニウム株式会社 Method for producing lithium titanate
JP4496688B2 (en) * 2001-09-06 2010-07-07 株式会社ジーエス・ユアサコーポレーション Secondary battery
JP5101010B2 (en) * 2005-12-21 2012-12-19 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
KR100808065B1 (en) 2006-10-24 2008-02-28 요업기술원 Synthesis of metal oxide for super capacitor
JP5354148B2 (en) * 2008-04-04 2013-11-27 独立行政法人日本原子力研究開発機構 Method for producing powder for producing lithium granule
CN102089907A (en) * 2008-07-17 2011-06-08 旭硝子株式会社 Cathode composite for nonaqueous electrolyte cell
JP5312099B2 (en) * 2009-02-26 2013-10-09 国立大学法人東京工業大学 Method for producing positive electrode active material and positive electrode active material
KR101340821B1 (en) * 2009-03-30 2013-12-11 유미코르 High voltage negative active material for a rechargeable lithium battery
JP5421644B2 (en) * 2009-04-21 2014-02-19 石原産業株式会社 Method for producing titanic acid compound or titanium oxide
JP2011113795A (en) * 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd Manufacturing method of lithium titanate for lithium secondary battery active material
JP2011111361A (en) * 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd Method for producing lithium titanate for lithium secondary battery active material
US20120128577A1 (en) * 2010-10-06 2012-05-24 Blue Juice, Inc. Metal oxide synthesis
DE102011012713A1 (en) * 2011-03-01 2012-09-06 Süd-Chemie AG Lithium-titanium mixed oxide
JP5698052B2 (en) * 2011-03-30 2015-04-08 株式会社クボタ Method for producing lithium titanate, electrode, and lithium ion secondary battery
JP5990512B2 (en) 2011-04-28 2016-09-14 石原産業株式会社 Titanium raw material for producing lithium titanate and method for producing lithium titanate using such raw material
CA2834140A1 (en) * 2011-04-28 2012-11-01 Ishihara Sangyo Kaisha, Ltd. Process for manufacturing lithium titanium oxides
KR20120140396A (en) * 2011-06-21 2012-12-31 삼성정밀화학 주식회사 Method of preparation of electrode active materials for enhancing performance of lithium secondary batteries and lithium secondary batteries containing electrode active materials prepared by the same
JP5694208B2 (en) * 2012-01-19 2015-04-01 株式会社東芝 NEGATIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE BATTERY AND METHOD FOR PRODUCING THE SAME
JP5597662B2 (en) * 2012-03-09 2014-10-01 株式会社東芝 Negative electrode active material, non-aqueous electrolyte battery and battery pack
JP2014001110A (en) 2012-06-20 2014-01-09 Taiyo Yuden Co Ltd Lithium titanium complex oxide, production method thereof and electrode for battery
JP5718966B2 (en) * 2013-04-17 2015-05-13 石原産業株式会社 Method for producing alkali metal titanate compound and method for producing electricity storage device
JP6523629B2 (en) * 2014-08-06 2019-06-05 Fdk株式会社 Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
JP6329034B2 (en) * 2014-09-01 2018-05-23 東邦チタニウム株式会社 Method for producing lithium titanate and method for producing lithium ion secondary battery using the same
JP6400250B1 (en) * 2017-01-20 2018-10-03 東邦チタニウム株式会社 Lithium titanate having no variation in battery characteristics, lithium ion secondary battery using the same, and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275263A (en) * 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of its negative electrode
JPH07288124A (en) * 1994-04-15 1995-10-31 Haibaru:Kk Nonaqueous electrolyte secondary battery
JPH0822841A (en) * 1994-04-21 1996-01-23 Haibaru:Kk Secondary battery
JPH1064592A (en) * 1996-06-14 1998-03-06 Hitachi Maxell Ltd Lithium secondary battery
JPH10139430A (en) * 1996-11-13 1998-05-26 Murata Mfg Co Ltd Production of lithium-titanium complex oxide
JPH10247496A (en) * 1997-03-04 1998-09-14 Japan Storage Battery Co Ltd Lithium battery and its active material
WO1999003784A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Lithium hydrogentitanates and process for the preparation thereof
JP2000302547A (en) * 1999-02-16 2000-10-31 Toho Titanium Co Ltd Production of lithium titanate, lithium ion battery and its negative electrode
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2001213622A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275263A (en) * 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of its negative electrode
JPH07288124A (en) * 1994-04-15 1995-10-31 Haibaru:Kk Nonaqueous electrolyte secondary battery
JPH0822841A (en) * 1994-04-21 1996-01-23 Haibaru:Kk Secondary battery
JPH1064592A (en) * 1996-06-14 1998-03-06 Hitachi Maxell Ltd Lithium secondary battery
JPH10139430A (en) * 1996-11-13 1998-05-26 Murata Mfg Co Ltd Production of lithium-titanium complex oxide
JPH10247496A (en) * 1997-03-04 1998-09-14 Japan Storage Battery Co Ltd Lithium battery and its active material
WO1999003784A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Lithium hydrogentitanates and process for the preparation thereof
JP2000302547A (en) * 1999-02-16 2000-10-31 Toho Titanium Co Ltd Production of lithium titanate, lithium ion battery and its negative electrode
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2001213622A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof

Also Published As

Publication number Publication date
JP2001213623A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
JP4642960B2 (en) Method for producing lithium titanate
JP4540167B2 (en) Method for producing lithium titanate
JP4642959B2 (en) Method for producing lithium titanate
JP3869182B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
US6645673B2 (en) Process for producing lithium titanate and lithium ion battery and negative electrode therein
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP3691279B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5098146B2 (en) Method for producing positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP4949561B2 (en) Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same
US7504180B2 (en) Positive electrode material for lithium secondary battery and process for producing the same
JP5266861B2 (en) Method for producing positive electrode active material for lithium secondary battery
US20070111097A1 (en) Lithium-cobalt composite oxide, process for its production, positive electrode for lithium secondary cell employing it, and lithium secondary cell
WO2007034823A1 (en) Method for producing positive electrode active material and nonaqueous electrolyte battery using same
JP5716269B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery
KR101820867B1 (en) Manufacturing sulfur-carbon composites with high sulfur dispersion
CN111406334A (en) Negative electrode active material and method for producing same
JP4773636B2 (en) Method for producing lithium cobalt composite oxide
JP2002151078A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
KR20210077071A (en) (Positive electrode material for lithium secondary battery and method for preparing the same
JP2003168434A (en) Positive electrode active material, positive electrode for secondary battery and nonaqueous electrolytic solution secondary battery using the same
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
KR20000074691A (en) Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
WO1998054768A1 (en) Electrode for non-aqueous electrolytic cells
JPH09306494A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Ref document number: 4642960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term