WO2012060084A1 - Lithium borate compound and method for producing same - Google Patents

Lithium borate compound and method for producing same Download PDF

Info

Publication number
WO2012060084A1
WO2012060084A1 PCT/JP2011/006089 JP2011006089W WO2012060084A1 WO 2012060084 A1 WO2012060084 A1 WO 2012060084A1 JP 2011006089 W JP2011006089 W JP 2011006089W WO 2012060084 A1 WO2012060084 A1 WO 2012060084A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
molten salt
raw material
lithium borate
borate compound
Prior art date
Application number
PCT/JP2011/006089
Other languages
French (fr)
Japanese (ja)
Inventor
敏勝 小島
琢寛 幸
境 哲男
晶 小島
淳一 丹羽
一仁 川澄
Original Assignee
株式会社豊田自動織機
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 独立行政法人産業技術総合研究所 filed Critical 株式会社豊田自動織機
Publication of WO2012060084A1 publication Critical patent/WO2012060084A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates mainly to a method for producing a lithium borate compound useful as a positive electrode active material of a lithium ion secondary battery, and a lithium borate compound obtained by this method.
  • Lithium ion secondary batteries are small in size and high in energy density, and are widely used as power sources for portable electronic devices.
  • positive electrode active materials mainly layered compounds such as LiCoO 2 have been used.
  • these compounds have a disadvantage that oxygen is easily desorbed at around 150 ° C. in a fully charged state, which is likely to cause an oxidative exothermic reaction of the non-aqueous electrolyte.
  • an olivine phosphate compound LiMPO 4 (LiMnPO 4 , LiFePO 4 , LiCoPO 4 or the like) has been proposed as a positive electrode active material.
  • thermal stability is improved by using a divalent / multivalent redox reaction instead of a trivalent / multivalent redox reaction in which an oxide such as LiCoO 2 is used as a positive electrode active material.
  • an oxide such as LiCoO 2
  • the positive electrode material composed of a phosphate olivine compound has a theoretical capacity limited to about 170 mAh / g because the molecular weight of the phosphate polyanion is large.
  • LiCoPO 4 and LiNiPO 4 have a problem that the operating voltage is too high and there is no electrolyte that can withstand the charging voltage.
  • LiFeBO 3 (theoretical capacity 220 mAh / g)
  • LiMnBO 3 is a cathode material that is inexpensive, has a large amount of resources, has a low environmental impact, has a high theoretical charge-discharge capacity of lithium ions, and does not release oxygen at high temperatures.
  • Lithium borate materials such as (theoretical capacity 222 mAh / g) have attracted attention.
  • Lithium borate materials are materials that can be expected to improve energy density by using B, which is the lightest element among polyanion units, and the true density (3.46 g / cm 3 ) of borate materials is phosphorus. It is smaller than the true density (3.60 g / cm 3 ) of the acid olivine iron material, and weight reduction can also be expected.
  • Non-Patent Documents 1 to 3 As a synthesis method of a borate compound, a solid phase reaction method in which a raw material compound is reacted in a solid phase state is known (see Non-Patent Documents 1 to 3 below).
  • the solid phase reaction method it is necessary to react for a long time at a high temperature of 600 ° C. or more, and although it is possible to form a solid solution with the doping element, the crystal grains become as large as 10 ⁇ m or more and the diffusion of ions It leads to the problem of being slow.
  • the doping element which can not form a solid solution in the cooling process is precipitated to generate an impurity, which causes a problem that the resistance becomes high.
  • a borate compound of lithium deficiency or oxygen deficiency is formed, and there is also a problem that it is difficult to increase the capacity or to improve the cycle characteristics.
  • the lithium borate compound obtained by the method described in Patent Document 1 is a borate compound synthesized by a conventional method under conditions of relatively high temperature when used as a positive electrode material of a lithium ion secondary battery Cycle characteristics, capacity, etc. were improved. However, it was not evaluated near room temperature.
  • the present invention has been made in view of the above-mentioned current state of the prior art.
  • the main object of the present invention is to provide a lithium borate based material useful as a positive electrode material for lithium ion secondary batteries etc., a material having excellent performance with relatively improved cycle characteristics, capacity etc. in the vicinity of room temperature. It is to provide a method that can be manufactured by means.
  • lithium nitrate based lithium nitrate shows excellent battery performance even at room temperature when it is used as a positive electrode material by using nitrate instead of carbonate as molten salt. It has newly been found that compounds can be obtained.
  • the method for producing a lithium borate compound according to the present invention comprises at least one lithium selected from the group consisting of a lithium-containing molten salt raw material containing at least lithium nitrate, and pure iron, pure manganese and a compound containing iron and / or manganese.
  • the transition metal-containing raw material and boric acid are reacted in the molten salt of the lithium-containing molten salt raw material of the lithium-containing molten salt raw material and not less than the melting point of 900 ° C. in a mixed gas atmosphere containing carbon dioxide and a reducing gas It is characterized by
  • the reason why the lithium borate compound obtained by the production method of the present invention exhibits excellent battery performance even at room temperature is presumed to be as follows.
  • the lithium borate compound obtained by the production method of the present invention is estimated to have improved battery characteristics as a result of the reduction in the generation of impurities as compared with the case where a molten salt of carbonate is used.
  • an oxide ion (O 2 ⁇ ) exists together with lithium, boron, a transition metal element, etc. as a dissolved species in the molten salt. was found to be important.
  • Lithium nitrate used as the molten salt has a low melting point and a low decomposition temperature (the melting point of lithium nitrate is 261 ° C., the decomposition temperature is about 550 ° C., the melting point of lithium carbonate is 735 ° C., the decomposition temperature is about 950 ° C.). It is considered that O 2 ⁇ is easily released into the molten salt. In such a molten salt containing lithium nitrate, the reaction activity is high, and the reaction proceeds rapidly even at low temperatures, so that impurities are hardly generated.
  • lithium nitrate and lithium carbonate are compared at the same temperature, lithium nitrate has a lower viscosity of the molten salt. Therefore, it is also conceivable that in the molten salt of lithium nitrate, the diffusion rate, and hence the reaction rate, is fast, and it is difficult to form impurities.
  • the impurities whose formation is suppressed include, for example, LiBO 2 , Li 5 Fe 5 O 8 , Fe 3 (BO 3 ) O 2 and Li 2 Fe 3 O 4 , which are difficult to suppress formation. Besides, etc., unreacted substances such as MnO can be mentioned. In addition, unreacted material is suppressed by adjusting the preparation amount of a raw material.
  • lithium borate compounds can be stably synthesized at low temperature even if used alone. As a result, grain growth is suppressed during the synthesis reaction to form a fine lithium borate compound.
  • the molten salt contains a nitrate containing Li, a lithium borate compound containing a large amount of Li is easily formed.
  • Such lithium borate compounds serve as positive electrode materials for lithium ion batteries having good cycle characteristics and high capacity.
  • the lithium borate compound of the present invention is obtained by the above-mentioned production method of the present invention, Composition formula: Li 1 + a ⁇ b A b M 1 ⁇ x M ′ x BO 3 + c (Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, and M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr, each subscript is as follows: 0 ⁇ x ⁇ 0.
  • a lithium ion having high capacity and excellent cycle characteristics even at around room temperature by a relatively simple means using a molten salt method using lithium nitrate
  • the lithium borate-based compound of the present invention useful as a positive electrode material of a secondary battery can be obtained.
  • Figure 2 shows a scanning electron microscope (SEM) picture of the product of Example 1. It is a graph which shows the charge / discharge characteristic of the lithium ion secondary battery which used the product of Example 1 as a positive electrode active material, Comprising: The test result when making it charge / discharge at 30 degreeC is shown. It is a graph which shows the charge / discharge characteristic of the lithium ion secondary battery which used the product of Example 1 as a positive electrode active material, Comprising: The test result when making it charge / discharge at 60 degreeC is shown. It is a graph which shows the charge / discharge characteristic of the lithium ion secondary battery which used the product of the reference example 1 as a positive electrode active material, Comprising: The test result when making it charge / discharge at 30 degreeC is shown.
  • SEM scanning electron microscope
  • the numerical range “m to n” described in the present specification includes the lower limit m and the upper limit n in the range.
  • the numerical range may be configured by arbitrarily combining the numerical values described in the present specification.
  • the method for producing a lithium borate compound of the present invention comprises a lithium-containing molten salt raw material containing at least lithium nitrate, a transition metal-containing raw material containing at least one member selected from the group consisting of iron, manganese, iron compounds and manganese compounds, An acid is reacted in the molten salt of the lithium-containing molten salt raw material.
  • the raw material to be used is demonstrated in order.
  • the lithium-containing molten salt raw material plays a role as a source of lithium (Li) together with the role of dispersing other raw materials as a flux in the production method of the present invention.
  • the lithium-containing molten salt raw material may use only lithium nitrate, but may be used in combination with other nitrates. Specifically, it is at least one alkali metal nitrate selected from the group consisting of potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), rubidium nitrate (RbNO 3 ) and cesium nitrate (CsNO 3 ).
  • the melting point of the lithium-containing molten salt raw material is lowered by mixing and using one or more of these alkali metal nitrates with lithium nitrate, so that a stable lithium borate compound can be synthesized even at a low temperature. That is, although lithium nitrate melts at 270 ° C. or higher, a melting temperature lower than 270 ° C. can be achieved by using a mixed molten salt with other alkali metal nitrates. As a result, even if the synthesis temperature is low, the viscosity of the molten salt is low, the formation of impurities is suppressed, and it is suitable for the synthesis of fine lithium borate compounds.
  • the use of lithium nitrate alone as the lithium-containing molten salt raw material provides the same effect as the mixed molten salt.
  • the ratio of lithium nitrate in the lithium-containing molten salt raw material is not particularly limited, but preferably 60 to 100 mol%, more preferably 80 to 100 mol%, based on 100 mol% of the entire lithium-containing molten salt raw material.
  • the lithium-containing molten salt raw material may contain a lithium salt other than lithium nitrate as a lithium source at such a rate that the melting point of the molten salt is not greatly increased.
  • a lithium salt other than lithium nitrate as a lithium source at such a rate that the melting point of the molten salt is not greatly increased.
  • lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH etc.), lithium metaborate (LiBO 2 etc.), etc. are reacted even if one or more of these are contained in the lithium-containing molten salt raw material It is desirable because only oxide ions (O 2 ⁇ ) and borate ions (BO 3 ⁇ ) are generated.
  • the transition metal-containing raw material is a source of mainly iron (Fe) and / or manganese (Mn), and includes at least one selected from the group consisting of pure iron, pure manganese and a compound containing iron and / or manganese.
  • compounds containing iron and / or manganese include complex compounds containing iron compounds, manganese compounds, iron and / or manganese and optionally other metal elements. Since both Fe and Mn are present in the lithium borate compound, which is the target product of the production method of the present invention, in the case of being divalent, they are stable, so the transition metal-containing raw material is Fe and / or divalent oxidation number. Or Mn may be included.
  • transition metal containing raw material pure iron (0 value), pure manganese (0 value), a bivalent iron compound, a bivalent manganese compound, etc. are mentioned.
  • divalent compounds include oxalate such as iron oxalate and manganese oxalate. One of these may be used alone or in combination of two or more.
  • the transition metal element-containing raw material used in the present invention essentially contains iron and / or manganese, but may further contain other metal elements as required.
  • As another metal element at least one selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr can be exemplified. These metal elements may be in a metal state such as pure magnesium, or a compound containing a metal element having a valence of up to two, such as sulfates, carbonates, hydroxides, etc. It is also good.
  • the transition metal element-containing raw material may contain only one of the metal elements listed above, or may contain two or more metal elements simultaneously.
  • the transition metal element-containing raw material can be used alone or in combination of two or more compounds.
  • the transition metal element-containing raw material specifically requires a raw material containing iron and / or manganese, and if necessary, cobalt oxide, magnesium oxide, calcium carbonate, calcium oxide, aluminum oxide, nickel oxide, oxide
  • cobalt oxide magnesium oxide, calcium carbonate, calcium oxide, aluminum oxide, nickel oxide, oxide
  • niobium, lithium titanate, chromium (III) oxide, copper (II) acetate, zinc oxide, zirconium oxide, vanadium carbide, lithium molybdate and lithium tungstate may be contained.
  • the content of at least one transition metal element selected from the group consisting of iron and manganese is 50 mol% or more, assuming that the total amount of metal elements contained in the transition metal element-containing raw material is 100 mol%. It is necessary to be there. That is, the amount of at least one metal element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr is the total amount of metal elements contained in the transition metal element-containing raw material Can be made 0 to 50 mol%, and further 10 to 30 mol%, where 100 mol% is
  • Boric acid is a source of boron (B).
  • B boron
  • the molar ratio of the metal element to boron is preferably 0.9 to 1.2, more preferably 0.95 to 1.1.
  • the transition metal-containing raw material and the boric acid may be used in a ratio uniformly dispersed in the molten salt of the lithium-containing molten salt raw material.
  • the total amount of the transition metal-containing raw material and the boric acid is preferably in the range of 50 to 100 parts by mass, more preferably 80 to 95 parts by mass, with respect to 100 parts by mass of the total lithium-containing molten salt raw material. More preferably, the amount is in the range of 90 to 95 parts by mass.
  • a specific reaction method is not particularly limited, usually, the above-described lithium-containing molten salt raw material, transition metal-containing raw material and boric acid are weighed, uniformly mixed using a ball mill or the like, and then heated. The lithium-containing molten salt raw material may be melted. Thus, in the molten salt of the lithium-containing molten salt raw material, the reaction of the lithium-containing molten salt raw material, the transition metal-containing raw material and the boric acid proceeds to obtain the target lithium borate compound.
  • the above reaction is carried out in a molten salt of a lithium-containing molten salt raw material which is higher than the melting point of the lithium-containing molten salt raw material and not higher than 900 ° C. in a mixed gas atmosphere containing carbon dioxide and a reducing gas.
  • the temperature of the molten salt corresponds to the reaction temperature, and is not less than the melting point of the lithium-containing molten salt raw material and 900 ° C. or less.
  • the reaction temperature exceeds 900 ° C., Li evaporates to form a lithium deficient lithium borate compound.
  • the reaction temperature is less than 200 ° C., O 2 ⁇ is hardly released into the molten salt, and it takes a long time to synthesize the lithium borate compound, which is not practical.
  • desirable reaction temperatures are 300-700 ° C., 500-700 ° C. and even 600-700 ° C.
  • reaction time may be set to 1 to 20 hours and further 5 to 13 hours.
  • the reaction described above is performed under a mixed gas atmosphere containing carbon dioxide and a reducing gas in order to cause a metal element such as Fe contained in the transition metal-containing raw material to stably exist in the molten salt as divalent ions during the reaction. Do. Under this atmosphere, it is possible to stably maintain the metal element in a divalent state even if the oxidation number before the reaction is a divalent or less metal.
  • the ratio of carbon dioxide to reducing gas is not particularly limited, but when a large amount of reducing gas is used, carbon dioxide for controlling the oxidizing atmosphere is reduced, so reduction of lithium nitrate is promoted to accelerate the reaction rate.
  • the reducing gas for example, hydrogen, carbon monoxide and the like can be used, and hydrogen is particularly preferable.
  • the pressure of the mixed gas of carbon dioxide and reducing gas is not particularly limited, and may be atmospheric pressure in general, but may be under pressure or under pressure.
  • the reaction product is cooled and the solidified lithium-containing molten salt is removed to obtain the target lithium borate compound.
  • the cooling rate is not particularly limited, it is preferable to quench from the reaction temperature to room temperature (eg, 50 to 200 ° C./min at the cooling rate). By quenching, a finer powdery product is obtained.
  • the lithium-containing molten salt may be dissolved and removed by washing the product using a solvent capable of dissolving the cooled and solidified lithium-containing molten salt.
  • a solvent capable of dissolving the cooled and solidified lithium-containing molten salt for example, water may be used as the solvent, but in order to prevent oxidation of the transition metal contained in the lithium borate compound, it is preferable to use non-aqueous solvents such as alcohol and acetone. In particular, it is preferable to use acetic anhydride and acetic acid in a mass ratio of 2: 1 to 1: 1.
  • This mixed solvent is excellent in dissolving and removing the lithium-containing molten salt, and when acetic acid reacts with the lithium-containing molten salt to form water, acetic anhydride takes in water to form acetic acid. Thus, the separation of water can be suppressed.
  • acetic anhydride and acetic acid first, acetic anhydride is mixed with a product, and after grinding using a mortar etc. and pulverizing particles, acetic acid is added in the state to which acetic anhydride is made to adapt to particles. Is preferred.
  • the water formed by the reaction of acetic acid and the lithium-containing molten salt can be quickly reacted with acetic anhydride to reduce the chance of contact between the product and water, so the oxidation and decomposition of the target substance are effective. Can be suppressed.
  • the lithium borate compound obtained by the method described above is Composition formula: Li 1 + a ⁇ b A b M 1 ⁇ x M ′ x BO 3 + c (Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, and M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr, each subscript is as follows: 0 ⁇ x ⁇ 0. 5, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.3, and a> b).
  • the lithium borate compound obtained by the manufacturing method of the present invention exhibits excellent cycle characteristics when used as a positive electrode active material of a lithium secondary battery. Specifically, when metal lithium is used for the negative electrode, and the initial constant voltage charging is performed for 10 hours at 4.5 V at 0.1 C at a test temperature of 30 ° C., the charge and discharge test is performed at 4.5 to 1.5 V The discharge capacity after 50 cycles of charge and discharge is 90% or more of the initial discharge capacity. More preferable ranges of a, b and c in the above composition formula are 0.01 ⁇ ab ⁇ 0.1 and 0.01 ⁇ c ⁇ 0.1.
  • the lithium ion in the molten salt infiltrates into the lithium ion site of the lithium borate compound by using the molten salt of lithium nitrate, and the lithium ion is excessive compared to the stoichiometric amount. It becomes a compound to contain. Moreover, in the case of a molten salt containing lithium nitrate, the reaction can be performed at a relatively low temperature, the growth of crystal grains is suppressed, and the amount of the impurity phase is greatly reduced. As a result, when used as a positive electrode active material of a lithium ion secondary battery, it becomes a material having good cycle characteristics and high capacity.
  • the lithium borate compounds obtained by the above-mentioned method preferably have an average particle diameter in the range of 500 nm to 50 ⁇ m, more preferably 600 nm to 20 ⁇ m.
  • the average particle diameter refers to the maximum diameter of the plurality of particles (maximum value of the distance between two parallel lines sandwiching the particles) from the image obtained by observation with a scanning electron microscope (SEM). It is a value measured and calculated.
  • the lithium borate-based compound represented by the composition formula: Li 1 + a-b A b M 1-x M ' x BO 3 + c obtained by the method described above may be further coated with carbon to improve conductivity. preferable.
  • the specific method of the carbon coating treatment is not particularly limited, and in addition to the vapor phase method in which the heat treatment is performed in an atmosphere containing a carbon-containing gas such as methane gas, ethane gas and butane gas, organic substances as a carbon source and lithium borate
  • a thermal decomposition method is also applicable by carbonizing the organic substance by heat treatment after uniformly mixing the compound.
  • it is preferable to apply a ball milling method in which a heat treatment is performed after a carbon material and Li 2 CO 3 are added to the lithium borate compound and uniformly mixed until the lithium borate compound is amorphized by a ball mill.
  • the lithium borate compound which is a positive electrode active material
  • the lithium borate compound is made amorphous by ball milling, uniformly mixed with carbon and adhesion is increased, and recrystallization of the lithium borate compound is further performed by heat treatment.
  • carbon is uniformly deposited around the lithium borate compound.
  • the lithium excess borate type compound does not become lithium deficient and exhibits high charge and discharge capacity.
  • the half value width of the diffraction peak derived from the (011) plane of the sample having crystallinity before ball milling is B (011) Crystal
  • the half width of the peak of the sample obtained by ball milling is in the range of about 0.1-0.5 Just do it.
  • acetylene black (AB), ketjen black (KB), graphite or the like can be used as the carbon material.
  • Lithium borate-based compound for the mixing ratio of the carbon material, and Li 2 CO 3, the lithium borate-based compound to 100 parts by mass, 20 to 40 parts by weight of carbon-based material, the Li 2 CO 3 20 to 40 parts by weight And it is sufficient.
  • a heat treatment is performed.
  • the heat treatment is performed in a reducing atmosphere to keep the transition metal ion contained in the lithium borate compound at a divalent value.
  • nitrogen and carbon dioxide are used to suppress reduction of the divalent transition metal ion to the metal state, as in the synthesis reaction of the lithium borate compound in the molten salt. It is preferable to be in a mixed gas atmosphere of at least one gas selected from the group consisting of: and a reducing gas.
  • the mixing ratio of the reducing gas to the at least one gas selected from the group consisting of nitrogen and carbon dioxide may be the same as in the synthesis reaction of the lithium borate compound.
  • the heat treatment temperature is preferably 500 to 800.degree. If the heat treatment temperature is too low, it is difficult to deposit carbon uniformly around the lithium borate compound, while if the heat treatment temperature is too high, decomposition of the lithium borate compound or lithium deficiency may occur. It is not preferable because the charge and discharge capacity decreases.
  • the heat treatment time may be usually 1 to 10 hours.
  • a carbon material and LiF are added to the above lithium borate compound, and uniformly mixed until the lithium borate compound is amorphized by a ball mill in the same manner as the above method, followed by heat treatment You may In this case, carbon is uniformly deposited around the lithium borate compound simultaneously with the recrystallization of the lithium borate compound in the same manner as described above, the conductivity is improved, and the lithium borate compound is further obtained.
  • Li 2 CO 3 may be contained.
  • the conditions for ball milling and heat treatment may be the same as those described above.
  • the lithium borate compounds obtained by synthesizing in the molten salt, the lithium borate compounds subjected to the carbon coating treatment, and the lithium borate compounds added with fluorine are all actives for positive electrodes such as lithium ion secondary batteries It can be used effectively as a substance.
  • the positive electrode using these lithium borate compounds can have the same structure as that of a normal lithium ion secondary battery positive electrode.
  • conductive aids such as acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (vapor grown carbon fiber (VGCF), etc.
  • a binder such as ethylene oxide (PTFE), styrene butadiene rubber (SBR), or a solvent such as N-methyl-2-pyrrolidone (NMP) is added to form a paste, and this is applied to the current collector to produce a positive electrode.
  • the amount of the conductive aid used is not particularly limited, but can be, for example, 5 to 20 parts by mass with respect to 100 parts by mass of the lithium borate compound.
  • the amount of the binder used is not particularly limited, but can be, for example, 5 to 20 parts by mass with respect to 100 parts by mass of the lithium borate compound.
  • a mixture of a lithium borate compound, the above-mentioned conductive additive and a binder is kneaded using a mortar or a press to form a film, which is crimped to a current collector with a press.
  • the positive electrode can also be produced by the following method.
  • the current collector is not particularly limited, and materials conventionally used as a positive electrode for lithium ion secondary batteries, such as aluminum foil, aluminum mesh, stainless steel mesh and the like can be used. Furthermore, carbon non-woven fabric, carbon woven fabric and the like can also be used as the current collector.
  • the positive electrode for a lithium ion secondary battery according to the present invention is not particularly limited in its shape, thickness and the like, but for example, the active material is filled and then compressed to a thickness of 10 to 200 ⁇ m, more preferably Is preferably 20 to 100 ⁇ m. Therefore, the loading amount of the active material may be appropriately determined according to the type, structure, and the like of the current collector to be used so as to obtain the above-mentioned thickness after compression.
  • a secondary battery using the above-described positive electrode for secondary battery can be manufactured by a known method. That is, as the positive electrode material, the above-described positive electrode is used, and as the negative electrode material, known metal lithium, carbon based material such as graphite, silicon based material such as silicon thin film, alloy based material such as copper-tin or cobalt-tin, An oxide material such as lithium titanate may be used.
  • an electrolytic solution 0.5 mol / liter of lithium salt such as lithium perchlorate, LiPF 6 , LiBF 4 , and LiCF 3 SO 3 in a known non-aqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and dimethyl carbonate.
  • a solution dissolved at a concentration of L to 1.7 mol / L may be used.
  • Still other known battery components may be used to assemble a lithium ion secondary battery (or lithium secondary battery) according to a conventional method.
  • Example 1 Synthesis of iron-containing lithium borate compound by molten salt method As a raw material, 0.01 mol of iron (manufactured by High Purity Chemical Co., Ltd., purity 99.9%), H 3 BO 3 boric acid (manufactured by Kishida Chemical Co., Ltd.) , Purity 99%) 0.01 mol and lithium nitrate (Kishida Chemical Co., Ltd. make, Purity 99%) 0.01 mol were mixed. The mixing ratio was such that the total amount of iron and boric acid was 100 parts by mass with respect to 100 parts by mass of lithium nitrate.
  • the entire reactor core which is a reaction system
  • the cooling rate at this time was 51 ° C./min.
  • the product was ground to obtain a powder of iron-containing lithium borate compound.
  • the obtained product was subjected to X-ray diffraction measurement using a CuK ⁇ ray by a powder X-ray diffractometer.
  • the XDR pattern is shown in FIG. This XDR pattern was approximately consistent with the reported pattern of monoclinic LiFeBO 3 in the space group C2 / c.
  • FIG. 2 a scanning electron microscope (SEM) photograph of the product is shown in FIG.
  • SEM scanning electron microscope
  • the composition formula is Li 1.05 FeBO 3.08 , and it can be confirmed that the product is a lithium excess LiFeBO 3 -based lithium borate compound.
  • Comparative Example 1 Synthesis of Iron-Containing Lithium Borate Compound by Solid State Method Lithium carbonate Li 2 CO 3 , iron oxalate FeC 2 O 4 .2H 2 O, and boric acid H 3 BO 3 in a molar ratio of 1: 1: The mixed powder mixed to become 1 was ball milled, and then heat treated at 650 ° C. for 10 hours to obtain an iron-containing lithium borate compound.
  • the whole reactor core as a reaction system was taken out of the electric furnace as a heater and cooled to room temperature while passing the gas.
  • the obtained product was subjected to X-ray diffraction measurement using a CuK ⁇ ray by a powder X-ray diffractometer.
  • the XDR pattern is shown in FIG.
  • the XDR pattern almost matched the pattern of LiFeBO 3 in the reported space group C2 / c.
  • the composition formula was Li 1.04 FeBO 3.10 , and it was confirmed that the composition was a lithium excess LiFeBO 3 -based lithium borate compound.
  • a solution of 1 mol / L in which LiPF 6 is dissolved in a predetermined solvent is used as an electrolyte, and a polypropylene film (made by Celgard, Celgard 2400) as a separator, a lithium metal foil as a negative electrode, and the three types already described as a positive electrode.
  • a coin battery (# E1, # C1 and # 01) was manufactured using any of the above electrodes.
  • electrolyte solution prepared two types from which a solvent differs, and it used for said coin battery.
  • test temperature was 30 ° C.
  • test temperature was 60 ° C.
  • the battery # E1 using the lithium borate compound synthesized in Example 1 as a positive electrode active material exhibits sufficient battery characteristics both at 30 ° C. (around room temperature) and at 60 ° C. I understood it.
  • battery # 01 using the lithium borate compound synthesized in Reference Example 1 as a positive electrode active material the average voltage after 5 cycles measured at 60 ° C. was high, but it was very low when measured at 30 ° C.
  • Table 1 the results of the charge / discharge test at 30 ° C. shown in Table 1, it was found that the battery # E1 was superior to the battery # 01 in any item.
  • Example 1 compared with Reference Example 1, generation of impurities was suppressed (FIG. 1), and the particles were fine even though the synthesis temperature was relatively high at 650 ° C. (FIG. 2). It is presumed that the characteristics are excellent and the capacity is high.
  • the particles grew large because the solid phase reaction method was used. Although not shown, the presence of LiBO 2 and Fe 3 O 4 was confirmed from the XRD pattern. Therefore, the battery # C1 had a small capacity and had insufficient cycle characteristics.
  • the lithium borate compounds synthesized by the molten salt method using lithium nitrate when used as a positive electrode active material, provide high capacity and excellent cycle characteristics even when used at room temperature.
  • synthesis at a lower temperature than Example 1 is also possible by utilizing the fact that lithium nitrate has a low melting point, it is possible to further refine the particles, and it is expected that the battery characteristics will be improved.

Abstract

This method for producing a lithium borate compound reacts a lithium-containing-fused-salt starting material containing at least lithium nitrate, a transition-metal-containing starting material containing at least one component selected from the group consisting of pure iron, pure manganese, and a compound containing iron and/or manganese, and boric acid in the fused salt of the lithium-containing-fused-salt starting material in a mixed gas ambient containing carbon dioxide and a reducing gas and at a temperature that is between the melting point of the lithium-containing-fused-salt starting material and 900°C inclusive. As a result, it is possible to produce a material having superior performance, improved capacity and the like, and cycling characteristics near room temperature as a lithium borate material that is useful as a positive electrode material for a lithium ion secondary battery.

Description

リチウムボレート系化合物およびその製造方法Lithium borate compound and method for producing the same
 本発明は、主にリチウムイオン二次電池の正極活物質として有用なリチウムボレート系化合物の製造方法、およびこの方法で得られるリチウムボレート系化合物に関する。 The present invention relates mainly to a method for producing a lithium borate compound useful as a positive electrode active material of a lithium ion secondary battery, and a lithium borate compound obtained by this method.
 リチウムイオン二次電池は、小型でエネルギー密度が高く、ポータブル電子機器の電源として広く用いられており、正極活物質としては、主としてLiCoOなどの層状化合物が用いられてきた。しかしながら、これらの化合物は満充電状態において、150℃前後で酸素が脱離しやすく、これが非水電解液の酸化発熱反応を引き起こしやすいという欠点がある。 Lithium ion secondary batteries are small in size and high in energy density, and are widely used as power sources for portable electronic devices. As positive electrode active materials, mainly layered compounds such as LiCoO 2 have been used. However, these compounds have a disadvantage that oxygen is easily desorbed at around 150 ° C. in a fully charged state, which is likely to cause an oxidative exothermic reaction of the non-aqueous electrolyte.
 近年、正極活物質としては、リン酸オリビン系化合物LiMPO(LiMnPO、LiFePO、LiCoPOなど)が提案されている。この系は、LiCoOのような酸化物を正極活物質とする3価/4価の酸化還元反応の代わりに、2価/3価の酸化還元反応を用いることにより熱安定性を向上させ、さらに中心金属の周りに電気陰性度の大きいヘテロ元素のポリアニオンを配置することにより高放電電圧の得られる系として注目されている。 In recent years, an olivine phosphate compound LiMPO 4 (LiMnPO 4 , LiFePO 4 , LiCoPO 4 or the like) has been proposed as a positive electrode active material. In this system, thermal stability is improved by using a divalent / multivalent redox reaction instead of a trivalent / multivalent redox reaction in which an oxide such as LiCoO 2 is used as a positive electrode active material, Furthermore, it has been noted as a system capable of obtaining a high discharge voltage by arranging a polyanion of a heteroelement having a high electronegativity around a central metal.
 しかしながら、リン酸オリビン系化合物からなる正極材料は、リン酸ポリアニオンの分子量が大きいために、理論容量が170mAh/g程度に制限される。さらに、LiCoPOやLiNiPOは、動作電圧が高すぎて、その充電電圧に耐え得る電解液が無いという問題がある。 However, the positive electrode material composed of a phosphate olivine compound has a theoretical capacity limited to about 170 mAh / g because the molecular weight of the phosphate polyanion is large. Furthermore, LiCoPO 4 and LiNiPO 4 have a problem that the operating voltage is too high and there is no electrolyte that can withstand the charging voltage.
 そこで、安価で、資源量が多く、環境負荷が低く、高いリチウムイオンの理論充放電容量を有し、且つ高温時に酸素を放出しないカソード材料として、LiFeBO(理論容量220mAh/g)、LiMnBO(理論容量222mAh/g)等のリチウムボレート系材料が注目されている。リチウムボレート系材料はポリアニオンユニットの中で最も軽い元素であるBを用いることで、エネルギー密度の向上が期待できる材料であり、また、ボレート系材料の真密度(3.46g/cm)はリン酸オリビン鉄材料の真密度(3.60g/cm)よりも小さく、軽量化も期待できる。 Therefore, LiFeBO 3 (theoretical capacity 220 mAh / g), LiMnBO 3 is a cathode material that is inexpensive, has a large amount of resources, has a low environmental impact, has a high theoretical charge-discharge capacity of lithium ions, and does not release oxygen at high temperatures. Lithium borate materials such as (theoretical capacity 222 mAh / g) have attracted attention. Lithium borate materials are materials that can be expected to improve energy density by using B, which is the lightest element among polyanion units, and the true density (3.46 g / cm 3 ) of borate materials is phosphorus. It is smaller than the true density (3.60 g / cm 3 ) of the acid olivine iron material, and weight reduction can also be expected.
 ボレート系化合物の合成法としては、固相状態で原料化合物を反応させる固相反応法が知られている(下記非特許文献1~3等参考)。しかしながら、固相反応法では、600℃以上という高温で長時間反応させることが必要であり、ドープ元素を固溶させることは可能であるが、結晶粒が10μm以上と大きくなり、イオンの拡散が遅いという問題につながる。しかも、高温で反応させるため、冷却過程において固溶しきれないドープ元素が析出して不純物が生成し、抵抗が高くなるという問題がある。更に、高温まで加熱するために、リチウム欠損や酸素欠損のボレート系化合物ができ、容量の増加やサイクル特性の向上が難しいという問題もある。 As a synthesis method of a borate compound, a solid phase reaction method in which a raw material compound is reacted in a solid phase state is known (see Non-Patent Documents 1 to 3 below). However, in the solid phase reaction method, it is necessary to react for a long time at a high temperature of 600 ° C. or more, and although it is possible to form a solid solution with the doping element, the crystal grains become as large as 10 μm or more and the diffusion of ions It leads to the problem of being slow. In addition, since the reaction is performed at a high temperature, the doping element which can not form a solid solution in the cooling process is precipitated to generate an impurity, which causes a problem that the resistance becomes high. Furthermore, in order to heat to high temperature, a borate compound of lithium deficiency or oxygen deficiency is formed, and there is also a problem that it is difficult to increase the capacity or to improve the cycle characteristics.
 そこで、本発明者等は、上記の問題点を克服すべく鋭意研究を重ねてきた。その結果、鉄化合物またはマンガン化合物を含む遷移金属化合物、ホウ酸、ならびに水酸化リチウムを原料として用いて、炭酸リチウムとその他のアルカリ金属炭酸塩との混合溶融塩中で、還元性雰囲気下において、上記原料を反応させる方法(溶融塩法)によれば、比較的穏和な条件下において、鉄またはマンガンを含むリチウムボレート系化合物を得ることができることを見出した(特許文献1参照)。 Therefore, the present inventors have intensively studied to overcome the above problems. As a result, using a transition metal compound containing an iron compound or a manganese compound, boric acid, and lithium hydroxide as raw materials, in a mixed molten salt of lithium carbonate and another alkali metal carbonate under a reducing atmosphere, According to the method (molten salt method) in which the raw materials are reacted, it has been found that lithium borate compounds containing iron or manganese can be obtained under relatively mild conditions (see Patent Document 1).
国際公開2010/104137号International Publication 2010/104137
 特許文献1に記載の方法により得られたリチウムボレート系化合物は、リチウムイオン二次電池の正極材料として用いた場合に、比較的温度の高い使用条件において、従来の方法で合成されたボレート系化合物と比較してサイクル特性、容量等が改善された。しかし、室温付近での評価はされていなかった。 The lithium borate compound obtained by the method described in Patent Document 1 is a borate compound synthesized by a conventional method under conditions of relatively high temperature when used as a positive electrode material of a lithium ion secondary battery Cycle characteristics, capacity, etc. were improved. However, it was not evaluated near room temperature.
 本発明は、上記した従来技術の現状に鑑みてなされたものである。本発明の主な目的は、リチウムイオン二次電池用正極材料等として有用なリチウムボレート系材料について、室温付近におけるサイクル特性、容量等が改善された、優れた性能を有する材料を比較的簡単な手段によって製造できる方法を提供することである。 The present invention has been made in view of the above-mentioned current state of the prior art. The main object of the present invention is to provide a lithium borate based material useful as a positive electrode material for lithium ion secondary batteries etc., a material having excellent performance with relatively improved cycle characteristics, capacity etc. in the vicinity of room temperature. It is to provide a method that can be manufactured by means.
 本発明者等が鋭意研究し試行錯誤を重ねた結果、溶融塩として炭酸塩のかわりに硝酸塩を使用することで、正極材料として用いた場合に、室温においても優れた電池性能を示すリチウムボレート系化合物を得ることができることを新たに見出した。 As a result of intensive research and trial and error conducted by the present inventors, lithium nitrate based lithium nitrate shows excellent battery performance even at room temperature when it is used as a positive electrode material by using nitrate instead of carbonate as molten salt. It has newly been found that compounds can be obtained.
 すなわち、本発明のリチウムボレート系化合物の製造方法は、少なくとも硝酸リチウムを含むリチウム含有溶融塩原料と、純鉄、純マンガンならびに鉄および/またはマンガンを含む化合物からなる群から選ばれる少なくとも一種を含む遷移金属含有原料と、ホウ酸と、を二酸化炭素および還元性ガスを含む混合ガス雰囲気下において、前記リチウム含有溶融塩原料の融点以上900℃以下の該リチウム含有溶融塩原料の溶融塩中で反応させることを特徴とする。 That is, the method for producing a lithium borate compound according to the present invention comprises at least one lithium selected from the group consisting of a lithium-containing molten salt raw material containing at least lithium nitrate, and pure iron, pure manganese and a compound containing iron and / or manganese. The transition metal-containing raw material and boric acid are reacted in the molten salt of the lithium-containing molten salt raw material of the lithium-containing molten salt raw material and not less than the melting point of 900 ° C. in a mixed gas atmosphere containing carbon dioxide and a reducing gas It is characterized by
 本発明の製造方法により得られるリチウムボレート系化合物が、室温においても優れた電池性能を示すのは、次のような理由であると推測される。 The reason why the lithium borate compound obtained by the production method of the present invention exhibits excellent battery performance even at room temperature is presumed to be as follows.
 本発明の製造方法により得られるリチウムボレート系化合物は、炭酸塩の溶融塩を用いた場合と比較して、不純物の生成が低減された結果、電池特性が向上したと推測される。本発明者等の調査の結果、溶融塩中でリチウムボレート系化合物を得るには、溶融塩に溶存種としてリチウム、ホウ素、遷移金属元素、等とともに酸化物イオン(O2-)が存在することが重要であることがわかった。溶融塩として使用した硝酸リチウムは、融点が低く、分解温度も低い(硝酸リチウムの融点は261℃、分解温度は約550℃。炭酸リチウムの融点は735℃、分解温度は約950℃。)ため、溶融塩中にO2-を放出し易いと考えられる。このような硝酸リチウムを含む溶融塩中では、反応活性が高く低温でも速やかに反応が進行するため、不純物が生成しにくい。 The lithium borate compound obtained by the production method of the present invention is estimated to have improved battery characteristics as a result of the reduction in the generation of impurities as compared with the case where a molten salt of carbonate is used. As a result of investigations by the present inventors, in order to obtain a lithium borate compound in the molten salt, it is necessary that an oxide ion (O 2− ) exists together with lithium, boron, a transition metal element, etc. as a dissolved species in the molten salt. Was found to be important. Lithium nitrate used as the molten salt has a low melting point and a low decomposition temperature (the melting point of lithium nitrate is 261 ° C., the decomposition temperature is about 550 ° C., the melting point of lithium carbonate is 735 ° C., the decomposition temperature is about 950 ° C.). It is considered that O 2− is easily released into the molten salt. In such a molten salt containing lithium nitrate, the reaction activity is high, and the reaction proceeds rapidly even at low temperatures, so that impurities are hardly generated.
 また、同じ程度の温度において硝酸リチウムと炭酸リチウムとを比較した場合、硝酸リチウムの方が溶融塩の粘度が低い。そのため、硝酸リチウムの溶融塩中では、拡散速度、ひいては反応速度が速く、不純物が生成されにくいことも考えられる。 When lithium nitrate and lithium carbonate are compared at the same temperature, lithium nitrate has a lower viscosity of the molten salt. Therefore, it is also conceivable that in the molten salt of lithium nitrate, the diffusion rate, and hence the reaction rate, is fast, and it is difficult to form impurities.
 なお、本発明において生成が抑制される不純物とは、たとえば、生成を抑制することが困難であるLiBO、LiFe、Fe(BO)O、LiFe等の他、MnO等の未反応物が挙げられる。なお、未反応物は、原料の仕込量を調節することで抑制される。 In the present invention, the impurities whose formation is suppressed include, for example, LiBO 2 , Li 5 Fe 5 O 8 , Fe 3 (BO 3 ) O 2 and Li 2 Fe 3 O 4 , which are difficult to suppress formation. Besides, etc., unreacted substances such as MnO can be mentioned. In addition, unreacted material is suppressed by adjusting the preparation amount of a raw material.
 さらに、硝酸リチウムは、その融点は261℃であるため、単独で用いてもリチウムボレート系化合物を低温で安定的に合成することが可能である。その結果、合成反応時に粒成長が抑制されて、微細なリチウムボレート系化合物が形成される。しかも溶融塩中にLiを含む硝酸塩が含まれていることによって、Liを過剰に含むリチウムボレート系化合物が形成されやすい。このようなリチウムボレート系化合物は、良好なサイクル特性と高い容量を有するリチウムイオン電池用正極材料となる。 Furthermore, since lithium nitrate has a melting point of 261 ° C., lithium borate compounds can be stably synthesized at low temperature even if used alone. As a result, grain growth is suppressed during the synthesis reaction to form a fine lithium borate compound. In addition, since the molten salt contains a nitrate containing Li, a lithium borate compound containing a large amount of Li is easily formed. Such lithium borate compounds serve as positive electrode materials for lithium ion batteries having good cycle characteristics and high capacity.
 本発明のリチウムボレート系化合物は、上記本発明の製造方法により得られ、
   組成式:Li1+a-b1-xM’BO3+c
(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeおよびMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3であって、かつa>bである)で表され、
 リチウム二次電池の正極活物質として用いた場合に、試験温度30℃で0.1Cにて、初回定電圧充電を4.5Vで10時間行い4.5~1.5Vで50サイクル充放電後の該リチウム二次電池の放電容量が初期放電容量の90%以上であることを特徴とする。
The lithium borate compound of the present invention is obtained by the above-mentioned production method of the present invention,
Composition formula: Li 1 + a−b A b M 1−x M ′ x BO 3 + c
(Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, and M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr, each subscript is as follows: 0 ≦ x ≦ 0. 5, 0 <a <1, 0 ≦ b <0.2, 0 <c <0.3 and a> b)
When used as a positive electrode active material of a lithium secondary battery, after performing initial constant voltage charging at 4.5 V for 10 hours at 0.1 C at a test temperature of 30 ° C. after 50 cycles of charge and discharge at 4.5 to 1.5 V The discharge capacity of the lithium secondary battery is 90% or more of the initial discharge capacity.
 本発明のリチウムボレート系化合物の製造方法によれば、硝酸リチウムを使用した溶融塩法を用いる比較的簡便な手段によって、室温付近においても高容量を有し、サイクル特性にも優れた、リチウムイオン二次電池の正極材料として有用な本発明のリチウムボレート系化合物を得ることができる。 According to the method for producing a lithium borate compound of the present invention, a lithium ion having high capacity and excellent cycle characteristics even at around room temperature by a relatively simple means using a molten salt method using lithium nitrate The lithium borate-based compound of the present invention useful as a positive electrode material of a secondary battery can be obtained.
実施例1および参考例1の生成物のX線回折パターンを示す。The X-ray-diffraction pattern of the product of Example 1 and the reference example 1 is shown. 実施例1の生成物の走査型電子顕微鏡(SEM)写真を示す。Figure 2 shows a scanning electron microscope (SEM) picture of the product of Example 1. 実施例1の生成物を正極活物質として用いたリチウムイオン二次電池の充放電特性を示すグラフであって、30℃で充放電させたときの試験結果を示す。It is a graph which shows the charge / discharge characteristic of the lithium ion secondary battery which used the product of Example 1 as a positive electrode active material, Comprising: The test result when making it charge / discharge at 30 degreeC is shown. 実施例1の生成物を正極活物質として用いたリチウムイオン二次電池の充放電特性を示すグラフであって、60℃で充放電させたときの試験結果を示す。It is a graph which shows the charge / discharge characteristic of the lithium ion secondary battery which used the product of Example 1 as a positive electrode active material, Comprising: The test result when making it charge / discharge at 60 degreeC is shown. 参考例1の生成物を正極活物質として用いたリチウムイオン二次電池の充放電特性を示すグラフであって、30℃で充放電させたときの試験結果を示す。It is a graph which shows the charge / discharge characteristic of the lithium ion secondary battery which used the product of the reference example 1 as a positive electrode active material, Comprising: The test result when making it charge / discharge at 30 degreeC is shown.
 以下に、本発明のリチウムボレート系化合物およびその製造方法を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「m~n」は、下限mおよび上限nをその範囲に含む。また、その数値範囲内において、本明細書に記載した数値を任意に組み合わせることで数値範囲を構成し得る。 Hereinafter, the best mode for carrying out the lithium borate compound of the present invention and the method for producing the same will be described. Unless otherwise specified, the numerical range “m to n” described in the present specification includes the lower limit m and the upper limit n in the range. In addition, within the numerical range, the numerical range may be configured by arbitrarily combining the numerical values described in the present specification.
  <リチウムボレート系化合物の製造方法>
 本発明のリチウムボレート系化合物の製造方法は、少なくとも硝酸リチウムを含むリチウム含有溶融塩原料と、鉄、マンガン、鉄化合物およびマンガン化合物からなる群から選ばれる少なくとも一種を含む遷移金属含有原料と、ホウ酸と、をリチウム含有溶融塩原料の溶融塩中で反応させる。以下に、使用する原料を順に説明する。
<Method of producing lithium borate compound>
The method for producing a lithium borate compound of the present invention comprises a lithium-containing molten salt raw material containing at least lithium nitrate, a transition metal-containing raw material containing at least one member selected from the group consisting of iron, manganese, iron compounds and manganese compounds, An acid is reacted in the molten salt of the lithium-containing molten salt raw material. Below, the raw material to be used is demonstrated in order.
 リチウム含有溶融塩原料は、本発明の製造方法においてフラックスとして他の原料を分散させる役割とともに、リチウム(Li)の供給源としての役割を果たす。リチウム含有溶融塩原料は、硝酸リチウムのみを用いてもよいが、その他の硝酸塩と混合して用いてもよい。具体的には、硝酸カリウム(KNO)、硝酸ナトリウム(NaNO)、硝酸ルビジウム(RbNO)および硝酸セシウム(CsNO)からなる群から選ばれる少なくとも一種のアルカリ金属硝酸塩である。これらのうちの一種以上のアルカリ金属硝酸塩を硝酸リチウムと混合して用いることで、リチウム含有溶融塩原料の融点が低下するため、低温でも安定したリチウムボレート系化合物の合成を行うことができる。つまり、硝酸リチウムは270℃以上で溶融するが、その他のアルカリ金属硝酸塩との混合溶融塩とすることで、270℃を下回る溶融温度とすることができる。その結果、合成温度を低温にしても溶融塩の粘度は低く、不純物の生成が抑制されるとともに微細なリチウムボレート系化合物の合成に好適である。 The lithium-containing molten salt raw material plays a role as a source of lithium (Li) together with the role of dispersing other raw materials as a flux in the production method of the present invention. The lithium-containing molten salt raw material may use only lithium nitrate, but may be used in combination with other nitrates. Specifically, it is at least one alkali metal nitrate selected from the group consisting of potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), rubidium nitrate (RbNO 3 ) and cesium nitrate (CsNO 3 ). The melting point of the lithium-containing molten salt raw material is lowered by mixing and using one or more of these alkali metal nitrates with lithium nitrate, so that a stable lithium borate compound can be synthesized even at a low temperature. That is, although lithium nitrate melts at 270 ° C. or higher, a melting temperature lower than 270 ° C. can be achieved by using a mixed molten salt with other alkali metal nitrates. As a result, even if the synthesis temperature is low, the viscosity of the molten salt is low, the formation of impurities is suppressed, and it is suitable for the synthesis of fine lithium borate compounds.
 もちろん、硝酸リチウムの融点は元々低いため、リチウム含有溶融塩原料として硝酸リチウムを単独で用いても、混合溶融塩を用いた場合と同等の効果が得られる。また、硝酸リチウムを単独で用いることで、得られるリチウムボレート系化合物にリチウム以外のアルカリ金属元素が残存することを避けられる。そのため、得られるリチウムボレート系化合物は、リチウムイオン二次電池の正極材料として好適である。 Of course, since the melting point of lithium nitrate is originally low, the use of lithium nitrate alone as the lithium-containing molten salt raw material provides the same effect as the mixed molten salt. Moreover, it is avoidable that alkali metal elements other than lithium remain | survive in the lithium borate type-compound obtained by using lithium nitrate independently. Therefore, the obtained lithium borate type compound is suitable as a positive electrode material of a lithium ion secondary battery.
 リチウム含有溶融塩原料における硝酸リチウムの比率については、特に限定的ではないが、リチウム含有溶融塩原料全体を100mol%としたときに、60~100mol%、さらには80~100mol%が好ましい。 The ratio of lithium nitrate in the lithium-containing molten salt raw material is not particularly limited, but preferably 60 to 100 mol%, more preferably 80 to 100 mol%, based on 100 mol% of the entire lithium-containing molten salt raw material.
 また、リチウム含有溶融塩原料は、溶融塩の融点を大きく上昇させない程度の割合で、リチウム供給源として硝酸リチウム以外のリチウム塩を含んでもよい。たとえば、炭酸リチウム(LiCO)、水酸化リチウム(LiOH等)、メタ硼酸リチウム(LiBO等)、などは、これらのうちの一種以上がリチウム含有溶融塩原料に含まれても、反応により酸化物イオン(O2-)や硼酸イオン(BO )しか生じないため望ましい。 In addition, the lithium-containing molten salt raw material may contain a lithium salt other than lithium nitrate as a lithium source at such a rate that the melting point of the molten salt is not greatly increased. For example, lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH etc.), lithium metaborate (LiBO 2 etc.), etc. are reacted even if one or more of these are contained in the lithium-containing molten salt raw material It is desirable because only oxide ions (O 2− ) and borate ions (BO 3 ) are generated.
 遷移金属含有原料は、主として鉄(Fe)および/またはマンガン(Mn)の供給源であって、純鉄、純マンガンならびに鉄および/またはマンガンを含む化合物からなる群から選ばれる少なくとも一種を含む。鉄および/またはマンガンを含む化合物としては、鉄化合物、マンガン化合物、鉄および/またはマンガンを含み必要に応じて他の金属元素をも含む複合化合物が挙げられる。FeもMnも、本発明の製造方法の目的生成物であるリチウムボレート系化合物において2価で存在する場合が安定であることから、遷移金属含有原料は、酸化数が2価以下のFeおよび/またはMnを含むとよい。したがって、遷移金属含有原料としては、純鉄(0価)、純マンガン(0価)、2価の鉄化合物、2価のマンガン化合物、が挙げられる。2価の化合物としては、シュウ酸鉄、シュウ酸マンガンなどのシュウ酸塩、が挙げられる。これらのうちの一種を単独あるいは二種以上を混合して用いることができる。 The transition metal-containing raw material is a source of mainly iron (Fe) and / or manganese (Mn), and includes at least one selected from the group consisting of pure iron, pure manganese and a compound containing iron and / or manganese. Examples of compounds containing iron and / or manganese include complex compounds containing iron compounds, manganese compounds, iron and / or manganese and optionally other metal elements. Since both Fe and Mn are present in the lithium borate compound, which is the target product of the production method of the present invention, in the case of being divalent, they are stable, so the transition metal-containing raw material is Fe and / or divalent oxidation number. Or Mn may be included. Therefore, as a transition metal containing raw material, pure iron (0 value), pure manganese (0 value), a bivalent iron compound, a bivalent manganese compound, etc. are mentioned. Examples of divalent compounds include oxalate such as iron oxalate and manganese oxalate. One of these may be used alone or in combination of two or more.
 本発明で使用される遷移金属元素含有原料は、鉄および/またはマンガンを必須として含むが、さらに必要に応じて、その他の金属元素を含んでもよい。その他の金属元素としては、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種を例示できる。これらの金属元素は、純マグネシウムなどのように金属状態であってもよく、あるいは、2価までの価数の金属元素を含む化合物、たとえば、硫酸塩、炭酸塩、水酸化物などであってもよい。遷移金属元素含有原料は、上記列挙した金属元素を一種のみ含んでもよいし、二種以上の金属元素を同時に含んでもよい。遷移金属元素含有原料は、一種の化合物を単独または二種以上の化合物を混合して用いることができる。すなわち、遷移金属元素含有原料は、具体的には、鉄および/またはマンガンを含む原料を必須とし、必要に応じて、酸化コバルト、酸化マグネシウム、炭酸カルシウム、酸化カルシウム、酸化アルミニウム、酸化ニッケル、酸化ニオブ、チタン酸リチウム、酸化クロム(III)、酢酸銅(II)、酸化亜鉛、酸化ジルコニウム、炭化バナジウム、モリブデン酸リチウムおよびタングステン酸リチウムのうちの一種または二種以上を含んでもよい。 The transition metal element-containing raw material used in the present invention essentially contains iron and / or manganese, but may further contain other metal elements as required. As another metal element, at least one selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr can be exemplified. These metal elements may be in a metal state such as pure magnesium, or a compound containing a metal element having a valence of up to two, such as sulfates, carbonates, hydroxides, etc. It is also good. The transition metal element-containing raw material may contain only one of the metal elements listed above, or may contain two or more metal elements simultaneously. The transition metal element-containing raw material can be used alone or in combination of two or more compounds. Specifically, the transition metal element-containing raw material specifically requires a raw material containing iron and / or manganese, and if necessary, cobalt oxide, magnesium oxide, calcium carbonate, calcium oxide, aluminum oxide, nickel oxide, oxide One or more of niobium, lithium titanate, chromium (III) oxide, copper (II) acetate, zinc oxide, zirconium oxide, vanadium carbide, lithium molybdate and lithium tungstate may be contained.
 遷移金属元素含有原料において、鉄およびマンガンからなる群から選ばれた少なくとも一種の遷移金属元素の含有量は、遷移金属元素含有原料に含まれる金属元素の合計量を100mol%として、50mol%以上であることが必要である。すなわち、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の金属元素の量は、遷移金属元素含有原料に含まれる金属元素の合計量を100mol%として、0~50mol%さらには10~30mol%とすることができる。 In the transition metal element-containing raw material, the content of at least one transition metal element selected from the group consisting of iron and manganese is 50 mol% or more, assuming that the total amount of metal elements contained in the transition metal element-containing raw material is 100 mol%. It is necessary to be there. That is, the amount of at least one metal element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr is the total amount of metal elements contained in the transition metal element-containing raw material Can be made 0 to 50 mol%, and further 10 to 30 mol%, where 100 mol% is
 ホウ酸は、ホウ素(B)の供給源である。ホウ酸に対する遷移金属含有原料の配合割合に特に限定はないが、ホウ素に対する金属元素のモル比で、0.9~1.2さらには0.95~1.1とすることがより好ましい。また、遷移金属含有原料およびホウ酸は、リチウム含有溶融塩原料の溶融塩中において、均一に分散される比率で使用されればよい。たとえば、リチウム含有溶融塩原料の合計量100質量部に対して、遷移金属含有原料およびホウ酸の合計量が50~100質量部の範囲となる量であることが好ましく、80~95質量部さらには90~95質量部の範囲となる量であることがより好ましい。 Boric acid is a source of boron (B). There are no particular limitations on the blending ratio of the transition metal-containing raw material to boric acid, but the molar ratio of the metal element to boron is preferably 0.9 to 1.2, more preferably 0.95 to 1.1. Moreover, the transition metal-containing raw material and the boric acid may be used in a ratio uniformly dispersed in the molten salt of the lithium-containing molten salt raw material. For example, the total amount of the transition metal-containing raw material and the boric acid is preferably in the range of 50 to 100 parts by mass, more preferably 80 to 95 parts by mass, with respect to 100 parts by mass of the total lithium-containing molten salt raw material. More preferably, the amount is in the range of 90 to 95 parts by mass.
 具体的な反応方法については特に限定的ではないが、通常は、上記したリチウム含有溶融塩原料、遷移金属含有原料およびホウ酸を秤量し、ボールミル等を用いて均一に混合した後、加熱してリチウム含有溶融塩原料を溶融させればよい。これにより、リチウム含有溶融塩原料の溶融塩中において、リチウム含有溶融塩原料、遷移金属含有原料およびホウ酸の反応が進行して、目的とするリチウムボレート系化合物を得ることができる。 Although a specific reaction method is not particularly limited, usually, the above-described lithium-containing molten salt raw material, transition metal-containing raw material and boric acid are weighed, uniformly mixed using a ball mill or the like, and then heated. The lithium-containing molten salt raw material may be melted. Thus, in the molten salt of the lithium-containing molten salt raw material, the reaction of the lithium-containing molten salt raw material, the transition metal-containing raw material and the boric acid proceeds to obtain the target lithium borate compound.
 上記の反応は、二酸化炭素および還元性ガスを含む混合ガス雰囲気下において、リチウム含有溶融塩原料の融点以上900℃以下のリチウム含有溶融塩原料の溶融塩中で行われる。 The above reaction is carried out in a molten salt of a lithium-containing molten salt raw material which is higher than the melting point of the lithium-containing molten salt raw material and not higher than 900 ° C. in a mixed gas atmosphere containing carbon dioxide and a reducing gas.
 溶融塩の温度、すなわちリチウム含有溶融塩原料を溶融させる温度は、反応温度に相当し、リチウム含有溶融塩原料の融点以上900℃以下である。反応温度が900℃を超えると、Liが蒸発してLiの欠損したリチウムボレート系化合物が生成される。また、反応温度が200℃未満では、溶融塩中にO2-が放出されにくく、リチウムボレート系化合物が合成されるまでに長時間を要するため、実用的ではない。したがって、望ましい反応温度は、300~700℃、500~700℃さらには600~700℃である。ただし、反応温度はリチウム含有溶融塩原料の融点を上回る必要があるため、リチウム含有溶融塩原料の組成を調製することが必要である。この際、反応時間は、1~20時間さらには5~13時間とすればよい。 The temperature of the molten salt, that is, the temperature for melting the lithium-containing molten salt raw material corresponds to the reaction temperature, and is not less than the melting point of the lithium-containing molten salt raw material and 900 ° C. or less. When the reaction temperature exceeds 900 ° C., Li evaporates to form a lithium deficient lithium borate compound. Further, if the reaction temperature is less than 200 ° C., O 2− is hardly released into the molten salt, and it takes a long time to synthesize the lithium borate compound, which is not practical. Thus, desirable reaction temperatures are 300-700 ° C., 500-700 ° C. and even 600-700 ° C. However, since the reaction temperature needs to be higher than the melting point of the lithium-containing molten salt raw material, it is necessary to prepare the composition of the lithium-containing molten salt raw material. At this time, the reaction time may be set to 1 to 20 hours and further 5 to 13 hours.
 上記した反応は、反応時において、遷移金属含有原料に含まれるFe等の金属元素を2価イオンとして溶融塩中に安定に存在させるために、二酸化炭素および還元性ガスを含む混合ガス雰囲気下で行う。この雰囲気下では、反応前の酸化数が2価以下の金属元素であっても2価の状態で安定に維持することが可能となる。二酸化炭素と還元性ガスの比率に特に限定はないが、還元性ガスを多く用いると、酸化雰囲気を制御する二酸化炭素が減少するため、硝酸リチウムの還元が促進されて反応速度が速くなる。しかし、還元性ガスが過多では、高過ぎる還元性によりリチウムボレート系化合物のFe2+が還元されて、反応生成物が破壊する虞がある。そのため、好ましい混合ガスの混合比率は、体積比で、二酸化炭素:還元性ガス=100:3~60:40さらには75:25~65:35とすることが好ましい。還元性ガスとしては、たとえば、水素、一酸化炭素などを用いることができ、水素が特に好ましい。 The reaction described above is performed under a mixed gas atmosphere containing carbon dioxide and a reducing gas in order to cause a metal element such as Fe contained in the transition metal-containing raw material to stably exist in the molten salt as divalent ions during the reaction. Do. Under this atmosphere, it is possible to stably maintain the metal element in a divalent state even if the oxidation number before the reaction is a divalent or less metal. The ratio of carbon dioxide to reducing gas is not particularly limited, but when a large amount of reducing gas is used, carbon dioxide for controlling the oxidizing atmosphere is reduced, so reduction of lithium nitrate is promoted to accelerate the reaction rate. However, if the reducing gas is excessive, the Fe 2+ of the lithium borate compound may be reduced due to too high reducibility, and the reaction product may be destroyed. Therefore, a preferable mixing ratio of the mixed gas is, in volume ratio, carbon dioxide: reducing gas = 100: 3 to 60:40, and further preferably 75:25 to 65:35. As the reducing gas, for example, hydrogen, carbon monoxide and the like can be used, and hydrogen is particularly preferable.
 二酸化炭素と還元性ガスの混合ガスの圧力については、特に限定はなく、通常、大気圧とすればよいが、加圧下、あるいは減圧下のいずれであっても良い。 The pressure of the mixed gas of carbon dioxide and reducing gas is not particularly limited, and may be atmospheric pressure in general, but may be under pressure or under pressure.
 上記した反応を行った後、冷却し、固化したリチウム含有溶融塩を除去することによって、目的とするリチウムボレート系化合物を得ることができる。冷却速度に特に限定はないが、反応温度から室温まで急冷(たとえば冷却速度で50~200℃/分)するのが好ましい。急冷することにより、さらに微細な粉状の生成物が得られる。 After the above reaction, the reaction product is cooled and the solidified lithium-containing molten salt is removed to obtain the target lithium borate compound. Although the cooling rate is not particularly limited, it is preferable to quench from the reaction temperature to room temperature (eg, 50 to 200 ° C./min at the cooling rate). By quenching, a finer powdery product is obtained.
 リチウム含有溶融塩を除去する方法としては、冷却されて固化したリチウム含有溶融塩を溶解できる溶媒を用いて、生成物を洗浄することによって、リチウム含有溶融塩を溶解除去すればよい。たとえば、溶媒として、水を用いることも可能であるが、リチウムボレート系化合物に含まれる遷移金属の酸化を防止するために、アルコール、アセトンなどの非水溶媒等を用いることが好ましい。特に、無水酢酸と酢酸とを質量比で2:1~1:1の割合で用いることが好ましい。この混合溶媒は、リチウム含有溶融塩を溶解除去する作用に優れていることに加えて、酢酸がリチウム含有溶融塩と反応して水が生成した場合に、無水酢酸が水を取り込んで酢酸を生じることによって、水が分離することを抑制できる。尚、無水酢酸と酢酸を用いる場合には、まず、無水酢酸を生成物に混合して、乳鉢等を用いてすりつぶして粒子を細かくした後、無水酢酸を粒子になじませた状態で酢酸を加えることが好ましい。この方法によれば、酢酸とリチウム含有溶融塩とが反応して生成した水が速やかに無水酢酸と反応して、生成物と水が触れ合う機会を低減できるので、目的物の酸化と分解を効果的に抑制することができる。 As a method of removing the lithium-containing molten salt, the lithium-containing molten salt may be dissolved and removed by washing the product using a solvent capable of dissolving the cooled and solidified lithium-containing molten salt. For example, water may be used as the solvent, but in order to prevent oxidation of the transition metal contained in the lithium borate compound, it is preferable to use non-aqueous solvents such as alcohol and acetone. In particular, it is preferable to use acetic anhydride and acetic acid in a mass ratio of 2: 1 to 1: 1. This mixed solvent is excellent in dissolving and removing the lithium-containing molten salt, and when acetic acid reacts with the lithium-containing molten salt to form water, acetic anhydride takes in water to form acetic acid. Thus, the separation of water can be suppressed. In addition, when using acetic anhydride and acetic acid, first, acetic anhydride is mixed with a product, and after grinding using a mortar etc. and pulverizing particles, acetic acid is added in the state to which acetic anhydride is made to adapt to particles. Is preferred. According to this method, the water formed by the reaction of acetic acid and the lithium-containing molten salt can be quickly reacted with acetic anhydride to reduce the chance of contact between the product and water, so the oxidation and decomposition of the target substance are effective. Can be suppressed.
  <リチウムボレート系化合物>
 上記した方法によって得られるリチウムボレート系化合物は、
   組成式:Li1+a-b1-xM’BO3+c
(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeおよびMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3であって、かつa>bである)で表される化合物である。
<Lithium borate compounds>
The lithium borate compound obtained by the method described above is
Composition formula: Li 1 + a−b A b M 1−x M ′ x BO 3 + c
(Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, and M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr, each subscript is as follows: 0 ≦ x ≦ 0. 5, 0 <a <1, 0 ≦ b <0.2, 0 <c <0.3, and a> b).
 本発明の製造方法により得られるリチウムボレート系化合物は、リチウム二次電池の正極活物質として用いた場合に、優れたサイクル特性を示す。具体的には、負極に金属リチウムを用い、試験温度30℃で0.1Cにて、初回定電圧充電を4.5Vで10時間行い4.5~1.5Vで充放電試験を行った場合には、50サイクル充放電後の放電容量が初期放電容量の90%以上である。上記の組成式のa、bおよびcのさらに好ましい範囲は、0.01≦a-b≦0.1、0.01≦c≦0.1である。 The lithium borate compound obtained by the manufacturing method of the present invention exhibits excellent cycle characteristics when used as a positive electrode active material of a lithium secondary battery. Specifically, when metal lithium is used for the negative electrode, and the initial constant voltage charging is performed for 10 hours at 4.5 V at 0.1 C at a test temperature of 30 ° C., the charge and discharge test is performed at 4.5 to 1.5 V The discharge capacity after 50 cycles of charge and discharge is 90% or more of the initial discharge capacity. More preferable ranges of a, b and c in the above composition formula are 0.01 ≦ ab ≦ 0.1 and 0.01 ≦ c ≦ 0.1.
 該化合物は、硝酸リチウムの溶融塩を使用したことで、溶融塩中のリチウムイオンが、リチウムボレート系化合物のLiイオンサイトに浸入して、化学量論量と比較して、Liイオンを過剰に含む化合物となる。また、硝酸リチウムを含む溶融塩であれば、比較的低温で反応を行うことが可能となり、結晶粒の成長が抑制され、不純物相の量が大きく減少する。その結果、リチウムイオン二次電池の正極活物質として用いる場合に、良好なサイクル特性と高容量とを有する材料となる。上記した方法で得られるリチウムボレート系化合物は、平均粒径が500nm~50μmさらには600nm~20μmの範囲内にあるものが好ましい。尚、本明細書では、平均粒径は、走査型電子顕微鏡(SEM)による観察で得られた画像から複数個の粒子の最大径(粒子を挟む二本の平行線の距離の最大値)を実測して算出した値である。 In this compound, the lithium ion in the molten salt infiltrates into the lithium ion site of the lithium borate compound by using the molten salt of lithium nitrate, and the lithium ion is excessive compared to the stoichiometric amount. It becomes a compound to contain. Moreover, in the case of a molten salt containing lithium nitrate, the reaction can be performed at a relatively low temperature, the growth of crystal grains is suppressed, and the amount of the impurity phase is greatly reduced. As a result, when used as a positive electrode active material of a lithium ion secondary battery, it becomes a material having good cycle characteristics and high capacity. The lithium borate compounds obtained by the above-mentioned method preferably have an average particle diameter in the range of 500 nm to 50 μm, more preferably 600 nm to 20 μm. In the present specification, the average particle diameter refers to the maximum diameter of the plurality of particles (maximum value of the distance between two parallel lines sandwiching the particles) from the image obtained by observation with a scanning electron microscope (SEM). It is a value measured and calculated.
  <カーボン被覆処理>
 上記した方法で得られる組成式:Li1+a-b1-xM’BO3+cで表されるリチウムボレート系化合物は、更に、カーボンによる被覆処理を行って導電性を向上させることが好ましい。
<Carbon coating treatment>
The lithium borate-based compound represented by the composition formula: Li 1 + a-b A b M 1-x M ' x BO 3 + c obtained by the method described above may be further coated with carbon to improve conductivity. preferable.
 カーボン被覆処理の具体的な方法については、特に限定的ではなく、メタンガス、エタンガス、ブタンガスのような炭素含有ガスを含む雰囲気において熱処理を行う気相法の他、炭素源となる有機物とリチウムボレート系化合物とを均一に混合した後に熱処理によって有機物を炭化させることによる熱分解法も適用可能である。特に、上記リチウムボレート系化合物に、カーボン材料とLiCOを加え、ボールミルによってリチウムボレート系化合物がアモルファス化するまで均一に混合した後、熱処理を行うボールミリング法を適用することが好ましい。この方法によれば、ボールミリングによって正極活物質であるリチウムボレート系化合物がアモルファス化され、カーボンと均一に混合されて密着性が増加し、更に熱処理により、該リチウムボレート系化合物の再結晶化と同時にカーボンが該リチウムボレート系化合物の周りに均一に析出する。この際、LiCOが存在することにより、リチウム過剰ボレート系化合物がリチウム欠損になることはなく、高い充放電容量を示すものとなる。 The specific method of the carbon coating treatment is not particularly limited, and in addition to the vapor phase method in which the heat treatment is performed in an atmosphere containing a carbon-containing gas such as methane gas, ethane gas and butane gas, organic substances as a carbon source and lithium borate A thermal decomposition method is also applicable by carbonizing the organic substance by heat treatment after uniformly mixing the compound. In particular, it is preferable to apply a ball milling method in which a heat treatment is performed after a carbon material and Li 2 CO 3 are added to the lithium borate compound and uniformly mixed until the lithium borate compound is amorphized by a ball mill. According to this method, the lithium borate compound, which is a positive electrode active material, is made amorphous by ball milling, uniformly mixed with carbon and adhesion is increased, and recrystallization of the lithium borate compound is further performed by heat treatment. At the same time, carbon is uniformly deposited around the lithium borate compound. At this time, due to the presence of Li 2 CO 3 , the lithium excess borate type compound does not become lithium deficient and exhibits high charge and discharge capacity.
 アモルファス化の程度については、CuのKα線を光源とするX線回折測定において、ボールミリング前の結晶性を有する試料についての(011)面由来の回折ピークの半値幅をB(011)Crystal、ボールミリングにより得られた試料の同ピークの半値幅をB(011)millとした場合に、B(011)Crystal/B(011)millの比が0.1~0.5程度の範囲であればよい。 As for the degree of amorphization, in the X-ray diffraction measurement using the Kα ray of Cu as a light source, the half value width of the diffraction peak derived from the (011) plane of the sample having crystallinity before ball milling is B (011) Crystal , there the half width of the peak of the sample obtained by ball milling the case of the B (011) mill, B ( 011) Crystal / B (011) the ratio of mill is in the range of about 0.1-0.5 Just do it.
 この方法では、カーボン材料としては、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛等を用いることができる。 In this method, acetylene black (AB), ketjen black (KB), graphite or the like can be used as the carbon material.
 リチウムボレート系化合物、カーボン材料、およびLiCOの混合割合については、リチウムボレート系化合物100質量部に対して、カーボン系材料を20~40質量部、LiCOを20~40質量部とすればよい。 Lithium borate-based compound, for the mixing ratio of the carbon material, and Li 2 CO 3, the lithium borate-based compound to 100 parts by mass, 20 to 40 parts by weight of carbon-based material, the Li 2 CO 3 20 to 40 parts by weight And it is sufficient.
 上記した方法でリチウムボレート系化合物がアモルファス化するまでボールミリング処理を行った後、熱処理を行う。熱処理は、リチウムボレート系化合物に含まれる遷移金属イオンを2価に保持するために、還元性雰囲気下で行う。この場合の還元性雰囲気としては、溶融塩中でのリチウムボレート系化合物の合成反応と同様に、2価の遷移金属イオンが金属状態まで還元されることを抑制するために、窒素および二酸化炭素からなる群から選ばれた少なくとも一種のガスと、還元性ガスの混合ガス雰囲気中であることが好ましい。窒素および二酸化炭素からなる群から選ばれた少なくとも一種のガスと、還元性ガスの混合割合は、リチウムボレート系化合物の合成反応時と同様とすればよい。 After the ball milling treatment is performed until the lithium borate compound is amorphized by the method described above, a heat treatment is performed. The heat treatment is performed in a reducing atmosphere to keep the transition metal ion contained in the lithium borate compound at a divalent value. As the reducing atmosphere in this case, nitrogen and carbon dioxide are used to suppress reduction of the divalent transition metal ion to the metal state, as in the synthesis reaction of the lithium borate compound in the molten salt. It is preferable to be in a mixed gas atmosphere of at least one gas selected from the group consisting of: and a reducing gas. The mixing ratio of the reducing gas to the at least one gas selected from the group consisting of nitrogen and carbon dioxide may be the same as in the synthesis reaction of the lithium borate compound.
 熱処理温度は、500~800℃とすることが好ましい。熱処理温度が低すぎる場合には、リチウムボレート系化合物の周りにカーボンを均一に析出させることが難しく、一方、熱処理温度が高すぎると、リチウムボレート系化合物の分解やリチウム欠損が生じることがあり、充放電容量が低下するので好ましくない。熱処理時間は、通常、1~10時間とすればよい。 The heat treatment temperature is preferably 500 to 800.degree. If the heat treatment temperature is too low, it is difficult to deposit carbon uniformly around the lithium borate compound, while if the heat treatment temperature is too high, decomposition of the lithium borate compound or lithium deficiency may occur. It is not preferable because the charge and discharge capacity decreases. The heat treatment time may be usually 1 to 10 hours.
 また、その他のカーボン被覆処理方法として、上記リチウムボレート系化合物に、カーボン材料とLiFを加え、上記した方法と同様にして、ボールミルによってリチウムボレート系化合物がアモルファス化するまで均一に混合した後、熱処理を行っても良い。この場合には、上記した場合と同様に、リチウムボレート系化合物の再結晶化と同時にカーボンが該リチウムボレート系化合物の周りに均一に析出して、導電性が向上し、更に、リチウムボレート系化合物の酸素原子の一部がフッ素原子と置換して、
   組成式:Li1+a-b1-xM’BO3+c-y2y
(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeまたはMnであり、M’は、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3、0<y<1であって、且つa>bである)で表されるフッ素含有リチウムボレート系化合物が形成される。
Further, as another carbon coating treatment method, a carbon material and LiF are added to the above lithium borate compound, and uniformly mixed until the lithium borate compound is amorphized by a ball mill in the same manner as the above method, followed by heat treatment You may In this case, carbon is uniformly deposited around the lithium borate compound simultaneously with the recrystallization of the lithium borate compound in the same manner as described above, the conductivity is improved, and the lithium borate compound is further obtained. Part of the oxygen atoms of is substituted with fluorine atoms,
Composition formula: Li 1 + a−b A b M 1−x M ′ x BO 3 + c−y F 2y
(Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, M is Fe or Mn, and M ′ is Mg, Ca, Co, Al, Ni At least one element selected from the group consisting of Nb, Mo, W, Ti and Zr, each subscript being as follows: 0 ≦ x ≦ 0.5, 0 <a <1, 0 ≦ b A fluorine-containing lithium borate compound represented by <0.2, 0 <c <0.3, 0 <y <1 and a> b) is formed.
 この化合物は、Fが添加されたことにより、正極として用いた場合に、平均電圧が2.6Vから2.8Vに上昇して、より優れた性能を有する正極材料となる。この際、LiFが存在することにより、リチウム過剰ボレート系化合物がリチウム欠損になることはなく、高い充放電容量を示すものとなる。 When this compound is used as a positive electrode due to the addition of F, the average voltage rises from 2.6 V to 2.8 V, and becomes a positive electrode material having more excellent performance. At this time, due to the presence of LiF, the lithium excess borate-based compound does not become lithium deficient and exhibits high charge and discharge capacity.
 この方法では、リチウムボレート系化合物、カーボン材料およびLiFの混合割合については、リチウムボレート系化合物100質量部に対して、カーボン系材料を20~40質量部、LiFを10~40質量部とすればよい。更に、必要に応じて、LiCOが含まれていても良い。ボールミリングおよび熱処理の条件については、上記した場合と同様とすればよい。 In this method, with respect to the mixing ratio of the lithium borate compound, the carbon material and LiF, 20 to 40 parts by mass of the carbon material and 10 to 40 parts by mass of LiF with respect to 100 parts by mass of the lithium borate compound Good. Furthermore, if necessary, Li 2 CO 3 may be contained. The conditions for ball milling and heat treatment may be the same as those described above.
  <二次電池用正極>
 上記した溶融塩中で合成して得られるリチウムボレート系化合物、カーボン被覆処理を行ったリチウムボレート系化合物、およびフッ素添加されたリチウムボレート系化合物は、いずれもリチウムイオン二次電池などの正極用活物質として有効に使用できる。これらのリチウムボレート系化合物を用いる正極は、通常のリチウムイオン二次電池用正極と同様の構造とすることができる。
<Positive electrode for secondary battery>
The lithium borate compounds obtained by synthesizing in the molten salt, the lithium borate compounds subjected to the carbon coating treatment, and the lithium borate compounds added with fluorine are all actives for positive electrodes such as lithium ion secondary batteries It can be used effectively as a substance. The positive electrode using these lithium borate compounds can have the same structure as that of a normal lithium ion secondary battery positive electrode.
 たとえば、上記リチウムボレート系化合物に、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(VaporGrownCarbonFiber:VGCF)等の導電助剤、ポリフッ化ビニリデン(PolyVinylidineDiFluoride:PVdF)、ポリ四フッ化エチレン(PTFE)、スチレン・ブタジエンゴム(SBR)等のバインダー、N-メチル-2-ピロリドン(NMP)等の溶媒を加えてペースト状として、これを集電体に塗布することによって正極を作製することができる。導電助剤の使用量については、特に限定的ではないが、たとえば、リチウムボレート系化合物100質量部に対して、5~20質量部とすることができる。また、バインダーの使用量についても、特に限定的ではないが、たとえば、リチウムボレート系化合物100質量部に対して、5~20質量部とすることができる。また、その他の方法として、リチウムボレート系化合物と、上記の導電助剤およびバインダーを混合したものを、乳鉢やプレス機を用いて混練してフィルム状とし、これを集電体へプレス機で圧着する方法によっても正極を製造することが出来る。 For example, to the above-mentioned lithium borate compounds, conductive aids such as acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (vapor grown carbon fiber (VGCF), etc. A binder such as ethylene oxide (PTFE), styrene butadiene rubber (SBR), or a solvent such as N-methyl-2-pyrrolidone (NMP) is added to form a paste, and this is applied to the current collector to produce a positive electrode. can do. The amount of the conductive aid used is not particularly limited, but can be, for example, 5 to 20 parts by mass with respect to 100 parts by mass of the lithium borate compound. The amount of the binder used is not particularly limited, but can be, for example, 5 to 20 parts by mass with respect to 100 parts by mass of the lithium borate compound. Further, as another method, a mixture of a lithium borate compound, the above-mentioned conductive additive and a binder is kneaded using a mortar or a press to form a film, which is crimped to a current collector with a press. The positive electrode can also be produced by the following method.
 集電体としては、特に限定はなく、従来からリチウムイオン二次電池用正極として使用されている材料、たとえば、アルミ箔、アルミメッシュ、ステンレスメッシュなどを用いることができる。更に、カーボン不織布、カーボン織布なども集電体として使用できる。 The current collector is not particularly limited, and materials conventionally used as a positive electrode for lithium ion secondary batteries, such as aluminum foil, aluminum mesh, stainless steel mesh and the like can be used. Furthermore, carbon non-woven fabric, carbon woven fabric and the like can also be used as the current collector.
 本発明のリチウムイオン二次電池用正極は、その形状、厚さなどについては特に限定的ではないが、たとえば、活物質を充填した後、圧縮することによって、厚さを10~200μm、より好ましくは20~100μmとすることが好ましい。従って、使用する集電体の種類、構造等に応じて、圧縮後に上記した厚さとなるように、活物質の充填量を適宜決めればよい。 The positive electrode for a lithium ion secondary battery according to the present invention is not particularly limited in its shape, thickness and the like, but for example, the active material is filled and then compressed to a thickness of 10 to 200 μm, more preferably Is preferably 20 to 100 μm. Therefore, the loading amount of the active material may be appropriately determined according to the type, structure, and the like of the current collector to be used so as to obtain the above-mentioned thickness after compression.
  <二次電池>
 上記した二次電池用正極を用いる二次電池は、公知の手法により製造することができる。すなわち、正極材料として、上記した正極を使用し、負極材料として、公知の金属リチウム、黒鉛などの炭素系材料、シリコン薄膜などのシリコン系材料、銅-錫やコバルト-錫などの合金系材料、チタン酸リチウムなどの酸化物材料を使用すればよい。また、電解液として、公知のエチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの非水系溶媒に、過塩素酸リチウム、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/L~1.7mol/Lの濃度で溶解させた溶液を使用すればよい。さらにその他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池(あるいはリチウム二次電池)を組立てればよい。
<Secondary battery>
A secondary battery using the above-described positive electrode for secondary battery can be manufactured by a known method. That is, as the positive electrode material, the above-described positive electrode is used, and as the negative electrode material, known metal lithium, carbon based material such as graphite, silicon based material such as silicon thin film, alloy based material such as copper-tin or cobalt-tin, An oxide material such as lithium titanate may be used. In addition, as an electrolytic solution, 0.5 mol / liter of lithium salt such as lithium perchlorate, LiPF 6 , LiBF 4 , and LiCF 3 SO 3 in a known non-aqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and dimethyl carbonate. A solution dissolved at a concentration of L to 1.7 mol / L may be used. Still other known battery components may be used to assemble a lithium ion secondary battery (or lithium secondary battery) according to a conventional method.
 以上、本発明のリチウムボレート系化合物の製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of the manufacturing method of the lithium borate type-compound of this invention was described, this invention is not limited to the said embodiment. In the range which does not deviate from the summary of the present invention, it can carry out with various forms which gave change, improvement, etc. which a person skilled in the art can make.
 以下に、本発明のリチウムボレート系化合物の製造方法の実施例を挙げて、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples of the method for producing a lithium borate compound of the present invention.
 〔実施例1〕溶融塩法による鉄含有リチウムボレート化合物の合成
 原料として、鉄(高純度化学株式会社製、純度99.9%)0.01mol、ホウ酸HBO(キシダ化学株式会社製、純度99%)0.01mol、硝酸リチウム(キシダ化学株式会社製、純度99%)0.01mol、を混合した。この混合割合は、硝酸リチウム100質量部に対して、鉄およびホウ酸の合計量を100質量部の割合とした。
[Example 1] Synthesis of iron-containing lithium borate compound by molten salt method As a raw material, 0.01 mol of iron (manufactured by High Purity Chemical Co., Ltd., purity 99.9%), H 3 BO 3 boric acid (manufactured by Kishida Chemical Co., Ltd.) , Purity 99%) 0.01 mol and lithium nitrate (Kishida Chemical Co., Ltd. make, Purity 99%) 0.01 mol were mixed. The mixing ratio was such that the total amount of iron and boric acid was 100 parts by mass with respect to 100 parts by mass of lithium nitrate.
 これに水2mLを加えて乳棒および乳鉢を用いて混合し、100℃に加熱後さらに混合し、100℃で乾燥した。その後、得られた粉体を金坩堝中で加熱して、二酸化炭素(流量:70mL/分)と水素(流量:30mL/分)の混合ガス雰囲気下で、650℃に加熱して、硝酸リチウムを溶融させた状態で13時間反応させた。 To this was added 2 mL of water, mixed using a pestle and mortar, heated to 100 ° C., mixed further, and dried at 100 ° C. Thereafter, the obtained powder is heated in a gold crucible and heated to 650 ° C. in a mixed gas atmosphere of carbon dioxide (flow rate: 70 mL / min) and hydrogen (flow rate: 30 mL / min) to obtain lithium nitrate The mixture was allowed to react for 13 hours in the molten state.
 反応後、反応系である炉心全体を、加熱器である電気炉から取り出して、ガスを通じたまま室温まで急冷した。なお、このときの冷却速度は、51℃/分であった。その後、生成物をすり潰して、鉄含有リチウムボレート化合物の粉体を得た。 After the reaction, the entire reactor core, which is a reaction system, was removed from the electric furnace, which is a heater, and quenched to room temperature while passing gas. The cooling rate at this time was 51 ° C./min. Thereafter, the product was ground to obtain a powder of iron-containing lithium borate compound.
 得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。XDRパターンを図1に示した。このXDRパターンは、報告されている空間群C2/cの単斜晶LiFeBOのパターンとほぼ一致した。 The obtained product was subjected to X-ray diffraction measurement using a CuKα ray by a powder X-ray diffractometer. The XDR pattern is shown in FIG. This XDR pattern was approximately consistent with the reported pattern of monoclinic LiFeBO 3 in the space group C2 / c.
 また、生成物の走査型電子顕微鏡(SEM)写真を図2に示した。図2から平均粒径を算出したところ、6μmの微細な結晶粒からなる粉体であることが確認できた。 Also, a scanning electron microscope (SEM) photograph of the product is shown in FIG. When the average particle diameter was calculated from FIG. 2, it could be confirmed that it was a powder consisting of fine crystal grains of 6 μm.
 さらに、生成物について誘導結合プラズマ(InductivelyCoupledPlasma:ICP)法によって元素分析した結果、組成式は、Li1.05FeBO3.08となり、リチウム過剰のLiFeBO系リチウムボレート系化合物であることが確認できた。 Further, as a result of elemental analysis of the product by inductively coupled plasma (ICP) method, the composition formula is Li 1.05 FeBO 3.08 , and it can be confirmed that the product is a lithium excess LiFeBO 3 -based lithium borate compound The
 〔比較例1〕固相法による鉄含有リチウムボレート化合物の合成
 炭酸リチウムLiCO、シュウ酸鉄FeC・2HO、およびホウ酸HBOをモル比で1:1:1となるように混合した混合粉末をボールミリングした後、650℃で10時間熱処理により鉄含有リチウムボレート化合物を得た。
Comparative Example 1 Synthesis of Iron-Containing Lithium Borate Compound by Solid State Method Lithium carbonate Li 2 CO 3 , iron oxalate FeC 2 O 4 .2H 2 O, and boric acid H 3 BO 3 in a molar ratio of 1: 1: The mixed powder mixed to become 1 was ball milled, and then heat treated at 650 ° C. for 10 hours to obtain an iron-containing lithium borate compound.
 〔参考例1〕溶融塩法による鉄含有リチウムボレート化合物の合成
 原料として、シュウ酸鉄FeC・2HO(シグマアルドリッチ製、純度99.99%)、水酸化リチウム(無水)LiOH(キシダ化学株式会社製、純度98%)、ホウ酸HBO(キシダ化学株式会社製、純度99.5%)をそれぞれ0.005mol用い、これを炭酸塩混合物(炭酸リチウム(キシダ化学株式会社製、純度99.9%)、炭酸ナトリウム(キシダ化学株式会社製、純度99.5%)、および炭酸カリウム(キシダ化学株式会社製、純度99.5%)をモル比0.435:0.315:0.25で混合したもの)と混合した。混合割合は、炭酸塩混合物100質量部に対して、シュウ酸鉄、水酸化リチウム及びホウ酸の合計量を225質量部の割合とした。
Reference Example 1 Synthesis of Iron-Containing Lithium Borate Compound by Molten Salt Method As a raw material, iron oxalate FeC 2 O 4 .2H 2 O (manufactured by Sigma Aldrich, purity 99.99%), lithium hydroxide (anhydrous) LiOH (anhydrous) Carbonate mixture (lithium carbonate (Kishida Chemical Co., Ltd.) using 0.005 mol of each of Kisida Chemical Co., Ltd. (purity 98%) and boric acid H 3 BO 3 (Kishida Chemical Co., Ltd., purity 99.5%) Product, purity 99.9%), sodium carbonate (Kishida Chemical Co., Ltd., purity 99.5%), and potassium carbonate (Kishida Chemical Co., Ltd., purity 99.5%) at a molar ratio of 0.435: 0. Mixed at 315: 0.25). The mixing ratio was such that the total amount of iron oxalate, lithium hydroxide and boric acid was 225 parts by mass with respect to 100 parts by mass of the carbonate mixture.
 これにアセトン20mlを加えてジルコニア製ボールミルにて500rpmで60分混合し、乾燥した。その後、得られた粉体を金坩堝中で加熱して、二酸化炭素(流量:100mL/分)と水素(流量:3mL/分)の混合ガス雰囲気下で、400℃に加熱して、炭酸塩混合物を溶融させた状態で15時間反応させた。 To this was added 20 ml of acetone, mixed with a zirconia ball mill at 500 rpm for 60 minutes, and dried. Thereafter, the obtained powder is heated in a gold crucible and heated to 400 ° C. in a mixed gas atmosphere of carbon dioxide (flow rate: 100 mL / min) and hydrogen (flow rate: 3 mL / min) to obtain carbonate The mixture was allowed to react in the molten state for 15 hours.
 反応後、温度を下げ100℃になった時点で反応系である炉心全体を、加熱器である電気炉から取り出して、ガスを通じたまま室温まで冷却した。 After the reaction, when the temperature was lowered to 100 ° C., the whole reactor core as a reaction system was taken out of the electric furnace as a heater and cooled to room temperature while passing the gas.
 次いで、生成物に無水酢酸(20ml)を加えて乳鉢ですりつぶし、酢酸(10ml)を加えて炭酸塩等を反応させて取り除き、ろ過して鉄含有リチウムボレート化合物の粉体を得た。 Then, acetic anhydride (20 ml) was added to the product and the mixture was triturated with a mortar, acetic acid (10 ml) was added, carbonates etc were reacted, removed, and filtered to obtain a powder of iron-containing lithium borate compound.
 得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。XDRパターンを図1に示した。XDRパターンは、報告されている空間群C2/cのLiFeBOのパターンとほぼ一致した。また、生成物をSEMにより観察した結果、数μm以下の結晶粒からなる粉体であることが確認できた。さらに、生成物についてICP法によって元素分析した結果、組成式は、Li1.04FeBO3.10となり、リチウム過剰のLiFeBO系リチウムボレート系化合物であることが確認できた。 The obtained product was subjected to X-ray diffraction measurement using a CuKα ray by a powder X-ray diffractometer. The XDR pattern is shown in FIG. The XDR pattern almost matched the pattern of LiFeBO 3 in the reported space group C2 / c. Moreover, as a result of observing a product by SEM, it could be confirmed that it was a powder composed of crystal grains of several μm or less. Furthermore, as a result of elemental analysis of the product by ICP method, the composition formula was Li 1.04 FeBO 3.10 , and it was confirmed that the composition was a lithium excess LiFeBO 3 -based lithium borate compound.
  〔リチウム二次電池の作製〕
 実施例1、比較例1および参考例1にて得られたリチウムボレート系化合物のうちのいずれかを正極活物質として用いたリチウム二次電池を作製した。
[Fabrication of lithium secondary battery]
A lithium secondary battery using any of the lithium borate compounds obtained in Example 1, Comparative Example 1 and Reference Example 1 as a positive electrode active material was produced.
 はじめに、リチウムボレート系化合物100質量部に対して、50質量部のアセチレンブラック(AB)を添加し、遊星ボールミル(5mmのジルコニアボール)を用いて450rpmで5時間ミリング処理し、二酸化炭素と水素の混合ガス(CO:H(モル比)=100:3)の雰囲気下において、700℃で2時間熱処理した。 First, 50 parts by mass of acetylene black (AB) is added to 100 parts by mass of a lithium borate compound, followed by milling for 5 hours at 450 rpm using a planetary ball mill (5 mm of zirconia balls) to obtain carbon dioxide and hydrogen mixed gas (CO 2: H 2 (molar ratio) = 100: 3) in an atmosphere of, and was heated at 700 ° C..
 得られた粉末100質量部に対して、アセチレンブラック(AB)とポリテトラフルオロエチレン(PTFE)の混合物(AB:PTFE(質量比)=2:1の混合物)25質量部を添加し、シート法により3種類の電極(正極)を作製し、140℃で3時間真空乾燥した。 25 parts by mass of a mixture of acetylene black (AB) and polytetrafluoroethylene (PTFE) (a mixture of AB: PTFE (mass ratio) = 2: 1) is added to 100 parts by mass of the obtained powder, and a sheet method Thus, three types of electrodes (positive electrode) were produced and vacuum dried at 140 ° C. for 3 hours.
 その後、所定の溶媒にLiPFを溶解して1mol/Lとした溶液を電解液として用い、セパレータとしてポリプロピレン膜(セルガード製、Celgard2400)、負極としてリチウム金属箔、正極として既に説明した3種類のうちのいずれかの電極を用いたコイン電池(#E1、#C1および#01)を作製した。 Thereafter, a solution of 1 mol / L in which LiPF 6 is dissolved in a predetermined solvent is used as an electrolyte, and a polypropylene film (made by Celgard, Celgard 2400) as a separator, a lithium metal foil as a negative electrode, and the three types already described as a positive electrode. A coin battery (# E1, # C1 and # 01) was manufactured using any of the above electrodes.
 なお、電解液は、充放電試験の試験温度に応じて、溶媒が異なる2種類を準備し、上記のコイン電池に用いた。試験温度が30℃の場合には、エチレンカーボネート(EC):ジメチレンカーボネート(DMC)を体積比でEC:DMC=1:1に混合した溶媒を用いた。試験温度が60℃の場合には、エチレンカーボネート(EC):ジメエチレンカーボネート(DEC)を体積比でEC:DEC=1:1に混合した溶媒を用いた。 In addition, according to the test temperature of a charging / discharging test, electrolyte solution prepared two types from which a solvent differs, and it used for said coin battery. When the test temperature was 30 ° C., a solvent in which ethylene carbonate (EC): dimethylene carbonate (DMC) was mixed at a volume ratio of EC: DMC = 1: 1 was used. When the test temperature was 60 ° C., a solvent in which ethylene carbonate (EC): diethylene carbonate (DEC) was mixed at a volume ratio of EC: DEC = 1: 1 was used.
  〔充放電試験〕
 作製したコイン電池について30℃または60℃にて充放電試験を行った。試験条件は、試験温度30℃では0.1Cにて電圧4.5~1.5V(初回定電圧充電は4.5Vで10時間)、試験温度60℃では0.1Cにて電圧4.2~1.5V(初回定電圧充電は4.2Vで10時間)、とした。電池#E1の充放電特性を図3および図4、電池#01の充放電特性を図5に示した。また、各電池の5サイクル後の放電容量、5サイクル後における平均電圧、および初期放電容量を90%維持できるサイクル数を表1に示した。
[Charge and discharge test]
About the produced coin battery, the charging / discharging test was done at 30 degreeC or 60 degreeC. The test conditions are: voltage 4.5 to 1.5 V at 0.1 C at a test temperature of 30 ° C. (10 hours at 4.5 V for initial constant voltage charging), voltage 4.2 at a temperature of 60 ° C. at 0.1 C The voltage was set to 1.5 V (the first constant voltage charge was 10 hours at 4.2 V). The charge and discharge characteristics of the battery # E1 are shown in FIGS. 3 and 4, and the charge and discharge characteristics of the battery # 01 are shown in FIG. Also, Table 1 shows the discharge capacity after 5 cycles of each battery, the average voltage after 5 cycles, and the number of cycles in which the initial discharge capacity can be maintained at 90%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図3および図4から、実施例1にて合成されたリチウムボレート系化合物を正極活物質として用いた電池#E1は、30℃(室温付近)においても60℃においても、十分な電池特性を示すことがわかった。一方、参考例1にて合成されたリチウムボレート系化合物を正極活物質として用いた電池#01は、60℃で測定した5サイクル後の平均電圧が高かったが、30℃で測定すると非常に低かった。また、表1に示した30℃における充放電試験結果から、電池#E1は、いずれの項目においても電池#01よりも優れることがわかった。実施例1では、参考例1に比べて不純物の生成が抑えられ(図1)、合成温度が650℃で比較的高くても粒子が微細であった(図2)ことから、室温においてもサイクル特性に優れ高容量であったと推測される。 From FIG. 3 and FIG. 4, the battery # E1 using the lithium borate compound synthesized in Example 1 as a positive electrode active material exhibits sufficient battery characteristics both at 30 ° C. (around room temperature) and at 60 ° C. I understood it. On the other hand, in battery # 01 using the lithium borate compound synthesized in Reference Example 1 as a positive electrode active material, the average voltage after 5 cycles measured at 60 ° C. was high, but it was very low when measured at 30 ° C. The Further, from the results of the charge / discharge test at 30 ° C. shown in Table 1, it was found that the battery # E1 was superior to the battery # 01 in any item. In Example 1, compared with Reference Example 1, generation of impurities was suppressed (FIG. 1), and the particles were fine even though the synthesis temperature was relatively high at 650 ° C. (FIG. 2). It is presumed that the characteristics are excellent and the capacity is high.
 比較例1にて合成されたリチウムボレート系化合物は、固相反応法を用いたために粒子が大きく成長した。また、図示しないが、XRDパターンから、LiBOおよびFeの存在が確認された。そのため、電池#C1は、容量が小さくサイクル特性も不十分であった。 In the lithium borate compound synthesized in Comparative Example 1, the particles grew large because the solid phase reaction method was used. Although not shown, the presence of LiBO 2 and Fe 3 O 4 was confirmed from the XRD pattern. Therefore, the battery # C1 had a small capacity and had insufficient cycle characteristics.
 また、参考例1では、実施例1と同様に溶融塩法を用いてリチウムボレート系化合物を合成した。参考例1では、合成温度が400℃で低温であったため、生成物が微細な粒子で得られたと推測される。しかし、電池#01の30℃での容量およびサイクル特性は、電池#E1に比べて、容量およびサイクル特性ともに低いものであった。 Further, in Reference Example 1, a lithium borate compound was synthesized using the molten salt method in the same manner as Example 1. In Reference Example 1, since the synthesis temperature was low at 400 ° C., it is presumed that the product was obtained as fine particles. However, the capacity and cycle characteristics of Battery # 01 at 30 ° C. were lower in both capacity and cycle characteristics as compared to Battery # E1.
 したがって、硝酸リチウムを用いた溶融塩法により合成されたリチウムボレート系化合物は、正極活物質として使用した場合に、室温で使用しても、高容量と優れたサイクル特性をもたらすことがわかった。また、硝酸リチウムが低融点であることを利用して、実施例1よりも低温での合成も可能であることから、さらなる粒子の微細化が可能となり、電池特性の向上が予想される。 Therefore, it was found that the lithium borate compounds synthesized by the molten salt method using lithium nitrate, when used as a positive electrode active material, provide high capacity and excellent cycle characteristics even when used at room temperature. In addition, since synthesis at a lower temperature than Example 1 is also possible by utilizing the fact that lithium nitrate has a low melting point, it is possible to further refine the particles, and it is expected that the battery characteristics will be improved.

Claims (14)

  1.    組成式:Li1+a-b1-xM’BO3+c
    (式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeおよびMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3であって、かつa>bである)で表され、
     リチウム二次電池の正極活物質として用いた場合に、試験温度30℃で0.1Cにて、初回定電圧充電を4.5Vで10時間行い4.5~1.5Vで50サイクル充放電後の該リチウム二次電池の放電容量が初期放電容量の90%以上であることを特徴とするリチウムボレート系化合物。
    Composition formula: Li 1 + a−b A b M 1−x M ′ x BO 3 + c
    (Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, and M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr, each subscript is as follows: 0 ≦ x ≦ 0. 5, 0 <a <1, 0 ≦ b <0.2, 0 <c <0.3 and a> b)
    When used as a positive electrode active material of a lithium secondary battery, after performing initial constant voltage charging at 4.5 V for 10 hours at 0.1 C at a test temperature of 30 ° C. after 50 cycles of charge and discharge at 4.5 to 1.5 V The lithium borate compound, wherein the discharge capacity of the lithium secondary battery is 90% or more of the initial discharge capacity.
  2.  少なくとも硝酸リチウムを含むリチウム含有溶融塩原料と、
     純鉄、純マンガンならびに鉄および/またはマンガンを含む化合物からなる群から選ばれる少なくとも一種を含む遷移金属含有原料と、
     ホウ酸と、を二酸化炭素および還元性ガスを含む混合ガス雰囲気下において、前記リチウム含有溶融塩原料の融点以上900℃以下の該リチウム含有溶融塩原料の溶融塩中で反応させることを特徴とするリチウムボレート系化合物の製造方法。
    A lithium-containing molten salt raw material containing at least lithium nitrate;
    A transition metal-containing raw material comprising at least one selected from the group consisting of pure iron, pure manganese and a compound containing iron and / or manganese;
    It is characterized in that boric acid is reacted in a molten salt of the lithium-containing molten salt raw material which is higher than the melting point of the lithium-containing molten salt raw material and 900 ° C. or less in a mixed gas atmosphere containing carbon dioxide and a reducing gas. Method for producing lithium borate compounds.
  3.  前記溶融塩の温度は、200℃以上900℃以下である請求項2に記載のリチウムボレート系化合物の製造方法。 The method for producing a lithium borate compound according to claim 2, wherein the temperature of the molten salt is 200 ° C or more and 900 ° C or less.
  4.  前記溶融塩の温度は、300℃以上700℃以下である請求項3に記載のリチウムボレート系化合物の製造方法。 The method for producing a lithium borate compound according to claim 3, wherein the temperature of the molten salt is 300 ° C or more and 700 ° C or less.
  5.  前記混合ガスは、前記還元性ガスとして水素ガスを含む請求項2に記載のリチウムボレート系化合物の製造方法。 The method according to claim 2, wherein the mixed gas contains hydrogen gas as the reducing gas.
  6.  前記混合ガスは、二酸化炭素および還元性ガスを体積比で、二酸化炭素:還元性ガス=100:3~60:40の割合で含む請求項2に記載のリチウムボレート系化合物の製造方法。 The method for producing a lithium borate compound according to claim 2, wherein the mixed gas contains carbon dioxide and reducing gas in a volume ratio of carbon dioxide: reducing gas = 100: 3 to 60:40.
  7.  前記遷移金属含有原料は、2価以下の鉄および/またはマンガンを含む請求項2に記載のリチウムボレート系化合物の製造方法。 The method for producing a lithium borate compound according to claim 2, wherein the transition metal-containing raw material contains iron and / or manganese having a valence of 2 or less.
  8.  前記遷移金属含有原料は、純鉄、純マンガン、シュウ酸鉄およびシュウ酸マンガンからなる群から選ばれる少なくとも一種を含む請求項7に記載のリチウムボレート系化合物の製造方法。 The method for producing a lithium borate compound according to claim 7, wherein the transition metal-containing raw material contains at least one selected from the group consisting of pure iron, pure manganese, iron oxalate and manganese oxalate.
  9.  前記リチウム含有溶融塩原料は、硝酸リチウムを必須とし、さらに他のアルカリ金属硝酸塩を含む混合溶融塩からなる請求項2に記載のリチウムボレート系化合物の製造方法。 The method for producing a lithium borate compound according to claim 2, wherein the lithium-containing molten salt raw material is a mixed molten salt containing lithium nitrate as the essential component and further containing another alkali metal nitrate.
  10.  前記遷移金属元素含有原料は、該遷移金属元素含有原料に含まれる金属元素の合計量を100mol%として、鉄およびマンガンからなる群から選ばれた少なくとも一種の遷移金属元素を50~100mol%と、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の金属元素を0~50mol%含む請求項2に記載のリチウムボレート系化合物の製造方法。 The transition metal element-containing raw material contains 50 to 100 mol% of at least one transition metal element selected from the group consisting of iron and manganese, with the total amount of metal elements contained in the transition metal element-containing raw material being 100 mol%. The method for producing a lithium borate compound according to claim 2, which contains 0 to 50 mol% of at least one metal element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr. .
  11.  請求項2に記載の方法でリチウムボレート系化合物を製造した後、前記リチウム含有溶融塩原料を溶媒により除去する工程を含む、リチウムボレート系化合物の製造方法。 The manufacturing method of a lithium borate type-compound including the process of removing the said lithium containing molten salt raw material with a solvent, after manufacturing a lithium borate type-compound by the method of Claim 2.
  12.  請求項2に記載の方法によって得られたリチウムボレート系化合物からなるリチウムイオン二次電池用正極活物質。 The positive electrode active material for lithium ion secondary batteries which consists of a lithium borate type compound obtained by the method of Claim 2.
  13.  請求項12に記載の正極活物質を含むリチウムイオン二次電池用正極。 The positive electrode for lithium ion secondary batteries containing the positive electrode active material of Claim 12.
  14.  請求項13に記載の正極を構成要素として含むリチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode according to claim 13 as a component.
PCT/JP2011/006089 2010-11-05 2011-10-31 Lithium borate compound and method for producing same WO2012060084A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-249038 2010-11-05
JP2010249038A JP5110664B2 (en) 2010-11-05 2010-11-05 Method for producing lithium borate compound

Publications (1)

Publication Number Publication Date
WO2012060084A1 true WO2012060084A1 (en) 2012-05-10

Family

ID=46024212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006089 WO2012060084A1 (en) 2010-11-05 2011-10-31 Lithium borate compound and method for producing same

Country Status (2)

Country Link
JP (1) JP5110664B2 (en)
WO (1) WO2012060084A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789625A (en) * 2016-04-25 2016-07-20 湖南科技大学 Preparation method for cathode material LiCoBO3 of lithium ion battery
CN114566633A (en) * 2022-03-04 2022-05-31 中化国际(控股)股份有限公司 Novel cobalt-free cathode material and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230272A (en) * 2012-04-27 2013-11-14 Universal Entertainment Corp Gaming machine
JP2013230271A (en) * 2012-04-27 2013-11-14 Universal Entertainment Corp Gaming machine
JP2013230273A (en) * 2012-04-27 2013-11-14 Universal Entertainment Corp Gaming machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213016A (en) * 1995-02-03 1996-08-20 Sanyo Electric Co Ltd Lithium secondary battery
JP2000243394A (en) * 1999-02-18 2000-09-08 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2001048545A (en) * 1999-08-09 2001-02-20 Mitsubishi Chemicals Corp Production of lithium-manganese multiple oxide and secondary battery using the same
JP2005085597A (en) * 2003-09-09 2005-03-31 Sanyo Electric Co Ltd Lithium secondary battery
WO2010104137A1 (en) * 2009-03-09 2010-09-16 独立行政法人産業技術総合研究所 Process for producing lithium borate compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213016A (en) * 1995-02-03 1996-08-20 Sanyo Electric Co Ltd Lithium secondary battery
JP2000243394A (en) * 1999-02-18 2000-09-08 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2001048545A (en) * 1999-08-09 2001-02-20 Mitsubishi Chemicals Corp Production of lithium-manganese multiple oxide and secondary battery using the same
JP2005085597A (en) * 2003-09-09 2005-03-31 Sanyo Electric Co Ltd Lithium secondary battery
WO2010104137A1 (en) * 2009-03-09 2010-09-16 独立行政法人産業技術総合研究所 Process for producing lithium borate compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789625A (en) * 2016-04-25 2016-07-20 湖南科技大学 Preparation method for cathode material LiCoBO3 of lithium ion battery
CN114566633A (en) * 2022-03-04 2022-05-31 中化国际(控股)股份有限公司 Novel cobalt-free cathode material and preparation method thereof

Also Published As

Publication number Publication date
JP2012104240A (en) 2012-05-31
JP5110664B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5298286B2 (en) Method for producing lithium silicate compound
JP5013622B2 (en) Method for producing lithium borate compound
JP5116177B2 (en) Method for producing lithium silicate compound
JP5110565B2 (en) Lithium secondary battery, method for producing positive electrode active material coating particles, and method for producing lithium secondary battery
JP5164287B2 (en) Lithium silicate compound and method for producing the same
JP5950389B2 (en) Lithium silicate compound, positive electrode active material, method for producing positive electrode active material, non-aqueous electrolyte secondary battery and vehicle equipped with the same
JP5252064B2 (en) Lithium silicate compound and method for producing the same
WO2017183653A1 (en) Material for positive electrodes
JP2015525730A (en) Doped nickelate compounds
JP2007502249A (en) Boron-substituted lithium insertion compounds, electrode active materials, batteries and electrochromic devices
WO2012060084A1 (en) Lithium borate compound and method for producing same
JP5765780B2 (en) Lithium silicate compound, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery using the same
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5608856B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014155408A1 (en) Hydrogen-containing lithium silicate compound, process for producing same, positive active material for nonaqueous-electrolyte secondary battery, positive electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JP5686378B2 (en) Hydrogen-containing lithium silicate compound and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837738

Country of ref document: EP

Kind code of ref document: A1