JP2001048545A - Production of lithium-manganese multiple oxide and secondary battery using the same - Google Patents

Production of lithium-manganese multiple oxide and secondary battery using the same

Info

Publication number
JP2001048545A
JP2001048545A JP11224778A JP22477899A JP2001048545A JP 2001048545 A JP2001048545 A JP 2001048545A JP 11224778 A JP11224778 A JP 11224778A JP 22477899 A JP22477899 A JP 22477899A JP 2001048545 A JP2001048545 A JP 2001048545A
Authority
JP
Japan
Prior art keywords
lithium
compound
reaction
manganese
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11224778A
Other languages
Japanese (ja)
Inventor
Koji Shima
耕司 島
Yasushi Tsurita
寧 釣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11224778A priority Critical patent/JP2001048545A/en
Publication of JP2001048545A publication Critical patent/JP2001048545A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject multiple oxide maintaining its performance as an anode active substance without the need of reaction at high temperatures for a long time even through reaction at relatively low temperatures for a short time by reaction between a lithium compound and a manganese compound in the presence of a boron compound in a liquid state. SOLUTION: This lithium manganese multiple oxide is obtained by reaction between a lithium compound (e.g. lithium hydroxide) and a manganese compound (e.g. MnO2) in the presence of a boron compound (e.g. H3BO3) in a liquid state; wherein the molar ratio Li/Mn is pref. about 0.8-1.2 when this multiple oxide is of lamellar structure, or about 0.4-0.6 in the case of spinel structure, and the molar ratio B/Mn is pref. 0.001-0.05; the reaction is carried out in the presence of a compound containing a metallic element as substituent dope (AlOOH or the like with a particle size of about <=10 μm) at 500-900 deg.C for 1-100 h.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムマンガン
複合酸化物の製造方法及びこれを正極活物質として用い
た二次電池に関するものである。
The present invention relates to a method for producing a lithium manganese composite oxide and a secondary battery using the same as a positive electrode active material.

【0002】[0002]

【従来の技術】正極及び負極が互いにリチウムイオンを
吸蔵・放出することによって電池として機能するリチウ
ムイオン二次電池は、高電圧・高エネルギー密度を有
し、携帯電話、携帯用パソコン、ビデオカメラ、電気自
動車等の用途に好適に用いることができる。リチウムイ
オン二次電池用の正極活物質としては、層状複合酸化物
であるLi1- x CoO2(0≦x ≦1)が4V級の高電圧を得るこ
とができ、且つ高いエネルギー密度を有することから、
既に広く実用化されている。一方で原料であるCoは資源
的にも乏しく高価であるため、今後も大幅に需要が拡大
してゆく可能性を考えると、原料供給の面で不安がある
と共に、更に価格が高騰することも有り得る。そこで、
Li1-x CoO2に変わり得る正極活物質として安価なMnを原
料とした層状複合酸化物であるLi1-x MnO2(0≦x ≦1)並
びにスピネル型Mn系複合酸化物Li1-x Mn2O4(0≦x ≦1)
を正極活物質として利用することが考えられている。し
かしながらこれらのリチウムマンガン複合酸化物は、50
〜60℃の温度で繰り返し充放電を行った際の容量劣化が
前述のLi1-x CoO2と比較して大きい点で問題があった。
この点に関しては、(1)リチウムマンガン複合酸化物
の結晶性を改善する、(2)結晶構造を安定化するため
に、Mnの一部を一種、或いはそれ以上の元素で置換する
事により容量劣化抑制効果があることが明らかになって
いる。
2. Description of the Related Art A lithium ion secondary battery, which functions as a battery by a positive electrode and a negative electrode absorbing and releasing lithium ions from each other, has a high voltage and a high energy density, and is used for mobile phones, portable personal computers, video cameras, It can be suitably used for applications such as electric vehicles. As a positive electrode active material for a lithium ion secondary battery, a layered composite oxide, Li 1- x CoO 2 (0 ≦ x ≦ 1), can obtain a high voltage of 4V class and has a high energy density From that
It is already widely used. On the other hand, Co, a raw material, is scarce in terms of resources and expensive, so considering the possibility that demand will continue to expand significantly, there is concern about the supply of raw materials and the price may rise further. It is possible. Therefore,
Li 1-x CoO 2 instead obtained positive electrode active material as an inexpensive Mn of Li 1-x MnO 2 is layered composite oxide raw material (0 ≦ x ≦ 1) and spinel-type Mn-based composite oxide Li 1- x Mn 2 O 4 (0 ≦ x ≦ 1)
It has been considered to use as a positive electrode active material. However, these lithium manganese composite oxides have 50
There is a problem in that the capacity deterioration when repeatedly charged and discharged at a temperature of 6060 ° C. is greater than that of the above-mentioned Li 1-x CoO 2 .
In this regard, in order to (1) improve the crystallinity of the lithium-manganese composite oxide, and (2) stabilize the crystal structure, a part of Mn is replaced by one or more elements to increase the capacity. It has been clarified that there is a deterioration suppressing effect.

【0003】リチウムマンガン複合酸化物の製造方法と
しては、通常、リチウム化合物とマンガン化合物を高温
で反応させる方法が用いられる。しかしながら、良好な
結晶性を有するリチウムマンガン複合酸化物を製造する
ためには高温での長時間の反応を要するため、製造コス
トが高くなるという問題点があった。また、反応時間を
短縮する目的でさらに反応温度を上げると、リチウムマ
ンガン複合酸化物の分解のため正極活物質としての性能
が低下するという問題点があった。この問題を解決する
手法として、リチウム化合物とマンガン化合物を不活性
溶融剤の存在下に焼成する方法(特開平10−3245
21号公報)が提案されている。
As a method for producing a lithium manganese composite oxide, a method of reacting a lithium compound and a manganese compound at a high temperature is usually used. However, in order to produce a lithium manganese composite oxide having good crystallinity, a long-time reaction at a high temperature is required, and there is a problem that the production cost is increased. Further, when the reaction temperature is further increased for the purpose of shortening the reaction time, there is a problem that the performance as a positive electrode active material is reduced due to decomposition of the lithium manganese composite oxide. As a method of solving this problem, a method of firing a lithium compound and a manganese compound in the presence of an inert melting agent (Japanese Patent Laid-Open No. 10-3245)
No. 21) has been proposed.

【0004】しかしながら、前述の改善方法において不
活性溶融剤として例示されているカリウム、バリウム、
リチウムのハロゲン化物、硫酸塩、モリブデン酸塩では
溶融剤としての効果が必ずしも十分ではなく、製造しよ
うとするリチウムマンガン複合酸化物に対して多量に添
加する必要があった。またその結果として、正極活物質
としては機能しない多量の不活性溶融剤を焼成後に水洗
により除去する必要があり、さらにろ過、乾燥も必要と
なるため、製造コストの点で好ましいものではなかっ
た。
However, potassium, barium, and potassium, which are exemplified as inert fluxes in the above-mentioned improvement method,
Lithium halides, sulfates and molybdates do not always have a sufficient effect as a melting agent, and need to be added in large amounts to the lithium-manganese composite oxide to be produced. As a result, a large amount of the inert flux that does not function as a positive electrode active material must be removed by washing after baking, and furthermore, filtration and drying are required, which is not preferable in terms of production cost.

【0005】[0005]

【発明が解決しようとする課題】(1)高温での長時間
の反応を要せず、(2)低温で短時間の反応でも正極活
性物質としての性能(放電容量、高温下での放電容量維
持率)が低下することなく、(3)製造しようとするリ
チウムマンガン複合酸化物に対して不活性溶融剤の添加
量が少量であり、またその結果として、正極活物質とし
ては機能しない多量の不活性溶融剤を焼成後に水洗によ
り除去する必要がなく、さらにろ過、乾燥もないので製
造コストの点で好ましい、リチウムマンガン複合酸化物
の製造方法が求められていた。
(1) The performance as a positive electrode active material (discharge capacity, discharge capacity at high temperature) even without reaction for a long time at low temperature (3) The addition amount of the inert flux is small with respect to the lithium manganese composite oxide to be produced, and as a result, a large amount that does not function as a positive electrode active material is obtained. There is a need for a method for producing a lithium manganese composite oxide, which is preferable in terms of production cost since it is not necessary to remove the inert flux by rinsing with water after calcination, and furthermore, there is no filtration or drying.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意検討を
重ねた結果、不活性溶融剤の1つである液相状態のホウ
素化合物の存在下でリチウム化合物とマンガン化合物を
反応させることにより上記問題点を解決出来ることを見
出し、本発明を完成するに至った。即ち本発明の要旨
は、液相状態のホウ素化合物存在下で、リチウム化合物
とマンガン化合物を反応させる事を特徴とするリチウム
マンガン複合酸化物の製造方法の存する。
Means for Solving the Problems As a result of extensive studies, the present inventors have found that a lithium compound and a manganese compound are reacted in the presence of a boron compound in a liquid phase, which is one of inert fluxes. The inventors have found that the above problems can be solved, and have completed the present invention. That is, the gist of the present invention resides in a method for producing a lithium-manganese composite oxide, which comprises reacting a lithium compound with a manganese compound in the presence of a boron compound in a liquid phase.

【0007】本発明の好ましい実施態様としては、上記
反応を、置換ドープとなる金属元素を含む化合物の存在
下で行うことを特徴とする上記の製造方法;上記置換ド
ープとなる金属元素がアルミニウム化合物であることを
特徴とする上記の製造方法;液相状態のホウ素化合物の
量が、マンガン化合物の量に対してB/Mnのモル比が
0.001〜0.05となる量であることを特徴とする
上記の製造方法;上記反応温度を900℃以下とするこ
とを特徴とする上記の製造方法が挙げられる。また、本
発明の別に実施態様としては、上記の製造方法により製
造されたリチウムマンガン複合酸化物を正極活物質とし
て用いたことを特徴とする二次電池が挙げられる。
[0007] In a preferred embodiment of the present invention, the above-mentioned reaction is carried out in the presence of a compound containing a metal element to be a substitution dope; The above production method, wherein the amount of the boron compound in the liquid phase is an amount such that the molar ratio of B / Mn to the amount of the manganese compound is 0.001 to 0.05. The above-mentioned production method, which is characterized in that the reaction temperature is 900 ° C. or lower. Another embodiment of the present invention is a secondary battery using the lithium manganese composite oxide manufactured by the above manufacturing method as a positive electrode active material.

【0008】[0008]

【発明の実施の形態】本発明におけるリチウムマンガン
複合酸化物は、層状構造のものもスピネル型のものも含
む。マンガンの一部がリチウムによって置換されていて
もよく、リチウム及び/又はマンガンの一部が他の金属
元素によって置換されていてもよい。本発明で用いるホ
ウ素化合物は、リチウム化合物とマンガン化合物を反応
させる温度において液相を生じる化合物であり、例え
ば、Li2B4O7 、Li2B2O4 、Li6B 4O7 等のホウ酸リチウ
ム、Na2B6O10、Na2B4O7 等のホウ酸ナトリウム、K2B10O
16、K2B4O7等のホウ酸カリウム、B2O3、H3BO3 等から選
ばれる1種または2種以上の混合物及びこれらの分解生
成物を挙げる事ができる。特にB2O3、H3BO3 あるいはホ
ウ酸リチウムが好適である。使用するホウ素化合物の量
は、マンガン化合物の量に対してB/Mnのモル比で通常
0.001以上、好ましくは0.005以上、より好ま
しくは0.01以上となる量であり、また通常0.05
以下、好ましくは0.04以下、より好ましくは0.0
3以下となる量である。B/Mnのモル比が小さすぎると十
分な放電容量維持率が得られない場合があり、大きすぎ
ると十分な放電容量を得られない場合がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Lithium manganese in the present invention
Complex oxides include those having a layered structure and those having a spinel type.
No. Some of the manganese has been replaced by lithium
If some of lithium and / or manganese are other metals
It may be replaced by an element. E used in the present invention
Iodine compounds react lithium compounds with manganese compounds
A compound that produces a liquid phase at the temperature
If LiTwoBFourO7, LiTwoBTwoOFour, Li6B FourO7Lithium borate etc.
, NaTwoB6OTen, NaTwoBFourO7Sodium borate, such as KTwoBTenO
16, KTwoBFourO7Potassium borate, B etc.TwoOThree, HThreeBOThreeSelect from etc.
One or more mixtures and decomposed products thereof
You can name an adult. Especially BTwoOThree, HThreeBOThreeOr e
Lithium borate is preferred. Amount of boron compound used
Is usually a molar ratio of B / Mn to the amount of manganese compound
0.001 or more, preferably 0.005 or more, more preferably
Or 0.01 or more, and usually 0.05
Or less, preferably 0.04 or less, more preferably 0.04 or less.
The amount is 3 or less. If the molar ratio of B / Mn is too small,
It may not be possible to obtain a sufficient discharge capacity maintenance rate, and it is too large
If so, a sufficient discharge capacity may not be obtained.

【0009】本発明で用いるリチウム化合物としては、
例えば、水酸化リチウム、炭酸リチウム、硝酸リチウ
ム、酸化リチウム等あるいはこれらの水和物から選ばれ
る1種または2種以上の混合物を挙げられる。本発明で
用いるマンガン化合物としては、例えば、MnO2、Mn
2O3 、Mn3O4 、MnO 等のマンガン酸化物、あるいはMnCO
3 等の炭酸塩、あるいはMnOOH 等から選ばれる1種また
は2種以上の混合物を挙げられる。リチウム化合物とマ
ンガン化合物の反応を行う際のLi/Mn 比率は、層状構造
のリチウムマンガン複合酸化物を合成する場合にはモル
比で0.8〜1.2が好ましく、より好ましくは0.9
〜1.2である。スピネル構造のリチウムマンガン複合
酸化物を合成する場合にはモル比で0.4〜0.6が好
ましく、より好ましくは0.45〜0.55である。反
応に際しては、LiとMnの比率が上記モル比の範囲に入る
ようリチウム化合物とマンガン化合物の量を調整すれば
よい。なお、製造するリチウムマンガン複合酸化物の結
晶構造を安定化させるために他元素によりリチウム又は
マンガンの一部が他の金属元素によって置換されたリチ
ウムマンガン複合酸化物を製造する場合には、置換量に
相当するLi、Mnの量を減少させればよい。
The lithium compound used in the present invention includes:
For example, one or a mixture of two or more selected from lithium hydroxide, lithium carbonate, lithium nitrate, lithium oxide and the like and hydrates thereof can be mentioned. As the manganese compound used in the present invention, for example, MnO 2 , Mn
Manganese oxides such as 2 O 3 , Mn 3 O 4 , MnO, or MnCO
3 or the like, or one or a mixture of two or more kinds selected from MnOOH and the like. When a lithium compound and a manganese compound are reacted, the Li / Mn ratio is preferably from 0.8 to 1.2, more preferably from 0.9 to 1.2 in terms of molar ratio when a lithium manganese composite oxide having a layered structure is synthesized.
1.21.2. When synthesizing a lithium manganese composite oxide having a spinel structure, the molar ratio is preferably from 0.4 to 0.6, and more preferably from 0.45 to 0.55. At the time of the reaction, the amounts of the lithium compound and the manganese compound may be adjusted so that the ratio of Li and Mn falls within the range of the above molar ratio. In the case of producing a lithium manganese composite oxide in which lithium or manganese is partially substituted by another metal element with another element in order to stabilize the crystal structure of the produced lithium manganese composite oxide, It is sufficient to reduce the amounts of Li and Mn corresponding to.

【0010】Li又はMnの一部を置換する金属元素、即ち
置換ドープとなる金属元素としては、Al,Fe,Ga,Bi,Sn,
V,Cr,Co,Cu,Zn,Mg,Ti,Ge,Nb,Ta,Li等が挙げられるが、
好ましくはAl,Fe,Ga,Cr,Co,Mg,Tiであり、特に好ましく
はAlである。リチウム又はマンガンの一部が他の金属元
素によって置換されたリチウムマンガン複合酸化物を得
るには、液相状態のホウ素化合物存在下でリチウム化合
物とマンガン化合物を反応させる際に、これらの金属元
素を含む化合物を反応させればよい。金属元素2種の選
択次第では、液相状態のホウ素化合物存在下でリチウム
化合物とマンガン化合物を反応させる際に該2種の金属
元素を含む化合物を反応さることによりリチウム及びマ
ンガンの一部がそれぞれ異なる1種の金属元素によって
置換されたリチウムマンガン複合酸化物を得ることがで
きる。
As a metal element that partially replaces Li or Mn, that is, a metal element that becomes a substitution dope, Al, Fe, Ga, Bi, Sn,
V, Cr, Co, Cu, Zn, Mg, Ti, Ge, Nb, Ta, Li, etc.
Preferred are Al, Fe, Ga, Cr, Co, Mg, and Ti, and particularly preferred is Al. In order to obtain a lithium-manganese composite oxide in which part of lithium or manganese has been replaced by another metal element, when reacting a lithium compound with a manganese compound in the presence of a boron compound in a liquid phase, these metal elements are used. The compound may be reacted. Depending on the selection of the two metal elements, when a lithium compound and a manganese compound are reacted in the presence of a boron compound in a liquid phase, a part of lithium and manganese are respectively reacted by reacting a compound containing the two metal elements. A lithium manganese composite oxide substituted by one different metal element can be obtained.

【0011】金属元素を含む化合物としては、これらの
金属の酸化物、水酸化物、有機酸塩、塩化物、硝酸塩、
硫酸塩等あるいはその水和物が挙げられる。具体的には
Al2O 3 、AlOOH 、Al(OH)3 、Al(CH3COO)3 、AlCl3 、Al
(NO3)3・9H2O 、Al2(SO4)3 等が挙げられ、好ましくはAl
2O3 、AlOOH 、Al(OH)3 である。リチウム化合物とマン
ガン化合物は、ホウ素化合物存在下で反応させる前に、
予め混合しておくのが好ましい。リチウム及び/又はマ
ンガンの一部が他の金属元素によって置換されたリチウ
ムマンガン複合酸化物を得る場合は、置換ドープとなる
金属元素を含む化合物もホウ素化合物の存在下で反応さ
せる前にリチウム化合物、マンガン化合物と共に予め混
合しておくのが好ましい。反応温度において溶融しない
化合物の場合は、反応性を上げる目的で粉砕等の手段に
より、粒子径を10μm以下としておくのが好ましい。
粉砕、混合の順序には特に制限が無く、任意の順序で粉
砕、混合することができる。粉砕、混合の方法は乾式で
も湿式でも良く、例えばボールミル、振動ミル、ビーズ
ミル等の装置を使用する方法を挙げられる。湿式で混合
した場合には、混合物を乾燥する際に、噴霧乾燥等の手
段により例えば1〜100μmに造粒しても良い。
As the compounds containing a metal element, these compounds
Metal oxides, hydroxides, organic acid salts, chlorides, nitrates,
Sulfates and the like and hydrates thereof are exemplified. In particular
AlTwoO Three, AlOOH, Al (OH)Three, Al (CHThreeCOO)Three, AlClThree, Al
(NOThree)Three・ 9HTwoO, AlTwo(SOFour)ThreeAnd the like, preferably Al
TwoOThree, AlOOH, Al (OH)ThreeIt is. Lithium compound and man
Before reacting in the presence of a boron compound,
It is preferable to mix them in advance. Lithium and / or lithium
Lithium in which part of the metal has been replaced by another metal element
When obtaining manganese composite oxide, it becomes substitution dope
Compounds containing metal elements also react in the presence of boron compounds.
Before mixing with lithium and manganese compounds.
It is preferable to combine them. Does not melt at reaction temperature
In the case of compounds, use pulverization or other means to increase reactivity
More preferably, the particle diameter is set to 10 μm or less.
There are no particular restrictions on the order of grinding and mixing, and
Can be crushed and mixed. Grinding and mixing methods are dry
Or wet type, such as ball mill, vibratory mill, beads
Examples include a method using a device such as a mill. Wet mixing
If the mixture has been dried, remove the
Granulation may be performed, for example, to 1 to 100 μm by a step.

【0012】ホウ素化合物とマンガン化合物を液相状態
のホウ素化合物存在下で反応させる際の温度は、通常5
00℃以上好ましくは550℃以上であり、また通常1
000℃以下、中でも900℃以下が好ましい。温度が
低すぎると、結晶性の良いリチウムマンガン複合酸化物
を得るために長時間の反応時間を要し好ましくない。ま
た温度が高すぎると、目的とする層状、あるいはスピネ
ル型リチウムマンガン複合酸化物以外の相が生成する
か、あるいは欠陥が多いリチウムマンガン複合酸化物を
生成する結果となり、二次電池とした際に容量の低下あ
るいは充放電による結晶構造の崩壊による劣化を招き好
ましくない。また、常温から上記の反応温度まで昇温す
る際には、反応をより均一に行うために例えば毎分5℃
以下の温度で徐々に昇温するか、あるいは途中で一旦昇
温を停止し、一定温度での保持時間を入れのが好まし
い。
The temperature at which the boron compound and the manganese compound are reacted in the presence of the boron compound in the liquid phase is usually 5
00 ° C or higher, preferably 550 ° C or higher.
The temperature is preferably 000 ° C or less, particularly 900 ° C or less. If the temperature is too low, a long reaction time is required to obtain a lithium-manganese composite oxide having good crystallinity, which is not preferable. On the other hand, if the temperature is too high, a phase other than the desired layered or spinel-type lithium manganese composite oxide is generated, or a lithium manganese composite oxide having many defects is generated. It is not preferable because the capacity is reduced or the crystal structure is deteriorated due to charge and discharge. When the temperature is raised from room temperature to the above reaction temperature, for example, 5 ° C./min.
It is preferable that the temperature is gradually increased at the following temperature or that the temperature is temporarily stopped halfway and a holding time at a constant temperature is provided.

【0013】反応温度における反応時間は通常1時間以
上100時間以下である。反応時間が短すぎると結晶性
の良いリチウムマンガン複合酸化物が得られず、長すぎ
る反応時間は実用的ではない。結晶欠陥が少ないリチウ
ムマンガン複合酸化物を得るためには、上記の反応後、
ゆっくりと室温まで冷却することが好ましく、例えば5
℃/min.以下の冷却速度で常温まで徐冷することが
好ましい。上記の反応は、層状リチウムマンガン複合酸
化物を製造する場合には真空中あるいは窒素やアルゴン
等の不活性雰囲気中で行うことが好ましく、スピネル型
リチウムマンガン複合酸化物を製造する際には大気中あ
るいは酸素中等の酸素含有雰囲気中で行うことが好まし
い。この反応に使用する加熱装置は、上記の温度、雰囲
気を達成できるものであれば特に制限はなく、例えば箱
形炉、管状炉、トンネル炉、ロータリーキルン等を使用
することができる。
The reaction time at the reaction temperature is usually from 1 hour to 100 hours. If the reaction time is too short, a lithium-manganese composite oxide having good crystallinity cannot be obtained, and an excessively long reaction time is not practical. In order to obtain a lithium manganese composite oxide having few crystal defects, after the above reaction,
It is preferable to slowly cool to room temperature.
° C / min. It is preferable to gradually cool to room temperature at the following cooling rate. The above reaction is preferably performed in a vacuum or in an inert atmosphere such as nitrogen or argon when producing a layered lithium manganese composite oxide, and in the air when producing a spinel type lithium manganese composite oxide. Alternatively, the treatment is preferably performed in an oxygen-containing atmosphere such as oxygen. The heating apparatus used for this reaction is not particularly limited as long as the above-mentioned temperature and atmosphere can be achieved, and for example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln and the like can be used.

【0014】上記の反応により製造したリチウムマンガ
ン酸化物は、粒子径0.1〜3μmの1次粒子が凝集し
た、粒子径1〜100μmの2次粒子からなり、かつ窒
素吸着による比表面積が0.1〜5m2 /gであること
好ましい。1次粒子の大きさは、反応温度、時間、ホウ
素化合物の量により制御することが可能である。反応時
間、時間、ホウ素化合物の量のいずれか1つ以上を増加
させることにより、1次粒子の粒子径は大きくなる。2
次粒子の粒子径は、反応前の粉砕または造粒、反応後の
粉砕、分級等により制御することが可能である。比表面
積は1次粒子の粒径および2次粒子の粒径により制御す
ることが可能であり、1次粒子の粒径及び/又は2次粒
子の粒径を大きくすることにより減少する。
The lithium manganese oxide produced by the above reaction is composed of secondary particles having a particle diameter of 1 to 100 μm in which primary particles having a particle diameter of 0.1 to 3 μm are aggregated, and having a specific surface area of 0 to 0 due to nitrogen adsorption. It is preferably from 1 to 5 m 2 / g. The size of the primary particles can be controlled by the reaction temperature, time, and amount of the boron compound. Increasing at least one of the reaction time, time, and the amount of the boron compound increases the particle size of the primary particles. 2
The particle size of the secondary particles can be controlled by pulverization or granulation before the reaction, pulverization after the reaction, classification, and the like. The specific surface area can be controlled by the particle size of the primary particles and the particle size of the secondary particles, and is reduced by increasing the particle size of the primary particles and / or the particle size of the secondary particles.

【0015】本発明の製造方法によって製造されたリチ
ウムマンガン複合酸化物を、置換金属元素を含む化合物
の水溶液、溶融塩あるいは蒸気中で反応させた後、必要
に応じて置換元素をリチウムマンガン複合酸化物粒子内
に拡散させるため、再度加熱処理を行うことによりLi、
Mnの一部を置換ドープとなる金属元素で置換してもよ
い。本発明の製造方法により得られた無置換のリチウム
マンガン複合酸化物だけでなく、Li又はMnの一部が置換
されたリチウムマンガン複合酸化物の、置換されていな
いLi又はMnを上記の方法で更に置換してもよい。この様
にして得られたリチウムマンガン酸化物を正極活物質と
して、二次電池を作製することができる。本発明の2次
電池の一例としては、正極、負極、電解液、セパレータ
ーからなる2次電池が挙げられ、正極と負極との間には
電解質が存在し、かつセパレーターが正極と負極が接触
しないようにそれらの間に配置される。
After the lithium manganese composite oxide produced by the production method of the present invention is reacted in an aqueous solution, molten salt or vapor of a compound containing a substitution metal element, the substitution element is optionally subjected to lithium manganese composite oxidation. Heat treatment is performed again to diffuse Li
A part of Mn may be replaced by a metal element to be a substitution dope. Not only the unsubstituted lithium-manganese composite oxide obtained by the production method of the present invention, but also a lithium-manganese composite oxide in which Li or Mn is partially substituted, unsubstituted Li or Mn is obtained by the above-described method. Further substitution may be made. Using the thus obtained lithium manganese oxide as a positive electrode active material, a secondary battery can be manufactured. As an example of the secondary battery of the present invention, a secondary battery including a positive electrode, a negative electrode, an electrolytic solution, and a separator may be mentioned. An electrolyte exists between the positive electrode and the negative electrode, and the separator does not contact the positive electrode and the negative electrode. So be placed between them.

【0016】正極としては、本発明で得られたリチウム
マンガン酸化物(正極活物質)、導電材、結着剤、並び
にこれらを均一に分散させる為の溶媒を一定量で混合し
た後、集電体上に塗布する。ここで用いられる導電材と
しては、天然黒鉛、人造黒鉛、アセチレンブラック等
が、結着剤としてはポリフッ化ビニリデン、ポリテトラ
フルオロエチレン、ポリ酢酸ビニル、ポリメチルメタク
リレート、ポリエチレン、ニトロセルロース等が、分散
用の溶媒としてはN−メチルピロリドン、テトラヒドロ
フラン、ジメチルホルムアミド等が挙げられるが、これ
らに限定されるものではない。集電体の材質としてはア
ルミニウム、ステンレス等が挙げられる。集電体上に塗
布後、乾燥し、通常、ローラープレス、その他の手法に
より圧密する。一方、負極としては、カーボン系材料
(天然黒鉛、熱分解炭素等)をCu等の集電体上に塗布
したもの、或いはリチウム金属箔、リチウム−アルミニ
ウム合金等が使用できる。
As the positive electrode, the lithium manganese oxide (positive electrode active material) obtained in the present invention, a conductive material, a binder, and a solvent for uniformly dispersing the same are mixed in a fixed amount, and then the current is collected. Apply on the body. As the conductive material used here, natural graphite, artificial graphite, acetylene black, etc., as the binder polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc., dispersed Solvents include N-methylpyrrolidone, tetrahydrofuran, dimethylformamide and the like, but are not limited thereto. Examples of the material of the current collector include aluminum and stainless steel. After being coated on the current collector, it is dried and usually consolidated by a roller press or other methods. On the other hand, as the negative electrode, a material obtained by applying a carbon-based material (natural graphite, pyrolytic carbon, or the like) on a current collector such as Cu, a lithium metal foil, a lithium-aluminum alloy, or the like can be used.

【0017】本発明で使用する電解液は非水電解液であ
り、具体的には、電解塩としてはLiClO4、LiAsF6、LiPF
6 、LiBF4 、LiBr、LiCF3SO3等が挙げられ、電解液を構
成する溶媒としては、テトラヒドロフラン、1,4-ジオキ
サン、ジメチルホルムアミド、アセトニトリル、ベンゾ
ニトリル、ジメチルカーボネート、ジエチルカーボネー
ト、メチルエチルカーボネート、エチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート等
が挙げられるが、これらに限定されるものではない。ま
た、これら溶媒は単独で用いても良いし、2種類以上を
混合して用いても良い。本発明で用いられるセパレータ
ーとしては、テフロン、ポリエチレン、ポリプロピレ
ン、ポリエステル等の高分子、又はガラス繊維等の不織
布フィルター、或いはガラス繊維と高分子繊維の複合不
織布フィルター等を挙げられる。この様にして、本発明
で得られた正極活物質を用いて二次電池を作製し、電池
性能を評価したところ、単位重量当たりの充放電容量が
大きく、高温での充放電サイクル後の容量維持率が高い
二次電池が得られる事が判明した。以下、本発明を実施
例を用いて、更に詳細に説明する。
The electrolytic solution used in the present invention is a non-aqueous electrolytic solution. Specifically, as the electrolytic salt, LiClO 4 , LiAsF 6 , LiPF
6 , LiBF 4 , LiBr, LiCF 3 SO 3 and the like.Examples of the solvent constituting the electrolyte include tetrahydrofuran, 1,4-dioxane, dimethylformamide, acetonitrile, benzonitrile, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate. , Ethylene carbonate, propylene carbonate, butylene carbonate, and the like, but are not limited thereto. These solvents may be used alone or as a mixture of two or more. Examples of the separator used in the present invention include a polymer such as Teflon, polyethylene, polypropylene, and polyester, a nonwoven fabric filter such as glass fiber, and a composite nonwoven fabric filter of glass fiber and polymer fiber. In this way, a secondary battery was prepared using the positive electrode active material obtained in the present invention, and when the battery performance was evaluated, the charge / discharge capacity per unit weight was large, and the capacity after a charge / discharge cycle at a high temperature. It has been found that a secondary battery having a high maintenance rate can be obtained. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0018】[0018]

【実施例】実施例1 LiOH・ H2O とMn2O3 及びAlOOH をLi:Mn:Alのモル比が
1.04:1.88:0.12となるように秤量した。
この原料粉100重量部に対して、純水180重量部と
ポリカルボン酸アンモニウム系分散剤2重量部を加えた
後、ビーズミルにて混合、粉砕し、固形分の平均粒径が
0.5μmのスラリーとした。このスラリーの一部を分
取し、H3BO3 をB/Mnがモル比で0.0106となるよう
に添加し、溶解させた。このスラリーを噴霧乾燥し、箱
形炉を使用し、大気中にて750℃で5時間焼成し、平
均粒径(2次粒子の粒子径)が15μmのほぼ球状に造
粒された粒子を得た。
EXAMPLE 1 LiOH.H 2 O, Mn 2 O 3 and AlOOH were weighed such that the molar ratio of Li: Mn: Al was 1.04: 1.88: 0.12.
To 100 parts by weight of the raw material powder, 180 parts by weight of pure water and 2 parts by weight of an ammonium polycarboxylate-based dispersant were added, and then mixed and pulverized by a bead mill to obtain a solid matter having an average particle size of 0.5 μm. A slurry was obtained. A part of this slurry was fractionated, and H 3 BO 3 was added and dissolved so that the molar ratio of B / Mn was 0.0106. This slurry was spray-dried, and calcined in the air at 750 ° C. for 5 hours in a box furnace to obtain substantially spherical particles having an average particle diameter (secondary particle diameter) of 15 μm. Was.

【0019】この粒子の粉末X線回折パターンを測定し
た結果、スピネル構造のリチウムマンガン複合酸化物で
あることが確認された。走査型電子顕微鏡による観察の
結果、1次粒子の粒子径は約0.6μmであった。ま
た、窒素吸着による比表面積測定の結果、比表面積は
0.9m2 /gであった。この様にして得られたリチウ
ムマンガン複合材酸化物75重量部、導電材としてアセ
チレンブラックを20重量部、結着剤としてポリテトラ
フルオロエチレンを5重量部を混合、成形し、正極ペレ
ットを作製した。この正極ペレット使用してコイン型電
池を作製した。負極材にリチウム金属を、電解液には、
エチレンカーボネートとジエチルカーボネートの3:7
混合溶媒に、1mol/l の六フッ化リン酸リチウム(LiPF
6 )を溶解した溶液を使用した。この電池を用いて、2
5℃にて1mA/cm2の電流密度で充放電した際の正極材単
位重量当たりの放電容量を測定したところ、115mAh/
g であった。また、負極材として炭素を使用した以外は
上記と同様にしてコイン型電池を作製し、50℃にて1
mA/cm2の電流密度で充放電した際の100サイクル後の
容量維持率は1サイクル目に対して72%であった。
As a result of measuring the powder X-ray diffraction pattern of the particles, it was confirmed that the particles were a lithium manganese composite oxide having a spinel structure. As a result of observation with a scanning electron microscope, the particle diameter of the primary particles was about 0.6 μm. Further, as a result of measuring the specific surface area by nitrogen adsorption, the specific surface area was 0.9 m 2 / g. 75 parts by weight of the thus obtained lithium manganese composite oxide, 20 parts by weight of acetylene black as a conductive material, and 5 parts by weight of polytetrafluoroethylene as a binder were mixed and molded to prepare a positive electrode pellet. . Using this positive electrode pellet, a coin-type battery was produced. For the negative electrode material, lithium metal, and for the electrolyte,
3: 7 of ethylene carbonate and diethyl carbonate
1 mol / l lithium hexafluorophosphate (LiPF
6 ) was used. Using this battery,
The discharge capacity per unit weight of the positive electrode material when charged and discharged at a current density of 1 mA / cm 2 at 5 ° C. was 115 mAh /
g. A coin-shaped battery was prepared in the same manner as above except that carbon was used as the negative electrode material.
The capacity retention after 100 cycles when charging / discharging at a current density of mA / cm 2 was 72% with respect to the first cycle.

【0020】比較例1 実施例1で作製したスラリーにH3BO3 を添加せずに噴霧
乾燥、大気中にて900℃で5時間焼成し、平均粒径
(2次粒子の粒子径)が15μmのほぼ球状に造粒され
た粒子を得た。この粒子の粉末X線回折パターンを測定
した結果、スピネル構造のリチウムマンガン複合酸化物
であることが確認された。走査型電子顕微鏡観察による
1次粒子の粒子径は約0.4μmであった。窒素吸着に
よる比表面積は1.9m2 /gであった。
Comparative Example 1 The slurry prepared in Example 1 was spray-dried without adding H 3 BO 3, and calcined at 900 ° C. for 5 hours in the air to obtain an average particle size (particle size of secondary particles). 15 μm, roughly spherical granulated particles were obtained. As a result of measuring the powder X-ray diffraction pattern of the particles, it was confirmed that the particles were a lithium manganese composite oxide having a spinel structure. The particle diameter of the primary particles determined by observation with a scanning electron microscope was about 0.4 μm. The specific surface area by nitrogen adsorption was 1.9 m 2 / g.

【0021】実施例1と同様に正極ペレットを作製し、
負極材にリチウム金属を使用し、コイン型電池を作製、
25℃にて1mA/cm2の電流密度で充放電した際の正極材
単位重量当たりの放電容量を測定したところ、113mA
h/g であった。負極材として炭素を使用した以外は上記
と同様にしてコイン型電池を作製し、50℃にて1mA/c
m2の電流密度で充放電した際の100サイクル後の容量
維持率は1サイクル目に対して70%であった。
A positive electrode pellet was prepared in the same manner as in Example 1,
Using lithium metal for the negative electrode material, make a coin-type battery,
When the discharge capacity per unit weight of the positive electrode material was measured at 25 ° C. at a current density of 1 mA / cm 2 , the discharge capacity was 113 mA.
h / g. A coin-type battery was prepared in the same manner as above except that carbon was used as the negative electrode material, and 1 mA / c at 50 ° C.
The capacity retention after 100 cycles when charging and discharging at a current density of m 2 was 70% with respect to the first cycle.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明により、(1)高温での長時間の
反応を要せず、(2)低温で短時間の反応でも正極活性
物質としての性能(放電容量、高温下での放電容量維持
率)が低下することなく、(3)製造しようとするリチ
ウムマンガン複合酸化物に対して不活性溶融剤の添加量
が少量であり、またその結果として、正極活物質として
は機能しない多量の不活性溶融剤を焼成後に水洗により
除去する必要がなく、さらにろ過、乾燥もないので製造
コストの点で好ましい、リチウムマンガン複合酸化物の
製造方法が提供される。
According to the present invention, (1) the performance as a positive electrode active material (discharge capacity, discharge capacity at high temperature) can be achieved even at a low temperature for a short time without requiring a long reaction at a high temperature. (3) The addition amount of the inert flux is small with respect to the lithium manganese composite oxide to be produced, and as a result, a large amount that does not function as a positive electrode active material is obtained. There is provided a method for producing a lithium manganese composite oxide, which is preferable in terms of production cost because it is not necessary to remove the inert flux by rinsing with water after calcination, and furthermore, there is no filtration or drying.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB02 AB05 AC06 AE05 5H003 AA02 AA04 BA01 BB05 BC01 BD01 BD03 5H014 AA01 BB01 EE10 HH01 HH08 5H029 AJ03 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 CJ02 DJ16 HJ01 HJ14  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4G048 AA04 AB02 AB05 AC06 AE05 5H003 AA02 AA04 BA01 BB05 BC01 BD01 BD03 5H014 AA01 BB01 EE10 HH01 HH08 5H029 AJ03 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 CJ02 DJ16 HJ

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液相状態のホウ素化合物存在下で、リチ
ウム化合物とマンガン化合物を反応させることを特徴と
するリチウムマンガン複合酸化物の製造方法。
1. A method for producing a lithium-manganese composite oxide, comprising reacting a lithium compound with a manganese compound in the presence of a boron compound in a liquid phase.
【請求項2】 上記反応を、置換ドープとなる金属元素
を含む化合物の存在下で行うことを特徴とする請求項1
記載の製造方法。
2. The method according to claim 1, wherein the reaction is performed in the presence of a compound containing a metal element to be a substitution dope.
The manufacturing method as described.
【請求項3】 置換ドープとなる金属元素がアルミニウ
ム化合物であることを特徴とする請求項2に記載の製造
方法。
3. The method according to claim 2, wherein the metal element serving as the substitution dope is an aluminum compound.
【請求項4】 液相状態のホウ素化合物の量が、マンガ
ン化合物の量に対してB/Mnのモル比が0.001〜
0.05となる量であることを特徴とする請求項1〜3
のいずれかに記載の製造方法。
4. The amount of the boron compound in the liquid phase is preferably in the range of 0.001 to 0.1 mol / mol of the manganese compound.
The amount is 0.05.
The method according to any one of the above.
【請求項5】 上記反応を500〜900℃で行うこと
を特徴とする請求項1〜4のいずれかに記載の製造方
法。
5. The method according to claim 1, wherein the reaction is performed at 500 to 900 ° C.
【請求項6】 請求項1〜5のいずれかに記載の製造方
法により製造されたリチウムマンガン複合酸化物を正極
活物質として用いたことを特徴とする二次電池。
6. A secondary battery using the lithium manganese composite oxide produced by the production method according to claim 1 as a positive electrode active material.
JP11224778A 1999-08-09 1999-08-09 Production of lithium-manganese multiple oxide and secondary battery using the same Pending JP2001048545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11224778A JP2001048545A (en) 1999-08-09 1999-08-09 Production of lithium-manganese multiple oxide and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11224778A JP2001048545A (en) 1999-08-09 1999-08-09 Production of lithium-manganese multiple oxide and secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2001048545A true JP2001048545A (en) 2001-02-20

Family

ID=16819074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11224778A Pending JP2001048545A (en) 1999-08-09 1999-08-09 Production of lithium-manganese multiple oxide and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2001048545A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048547A (en) * 1999-08-17 2001-02-20 Nikki Chemcal Co Ltd Spinel-type lithium-manganese multiple oxide, its production and use
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
JP2002279984A (en) * 2001-03-15 2002-09-27 Hitachi Metals Ltd Method of manufacturing positive electrode active material for non-aqueous lithium secondary battery, the positive electrode active material, and the non- aqueous lithium secondary battery using the positive electrode active material
JP2004186149A (en) * 2002-11-22 2004-07-02 Mitsui Mining & Smelting Co Ltd Positive electrode material for li ion secondary battery
JP2004241242A (en) * 2003-02-05 2004-08-26 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP2005071680A (en) * 2003-08-21 2005-03-17 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2009069521A1 (en) 2007-11-26 2009-06-04 Namics Corporation Lithium ion rechargeable battery and process for rpoducing the rechargeable battery
DE102008029804A1 (en) 2008-06-24 2010-07-08 Süd-Chemie AG Mixed oxide containing a lithium manganese spinel and process for its preparation
WO2010104137A1 (en) * 2009-03-09 2010-09-16 独立行政法人産業技術総合研究所 Process for producing lithium borate compound
JP2011105565A (en) * 2009-11-19 2011-06-02 Tosoh Corp Lithium manganate compound replaced by different metal and application thereof
WO2012060084A1 (en) * 2010-11-05 2012-05-10 株式会社豊田自動織機 Lithium borate compound and method for producing same
JP2012096949A (en) * 2010-10-29 2012-05-24 Jgc Catalysts & Chemicals Ltd Production method and application of spinel-type lithium-manganese compound oxide particle
JP2012116746A (en) * 2010-11-10 2012-06-21 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide
JP2013129556A (en) * 2011-12-21 2013-07-04 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide
US8758455B2 (en) 2009-03-23 2014-06-24 Sumitomo Chemical Company, Limited Process for producing lithium composite metal oxide having layered structure
WO2016143123A1 (en) 2015-03-12 2016-09-15 株式会社 東芝 Nonaqueous electrolyte battery and battery pack

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048547A (en) * 1999-08-17 2001-02-20 Nikki Chemcal Co Ltd Spinel-type lithium-manganese multiple oxide, its production and use
JP2002279984A (en) * 2001-03-15 2002-09-27 Hitachi Metals Ltd Method of manufacturing positive electrode active material for non-aqueous lithium secondary battery, the positive electrode active material, and the non- aqueous lithium secondary battery using the positive electrode active material
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
JP4676691B2 (en) * 2002-11-22 2011-04-27 三井金属鉱業株式会社 Positive electrode material for Li-ion secondary battery
JP2004186149A (en) * 2002-11-22 2004-07-02 Mitsui Mining & Smelting Co Ltd Positive electrode material for li ion secondary battery
JP2004241242A (en) * 2003-02-05 2004-08-26 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP2005071680A (en) * 2003-08-21 2005-03-17 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2009069521A1 (en) 2007-11-26 2009-06-04 Namics Corporation Lithium ion rechargeable battery and process for rpoducing the rechargeable battery
JP2011525470A (en) * 2008-06-24 2011-09-22 ジュート−ヒェミー アクチェンゲゼルシャフト Composite oxide containing spinel type lithium manganate and method for preparing the same
JP2014111533A (en) * 2008-06-24 2014-06-19 Sued-Chemie Ip Gmbh & Co Kg Mixed oxide containing lithium manganese spinel and process for preparation thereof
US10483538B2 (en) 2008-06-24 2019-11-19 Johnson Matthey Public Limited Company Mixed oxide containing a lithium manganese spinel and process for its preparation
DE102008029804A1 (en) 2008-06-24 2010-07-08 Süd-Chemie AG Mixed oxide containing a lithium manganese spinel and process for its preparation
US9562303B2 (en) 2008-06-24 2017-02-07 Johnson Matthey Plc Mixed oxide containing a lithium manganese spinel and process for its preparation
US9281522B2 (en) 2008-06-24 2016-03-08 Johnson Matthey Plc Mixed oxide containing a lithium manganese spinel and process for its preparation
WO2010104137A1 (en) * 2009-03-09 2010-09-16 独立行政法人産業技術総合研究所 Process for producing lithium borate compound
JP2010208876A (en) * 2009-03-09 2010-09-24 National Institute Of Advanced Industrial Science & Technology Method for producing lithium borate-based compound
US8758455B2 (en) 2009-03-23 2014-06-24 Sumitomo Chemical Company, Limited Process for producing lithium composite metal oxide having layered structure
JP2011105565A (en) * 2009-11-19 2011-06-02 Tosoh Corp Lithium manganate compound replaced by different metal and application thereof
JP2012096949A (en) * 2010-10-29 2012-05-24 Jgc Catalysts & Chemicals Ltd Production method and application of spinel-type lithium-manganese compound oxide particle
WO2012060084A1 (en) * 2010-11-05 2012-05-10 株式会社豊田自動織機 Lithium borate compound and method for producing same
JP2012116746A (en) * 2010-11-10 2012-06-21 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide
JP2013129556A (en) * 2011-12-21 2013-07-04 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide
WO2016143123A1 (en) 2015-03-12 2016-09-15 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
US9979020B2 (en) 2015-03-12 2018-05-22 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack

Similar Documents

Publication Publication Date Title
JP5418664B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5803539B2 (en) Method for producing lithium-containing composite oxide powder
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
KR101487468B1 (en) Spinel type lithium-manganese-nickel-containing composite oxide
JP5552685B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
KR20140138780A (en) Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery
JP2001048545A (en) Production of lithium-manganese multiple oxide and secondary battery using the same
JPWO2012176471A1 (en) Lithium-containing composite oxide powder and method for producing the same
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP2000340230A (en) Positive electrode active material and nonaqueous secondary battery
JP4655453B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP5733571B2 (en) Method for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
JP2001122628A (en) Lithium-manganese multi-component oxide particulate composition, method for manufacturing the same and secondary battery
JP4114314B2 (en) Lithium manganese composite oxide, positive electrode material for lithium secondary battery, positive electrode, lithium secondary battery, and method for producing lithium manganese composite oxide
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP5076258B2 (en) Element-substituted lithium manganese composite oxide particulate composition, its production method and its use in secondary batteries
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2013012336A (en) Secondary battery and charging method of the same
JP5447452B2 (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery using the positive electrode active material, and method for producing lithium manganese silver composite oxide
JPH10324521A (en) Lithium-manganese multiple oxide, its production and its use
JP2005038629A (en) Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, and lithium secondary battery using same
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same