WO2017183653A1 - Material for positive electrodes - Google Patents

Material for positive electrodes Download PDF

Info

Publication number
WO2017183653A1
WO2017183653A1 PCT/JP2017/015675 JP2017015675W WO2017183653A1 WO 2017183653 A1 WO2017183653 A1 WO 2017183653A1 JP 2017015675 W JP2017015675 W JP 2017015675W WO 2017183653 A1 WO2017183653 A1 WO 2017183653A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
powder
ion secondary
mass
lithium ion
Prior art date
Application number
PCT/JP2017/015675
Other languages
French (fr)
Japanese (ja)
Inventor
尚 杉江
裕輔 山本
加内江 鈴木
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2018513193A priority Critical patent/JPWO2017183653A1/en
Publication of WO2017183653A1 publication Critical patent/WO2017183653A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material.
  • Patent Document 1 describes that the active material capacity of LiNi 0.80 Co 0.15 Al 0.05 O 2 in the range of 4.2 V to 2.5 V was 188 mAh / g.
  • Patent Document 2 discloses that a positive electrode active material obtained by fluorine treatment of Li (Li 0.2 Ni 0.137 Co 0.125 Mn 0.538 ) O 2 is about 250 mAh / g in the range of 4.8V to 2.5V. It was described that the initial capacity of was shown.
  • Li 1.03 Ni 0.75 Co 0.20 Al 0.05 O 2 showed an initial capacity of about 210 to 220 mAh / g in the range of 4.35 V to 2.5 V. Is described.
  • Patent Document 4 describes a solid solution obtained by mechanochemical reaction between Li 2 O and Co 3 O 4 , CoO, LiCoO 2 , MnO 2 , Fe 2 O 3 , NiO or MoO 3. That the solid solution can function as a positive electrode active material, and that some of these solid solutions showed an initial capacity of about 280 mAh / g. On the other hand, Patent Document 4 describes that charging and discharging were impossible with Li 2 O alone.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a new material that can be a positive electrode active material.
  • the present inventor has directed a material that can be a higher-capacity positive electrode active material.
  • the material contains a lot of lithium per unit mass, the capacity is theoretically high.
  • Patent Document 4 it is impossible to charge and discharge with Li 2 O alone containing a large amount of lithium per unit mass. Therefore, the present inventor examined whether or not there is a substance capable of activating Li 2 O that can function lithium of Li 2 O as a charge carrier. Then, was subjected to a mixture of Li 2 O and Li 6 CoO 4 as a cathode material was found that lithium Li 2 O in the mixture functions as a charge carrier.
  • the present invention has been completed based on such knowledge of the present inventors.
  • the positive electrode material of the present invention functions as a positive electrode active material and exhibits a suitable capacity.
  • 3 is a powder X-ray diffraction chart of positive electrode materials of Example 2-1, Example 3-1, and Example 5-1.
  • 4 is a powder X-ray diffraction chart of positive electrode materials of Example 1-2, Example 2-2, and Example 3-2. It is a powder X-ray diffraction chart of the Li 2 O powder used in Examples and Comparative Examples.
  • 3 is a powder X-ray diffraction chart of Li 6 CoO 4 powder used in Examples 1-1 to 5-1 and Comparative Example 1.
  • FIG. 6 is a graph showing results of charge / discharge capacities of lithium ion secondary batteries of Example 1-1 to Example 5-1 and Comparative Example 1 in Evaluation Example 2.
  • Example 7 is a graph showing the results of charge / discharge capacities of lithium ion secondary batteries of Example 1-2 to Example 5-2 in Evaluation Example 2.
  • 6 is an initial discharge capacity chart of Example 1-1 and Comparative Example 1 in Evaluation Example 2. It is a charging / discharging curve of Example 4-1 in Evaluation Example 3. It is a charging / discharging curve of Example 4-2 in Evaluation Example 3. It is a charging / discharging curve of Example 4-3 in Evaluation Example 3. It is a charging / discharging curve of Example 8-1 in Evaluation Example 4.
  • the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y.
  • the numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.
  • numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
  • a preferably satisfies 4.5 ⁇ a ⁇ 6.5, more preferably 5 ⁇ a ⁇ 6.
  • M is preferably at least one of Co, Fe and Mn.
  • d preferably satisfies 3.5 ⁇ d ⁇ 4.5, and more preferably satisfies 3.8 ⁇ d ⁇ 4.2.
  • Li a Mb D c O d is preferably one exhibiting an inverted fluorite-type crystal structure.
  • D is a doping element, Cu, Zn, Ca, Mg, Zr, S, Si, Li, Na, K, Al, Ti, P, Ga, Ge, V, Mo, Nb, W, La, Hf, It is at least one element selected from Rf and F. Due to the presence and D, changes to the bonding state of oxygen atoms in the reverse fluorite crystal occurs, Li a M b D c O d is likely to improve the efficiency of activating the Li e O f.
  • Li a M b D c O Li 6 CoO 4, Li 5 FeO 4, Li 6 MnO 4, Li 6 (Co x, Mn 1-x) O 4, Li 6-x (Co 1- x, Fe x) O 4, Li 6-x (Mn 1-x, the Fe x) O 4, Li 5 Fe 0.95 Al 0.05 O 4, Li 5 Fe 0.98 Al 0.02 O 4 It can be illustrated.
  • Li a Mb D c O d is preferably in a powder state.
  • suitable average particle diameter of Li a Mb D c O d include 0.1 to 50 ⁇ m, 0.5 to 30 ⁇ m, and 1 to 20 ⁇ m.
  • the average particle diameter in this specification means D50 when measured with a general laser diffraction type particle size distribution measuring apparatus.
  • Li e O f may include, for example, by a number of lithium released from Li 2 O, those oxygen and some lithium is present. From the relationship between the valence electrons of Li and the valence electrons of oxygen, it is reasonable that e and f satisfy e ⁇ 2 ⁇ f.
  • the unshared electron pair of oxygen has a coordination ability to lithium ions
  • an unshared electron pair of oxygen in a chemical structure of Li—O—Li is coordinated with another lithium ion to become Li 3 O.
  • e and f may satisfy 2 ⁇ f ⁇ e ⁇ 3 ⁇ f.
  • Li e O f Li 2 O
  • LiO 2 Li 2 O 2 and LiO 2
  • Li e O f is crystalline if they exhibit a structure of a 4-coordinate or 6-coordinate Li to oxygen atom, it can be utilized regardless of the amorphous, preferably those exhibiting reverse fluorite type crystal structure, especially Moreover, the thing of a powder state is preferable.
  • Suitable average particle diameter of the Li e O f, 0.1 ⁇ 50 ⁇ m , 0.5 ⁇ 30 ⁇ m, can be exemplified 1 ⁇ 20 [mu] m.
  • the action mechanism at the time of charging of the positive electrode material of the present invention will be considered taking a mixture of Li 6 CoO 4 and Li 2 O as an example.
  • the present inventor has investigated the redox reaction during charging / discharging of Li 6 CoO 4 , which is known to exhibit a reversible charging / discharging reaction, by transmission electron microscope-electron energy loss spectroscopy (TEM-EELS) and radiation.
  • TEM-EELS transmission electron microscope-electron energy loss spectroscopy
  • XAFS X-ray absorption fine structure analysis method using optical X-rays was performed.
  • significant energy changes were observed at the Co-L2,3 absorption edge in the TEM-EELS analysis and the Co-K absorption edge in the XAFS analysis, which show the change in the valence of cobalt during charging and discharging of Li 6 CoO 4.
  • the positive electrode material of the present invention in the initial charging process, firstly, with the lithium ions Li 6 CoO 4 is disengaged, Co in Li 6 CoO 4 is activatable oxygen Presumed to change to the state. Next, one electron is released from the 2p orbit of oxygen activated by Co.
  • the activation of oxygen by Co is not only oxygen in the Li 6 CoO 4, since the span via its interface to the Li 2 O in contact with Li 6 CoO 4, the extraction of lithium ions in the Li 2 O Estimated to prompt.
  • the reaction formula it is estimated as follows.
  • Li a M b D c O d while still allowing the positive electrode active material, a trigger compound for the functioning of the Li e O f as the positive electrode active material.
  • the positive electrode material of the present invention the interface between the Li a M b D c O d and Li e O f is the time of withdrawal and storage of the lithium ion, is believed to function as a passage for lithium ions.
  • Li a M b D c O d and Li e O f are preferably present within a range of 20 to 99% by mass, more preferably within a range of 40 to 97% by mass, and even more preferably within a range of 50 to 96% by mass, It is particularly preferred that it is present in the range of ⁇ 95% by weight.
  • the molar ratio of Li a M b D c O d and Li e O f is 20: 80-90: 10 are preferred, 30: 70-85: 15, more preferably, 35: 65-80: 20 and more A ratio of 50:50 to 70:30 is particularly preferable.
  • Production of a positive electrode material of the present invention may be mixed with Li a M b D c O d powder and Li e O f powder.
  • Mixing using a mortar may be used, and mixing may be performed using a known mixer.
  • a stirring mixer such as a V-type mixer, a W-type mixer, a ribbon-type mixer, or a drum mixer may be used, or a ball mill, a jet mill, a hammer mill, a pin mill, a disk mill, a turbo mill, or the like.
  • a pulverizing mixer may be used.
  • the mixing speed and mixing time may be appropriately determined as appropriate. However, Li a M b D c O d and Li e O f it is not appropriate to mix excessive to disappear, using an analytical device such as X-ray powder diffractometer, Li a M b D c O while confirming the presence of d and Li e O f, preferably determined mixing rate and mixing time. Since the capacity of the positive electrode material of the present invention can vary depending on the mixing speed and mixing time, the mixing speed and mixing time should be appropriately determined in order to produce the positive electrode material of the present invention showing an appropriate capacity. Is preferred. Examples of the mixing speed include a ball mill rotational speed of 200 to 1500 rpm, 300 to 1000 rpm, and 400 to 800 rpm.
  • the mixing time when a ball mill is used can be exemplified by 5 to 30 hours and 10 to 25 hours. Furthermore, as mixing conditions, after mixing at the first mixing speed V 1 , mixing may be performed at the second mixing speed V 2 . Here, from the viewpoint of increasing the capacity, it is preferable to satisfy V 1 ⁇ V 2 .
  • the positive electrode material of the present invention may contain a lithium salt selected from Li 2 CO 3 , LiPF 6 , Li 3 PO 4 , and LiBF 4 . From the results of Evaluation Example 4 to be described later, these lithium salts, the effect of Li a M b D c O d as a trigger compound for causing a Li e O f as the positive electrode active material, suitably assist and increase It is suggested that there is an effect, and it is also suggested that the lithium salt itself can act as an active material.
  • the blending amount of the lithium salt in the positive electrode material of the present invention is preferably 1 to 50% by mass, more preferably 3 to 30% by mass, and even more preferably 5 to 20% by mass.
  • the Li a M b D c O d the relationship between the molar ratio of the total amount of Li e O f and lithium salts, 20:80 to 90:10 is preferred, 30: 70: to 85: 15 Gayori
  • 35:65 to 80:20 is more preferable
  • 50:50 to 70:30 is particularly preferable.
  • Lithium salt with respect to the total amount of Li e O f and lithium salts preferably 20 to 80 mass%, more preferably 30 to 70 mass%, or preferably 10 to 70 mol%, more preferably from 10 to It should be blended at 60 mol%.
  • Production of a positive electrode material of the present invention containing a lithium salt may be mixed with Li a M b D c O d powder and Li e O f powder and a lithium salt.
  • Li a M b D c O d powder and Li e O f powder and a lithium salt may be mixed with Li a M b D c O d powder and Li e O f powder and a lithium salt.
  • each condition in manufacture of the positive electrode material of this invention mentioned above is used.
  • the positive electrode including the positive electrode material of the present invention is referred to as the positive electrode of the present invention.
  • the positive electrode of the present invention includes a positive electrode active material layer containing the positive electrode material of the present invention and a current collector.
  • the positive electrode active material layer is formed on the current collector.
  • the positive electrode active material layer may contain a known positive electrode active material in addition to the positive electrode material of the present invention.
  • a conductive additive, a binder, or the like may be added to the positive electrode active material layer.
  • the blending amount of the positive electrode material of the present invention in the positive electrode active material layer is preferably in the range of 30 to 99% by mass, more preferably in the range of 40 to 95% by mass, and still more preferably in the range of 45 to 90% by mass. .
  • Conductive aid is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent.
  • the conductive auxiliary agent may be a chemically inert electronic conductor, and examples thereof include carbon black, graphite, vapor grown carbon fiber (Vapor Grown Carbon Fiber), and various metal particles. . Examples of carbon black include acetylene black, ketjen black (registered trademark), furnace black, and channel black. These conductive assistants can be added to the positive electrode active material layer alone or in combination of two or more.
  • the shape of the conductive auxiliary agent is not particularly limited, but it is preferable that the average particle diameter is small in view of its role.
  • the average particle diameter of the conductive auxiliary agent is preferably 5 ⁇ m or less, more preferably in the range of 0.01 to 3 ⁇ m, further preferably in the range of 0.05 to 2 ⁇ m, and in the range of 0.1 to 1 ⁇ m. Particularly preferred.
  • the blending amount of the conductive additive in the positive electrode active material layer is preferably in the range of 0.5 to 50% by mass, more preferably in the range of 1 to 45% by mass, and particularly in the range of 2 to 40% by mass. preferable.
  • the binder serves to bind the positive electrode material and the conductive additive of the present invention to the surface of the current collector.
  • the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. be able to.
  • hydrophilic group of the polymer having a hydrophilic group examples include a carboxyl group, a sulfo group, a silanol group, an amino group, a hydroxyl group, and a phosphate group.
  • Specific examples of the polymer having a hydrophilic group include polyacrylic acid, carboxymethylcellulose, polymethacrylic acid, and poly (p-styrenesulfonic acid).
  • the amount of the binder in the positive electrode active material layer is preferably in the range of 0.5 to 20% by mass, more preferably in the range of 1 to 15% by mass, and particularly in the range of 2 to 10% by mass. preferable. If the blending amount of the binder is too small, the moldability of the positive electrode active material layer may be lowered. Moreover, when there are too many compounding quantities of a binder, since the quantity of the positive electrode active material in a positive electrode active material layer reduces, it is unpreferable.
  • additives other than the conductive additive and the binder may be appropriately mixed in appropriate amounts.
  • the current collector refers to a chemically inert electronic conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery.
  • the current collector at least one selected from silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel Examples of such a metal material can be given.
  • the current collector may be covered with a known protective layer.
  • the current collector can take the form of a mesh, foil, sheet, film, wire, rod or the like. Therefore, as the current collector, for example, a mesh-like metal, or a metal foil such as a copper foil, a nickel foil, an aluminum foil, or a stainless steel foil can be suitably used.
  • a mesh-like metal, or a metal foil such as a copper foil, a nickel foil, an aluminum foil, or a stainless steel foil can be suitably used.
  • the thickness is preferably in the range of 10 ⁇ m to 100 ⁇ m.
  • a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used.
  • the positive electrode material of the present invention may be applied to the surface of the electric body. Specifically, a slurry containing the positive electrode material of the present invention, a solvent, and, if necessary, a binder and a conductive additive is prepared, and the slurry is applied to the surface of the current collector and then dried.
  • the solvent include N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as NMP), methanol, and methyl isobutyl ketone.
  • the dried product may be compressed.
  • the positive electrode material of the present invention a binder, and, if necessary, a positive electrode mixture containing a conductive additive are prepared, and the positive electrode mixture is pressure-bonded to the current collector, so that the surface of the current collector is A positive electrode active material layer may be formed.
  • the Li a M b D c O d and the Li e O process to f were mixed mixture, the production method comprising the steps of placing the mixture on the current collector of the positive electrode It can be grasped that there is.
  • the Li a M b D c O d and subsequently the Li e O f mixing step of the mixture, and mixed by adding a conductive additive to the mixture, the material for the positive electrode It is preferable to provide the process of obtaining a containing mixture. Due to this manufacturing method, the capacity of the positive electrode provided with the positive electrode material of the present invention may increase. In the step of obtaining the positive electrode material-containing mixture, it is preferable to employ a mixer having the same performance as the mixer used in the production of the positive electrode material of the present invention.
  • mixers examples include stirring mixers such as V-type mixers, W-type mixers, ribbon-type mixers and drum mixers, and pulverizing and mixing such as ball mills, jet mills, hammer mills, pin mills, disk mills, and turbo mills.
  • the machine can be exemplified. What is necessary is just to determine suitably about the suitable mixing conditions in the process of obtaining the material containing mixture for positive electrodes.
  • the mixing speed include, for example, 100 to 1000 rpm, 150 to 600 rpm, and 200 to 400 rpm as the rotation speed of the ball mill.
  • the mixing time when using a ball mill may be 0.1 to 5 hours, 0.3 to 3 hours.
  • a positive electrode active material layer can be formed on the surface of the body.
  • a positive electrode active material layer may be formed on the surface of the current collector by preparing a positive electrode mixture containing a positive electrode material-containing mixture and a binder and then pressing the positive electrode mixture to the current collector. . *
  • the lithium ion secondary battery provided with the positive electrode of the present invention is referred to as the lithium ion secondary battery of the present invention.
  • the lithium ion secondary battery of the present invention may be an open air battery in which oxygen is part of the positive electrode active material, but from the viewpoint of the chemical stability of Li a Mb D c O d
  • a lithium ion secondary battery that is not a battery, that is, a sealed lithium ion secondary battery in which oxygen is not taken in and out is preferable. If it is a sealed lithium ion secondary battery, mixing of moisture and the like can be suppressed.
  • the lithium ion secondary battery of the present invention includes the positive electrode, the negative electrode, the separator and the electrolytic solution of the present invention as battery components.
  • the negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector.
  • the negative electrode active material layer includes a negative electrode active material and, if necessary, a binder and / or a conductive aid.
  • As the current collector, the binder, and the conductive additive those described for the positive electrode may be adopted. Further, styrene-butadiene rubber may be employed as a binder for the negative electrode active material layer.
  • Examples of the negative electrode active material include a carbon-based material capable of inserting and extracting lithium, an element that can be alloyed with lithium, a compound having an element that can be alloyed with lithium, a polymer material, and the like.
  • the carbon-based material examples include non-graphitizable carbon, natural graphite, artificial graphite, coke, graphite, glassy carbon, organic polymer compound fired body, carbon fiber, activated carbon, or carbon black.
  • the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
  • elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si. , Ge, Sn, Pb, Sb, Bi can be exemplified, and Si or Sn is particularly preferable.
  • the compound having an element that can be alloyed with lithium examples include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO or LiSnO can be exemplified, and SiO x (0.3 ⁇ x ⁇ 1.6) is particularly preferable.
  • examples of the compound having an element capable of alloying with lithium include tin compounds such as tin alloys (Cu—Sn alloy, Co—Sn alloy, etc.).
  • polymer material examples include polyacetylene and polypyrrole.
  • the silicon material manufactured by can be mentioned.
  • the silicon material has a structure in which a plurality of plate-like silicon bodies are laminated in the thickness direction. This structure can be confirmed by observation with a scanning electron microscope or the like.
  • the plate-like silicon body has a thickness in the range of 10 nm to 100 nm for efficient insertion and removal reaction of lithium ions.
  • the length of the plate-like silicon body in the major axis direction is preferably in the range of 0.1 ⁇ m to 50 ⁇ m. Further, the plate-like silicon body preferably has a (length in the long axis direction) / (thickness) range of 2 to 1000.
  • the silicon material preferably contains amorphous silicon and / or silicon crystallites.
  • the size of the silicon crystallite is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, and particularly preferably in the range of 1 nm to 10 nm.
  • the size of the silicon crystallite is calculated from the Scherrer equation using X-ray diffraction measurement (XRD measurement) on the silicon material and using the half-value width of the diffraction peak on the Si (111) surface of the obtained XRD chart. Is done.
  • the average particle diameter (D50) is in the range of 1 to 30 ⁇ m, more preferably the average particle It can be exemplified that the diameter (D50) is in the range of 1 to 10 ⁇ m.
  • the negative electrode active material may be carbon coated.
  • the separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit due to contact between the two electrodes.
  • the separator include a porous film using one or more synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene, or a ceramic porous film.
  • the electrolytic solution contains a nonaqueous solvent and an electrolyte dissolved in the nonaqueous solvent.
  • cyclic carbonates examples include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate
  • examples of the cyclic ester include gamma butyrolactone, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone
  • Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate.
  • chain ester examples include propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester.
  • ethers examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
  • solvent a solvent in which a part or all of hydrogen constituting the chemical structure of the above specific solvent is substituted with fluorine may be employed. These nonaqueous solvents may be used alone or in combination with the electrolyte.
  • Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
  • a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 in a nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate.
  • a solution dissolved at a concentration of about 1 / l can be exemplified.
  • a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body.
  • the electrode body may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched.
  • an electrolytic solution is added to the electrode body, and the lithium of the present invention It is preferable to use an ion secondary battery.
  • the lithium ion secondary battery of the present invention can be mounted on a vehicle. Since a lithium ion secondary battery maintains a large charge / discharge capacity and has excellent cycle performance, a vehicle equipped with the lithium ion secondary battery is a high-performance vehicle.
  • the vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source.
  • a vehicle that uses electric energy from a battery as a whole or a part of a power source.
  • an electric vehicle a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, an electric forklift, an electric wheelchair, and an electric assist.
  • Bicycles and electric motorcycles are examples.
  • Example 1-1 64.7 parts by mass of Li 6 CoO 4 powder and 35.3 parts by mass of Li 2 O powder were mixed using a ball mill at 500 rpm for 14.5 hours to produce a positive electrode material of Example 1-1. .
  • Example 1-1 5 parts by weight of the positive electrode material of Example 1-1, 4 parts by weight of acetylene black as a conductive auxiliary agent, and 1 part by weight of polytetrafluoroethylene as a binder were mixed in an agate mortar, processed into a clay shape, and mixed with the positive electrode Got.
  • Mesh-like aluminum was prepared as a current collector, and a positive electrode mixture was pressure-bonded thereto to obtain a positive electrode of Example 1-1. All operations were performed in a glove box with a water concentration of 1 ppm or less, which was purged with argon gas.
  • Lithium foil was prepared and used as a negative electrode.
  • a separator a glass filter (Hoechst Celanese) and celgard 2400 (Polypore Corporation), which is a single-layer polypropylene, were prepared. It was also prepared an electrolyte solution obtained by dissolving LiPF 6 at 1 mol / L in a solvent obtained by mixing ethylene carbonate 3 parts by volume and diethyl carbonate 7 parts by volume. Two types of separators were sandwiched between the negative electrode and the positive electrode of Example 1-1 in this order: negative electrode, glass filter, celgard 2400, and positive electrode of Example 1-1 to form an electrode body.
  • This electrode body was accommodated in a coin-type battery case CR2032 (Hosen Co., Ltd.), and an electrolyte was further injected to obtain a sealed coin-type battery. This was designated as the lithium ion secondary battery of Example 1-1.
  • Example 2-1 Except for using 78.6 parts by mass of Li 6 CoO 4 powder and 21.4 parts by mass of Li 2 O powder, the positive electrode material and positive electrode of Example 2-1 were prepared in the same manner as in Example 1-1. And the lithium ion secondary battery was manufactured.
  • Example 3-1 Except for using 84.6 parts by mass of Li 6 CoO 4 powder and 15.4 parts by mass of Li 2 O powder, the positive electrode material and positive electrode of Example 3-1 were prepared in the same manner as in Example 1-1. And the lithium ion secondary battery was manufactured.
  • Example 4-1 Except for using 89.5 parts by mass of Li 6 CoO 4 powder and 10.5 parts by mass of Li 2 O powder, the positive electrode material and positive electrode of Example 4-1 were prepared in the same manner as in Example 1-1. And the lithium ion secondary battery was manufactured.
  • Example 5-1 Except for using 94.3 parts by mass of Li 6 CoO 4 powder and 5.7 parts by mass of Li 2 O powder, the positive electrode material and positive electrode of Example 5-1 were prepared in the same manner as in Example 1-1. And the lithium ion secondary battery was manufactured.
  • Example 1-2 The positive electrode material, positive electrode, and lithium of Example 1-2 were prepared in the same manner as in Example 1-1, except that after mixing for 14.5 hours at 500 rpm using a ball mill, mixing was further performed for 5 hours at 600 rpm. An ion secondary battery was manufactured.
  • Example 2-2 The positive electrode material, positive electrode and lithium of Example 2-2 were prepared in the same manner as in Example 2-1, except that after mixing for 14.5 hours at 500 rpm using a ball mill, mixing was further performed for 5 hours at 600 rpm. An ion secondary battery was manufactured.
  • Example 3-2 The positive electrode material, positive electrode, and lithium of Example 3-2 were mixed in the same manner as in Example 3-1, except that mixing was performed at 500 rpm for 14.5 hours using a ball mill, and then mixing was performed at 600 rpm for 5 hours. An ion secondary battery was manufactured.
  • Example 4-2 The positive electrode material, positive electrode, and lithium of Example 4-2 were mixed in the same manner as in Example 4-1, except that mixing was performed at 500 rpm for 14.5 hours using a ball mill, and then mixing was performed at 600 rpm for 5 hours. An ion secondary battery was manufactured.
  • Example 5-2 The positive electrode material, positive electrode, and lithium of Example 5-2 were prepared in the same manner as in Example 5-1, except that mixing was performed at 500 rpm for 14.5 hours using a ball mill, followed by addition of 600 rpm for 5 hours. An ion secondary battery was manufactured.
  • Example 6-1 Example 6- In the same manner as in Example 1-1, except that 82.3 parts by mass of Li 5 FeO 4 powder and 17.7 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material. 1 positive electrode material, positive electrode and lithium ion secondary battery were produced.
  • Example 7-1 The positive electrode material of Example 7-1 was used in the same manner as in Example 1-1, except that 89 parts by mass of Li 6 MnO 4 powder and 11 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material. Materials, positive electrodes and lithium ion secondary batteries were manufactured.
  • Example 6- In the same manner as in Example 1-2, except that 82.3 parts by mass of Li 5 FeO 4 powder and 17.7 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material. 2 positive electrode materials, a positive electrode, and a lithium ion secondary battery were manufactured.
  • Example 7-2 The positive electrode material of Example 7-2 was prepared in the same manner as in Example 1-2, except that 89 parts by mass of Li 6 MnO 4 powder and 11 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material. Materials, positive electrodes and lithium ion secondary batteries were manufactured.
  • Comparative Example 1 A positive electrode material, a positive electrode, and a lithium ion secondary battery of Comparative Example 1 were produced in the same manner as in Example 1-1, except that the Li 6 CoO 4 powder itself was used as the positive electrode material.
  • Example 2 The same method as in Example 1-1 was used except that 84.5 parts by mass of Li 2 FeSiO 4 powder and 15.5 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material. A positive electrode material, a positive electrode, and a lithium ion secondary battery were manufactured.
  • Example 3 Except that 84.5 parts by mass of Li 2 FeSiO 4 powder and 15.5 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material, the same method as in Example 1-2 was used. A positive electrode material, a positive electrode, and a lithium ion secondary battery were manufactured.
  • FIG. 1 shows a powder X-ray diffraction chart of the positive electrode materials of Example 2-1, Example 3-1, and Example 5-1
  • FIG. 2 shows Example 1-2, Example 2-2, and 3 shows a powder X-ray diffraction chart of a positive electrode material of Example 3-2.
  • FIG. 3 shows a powder X-ray diffraction chart of Li 6 CoO 4 powder
  • FIGS. 1 to 4 shows a powder X-ray diffraction chart of Li 2 O powder.
  • X-ray energy was measured under the condition of 12.4 keV.
  • the horizontal axis of FIGS. 1 to 4 is 2 ⁇ , and the vertical axis is intensity.
  • Example 2-1 and Example 1-2 suggested the presence of LiCoO 2 represented by the space group Fd-3m. Note that a general crystal structure of LiCoO 2 is represented by a space group R-3m.
  • Li 2 O operates as a positive electrode active material when used in combination with a specific compound. Further, as shown in the examples, by using Li 6 CoO 4 , Li 5 FeO 4 or Li 6 MnO 4 , the positive electrode material of the present invention performed a desired operation as a positive electrode active material.
  • FIG. 5 and FIG. 6 show the results of the charge / discharge capacities of the lithium ion secondary batteries of Examples 1-1 to 5-2 and Comparative Example 1. 5 and 6, “Dchg Cap.” Means discharge capacity, and “Chg Cap.” Means charge capacity. Note that the capacity observed at the time of the first charge includes not only the capacity associated with the originally desired movement of Li ions but also a large amount of electrochemical capacity generated in the process of activating oxygen. Therefore, it was determined that the capacity observed during the first charge should be treated as different from the battery capacity realized in the present invention, and the capacity after the first discharge was defined as the battery capacity in the product of the present invention. In FIGS. 5 and 6, the result of the initial charge capacity is omitted.
  • Example 2-1 to Example 5-1 and Example 1-2 to Example 5-2 showed initial discharge capacities of 200 mAh / g or more.
  • Example 2-1, Example 4-1, Example 1-2, Example 2-2, Example 4-2, and Example 5-2 showed initial discharge capacities of 300 mAh / g or more. Is worthy of special mention.
  • the initial discharge capacity of Example 4-2 and Example 5-2 showed a capacity of about 400 mAh / g or more, and the initial discharge capacity of Example 1-2 was a capacity of 600 mAh / g or more. It is surprising to show that.
  • Example 1-1 in which the mass mixing ratio of Li 6 CoO 4 is 64.7%, the capacity is about 110 mAh / g, and the capacity of Comparative Example 1 in which the mixing ratio of Li 6 CoO 4 is 100%. Although it was about 118 mAh / g, the difference was noticeable when the discharge curves were compared.
  • FIG. 7 shows initial discharge curves of Comparative Example 1 and Example 1-1. In particular, in the reaction between 2.6 V and 3.0 V, it can be understood that in Example 1-1, a capacity expressed by utilizing O electrons of Li 2 O is added.
  • Example 1-1 has a completely different charging / discharging mechanism that Comparative Example 1 does not have, and the above-described lithium ions are occluded at different timings, and Li 6 CoO 4 and Li 2 O are separated. It can be said that the effect produced by Example 1-1 is remarkable. In all of Examples 1-1 to 5-2, and Examples 6 and 7, the characteristics of the above-described discharge curve were confirmed, and it is considered that the capacity due to the activation of Li 2 O was developed. .
  • Examples 2-1 to 5-1 and Examples 1-2 to 5-2 show a charge / discharge capacity of about 200 mAh / g or more even after repeated charge / discharge.
  • Example 3-1 to Example 5-1, Example 2-2 to Example 5-2 are advantageous in that the difference between the charge / discharge capacity after the second time and the initial discharge capacity is small. It can be said. This is due to differences in the mixing ratio of Li 2 O and the trigger substance and the ball milling conditions suggested by the powder X-ray diffraction results of FIGS. It is expected to be related to what was recognized, but the details are not yet known.
  • Example 4-3 5 parts by mass of the positive electrode material of Example 4-2 and 4 parts by mass of acetylene black as a conductive auxiliary agent were mixed at 300 rpm for 0.5 hour using a ball mill, and the positive electrode of Example 4-3 A material-containing mixture was prepared. 1 part by mass of polytetrafluoroethylene as a binder was added to the positive electrode material-containing mixture of Example 4-3, mixed in an agate mortar, processed into a clay, and a positive electrode mixture was obtained. Mesh-like aluminum was prepared as a current collector, and a positive electrode mixture was pressure-bonded thereto to obtain a positive electrode of Example 4-3. All operations were performed in a glove box with a water concentration of 1 ppm or less, which was purged with argon gas. Thereafter, a lithium ion secondary battery of Example 4-3 was produced in the same manner as in Example 4-1.
  • Example 3 The lithium ion secondary batteries of Example 4-1, Example 4-2, and Example 4-3 are charged to 3.5 V and discharged to 1.5 V under a constant current of 13.5 mA / g. And charging / discharging was performed. Evaluation was carried out in a thermostat controlled at 25 ° C.
  • the charge / discharge curve in the lithium ion secondary battery of Example 4-1 is shown in FIG. 8, the charge / discharge curve in the lithium ion secondary battery of Example 4-2 is shown in FIG. 9, and the lithium ion in Example 4-3
  • a charge / discharge curve in the secondary battery is shown in FIG.
  • FIG. 9 and FIG. 10 “1cyc CHG” means a charging curve, and “1cyc DCHG” means a discharging curve.
  • the discharge capacity in the lithium ion secondary battery of Example 4-3 is significantly larger than the discharge capacity in Example 4-1 and Example 4-2. . That is, it can be said that the positive electrode of Example 4-3 has a large capacity and a high energy density.
  • the carbon-based conductive aids such as acetylene black, the effect of Li a M b D c O d as a trigger compound for causing a Li e O f as the positive electrode active material, suitably auxiliary and increased It is suggested that there is an effect to do. And it can be said that this effect is more clearly demonstrated by processing the positive electrode material and the conductive additive of the present invention under stronger mixing conditions.
  • Example 8-1 Li 6 CoO 4 powder, the Li 2 O powder and Li 2 CO 3 powder, using a ball mill, and mixed for 14.5 hours at 500 rpm, further, add 5 hours mixing at 600 rpm, Example 8-1
  • the positive electrode material was manufactured.
  • the molar ratio of Li 6 CoO 4 powder, Li 2 O powder, and Li 2 CO 3 powder in the positive electrode material of Example 8-1 was 66:17:17, and the mass ratio was 86: 4: 10.
  • Example 8-1 5 parts by mass of the positive electrode material of Example 8-1 and 4 parts by mass of acetylene black as a conductive auxiliary agent were mixed at 300 rpm for 0.5 hour using a ball mill, and the positive electrode of Example 8-1 A material-containing mixture was prepared. 1 part by mass of polytetrafluoroethylene as a binder was added to the positive electrode material-containing mixture of Example 8-1 and mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. A mesh-like aluminum was prepared as a current collector, and a positive electrode mixture was pressure-bonded thereto to obtain a positive electrode of Example 8-1. All operations were performed in a glove box with a water concentration of 1 ppm or less, which was purged with argon gas. Thereafter, a lithium ion secondary battery of Example 8-1 was produced in the same manner as in Example 1-1.
  • Example 8-2 Except for using LiPF 6 powder in place of Li 2 CO 3 powder, the same procedure as in Example 8-1 was used to produce the positive electrode material, positive electrode material-containing mixture, positive electrode, and lithium ion A secondary battery was manufactured.
  • the molar ratio of Li 6 CoO 4 powder, Li 2 O powder and LiPF 6 powder in the positive electrode material of Example 8-2 is 53: 41: 6, and the mass ratio is 80: 11: 9.
  • Example 8-3 The positive electrode material, positive electrode material-containing mixture, positive electrode, and lithium in Example 8-3 were prepared in the same manner as in Example 8-1, except that Li 3 PO 4 powder was used instead of Li 2 CO 3 powder. An ion secondary battery was manufactured.
  • the molar ratio of the Li 6 CoO 4 powder, the Li 2 O powder and the Li 3 PO 4 powder in the positive electrode material of Example 8-3 is 58: 33: 9, and the mass ratio is 82: 9: 9.
  • Example 8-4 Except for using LiBF 4 powder in place of Li 2 CO 3 powder, the same procedure as in Example 8-1 was performed, and the positive electrode material, positive electrode material-containing mixture, positive electrode, and lithium ion secondary battery of Example 8-4 were used. A secondary battery was manufactured.
  • the molar ratio of Li 6 CoO 4 powder, Li 2 O powder and LiBF 4 powder in the positive electrode material of Example 8-4 is 60:28:11, and the mass ratio is 84: 7: 9.
  • FIG. 11 shows a charge / discharge curve of the lithium ion secondary battery of Example 8-1.
  • “1cyc CHG” means a charging curve
  • “1cyc DCHG” means a discharging curve.
  • the initial discharge capacity of the lithium ion secondary battery of Example 8-1 was 458.3 mAh / g.
  • the initial discharge capacity of the lithium ion secondary battery of Example 8-2 was 446.6 mAh / g
  • the initial discharge capacity of the lithium ion secondary battery of Example 8-3 was 432.3 mAh / g
  • Example 8- The initial discharge capacity of the lithium ion secondary battery 4 was 418.7 mAh / g.
  • the lithium salt selected from Li 2 CO 3, LiPF 6, Li 3 PO 4, LiBF 4 is, Li e O Li a of f as a trigger compound to function as a positive electrode active material M b D It is suggested that there is an effect of suitably assisting and increasing the action of c O d . Moreover, it is suggested that said lithium salt itself is acting as an active material from the value of the discharge capacity shown in FIG. 10 and the shape of the discharge curve.

Abstract

Provided is a novel material for positive electrodes, which is capable of serving as a positive electrode active material. A material for positive electrodes, which is characterized by containing LiaMbDcOd (wherein 4 < a < 7, (b + c) = 1, 0.9 ≤ b ≤ 1, 0 ≤ c ≤ 0.1 and 3 < d < 5 are satisfied; M represents at least one transition metal; and D represents a dopant element) and LieOf (wherein 0 < e and 0 < f are satisfied).

Description

正極用材料Positive electrode material
 本発明は、正極用材料に関するものである。 The present invention relates to a positive electrode material.
 二次電池の正極活物質には種々の材料が用いられることが知られており、また、高容量の正極活物質となり得る材料が探求されている。 It is known that various materials are used for the positive electrode active material of the secondary battery, and a material that can be a high-capacity positive electrode active material is being sought.
 例えば、高容量の正極活物質としては、層状岩塩構造のLiCoOやLiNiOが広く知られている。また、特許文献1には、4.2V~2.5Vの範囲におけるLiNi0.80Co0.15Al0.05の活物質容量が188mAh/gであったことが記載されている。 For example, layered rock salt structures such as LiCoO 2 and LiNiO 2 are widely known as high-capacity positive electrode active materials. Patent Document 1 describes that the active material capacity of LiNi 0.80 Co 0.15 Al 0.05 O 2 in the range of 4.2 V to 2.5 V was 188 mAh / g.
 特許文献2には、Li(Li0.2Ni0.137Co0.125Mn0.538)Oをフッ素処理した正極活物質が、4.8V~2.5Vの範囲において250mAh/g程度の初期容量を示したことが記載されている。 Patent Document 2 discloses that a positive electrode active material obtained by fluorine treatment of Li (Li 0.2 Ni 0.137 Co 0.125 Mn 0.538 ) O 2 is about 250 mAh / g in the range of 4.8V to 2.5V. It was described that the initial capacity of was shown.
 特許文献3には、Li1.03Ni0.75Co0.20Al0.05が、4.35V~2.5Vの範囲において、210~220mAh/g程度の初期容量を示したことが記載されている。 In Patent Document 3, Li 1.03 Ni 0.75 Co 0.20 Al 0.05 O 2 showed an initial capacity of about 210 to 220 mAh / g in the range of 4.35 V to 2.5 V. Is described.
 また、特許文献4には、LiOと、Co、CoO、LiCoO、MnO、Fe、NiO又はMoOとをメカノケミカル反応させた固溶体が記載されており、これらの固溶体が正極活物質として機能し得ること、及び、これらの固溶体のうち一部のものが280mAh/g程度の初期容量を示したことが記載されている。他方、特許文献4には、LiO単独では充放電が不可能であったことが記載されている。 Patent Document 4 describes a solid solution obtained by mechanochemical reaction between Li 2 O and Co 3 O 4 , CoO, LiCoO 2 , MnO 2 , Fe 2 O 3 , NiO or MoO 3. That the solid solution can function as a positive electrode active material, and that some of these solid solutions showed an initial capacity of about 280 mAh / g. On the other hand, Patent Document 4 describes that charging and discharging were impossible with Li 2 O alone.
特開2013-114848号公報JP 2013-114848 A 特開2014-75177号公報JP 2014-75177 A 特開2014-22127号公報JP 2014-22127 A 特開2015-107890号公報JP2015-107890A
 二次電池の技術分野における研究者が、研究を鋭意推進した結果、高容量となり得る種々の材料が提供されている。しかしながら、産業界からは、正極活物質となり得る新たな材料が求められている。 Investigators in the technical field of secondary batteries have eagerly promoted research, and as a result, various materials that can have a high capacity have been provided. However, a new material that can be used as a positive electrode active material is demanded by the industry.
 本発明は、かかる事情に鑑みて為されたものであり、正極活物質となり得る新たな材料を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a new material that can be a positive electrode active material.
 本発明者は、より高容量の正極活物質となり得る材料を指向した。ここで、単位質量あたり、多くのリチウムを含有する材料であれば、理論上は高容量となる。しかし、単位質量あたり、多くのリチウムを含有するLiO単独では、充放電が不可能であることは、特許文献4に記載のとおりである。そこで、本発明者は、LiOのリチウムを電荷担体として機能させることができる、LiOを活性化させるような物質があるか否かを検討した。そして、LiOとLiCoOの混合物を正極用材料として供したところ、当該混合物におけるLiOのリチウムが電荷担体として機能することを知見した。本発明は、本発明者のかかる知見に基づき、完成されたものである。 The present inventor has directed a material that can be a higher-capacity positive electrode active material. Here, if the material contains a lot of lithium per unit mass, the capacity is theoretically high. However, as described in Patent Document 4, it is impossible to charge and discharge with Li 2 O alone containing a large amount of lithium per unit mass. Therefore, the present inventor examined whether or not there is a substance capable of activating Li 2 O that can function lithium of Li 2 O as a charge carrier. Then, was subjected to a mixture of Li 2 O and Li 6 CoO 4 as a cathode material was found that lithium Li 2 O in the mixture functions as a charge carrier. The present invention has been completed based on such knowledge of the present inventors.
 本発明の正極用材料は、Li(ただし、4<a<7、b+c=1、0.9≦b≦1、0≦c≦0.1、3<d<5を満足する。Mは少なくとも1種の遷移金属である。Dはドープ元素である。)と、Li(ただし、0<e、0<fを満足する。)とを含有することを特徴とする。 Positive electrode material of the present invention, Li a M b D c O d ( although, 4 <a <7, b + c = 1,0.9 ≦ b ≦ 1,0 ≦ c ≦ 0.1,3 <d <5 M is at least one transition metal, D is a doping element), and Li e O f (where 0 <e, 0 <f is satisfied). Features.
 本発明の正極用材料は、正極活物質として機能して、好適な容量を示す。 The positive electrode material of the present invention functions as a positive electrode active material and exhibits a suitable capacity.
実施例2-1、実施例3-1及び実施例5-1の正極用材料の粉末X線回折チャートである。3 is a powder X-ray diffraction chart of positive electrode materials of Example 2-1, Example 3-1, and Example 5-1. 実施例1-2、実施例2-2及び実施例3-2の正極用材料の粉末X線回折チャートである。4 is a powder X-ray diffraction chart of positive electrode materials of Example 1-2, Example 2-2, and Example 3-2. 実施例及び比較例で用いたLiO粉末の粉末X線回折チャートである。It is a powder X-ray diffraction chart of the Li 2 O powder used in Examples and Comparative Examples. 実施例1-1~5-1及び比較例1で用いたLiCoO粉末の粉末X線回折チャートである。 3 is a powder X-ray diffraction chart of Li 6 CoO 4 powder used in Examples 1-1 to 5-1 and Comparative Example 1. FIG. 評価例2における実施例1-1~実施例5-1、比較例1のリチウムイオン二次電池の充放電容量の結果を示すグラフである。6 is a graph showing results of charge / discharge capacities of lithium ion secondary batteries of Example 1-1 to Example 5-1 and Comparative Example 1 in Evaluation Example 2. 評価例2における実施例1-2~実施例5-2のリチウムイオン二次電池の充放電容量の結果を示すグラフである。7 is a graph showing the results of charge / discharge capacities of lithium ion secondary batteries of Example 1-2 to Example 5-2 in Evaluation Example 2. 評価例2における実施例1-1及び比較例1の初回放電容量チャートである。6 is an initial discharge capacity chart of Example 1-1 and Comparative Example 1 in Evaluation Example 2. 評価例3における実施例4-1の充放電曲線である。It is a charging / discharging curve of Example 4-1 in Evaluation Example 3. 評価例3における実施例4-2の充放電曲線である。It is a charging / discharging curve of Example 4-2 in Evaluation Example 3. 評価例3における実施例4-3の充放電曲線である。It is a charging / discharging curve of Example 4-3 in Evaluation Example 3. 評価例4における実施例8-1の充放電曲線である。It is a charging / discharging curve of Example 8-1 in Evaluation Example 4.
 以下に、本発明を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。 The best mode for carrying out the present invention will be described below. Unless otherwise specified, the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
 本発明の正極用材料は、Li(ただし、4<a<7、b+c=1、0.9≦b≦1、0≦c≦0.1、3<d<5を満足する。Mは少なくとも1種の遷移金属である。Dはドープ元素である。)と、Li(ただし、0<e、0<fを満足する。)とを含有することを特徴とする。 Positive electrode material of the present invention, Li a M b D c O d ( although, 4 <a <7, b + c = 1,0.9 ≦ b ≦ 1,0 ≦ c ≦ 0.1,3 <d <5 M is at least one transition metal, D is a doping element), and Li e O f (where 0 <e, 0 <f is satisfied). Features.
 Liにおいて、aは好ましくは4.5≦a≦6.5を満足し、より好ましくは5≦a≦6を満足する。Mは、Co、Fe及びMnの少なくとも1種であるのが好ましい。dは好ましくは3.5≦d≦4.5を満足し、より好ましくは3.8≦d≦4.2を満足する。 In Li a M b D c O d , a preferably satisfies 4.5 ≦ a ≦ 6.5, more preferably 5 ≦ a ≦ 6. M is preferably at least one of Co, Fe and Mn. d preferably satisfies 3.5 ≦ d ≦ 4.5, and more preferably satisfies 3.8 ≦ d ≦ 4.2.
 Liは逆ホタル石型の結晶構造を示すものが好ましい。Dは、ドープ元素であり、Cu、Zn、Ca、Mg、Zr、S、Si、Li、Na、K、Al、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Hf、Rf、Fから選ばれる少なくとも1の元素である。Dの存在に因り、逆ホタル石型の結晶内の酸素原子の結合状態に変化が生じ、LiがLiefを活性化する効率を向上させる可能性がある。 Li a Mb D c O d is preferably one exhibiting an inverted fluorite-type crystal structure. D is a doping element, Cu, Zn, Ca, Mg, Zr, S, Si, Li, Na, K, Al, Ti, P, Ga, Ge, V, Mo, Nb, W, La, Hf, It is at least one element selected from Rf and F. Due to the presence and D, changes to the bonding state of oxygen atoms in the reverse fluorite crystal occurs, Li a M b D c O d is likely to improve the efficiency of activating the Li e O f.
 Liの具体例として、LiCoO、LiFeO、LiMnO、Li(Co,Mn1-x)O、Li6-x(Co1-x,Fe)O、Li6-x(Mn1-x,Fe)O、LiFe0.95Al0.05、LiFe0.98Al0.02を例示できる。 Li a M b D c O Examples of d, Li 6 CoO 4, Li 5 FeO 4, Li 6 MnO 4, Li 6 (Co x, Mn 1-x) O 4, Li 6-x (Co 1- x, Fe x) O 4, Li 6-x (Mn 1-x, the Fe x) O 4, Li 5 Fe 0.95 Al 0.05 O 4, Li 5 Fe 0.98 Al 0.02 O 4 It can be illustrated.
 Liは粉末状態のものが好ましい。Liの好適な平均粒子径としては、0.1~50μm、0.5~30μm、1~20μmを例示できる。なお、本明細書における平均粒子径とは、一般的なレーザー回折式粒度分布測定装置で測定した場合のD50を意味する。 Li a Mb D c O d is preferably in a powder state. Examples of suitable average particle diameter of Li a Mb D c O d include 0.1 to 50 μm, 0.5 to 30 μm, and 1 to 20 μm. In addition, the average particle diameter in this specification means D50 when measured with a general laser diffraction type particle size distribution measuring apparatus.
 Liにおいて、e=2の場合、fは好ましくは0<f≦3を満足し、より好ましくは0<f≦2を満足し、さらに好ましくは1≦f≦2を満足する。Liとの式は、例えば、LiOから多くのリチウムが離脱して、酸素と若干のリチウムとが存在するものを包含する。Liの価電子と酸素の価電子の関係から、eとfはe≦2×fを満足するのが合理的ではあるが、酸素の非共有電子対はリチウムイオンに対する配位能を有するため、例えば、Li-O-Liなる化学構造における酸素の非共有電子対が、他のリチウムイオンと配位結合して、LiOとなることも想定できる。そうすると、eとfは2×f<e<3×fを満足する場合もあり得ると考えられる。 In li e O f, the case of e = 2, f is preferably satisfied 0 <f ≦ 3, more preferably satisfies 0 <f ≦ 2, more preferably satisfies 1 ≦ f ≦ 2. Wherein the Li e O f may include, for example, by a number of lithium released from Li 2 O, those oxygen and some lithium is present. From the relationship between the valence electrons of Li and the valence electrons of oxygen, it is reasonable that e and f satisfy e ≦ 2 × f. However, since the unshared electron pair of oxygen has a coordination ability to lithium ions, For example, it can be assumed that an unshared electron pair of oxygen in a chemical structure of Li—O—Li is coordinated with another lithium ion to become Li 3 O. Then, it is considered that e and f may satisfy 2 × f <e <3 × f.
 Liの具体例として、LiO、Li及びLiOを例示できる。LiはLiが酸素原子に対し4配位又は6配位の構造を示すならば結晶性、非晶性を問わず活用できるが、特に逆ホタル石型の結晶構造を示すものが好ましく、また、粉末状態のものが好ましい。Liの好適な平均粒子径としては、0.1~50μm、0.5~30μm、1~20μmを例示できる。 Specific examples of the Li e O f, Li 2 O , may be exemplified Li 2 O 2 and LiO 2. Li e O f is crystalline if they exhibit a structure of a 4-coordinate or 6-coordinate Li to oxygen atom, it can be utilized regardless of the amorphous, preferably those exhibiting reverse fluorite type crystal structure, especially Moreover, the thing of a powder state is preferable. Suitable average particle diameter of the Li e O f, 0.1 ~ 50μm , 0.5 ~ 30μm, can be exemplified 1 ~ 20 [mu] m.
 ここで、本発明の正極用材料の充電時の作用機序を、LiCoOとLiOとの混合物を例にして考察する。 Here, the action mechanism at the time of charging of the positive electrode material of the present invention will be considered taking a mixture of Li 6 CoO 4 and Li 2 O as an example.
 まず、本発明が想起されたきっかけとしての基礎研究について説明する。本発明者は、可逆的な充放電反応を示すことが知られているLiCoOの充放電時の酸化還元反応について、透過型電子顕微鏡-電子エネルギー損失分光法(TEM-EELS)及び放射光X線を用いたX線吸収微細構造(XAFS)解析法を用いた詳細な分析を行った。その結果、LiCoOの充放電時にコバルトの価数変化を示す、TEM-EELS分析におけるCo-L2,3吸収端、及びXAFS解析におけるCo-K吸収端において、顕著なエネルギー変化が観察されたのは、初回充電反応時のみであり、初回放電反応以降では観察されなかった。初回放電反応以降では、XAFSのCo-K吸収端が僅かに可逆的な形状変化を示すことを確認した。一方、酸素の2p軌道のエネルギー変化を示すTEM-EELS分析におけるO-K吸収端の形状変化が、初回放電以降の充放電反応時には可逆的に観察された。すなわち、LiCoOの可逆的な充放電反応は、Coではなく、主に酸素の電子の動きによって発現していると考えられる。さらに、Coには充放電反応時に酸素の電子の動きを補助する役割があると考えられる。 First, basic research as a trigger for the present invention will be described. The present inventor has investigated the redox reaction during charging / discharging of Li 6 CoO 4 , which is known to exhibit a reversible charging / discharging reaction, by transmission electron microscope-electron energy loss spectroscopy (TEM-EELS) and radiation. Detailed analysis using an X-ray absorption fine structure (XAFS) analysis method using optical X-rays was performed. As a result, significant energy changes were observed at the Co-L2,3 absorption edge in the TEM-EELS analysis and the Co-K absorption edge in the XAFS analysis, which show the change in the valence of cobalt during charging and discharging of Li 6 CoO 4. It was only during the first charge reaction and was not observed after the first discharge reaction. After the initial discharge reaction, it was confirmed that the Co-K absorption edge of XAFS showed a slightly reversible shape change. On the other hand, the shape change of the OK absorption edge in the TEM-EELS analysis showing the energy change of 2p orbit of oxygen was reversibly observed during the charge / discharge reaction after the first discharge. That is, it is considered that the reversible charge / discharge reaction of Li 6 CoO 4 is expressed mainly by the movement of oxygen electrons, not Co. Furthermore, Co is considered to have a role of assisting the movement of oxygen electrons during the charge / discharge reaction.
 上記基礎研究の結果をふまえると、本発明の正極用材料は、初回充電過程において、まず、LiCoOのリチウムイオンが離脱するに伴い、LiCoO内のCoが酸素を活性可能な状態に変化させると推定される。次いで、Coによって活性化された酸素の2p軌道から一電子が抜ける状態になる。ここで、Coによる酸素の活性化はLiCoO内の酸素だけではなく、LiCoOと接触するLiOへも界面を介して及ぶため、LiO内のリチウムイオンの離脱を促すと推定される。作用機序の一部を反応式で示すと、以下のとおりと推定される。 Given the results of the basic research, the positive electrode material of the present invention, in the initial charging process, firstly, with the lithium ions Li 6 CoO 4 is disengaged, Co in Li 6 CoO 4 is activatable oxygen Presumed to change to the state. Next, one electron is released from the 2p orbit of oxygen activated by Co. Here, the activation of oxygen by Co is not only oxygen in the Li 6 CoO 4, since the span via its interface to the Li 2 O in contact with Li 6 CoO 4, the extraction of lithium ions in the Li 2 O Estimated to prompt. When a part of the mechanism of action is shown in the reaction formula, it is estimated as follows.
 LiCo2+ → LiCo3+ + Li + e
 LiCo3+ + LiO ⇔ [LiCo3+ (LiO)] + 2Li + 2e
Li 6 Co 2+ O 4 → Li 5 Co 3+ O 4 + Li + + e
Li 5 Co 3+ O 4 + Li 2 O ⇔ [Li 4 Co 3+ O 4 · (LiO · )] + 2Li + + 2e
 可逆的作用機序の一部を微視的な反応式で示すと、以下のとおりと推定される。
 Co3+-O-Li ⇔ Co3+-O + Li + e
 O-Co3+ + LiO ⇔ [O-Co-O-Li] + Li + e
When a part of the reversible mechanism of action is shown by a microscopic reaction equation, it is estimated as follows.
Co 3+ -O-Li ⇔ Co 3+ -O · + Li + + e -
O—Co 3+ + Li 2 O ⇔ [O—Co—O · —Li] + Li + + e
 したがって、Liは正極活物質でありつつ、Liを正極活物質として機能させるためのトリガー化合物であるといえる。また、本発明の正極用材料において、LiとLiとの界面は、リチウムイオンの離脱及び吸蔵の際の、リチウムイオンの通路として機能すると考えられる。 Therefore, it can be said that Li a M b D c O d while still allowing the positive electrode active material, a trigger compound for the functioning of the Li e O f as the positive electrode active material. Further, the positive electrode material of the present invention, the interface between the Li a M b D c O d and Li e O f is the time of withdrawal and storage of the lithium ion, is believed to function as a passage for lithium ions.
 容量の点において、Li及びLiの配合量は、Li及びLiの合計質量に対して、Liが20~99質量%の範囲内で存在するのが好ましく、40~97質量%の範囲内で存在するのがより好ましく、50~96質量%の範囲内で存在するのがさらに好ましく、60~95質量%の範囲内で存在するのが特に好ましい。また、LiとLiのモル比は、20:80~90:10が好ましく、30:70~85:15がより好ましく、35:65~80:20がさらに好ましく、50:50~70:30が特に好ましい。 In terms of capacity, the amount of Li a M b D c O d and Li e O f, based on the total mass of Li a M b D c O d and Li e O f, Li a M b D c O d is preferably present within a range of 20 to 99% by mass, more preferably within a range of 40 to 97% by mass, and even more preferably within a range of 50 to 96% by mass, It is particularly preferred that it is present in the range of ~ 95% by weight. The molar ratio of Li a M b D c O d and Li e O f is 20: 80-90: 10 are preferred, 30: 70-85: 15, more preferably, 35: 65-80: 20 and more A ratio of 50:50 to 70:30 is particularly preferable.
 本発明の正極用材料の製造は、Li粉体とLi粉体を混合すればよい。乳鉢を用いた混合でも良いし、公知の混合機を用いて混合してもよい。混合機としては、V型混合機、W型混合機、リボン型混合機、ドラムミキサーなどの攪拌混合機を用いてもよいし、ボールミル、ジェットミル、ハンマーミル、ピンミル、ディスクミル、ターボミルなどの粉砕混合機を用いてもよい。 Production of a positive electrode material of the present invention may be mixed with Li a M b D c O d powder and Li e O f powder. Mixing using a mortar may be used, and mixing may be performed using a known mixer. As the mixer, a stirring mixer such as a V-type mixer, a W-type mixer, a ribbon-type mixer, or a drum mixer may be used, or a ball mill, a jet mill, a hammer mill, a pin mill, a disk mill, a turbo mill, or the like. A pulverizing mixer may be used.
 混合速度及び混合時間は適宜適切に決定すればよい。ただし、Li及びLiが消失するまで過剰に混合するのは適当ではないため、粉末X線回折装置などの分析装置を用いて、Li及びLiの存在を確認しながら、混合速度及び混合時間を決定するのが好ましい。混合速度及び混合時間に因り、本発明の正極用材料が示す容量が変化し得るので、適正な容量を示す本発明の正極用材料を製造するべく、混合速度及び混合時間を適切に決定することが好ましい。混合速度としては、例えばボールミルの回転速度として、200~1500rpm、300~1000rpm、400~800rpmを例示できる。また、例えばボールミルを用いた場合の混合時間としては、5~30時間、10~25時間を例示できる。さらに、混合条件として、第1混合速度Vで混合した後に、第2混合速度Vで混合してもよい。ここで、容量増加の観点から、V<Vを満足するのが好ましい。 The mixing speed and mixing time may be appropriately determined as appropriate. However, Li a M b D c O d and Li e O f it is not appropriate to mix excessive to disappear, using an analytical device such as X-ray powder diffractometer, Li a M b D c O while confirming the presence of d and Li e O f, preferably determined mixing rate and mixing time. Since the capacity of the positive electrode material of the present invention can vary depending on the mixing speed and mixing time, the mixing speed and mixing time should be appropriately determined in order to produce the positive electrode material of the present invention showing an appropriate capacity. Is preferred. Examples of the mixing speed include a ball mill rotational speed of 200 to 1500 rpm, 300 to 1000 rpm, and 400 to 800 rpm. Further, for example, the mixing time when a ball mill is used can be exemplified by 5 to 30 hours and 10 to 25 hours. Furthermore, as mixing conditions, after mixing at the first mixing speed V 1 , mixing may be performed at the second mixing speed V 2 . Here, from the viewpoint of increasing the capacity, it is preferable to satisfy V 1 <V 2 .
 また、本発明の正極用材料は、LiCO、LiPF、LiPO、LiBFから選択されるリチウム塩を含有してもよい。後述する評価例4の結果から、これらのリチウム塩は、Liを正極活物質として機能させるためのトリガー化合物としてのLiの作用を、好適に補助かつ増大する効果を奏することが示唆されるとともに、上記のリチウム塩それ自身が、活物質として作用可能であることも示唆される。 Further, the positive electrode material of the present invention may contain a lithium salt selected from Li 2 CO 3 , LiPF 6 , Li 3 PO 4 , and LiBF 4 . From the results of Evaluation Example 4 to be described later, these lithium salts, the effect of Li a M b D c O d as a trigger compound for causing a Li e O f as the positive electrode active material, suitably assist and increase It is suggested that there is an effect, and it is also suggested that the lithium salt itself can act as an active material.
 本発明の正極用材料における上記のリチウム塩の配合量は、1~50質量%が好ましく、3~30質量%がより好ましく、5~20質量%がさらに好ましい。また、Liと、Li及びリチウム塩の合計量とのモル比の関係は、20:80~90:10が好ましく、30:70:~85:15がより好ましく、35:65~80:20がさらに好ましく、50:50~70:30が特に好ましい。リチウム塩はLi及びリチウム塩の合計量に対して、好ましくは20~80質量%、より好ましくは30~70質量%で、又は、好ましくは10~70モル%、より好ましくは10~60モル%で、配合されるのがよい。 The blending amount of the lithium salt in the positive electrode material of the present invention is preferably 1 to 50% by mass, more preferably 3 to 30% by mass, and even more preferably 5 to 20% by mass. Also, the Li a M b D c O d , the relationship between the molar ratio of the total amount of Li e O f and lithium salts, 20:80 to 90:10 is preferred, 30: 70: to 85: 15 Gayori Preferably, 35:65 to 80:20 is more preferable, and 50:50 to 70:30 is particularly preferable. Lithium salt with respect to the total amount of Li e O f and lithium salts, preferably 20 to 80 mass%, more preferably 30 to 70 mass%, or preferably 10 to 70 mol%, more preferably from 10 to It should be blended at 60 mol%.
 リチウム塩を含有する本発明の正極用材料の製造は、Li粉体とLi粉体とリチウム塩とを混合すればよい。混合方法の詳細については、上述した本発明の正極用材料の製造における各条件を援用する。 Production of a positive electrode material of the present invention containing a lithium salt may be mixed with Li a M b D c O d powder and Li e O f powder and a lithium salt. About the detail of the mixing method, each condition in manufacture of the positive electrode material of this invention mentioned above is used.
 以下、本発明の正極用材料を具備する正極を、本発明の正極という。 Hereinafter, the positive electrode including the positive electrode material of the present invention is referred to as the positive electrode of the present invention.
 本発明の正極は、本発明の正極用材料を含む正極活物質層、及び、集電体を具備する。正極活物質層は集電体上に形成される。 The positive electrode of the present invention includes a positive electrode active material layer containing the positive electrode material of the present invention and a current collector. The positive electrode active material layer is formed on the current collector.
 正極活物質層には、本発明の正極用材料以外に公知の正極活物質を含んでいてもよい。また、正極活物質層には、導電助剤や結着剤などが添加されていてもよい。正極活物質層における本発明の正極用材料の配合量は、30~99質量%の範囲内が好ましく、40~95質量%の範囲内がより好ましく、45~90質量%の範囲内がさらに好ましい。 The positive electrode active material layer may contain a known positive electrode active material in addition to the positive electrode material of the present invention. In addition, a conductive additive, a binder, or the like may be added to the positive electrode active material layer. The blending amount of the positive electrode material of the present invention in the positive electrode active material layer is preferably in the range of 30 to 99% by mass, more preferably in the range of 40 to 95% by mass, and still more preferably in the range of 45 to 90% by mass. .
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独または二種以上組み合わせて正極活物質層に添加することができる。 Conductive aid is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent. The conductive auxiliary agent may be a chemically inert electronic conductor, and examples thereof include carbon black, graphite, vapor grown carbon fiber (Vapor Grown Carbon Fiber), and various metal particles. . Examples of carbon black include acetylene black, ketjen black (registered trademark), furnace black, and channel black. These conductive assistants can be added to the positive electrode active material layer alone or in combination of two or more.
 導電助剤はその形状が特に制限されるものではないが、その役割からみて、平均粒子径は小さいほうが好ましい。導電助剤の好ましい平均粒子径を挙げると、5μm以下が好ましく、0.01~3μmの範囲内がより好ましく、0.05~2μmの範囲内がさらに好ましく、0.1~1μmの範囲内が特に好ましい。 The shape of the conductive auxiliary agent is not particularly limited, but it is preferable that the average particle diameter is small in view of its role. The average particle diameter of the conductive auxiliary agent is preferably 5 μm or less, more preferably in the range of 0.01 to 3 μm, further preferably in the range of 0.05 to 2 μm, and in the range of 0.1 to 1 μm. Particularly preferred.
 正極活物質層における導電助剤の配合量を挙げると、0.5~50質量%の範囲内が好ましく、1~45質量%の範囲内がより好ましく、2~40質量%の範囲内が特に好ましい。 The blending amount of the conductive additive in the positive electrode active material layer is preferably in the range of 0.5 to 50% by mass, more preferably in the range of 1 to 45% by mass, and particularly in the range of 2 to 40% by mass. preferable.
 結着剤は、本発明の正極用材料や導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を例示することができる。また、結着剤として、親水基を有するポリマーを採用してもよい。親水基を有するポリマーの親水基としては、カルボキシル基、スルホ基、シラノール基、アミノ基、水酸基、リン酸基が例示される。親水基を有するポリマーの具体例として、ポリアクリル酸、カルボキシメチルセルロース、ポリメタクリル酸、ポリ(p-スチレンスルホン酸)を挙げることができる。 The binder serves to bind the positive electrode material and the conductive additive of the present invention to the surface of the current collector. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. be able to. Moreover, you may employ | adopt the polymer which has a hydrophilic group as a binder. Examples of the hydrophilic group of the polymer having a hydrophilic group include a carboxyl group, a sulfo group, a silanol group, an amino group, a hydroxyl group, and a phosphate group. Specific examples of the polymer having a hydrophilic group include polyacrylic acid, carboxymethylcellulose, polymethacrylic acid, and poly (p-styrenesulfonic acid).
 正極活物質層における結着剤の配合量を挙げると、0.5~20質量%の範囲内が好ましく、1~15質量%の範囲内がより好ましく、2~10質量%の範囲内が特に好ましい。結着剤の配合量が少なすぎると正極活物質層の成形性が低下するおそれがある。また、結着剤の配合量が多すぎると、正極活物質層における正極活物質の量が減少するため、好ましくない。 The amount of the binder in the positive electrode active material layer is preferably in the range of 0.5 to 20% by mass, more preferably in the range of 1 to 15% by mass, and particularly in the range of 2 to 10% by mass. preferable. If the blending amount of the binder is too small, the moldability of the positive electrode active material layer may be lowered. Moreover, when there are too many compounding quantities of a binder, since the quantity of the positive electrode active material in a positive electrode active material layer reduces, it is unpreferable.
 正極活物質層には、導電助剤及び結着剤以外の添加剤を適宜適切な量で配合してもよい。 In the positive electrode active material layer, additives other than the conductive additive and the binder may be appropriately mixed in appropriate amounts.
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体としては、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。 The current collector refers to a chemically inert electronic conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel Examples of such a metal material can be given. The current collector may be covered with a known protective layer.
 集電体はメッシュ状、箔、シート、フィルム、線状、棒状などの形態をとることができる。そのため、集電体として、例えばメッシュ状の金属や、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体がメッシュ状、箔、シート、フィルム形態の場合は、その厚みが10μm~100μmの範囲内であることが好ましい。 The current collector can take the form of a mesh, foil, sheet, film, wire, rod or the like. Therefore, as the current collector, for example, a mesh-like metal, or a metal foil such as a copper foil, a nickel foil, an aluminum foil, or a stainless steel foil can be suitably used. When the current collector is in the form of a mesh, foil, sheet, or film, the thickness is preferably in the range of 10 μm to 100 μm.
 集電体の表面に正極活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に本発明の正極用材料を塗布すればよい。具体的には、本発明の正極用材料、溶剤、並びに必要に応じて結着剤及び導電助剤を含むスラリーを調製し、当該スラリーを集電体の表面に塗布後、乾燥する。溶剤としては、N-メチル-2-ピロリドン(以下、NMPと略すことがある。)、メタノール、メチルイソブチルケトンを例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。また、本発明の正極用材料、結着剤、及び必要に応じて導電助剤を含む正極合材を調製し、当該正極合材を集電体に圧着させることで、集電体の表面に正極活物質層を形成させてもよい。 In order to form the positive electrode active material layer on the surface of the current collector, a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used. The positive electrode material of the present invention may be applied to the surface of the electric body. Specifically, a slurry containing the positive electrode material of the present invention, a solvent, and, if necessary, a binder and a conductive additive is prepared, and the slurry is applied to the surface of the current collector and then dried. Examples of the solvent include N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as NMP), methanol, and methyl isobutyl ketone. In order to increase the electrode density, the dried product may be compressed. In addition, the positive electrode material of the present invention, a binder, and, if necessary, a positive electrode mixture containing a conductive additive are prepared, and the positive electrode mixture is pressure-bonded to the current collector, so that the surface of the current collector is A positive electrode active material layer may be formed.
 本発明の正極の製造方法は、前記Liと前記Liを混合し混合物とする工程、前記混合物を正極の集電体に配置する工程、を含む製造方法であると把握することができる。 In the positive electrode production method of the present invention, the Li a M b D c O d and the Li e O process to f were mixed mixture, the production method comprising the steps of placing the mixture on the current collector of the positive electrode It can be grasped that there is.
 なお、導電助剤に関しては、前記Liと前記Liを混合し混合物とする工程に引き続いて、当該混合物に導電助剤を添加して混合し、正極用材料含有混合物を得る工程を設けるのが好ましい。かかる製造方法に因り、本発明の正極用材料を具備する正極の容量が大きくなる場合がある。正極用材料含有混合物を得る工程においては、本発明の正極用材料の製造で用いる混合機と同程度の性能の混合機を採用するのが好ましい。そのような混合機としては、V型混合機、W型混合機、リボン型混合機、ドラムミキサーなどの攪拌混合機や、ボールミル、ジェットミル、ハンマーミル、ピンミル、ディスクミル、ターボミルなどの粉砕混合機を例示できる。正極用材料含有混合物を得る工程における好適な混合条件については、適切に決定すればよい。混合速度としては、例えばボールミルの回転速度として、100~1000rpm、150~600rpm、200~400rpmを例示できる。また、例えばボールミルを用いた場合の混合時間としては、0.1~5時間、0.3~3時間を例示できる。 Regarding the conductive additive, the Li a M b D c O d and subsequently the Li e O f mixing step of the mixture, and mixed by adding a conductive additive to the mixture, the material for the positive electrode It is preferable to provide the process of obtaining a containing mixture. Due to this manufacturing method, the capacity of the positive electrode provided with the positive electrode material of the present invention may increase. In the step of obtaining the positive electrode material-containing mixture, it is preferable to employ a mixer having the same performance as the mixer used in the production of the positive electrode material of the present invention. Examples of such mixers include stirring mixers such as V-type mixers, W-type mixers, ribbon-type mixers and drum mixers, and pulverizing and mixing such as ball mills, jet mills, hammer mills, pin mills, disk mills, and turbo mills. The machine can be exemplified. What is necessary is just to determine suitably about the suitable mixing conditions in the process of obtaining the material containing mixture for positive electrodes. Examples of the mixing speed include, for example, 100 to 1000 rpm, 150 to 600 rpm, and 200 to 400 rpm as the rotation speed of the ball mill. Further, for example, the mixing time when using a ball mill may be 0.1 to 5 hours, 0.3 to 3 hours.
 このようにして得られる正極用材料含有混合物、並びに必要に応じて結着剤及び/又は溶剤を含むスラリーを調製し、当該スラリーを集電体の表面に塗布後、乾燥することで、集電体の表面に正極活物質層を形成させることができる。また、正極用材料含有混合物及び結着剤を含む正極合材を調製し、当該正極合材を集電体に圧着させることで、集電体の表面に正極活物質層を形成させてもよい。  The positive electrode material-containing mixture thus obtained, and a slurry containing a binder and / or a solvent as necessary are prepared, and the slurry is applied to the surface of the current collector and then dried to collect the current. A positive electrode active material layer can be formed on the surface of the body. Alternatively, a positive electrode active material layer may be formed on the surface of the current collector by preparing a positive electrode mixture containing a positive electrode material-containing mixture and a binder and then pressing the positive electrode mixture to the current collector. . *
 以下、本発明の正極を具備するリチウムイオン二次電池を、本発明のリチウムイオン二次電池という。 Hereinafter, the lithium ion secondary battery provided with the positive electrode of the present invention is referred to as the lithium ion secondary battery of the present invention.
 本発明のリチウムイオン二次電池は、酸素を正極活物質の一部とする開放型の空気電池であってもよいが、Liの化学的安定性の観点から、空気電池ではないリチウムイオン二次電池、すなわち、酸素を出し入れしない密閉型のリチウムイオン二次電池であるのが好ましい。密閉型のリチウムイオン二次電池であれば、水分などの混入を抑制できる。 The lithium ion secondary battery of the present invention may be an open air battery in which oxygen is part of the positive electrode active material, but from the viewpoint of the chemical stability of Li a Mb D c O d A lithium ion secondary battery that is not a battery, that is, a sealed lithium ion secondary battery in which oxygen is not taken in and out is preferable. If it is a sealed lithium ion secondary battery, mixing of moisture and the like can be suppressed.
 なお、空気電池であれば、酸素が正極活物質として機能して、その結果としてLiやLiOが形成されることが知られている。上述の特許文献4にて、LiO単独では充放電が不可能であったとされていたのは、密閉型のリチウムイオン二次電池の場合である。 In the case of an air battery, it is known that oxygen functions as a positive electrode active material, and as a result, Li 2 O 2 and Li 2 O are formed. In the above-mentioned Patent Document 4, it is assumed that Li 2 O alone could not be charged / discharged in the case of a sealed lithium ion secondary battery.
 本発明のリチウムイオン二次電池は、電池構成要素として、本発明の正極、負極、セパレータ及び電解液を含む。 The lithium ion secondary battery of the present invention includes the positive electrode, the negative electrode, the separator and the electrolytic solution of the present invention as battery components.
 負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。負極活物質層は負極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。集電体、結着剤及び導電助剤は、正極で説明したものを採用すればよい。また、負極活物質層用の結着剤としてスチレン-ブタジエンゴムを採用しても良い。 The negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector. The negative electrode active material layer includes a negative electrode active material and, if necessary, a binder and / or a conductive aid. As the current collector, the binder, and the conductive additive, those described for the positive electrode may be adopted. Further, styrene-butadiene rubber may be employed as a binder for the negative electrode active material layer.
 負極活物質としては、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料などを例示することができる。 Examples of the negative electrode active material include a carbon-based material capable of inserting and extracting lithium, an element that can be alloyed with lithium, a compound having an element that can be alloyed with lithium, a polymer material, and the like.
 炭素系材料としては、難黒鉛化性炭素、天然黒鉛、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。 Examples of the carbon-based material include non-graphitizable carbon, natural graphite, artificial graphite, coke, graphite, glassy carbon, organic polymer compound fired body, carbon fiber, activated carbon, or carbon black. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
 リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、Si又はSnが好ましい。 Specifically, elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si. , Ge, Sn, Pb, Sb, Bi can be exemplified, and Si or Sn is particularly preferable.
 リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiOあるいはLiSnOを例示でき、特に、SiO(0.3≦x≦1.6)が好ましい。また、リチウムと合金化反応可能な元素を有する化合物として、スズ合金(Cu-Sn合金、Co-Sn合金等)などの錫化合物を例示できる。 Specific examples of the compound having an element that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO or LiSnO can be exemplified, and SiO x (0.3 ≦ x ≦ 1.6) is particularly preferable. In addition, examples of the compound having an element capable of alloying with lithium include tin compounds such as tin alloys (Cu—Sn alloy, Co—Sn alloy, etc.).
 高分子材料としては、具体的にポリアセチレン、ポリピロールを例示できる。 Specific examples of the polymer material include polyacetylene and polypyrrole.
 また、負極活物質として、CaSiと酸とを反応させてCaを除去したポリシランを主成分とする層状シリコン化合物を合成し、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させる方法で製造されるシリコン材料を挙げることができる。当該シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有する。この構造は、走査型電子顕微鏡などによる観察で確認できる。当該シリコン材料を、リチウムイオン二次電池の活物質として使用することを考慮すると、リチウムイオンの効率的な挿入及び脱離反応のためには、板状シリコン体は厚さが10nm~100nmの範囲内のものが好ましく、20nm~50nmの範囲内のものがより好ましい。また、板状シリコン体の長軸方向の長さは、0.1μm~50μmの範囲内のものが好ましい。また、板状シリコン体は、(長軸方向の長さ)/(厚さ)が2~1000の範囲内であるのが好ましい。 Also, a method of synthesizing a layered silicon compound mainly composed of polysilane obtained by reacting CaSi 2 and acid to remove Ca as a negative electrode active material, and releasing the hydrogen by heating the layered silicon compound at 300 ° C. or higher. The silicon material manufactured by can be mentioned. The silicon material has a structure in which a plurality of plate-like silicon bodies are laminated in the thickness direction. This structure can be confirmed by observation with a scanning electron microscope or the like. In consideration of using the silicon material as an active material of a lithium ion secondary battery, the plate-like silicon body has a thickness in the range of 10 nm to 100 nm for efficient insertion and removal reaction of lithium ions. Are preferable, and those in the range of 20 nm to 50 nm are more preferable. The length of the plate-like silicon body in the major axis direction is preferably in the range of 0.1 μm to 50 μm. Further, the plate-like silicon body preferably has a (length in the long axis direction) / (thickness) range of 2 to 1000.
 当該シリコン材料には、アモルファスシリコン及び/又はシリコン結晶子が含まれるのが好ましい。シリコン結晶子のサイズは、0.5nm~300nmの範囲内が好ましく、1nm~100nmの範囲内がより好ましく、1nm~50nmの範囲内がさらに好ましく、1nm~10nmの範囲内が特に好ましい。なお、シリコン結晶子のサイズは、シリコン材料に対してX線回折測定(XRD測定)を行い、得られたXRDチャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式から算出される。 The silicon material preferably contains amorphous silicon and / or silicon crystallites. The size of the silicon crystallite is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, and particularly preferably in the range of 1 nm to 10 nm. The size of the silicon crystallite is calculated from the Scherrer equation using X-ray diffraction measurement (XRD measurement) on the silicon material and using the half-value width of the diffraction peak on the Si (111) surface of the obtained XRD chart. Is done.
 一般的なレーザー回折式粒度分布測定装置で測定した場合における、シリコン材料の好ましい粒度分布としては、平均粒子径(D50)が1~30μmの範囲内であることを例示でき、より好ましくは平均粒子径(D50)が1~10μmの範囲内であることを例示できる。 As a preferable particle size distribution of the silicon material when measured with a general laser diffraction particle size distribution analyzer, it can be exemplified that the average particle diameter (D50) is in the range of 1 to 30 μm, more preferably the average particle It can be exemplified that the diameter (D50) is in the range of 1 to 10 μm.
 必要に応じ、負極活物質はカーボンコートを施されてもよい。 If necessary, the negative electrode active material may be carbon coated.
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、例えばポリテトラフルオロエチレン、ポリプロピレン若しくはポリエチレンなどの合成樹脂を1種又は複数用いた多孔質膜、又はセラミックス製の多孔質膜が例示できる。 The separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit due to contact between the two electrodes. Examples of the separator include a porous film using one or more synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene, or a ceramic porous film.
 電解液は、非水溶媒とこの非水溶媒に溶解された電解質とを含んでいる。 The electrolytic solution contains a nonaqueous solvent and an electrolyte dissolved in the nonaqueous solvent.
 非水溶媒としては、環状カーボネート、環状エステル、鎖状カーボネート、鎖状エステル、エーテル類等が使用できる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートを例示でき、環状エステルとしては、ガンマブチロラクトン、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネートを例示でき、鎖状エステルとしては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。また、溶媒として、上記の具体的な溶媒の化学構造を構成する水素の一部又は全部がフッ素で置換された溶媒を採用しても良い。電解液には、これらの非水溶媒を単独で用いてもよいし、又は、複数を併用してもよい。 As the non-aqueous solvent, cyclic carbonates, cyclic esters, chain carbonates, chain esters, ethers and the like can be used. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and examples of the cyclic ester include gamma butyrolactone, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate. Examples of the chain ester include propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. Further, as the solvent, a solvent in which a part or all of hydrogen constituting the chemical structure of the above specific solvent is substituted with fluorine may be employed. These nonaqueous solvents may be used alone or in combination with the electrolyte.
 電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を例示できる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
 電解液としては、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネートなどの非水溶媒に、LiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を例示できる。 As an electrolytic solution, 0.5 mol / l to 1.7 mol of a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 in a nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate. A solution dissolved at a concentration of about 1 / l can be exemplified.
 本発明のリチウムイオン二次電池の製造方法としては、本発明の正極を配置する工程を有していればよい。以下、本発明のリチウムイオン二次電池の具体的な製造方法を例示する。正極および負極にセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から、外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えて本発明のリチウムイオン二次電池とするとよい。 As a method for producing the lithium ion secondary battery of the present invention, it is only necessary to have a step of arranging the positive electrode of the present invention. Hereinafter, the specific manufacturing method of the lithium ion secondary battery of this invention is illustrated. A separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. The electrode body may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched. After connecting the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal connected to the outside using a current collecting lead or the like, an electrolytic solution is added to the electrode body, and the lithium of the present invention It is preferable to use an ion secondary battery.
 本発明のリチウムイオン二次電池は車両に搭載することができる。リチウムイオン二次電池は、大きな充放電容量を維持し、かつ優れたサイクル性能を有するため、これを搭載した車両は、高性能の車両となる。 The lithium ion secondary battery of the present invention can be mounted on a vehicle. Since a lithium ion secondary battery maintains a large charge / discharge capacity and has excellent cycle performance, a vehicle equipped with the lithium ion secondary battery is a high-performance vehicle.
 車両としては、電池による電気エネルギーを動力源の全部または一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。 The vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, an electric forklift, an electric wheelchair, and an electric assist. Bicycles and electric motorcycles are examples.
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.
 以下に、各種の具体例を示し、本発明をより具体的に説明する。なお、本発明は、これらの具体例によって限定されるものではない。 Hereinafter, various specific examples will be shown to describe the present invention more specifically. The present invention is not limited to these specific examples.
(実施例1-1)
 64.7質量部のLiCoO粉末と35.3質量部のLiO粉末を、ボールミルを用いて、500rpmで14.5時間混合し、実施例1-1の正極用材料を製造した。
Example 1-1
64.7 parts by mass of Li 6 CoO 4 powder and 35.3 parts by mass of Li 2 O powder were mixed using a ball mill at 500 rpm for 14.5 hours to produce a positive electrode material of Example 1-1. .
 実施例1-1の正極用材料5質量部、導電助剤としてアセチレンブラック4質量部、結着剤としてポリテトラフルオロエチレン1質量部をメノウ乳鉢で混合し、粘土状に加工して正極合材を得た。集電体としてメッシュ状のアルミニウムを準備し、これに正極合材を圧着することで実施例1-1の正極を得た。作業は全てアルゴンガス置換された水分濃度1ppm以下のグローブボックス内で行った。 5 parts by weight of the positive electrode material of Example 1-1, 4 parts by weight of acetylene black as a conductive auxiliary agent, and 1 part by weight of polytetrafluoroethylene as a binder were mixed in an agate mortar, processed into a clay shape, and mixed with the positive electrode Got. Mesh-like aluminum was prepared as a current collector, and a positive electrode mixture was pressure-bonded thereto to obtain a positive electrode of Example 1-1. All operations were performed in a glove box with a water concentration of 1 ppm or less, which was purged with argon gas.
 リチウム箔を準備し、これを負極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。また、エチレンカーボネート3容量部及びジエチルカーボネート7容量部を混合した溶媒にLiPF6を1mol/Lで溶解した電解液を準備した。負極、ガラスフィルター、celgard2400、実施例1-1の正極の順に、2種のセパレータを、負極と実施例1-1の正極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容し、さらに電解液を注入して、密閉型のコイン型電池を得た。これを実施例1-1のリチウムイオン二次電池とした。 Lithium foil was prepared and used as a negative electrode. As a separator, a glass filter (Hoechst Celanese) and celgard 2400 (Polypore Corporation), which is a single-layer polypropylene, were prepared. It was also prepared an electrolyte solution obtained by dissolving LiPF 6 at 1 mol / L in a solvent obtained by mixing ethylene carbonate 3 parts by volume and diethyl carbonate 7 parts by volume. Two types of separators were sandwiched between the negative electrode and the positive electrode of Example 1-1 in this order: negative electrode, glass filter, celgard 2400, and positive electrode of Example 1-1 to form an electrode body. This electrode body was accommodated in a coin-type battery case CR2032 (Hosen Co., Ltd.), and an electrolyte was further injected to obtain a sealed coin-type battery. This was designated as the lithium ion secondary battery of Example 1-1.
(実施例2-1)
 78.6質量部のLiCoO粉末と21.4質量部のLiO粉末を用いた以外は、実施例1-1と同様の方法で、実施例2-1の正極用材料、正極及びリチウムイオン二次電池を製造した。
Example 2-1
Except for using 78.6 parts by mass of Li 6 CoO 4 powder and 21.4 parts by mass of Li 2 O powder, the positive electrode material and positive electrode of Example 2-1 were prepared in the same manner as in Example 1-1. And the lithium ion secondary battery was manufactured.
(実施例3-1)
 84.6質量部のLiCoO粉末と15.4質量部のLiO粉末を用いた以外は、実施例1-1と同様の方法で、実施例3-1の正極用材料、正極及びリチウムイオン二次電池を製造した。
Example 3-1
Except for using 84.6 parts by mass of Li 6 CoO 4 powder and 15.4 parts by mass of Li 2 O powder, the positive electrode material and positive electrode of Example 3-1 were prepared in the same manner as in Example 1-1. And the lithium ion secondary battery was manufactured.
(実施例4-1)
 89.5質量部のLiCoO粉末と10.5質量部のLiO粉末を用いた以外は、実施例1-1と同様の方法で、実施例4-1の正極用材料、正極及びリチウムイオン二次電池を製造した。
Example 4-1
Except for using 89.5 parts by mass of Li 6 CoO 4 powder and 10.5 parts by mass of Li 2 O powder, the positive electrode material and positive electrode of Example 4-1 were prepared in the same manner as in Example 1-1. And the lithium ion secondary battery was manufactured.
(実施例5-1)
 94.3質量部のLiCoO粉末と5.7質量部のLiO粉末を用いた以外は、実施例1-1と同様の方法で、実施例5-1の正極用材料、正極及びリチウムイオン二次電池を製造した。
Example 5-1
Except for using 94.3 parts by mass of Li 6 CoO 4 powder and 5.7 parts by mass of Li 2 O powder, the positive electrode material and positive electrode of Example 5-1 were prepared in the same manner as in Example 1-1. And the lithium ion secondary battery was manufactured.
(実施例1-2)
 ボールミルを用いて500rpmで14.5時間混合した後に、600rpmでの5時間混合を追加した以外は、実施例1-1と同様の方法で、実施例1-2の正極用材料、正極及びリチウムイオン二次電池を製造した。
Example 1-2
The positive electrode material, positive electrode, and lithium of Example 1-2 were prepared in the same manner as in Example 1-1, except that after mixing for 14.5 hours at 500 rpm using a ball mill, mixing was further performed for 5 hours at 600 rpm. An ion secondary battery was manufactured.
(実施例2-2)
 ボールミルを用いて500rpmで14.5時間混合した後に、600rpmでの5時間混合を追加した以外は、実施例2-1と同様の方法で、実施例2-2の正極用材料、正極及びリチウムイオン二次電池を製造した。
(Example 2-2)
The positive electrode material, positive electrode and lithium of Example 2-2 were prepared in the same manner as in Example 2-1, except that after mixing for 14.5 hours at 500 rpm using a ball mill, mixing was further performed for 5 hours at 600 rpm. An ion secondary battery was manufactured.
(実施例3-2)
 ボールミルを用いて500rpmで14.5時間混合した後に、600rpmでの5時間混合を追加した以外は、実施例3-1と同様の方法で、実施例3-2の正極用材料、正極及びリチウムイオン二次電池を製造した。
(Example 3-2)
The positive electrode material, positive electrode, and lithium of Example 3-2 were mixed in the same manner as in Example 3-1, except that mixing was performed at 500 rpm for 14.5 hours using a ball mill, and then mixing was performed at 600 rpm for 5 hours. An ion secondary battery was manufactured.
(実施例4-2)
 ボールミルを用いて500rpmで14.5時間混合した後に、600rpmでの5時間混合を追加した以外は、実施例4-1と同様の方法で、実施例4-2の正極用材料、正極及びリチウムイオン二次電池を製造した。
(Example 4-2)
The positive electrode material, positive electrode, and lithium of Example 4-2 were mixed in the same manner as in Example 4-1, except that mixing was performed at 500 rpm for 14.5 hours using a ball mill, and then mixing was performed at 600 rpm for 5 hours. An ion secondary battery was manufactured.
(実施例5-2)
 ボールミルを用いて500rpmで14.5時間混合した後に、600rpmでの5時間混合を追加した以外は、実施例5-1と同様の方法で、実施例5-2の正極用材料、正極及びリチウムイオン二次電池を製造した。
(Example 5-2)
The positive electrode material, positive electrode, and lithium of Example 5-2 were prepared in the same manner as in Example 5-1, except that mixing was performed at 500 rpm for 14.5 hours using a ball mill, followed by addition of 600 rpm for 5 hours. An ion secondary battery was manufactured.
(実施例6-1)
 正極用材料の原料として、82.3質量部のLiFeO粉末と17.7質量部のLiO粉末を用いた以外は、実施例1-1と同様の方法で、実施例6-1の正極用材料、正極及びリチウムイオン二次電池を製造した。
Example 6-1
Example 6- In the same manner as in Example 1-1, except that 82.3 parts by mass of Li 5 FeO 4 powder and 17.7 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material. 1 positive electrode material, positive electrode and lithium ion secondary battery were produced.
(実施例7-1)
 正極用材料の原料として、89質量部のLiMnO粉末と11質量部のLiO粉末を用いた以外は、実施例1-1と同様の方法で、実施例7-1の正極用材料、正極及びリチウムイオン二次電池を製造した。
Example 7-1
The positive electrode material of Example 7-1 was used in the same manner as in Example 1-1, except that 89 parts by mass of Li 6 MnO 4 powder and 11 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material. Materials, positive electrodes and lithium ion secondary batteries were manufactured.
(実施例6-2)
 正極用材料の原料として、82.3質量部のLiFeO粉末と17.7質量部のLiO粉末を用いた以外は、実施例1-2と同様の方法で、実施例6-2の正極用材料、正極及びリチウムイオン二次電池を製造した。
(Example 6-2)
Example 6- In the same manner as in Example 1-2, except that 82.3 parts by mass of Li 5 FeO 4 powder and 17.7 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material. 2 positive electrode materials, a positive electrode, and a lithium ion secondary battery were manufactured.
(実施例7-2)
 正極用材料の原料として、89質量部のLiMnO粉末と11質量部のLiO粉末を用いた以外は、実施例1-2と同様の方法で、実施例7-2の正極用材料、正極及びリチウムイオン二次電池を製造した。
(Example 7-2)
The positive electrode material of Example 7-2 was prepared in the same manner as in Example 1-2, except that 89 parts by mass of Li 6 MnO 4 powder and 11 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material. Materials, positive electrodes and lithium ion secondary batteries were manufactured.
(比較例1)
 正極用材料としてLiCoO粉末そのものを用いた以外は、実施例1-1と同様の方法で、比較例1の正極用材料、正極及びリチウムイオン二次電池を製造した。
(Comparative Example 1)
A positive electrode material, a positive electrode, and a lithium ion secondary battery of Comparative Example 1 were produced in the same manner as in Example 1-1, except that the Li 6 CoO 4 powder itself was used as the positive electrode material.
(比較例2)
 正極用材料の原料として、84.5質量部のLiFeSiO粉末と15.5質量部のLiO粉末を用いた以外は、実施例1-1と同様の方法で、比較例2の正極用材料、正極及びリチウムイオン二次電池を製造した。
(Comparative Example 2)
The same method as in Example 1-1 was used except that 84.5 parts by mass of Li 2 FeSiO 4 powder and 15.5 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material. A positive electrode material, a positive electrode, and a lithium ion secondary battery were manufactured.
(比較例3)
 正極用材料の原料として、84.5質量部のLiFeSiO粉末と15.5質量部のLiO粉末を用いた以外は、実施例1-2と同様の方法で、比較例3の正極用材料、正極及びリチウムイオン二次電池を製造した。
(Comparative Example 3)
Except that 84.5 parts by mass of Li 2 FeSiO 4 powder and 15.5 parts by mass of Li 2 O powder were used as raw materials for the positive electrode material, the same method as in Example 1-2 was used. A positive electrode material, a positive electrode, and a lithium ion secondary battery were manufactured.
 実施例及び比較例の正極用材料の一覧を表1に示す。
Figure JPOXMLDOC01-appb-T000001
A list of positive electrode materials of Examples and Comparative Examples is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
(評価例1)
 実施例2-1、実施例3-1、実施例5-1、実施例1-2、実施例2-2、実施例3-2の正極用材料、及び各実施例と比較例に用いたLiO粉末、LiCoO粉末の原料材料につき、放射光を光源とする粉末X線回折分析に供した。図1に、実施例2-1、実施例3-1及び実施例5-1の正極用材料の粉末X線回折チャートを示し、図2に、実施例1-2、実施例2-2及び実施例3-2の正極用材料の粉末X線回折チャートを示す。さらに、図3に、LiCoO粉末の粉末X線回折チャートを示し、図4に、LiO粉末の粉末X線回折チャートを示す。なお、全ての評価について、X線のエネルギーを12.4keVの条件で測定した。図1から図4の横軸は2θであり、縦軸は強度である。
(Evaluation example 1)
Used as the positive electrode material of Example 2-1, Example 3-1, Example 5-1, Example 1-2, Example 2-2, and Example 3-2, and each example and comparative example The raw material materials of Li 2 O powder and Li 6 CoO 4 powder were subjected to powder X-ray diffraction analysis using synchrotron radiation as a light source. FIG. 1 shows a powder X-ray diffraction chart of the positive electrode materials of Example 2-1, Example 3-1, and Example 5-1, and FIG. 2 shows Example 1-2, Example 2-2, and 3 shows a powder X-ray diffraction chart of a positive electrode material of Example 3-2. Further, FIG. 3 shows a powder X-ray diffraction chart of Li 6 CoO 4 powder, and FIG. 4 shows a powder X-ray diffraction chart of Li 2 O powder. For all evaluations, X-ray energy was measured under the condition of 12.4 keV. The horizontal axis of FIGS. 1 to 4 is 2θ, and the vertical axis is intensity.
 図1、図2のいずれの回折チャートからも、図3の空間群P4/nmcで表される逆ホタル石型の結晶構造のLiCoOに由来するピーク(主に2θ=12°付近、15°付近、21°付近、23°付近に観察されるピーク。)、及び、図4の空間群Fm-3mで表される逆ホタル石型の結晶構造のLiOに由来するピーク(主に2θ=21~22°付近、35~36°付近に観察されるピーク。)が観察された。なお、空間群の「-3」は上線を付した3を表したものである。 From both diffraction charts of FIGS. 1 and 2, a peak derived from Li 6 CoO 4 having an inverted fluorite-type crystal structure represented by the space group P4 2 / nmc in FIG. 3 (mainly around 2θ = 12 °). , Peaks observed near 15 °, 21 °, and 23 °), and peaks derived from Li 2 O having an inverted fluorite-type crystal structure represented by the space group Fm-3m in FIG. 4 ( The peaks observed mainly at around 2θ = 21 ° to 22 ° and around 35 ° to 36 °) were observed. Note that “−3” in the space group represents 3 with an overline.
 また、実施例2-1及び実施例1-2の回折チャートからは、空間群Fd-3mで表されるLiCoOの存在が示唆された。なお、一般的なLiCoOの結晶構造は、空間群R-3mで表される。 The diffraction charts of Example 2-1 and Example 1-2 suggested the presence of LiCoO 2 represented by the space group Fd-3m. Note that a general crystal structure of LiCoO 2 is represented by a space group R-3m.
(評価例2)
 実施例及び比較例のリチウムイオン二次電池につき、13.5mA/gの一定電流下、3.5Vまで充電を行い、1.5Vまで放電を行うとの充放電サイクルを繰り返し行った。評価は全て25℃に制御された恒温槽内で実施した。
  評価例2における、実施例及び比較例の正極用材料の初回放電容量の一覧を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(Evaluation example 2)
With respect to the lithium ion secondary batteries of Examples and Comparative Examples, charging and discharging cycles were repeated by charging to 3.5 V and discharging to 1.5 V under a constant current of 13.5 mA / g. All evaluations were performed in a thermostatic chamber controlled at 25 ° C.
Table 2 shows a list of initial discharge capacities of the positive electrode materials of Examples and Comparative Examples in Evaluation Example 2.
Figure JPOXMLDOC01-appb-T000002
 実施例のリチウムイオン二次電池がいずれも好適に充放電したことを確認した。他方、比較例2及び比較例3のリチウムイオン二次電池は所望の充放電を行うことができなかった。これらの結果から、LiOは、特定の化合物と併用することで、正極活物質として動作するといえる。また、実施例で示されたように、LiCoO、LiFeO又はLiMnOを用いることで、本発明の正極用材料が正極活物質として所望の動作をしたことから、これらの化合物を包含するLi(ただし、4<a<7、b+c=1、0.9≦b≦1、0≦c≦0.1、3<d<5を満足する。Mは少なくとも1種の遷移金属である。Dはドープ元素である。)で示される化合物を用いた場合においても、同様の効果が奏されると推定される。 It was confirmed that all of the lithium ion secondary batteries of Examples were suitably charged and discharged. On the other hand, the lithium ion secondary batteries of Comparative Example 2 and Comparative Example 3 were unable to perform desired charge / discharge. From these results, it can be said that Li 2 O operates as a positive electrode active material when used in combination with a specific compound. Further, as shown in the examples, by using Li 6 CoO 4 , Li 5 FeO 4 or Li 6 MnO 4 , the positive electrode material of the present invention performed a desired operation as a positive electrode active material. Li a M b D c O d ( provided that includes a compound of satisfying 4 <a <7, b + c = 1,0.9 ≦ b ≦ 1,0 ≦ c ≦ 0.1,3 <d <5 M is at least one kind of transition metal, and D is a doping element).
 実施例1-1~実施例5-2、比較例1のリチウムイオン二次電池の充放電容量の結果を図5及び図6に示す。図5及び図6において、「Dchg Cap.」は放電容量を意味し、「Chg Cap.」は充電容量を意味する。なお、初回充電時に観測される容量は、本来所望するLiイオンの移動に伴う容量だけではなく、酸素が活性化される過程で発生する電気化学的な容量を多く含んでいる。そこで、初回充電時に観測される容量は本発明で実現される電池の容量とは異なるものとして扱うべきと判断し、初回放電以降の容量を本発明品における電池の容量とした。図5及び図6では、この初回充電容量の結果は割愛する。 FIG. 5 and FIG. 6 show the results of the charge / discharge capacities of the lithium ion secondary batteries of Examples 1-1 to 5-2 and Comparative Example 1. 5 and 6, “Dchg Cap.” Means discharge capacity, and “Chg Cap.” Means charge capacity. Note that the capacity observed at the time of the first charge includes not only the capacity associated with the originally desired movement of Li ions but also a large amount of electrochemical capacity generated in the process of activating oxygen. Therefore, it was determined that the capacity observed during the first charge should be treated as different from the battery capacity realized in the present invention, and the capacity after the first discharge was defined as the battery capacity in the product of the present invention. In FIGS. 5 and 6, the result of the initial charge capacity is omitted.
 特許文献4に記載されているとおり、LiO単独では充放電が起こらない。そして、図5及び図6の結果から、本発明の正極用材料がLiCoO単独で生じ得る以上の充放電容量を示したことがわかる。すなわち、LiCoO及びLiOの混合物からなる正極用材料においては、LiOのリチウムも充放電に寄与したことがわかる。 As described in Patent Document 4, charging and discharging does not occur with Li 2 O alone. And from the results of FIGS. 5 and 6, it can be seen that the positive electrode material of the present invention exhibited a charge / discharge capacity that can be generated by Li 6 CoO 4 alone. That is, in the positive electrode material made of a mixture of Li 6 CoO 4 and Li 2 O, it can be seen that Li 2 O lithium also contributed to charging and discharging.
 実施例の充放電曲線を観察したところ、それぞれの曲線に、平坦状態が2段階で存在した。充放電曲線のそれぞれで2段階の平坦状態が観察されたことは、充放電それぞれの進行に従い、リチウムイオンがLiCoO及びLiOから別個のタイミングで離脱したこと、並びに、リチウムイオンが別個のタイミングで吸蔵されてLiCoO及びLiOが別個のタイミングで形成されたことを示唆している。 When the charging / discharging curve of the Example was observed, the flat state existed in two steps in each curve. The two-stage flat state was observed in each of the charge / discharge curves because the lithium ions were separated from Li 6 CoO 4 and Li 2 O at different timings as the charge / discharge progressed, and the lithium ions were Occluded at separate timings suggests that Li 6 CoO 4 and Li 2 O were formed at separate timings.
 図5及び図6の結果から、実施例2-1~実施例5-1、実施例1-2~実施例5-2が、200mAh/g以上の初回放電容量を示したことがわかる。特に、実施例2-1、実施例4-1、実施例1-2、実施例2-2、実施例4-2、実施例5-2が300mAh/g以上の初回放電容量を示したことは特筆に値する。さらに、実施例4-2及び実施例5-2の初回放電容量が400mAh/g程度又はそれ以上の容量を示したこと、並びに、実施例1-2の初回放電容量が600mAh/g以上の容量を示したことは、驚くべきことである。 5 and 6, it can be seen that Example 2-1 to Example 5-1 and Example 1-2 to Example 5-2 showed initial discharge capacities of 200 mAh / g or more. In particular, Example 2-1, Example 4-1, Example 1-2, Example 2-2, Example 4-2, and Example 5-2 showed initial discharge capacities of 300 mAh / g or more. Is worthy of special mention. Furthermore, the initial discharge capacity of Example 4-2 and Example 5-2 showed a capacity of about 400 mAh / g or more, and the initial discharge capacity of Example 1-2 was a capacity of 600 mAh / g or more. It is surprising to show that.
 なお、LiCoOの質量混合比が64.7%である実施例1-1は容量が110mAh/g程度であり、LiCoOの混合比が100%である比較例1の容量が118mAh/g程度であるが、その放電曲線を比較すると違いが顕著に見られた。図7に比較例1及び実施例1-1の初回放電曲線を示す。特に2.6Vから3.0Vの間の反応において、実施例1-1ではLiOのO電子を活用して発現する容量が加わっていると理解できる。つまり、実施例1-1には比較例1には無い、全く別の充放電メカニズムを有すと言え、前述のリチウムイオンが別個のタイミングで吸蔵されてLiCoO及びLiOが別個のタイミングで形成していることを示しており、実施例1-1の奏する効果は顕著であるといえる。なお、実施例1-1~実施例5-2、実施例6、7全てにおいて前述の放電曲線の特徴が確認され、LiOが活性化されたことによる容量が発現していると考えられる。 In Example 1-1, in which the mass mixing ratio of Li 6 CoO 4 is 64.7%, the capacity is about 110 mAh / g, and the capacity of Comparative Example 1 in which the mixing ratio of Li 6 CoO 4 is 100%. Although it was about 118 mAh / g, the difference was noticeable when the discharge curves were compared. FIG. 7 shows initial discharge curves of Comparative Example 1 and Example 1-1. In particular, in the reaction between 2.6 V and 3.0 V, it can be understood that in Example 1-1, a capacity expressed by utilizing O electrons of Li 2 O is added. That is, it can be said that Example 1-1 has a completely different charging / discharging mechanism that Comparative Example 1 does not have, and the above-described lithium ions are occluded at different timings, and Li 6 CoO 4 and Li 2 O are separated. It can be said that the effect produced by Example 1-1 is remarkable. In all of Examples 1-1 to 5-2, and Examples 6 and 7, the characteristics of the above-described discharge curve were confirmed, and it is considered that the capacity due to the activation of Li 2 O was developed. .
 また、実施例2-1~実施例5-1、実施例1-2~実施例5-2は、充放電を繰り返しても、200mAh/g程度又はそれ以上の充放電容量を示すことがわかる。特に、実施例3-1~実施例5-1、実施例2-2~実施例5-2は、2回目以降の充放電容量と、初回の放電容量の差が小さい点で、有利であるといえる。これは、図1、図2の粉末X線回折結果から示唆された、LiOとトリガー物質の混合比及びボールミリングの条件に差異によって、製造される物質の状態、特に結晶構造に差異が認められたことと関係があると予測されるが、詳細はまだ分かっていない。 Further, Examples 2-1 to 5-1 and Examples 1-2 to 5-2 show a charge / discharge capacity of about 200 mAh / g or more even after repeated charge / discharge. . In particular, Example 3-1 to Example 5-1, Example 2-2 to Example 5-2 are advantageous in that the difference between the charge / discharge capacity after the second time and the initial discharge capacity is small. It can be said. This is due to differences in the mixing ratio of Li 2 O and the trigger substance and the ball milling conditions suggested by the powder X-ray diffraction results of FIGS. It is expected to be related to what was recognized, but the details are not yet known.
(実施例4-3)
 5質量部の実施例4-2の正極用材料、及び、4質量部の導電助剤としてのアセチレンブラックを、ボールミルを用いて、300rpmで0.5時間混合し、実施例4-3の正極用材料含有混合物を製造した。実施例4-3の正極用材料含有混合物に、結着剤としてポリテトラフルオロエチレン1質量部を加えて、メノウ乳鉢で混合し、粘土状に加工して正極合材を得た。集電体としてメッシュ状のアルミニウムを準備し、これに正極合材を圧着することで実施例4-3の正極を得た。作業は全てアルゴンガス置換された水分濃度1ppm以下のグローブボックス内で行った。
 以下、実施例4-1と同様の方法で、実施例4-3のリチウムイオン二次電池を製造した。
(Example 4-3)
5 parts by mass of the positive electrode material of Example 4-2 and 4 parts by mass of acetylene black as a conductive auxiliary agent were mixed at 300 rpm for 0.5 hour using a ball mill, and the positive electrode of Example 4-3 A material-containing mixture was prepared. 1 part by mass of polytetrafluoroethylene as a binder was added to the positive electrode material-containing mixture of Example 4-3, mixed in an agate mortar, processed into a clay, and a positive electrode mixture was obtained. Mesh-like aluminum was prepared as a current collector, and a positive electrode mixture was pressure-bonded thereto to obtain a positive electrode of Example 4-3. All operations were performed in a glove box with a water concentration of 1 ppm or less, which was purged with argon gas.
Thereafter, a lithium ion secondary battery of Example 4-3 was produced in the same manner as in Example 4-1.
(評価例3)
 実施例4-1、実施例4-2及び実施例4-3のリチウムイオン二次電池につき、13.5mA/gの一定電流下、3.5Vまで充電を行い、1.5Vまで放電を行うとの充放電を行った。評価は25℃に制御された恒温槽内で実施した。
  実施例4-1のリチウムイオン二次電池における充放電曲線を図8に示し、実施例4-2のリチウムイオン二次電池における充放電曲線を図9に示し、実施例4-3のリチウムイオン二次電池における充放電曲線を図10に示す。なお、図8、図9及び図10における「1cyc CHG」とは充電曲線を意味し、「1cyc DCHG」とは放電曲線を意味する。
(Evaluation example 3)
The lithium ion secondary batteries of Example 4-1, Example 4-2, and Example 4-3 are charged to 3.5 V and discharged to 1.5 V under a constant current of 13.5 mA / g. And charging / discharging was performed. Evaluation was carried out in a thermostat controlled at 25 ° C.
The charge / discharge curve in the lithium ion secondary battery of Example 4-1 is shown in FIG. 8, the charge / discharge curve in the lithium ion secondary battery of Example 4-2 is shown in FIG. 9, and the lithium ion in Example 4-3 A charge / discharge curve in the secondary battery is shown in FIG. In FIG. 8, FIG. 9 and FIG. 10, “1cyc CHG” means a charging curve, and “1cyc DCHG” means a discharging curve.
 図8、図9及び図10から、実施例4-3のリチウムイオン二次電池における放電容量は、実施例4-1、実施例4-2における放電容量と比較して、著しく大きいことがわかる。すなわち、実施例4-3の正極は、容量が大きく、エネルギー密度が高いといえる。この結果から、アセチレンブラックなどの炭素系の導電助剤は、Liを正極活物質として機能させるためのトリガー化合物としてのLiの作用を、好適に補助かつ増大する効果を奏することが示唆される。そして、かかる効果は、本発明の正極用材料と導電助剤とを、より強い混合条件下で処理することで、より明確に奏されるといえる。 From FIG. 8, FIG. 9 and FIG. 10, it can be seen that the discharge capacity in the lithium ion secondary battery of Example 4-3 is significantly larger than the discharge capacity in Example 4-1 and Example 4-2. . That is, it can be said that the positive electrode of Example 4-3 has a large capacity and a high energy density. From this result, the carbon-based conductive aids such as acetylene black, the effect of Li a M b D c O d as a trigger compound for causing a Li e O f as the positive electrode active material, suitably auxiliary and increased It is suggested that there is an effect to do. And it can be said that this effect is more clearly demonstrated by processing the positive electrode material and the conductive additive of the present invention under stronger mixing conditions.
 (実施例8-1)
 LiCoO粉末、LiO粉末及びLiCO粉末を、ボールミルを用いて、500rpmで14.5時間混合し、さらに、600rpmでの5時間混合を追加して、実施例8-1の正極用材料を製造した。実施例8-1の正極用材料におけるLiCoO粉末、LiO粉末及びLiCO粉末のモル比は66:17:17であり、質量比は86:4:10である。
Example 8-1
Li 6 CoO 4 powder, the Li 2 O powder and Li 2 CO 3 powder, using a ball mill, and mixed for 14.5 hours at 500 rpm, further, add 5 hours mixing at 600 rpm, Example 8-1 The positive electrode material was manufactured. The molar ratio of Li 6 CoO 4 powder, Li 2 O powder, and Li 2 CO 3 powder in the positive electrode material of Example 8-1 was 66:17:17, and the mass ratio was 86: 4: 10.
 5質量部の実施例8-1の正極用材料、及び、4質量部の導電助剤としてのアセチレンブラックを、ボールミルを用いて、300rpmで0.5時間混合し、実施例8-1の正極用材料含有混合物を製造した。実施例8-1の正極用材料含有混合物に、結着剤としてポリテトラフルオロエチレン1質量部を加えて、メノウ乳鉢で混合し、粘土状に加工して正極合材を得た。集電体としてメッシュ状のアルミニウムを準備し、これに正極合材を圧着することで実施例8-1の正極を得た。作業は全てアルゴンガス置換された水分濃度1ppm以下のグローブボックス内で行った。
 以下、実施例1-1と同様の方法で、実施例8-1のリチウムイオン二次電池を製造した。
5 parts by mass of the positive electrode material of Example 8-1 and 4 parts by mass of acetylene black as a conductive auxiliary agent were mixed at 300 rpm for 0.5 hour using a ball mill, and the positive electrode of Example 8-1 A material-containing mixture was prepared. 1 part by mass of polytetrafluoroethylene as a binder was added to the positive electrode material-containing mixture of Example 8-1 and mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. A mesh-like aluminum was prepared as a current collector, and a positive electrode mixture was pressure-bonded thereto to obtain a positive electrode of Example 8-1. All operations were performed in a glove box with a water concentration of 1 ppm or less, which was purged with argon gas.
Thereafter, a lithium ion secondary battery of Example 8-1 was produced in the same manner as in Example 1-1.
 (実施例8-2)
 LiCO粉末に替えて、LiPF粉末を用いた以外は、実施例8-1と同様の方法で、実施例8-2の正極用材料、正極用材料含有混合物、正極及びリチウムイオン二次電池を製造した。実施例8-2の正極用材料におけるLiCoO粉末、LiO粉末及びLiPF粉末のモル比は53:41:6であり、質量比は80:11:9である。
(Example 8-2)
Except for using LiPF 6 powder in place of Li 2 CO 3 powder, the same procedure as in Example 8-1 was used to produce the positive electrode material, positive electrode material-containing mixture, positive electrode, and lithium ion A secondary battery was manufactured. The molar ratio of Li 6 CoO 4 powder, Li 2 O powder and LiPF 6 powder in the positive electrode material of Example 8-2 is 53: 41: 6, and the mass ratio is 80: 11: 9.
 (実施例8-3)
 LiCO粉末に替えて、LiPO粉末を用いた以外は、実施例8-1と同様の方法で、実施例8-3の正極用材料、正極用材料含有混合物、正極及びリチウムイオン二次電池を製造した。実施例8-3の正極用材料におけるLiCoO粉末、LiO粉末及びLiPO粉末のモル比は58:33:9であり、質量比は82:9:9である。
(Example 8-3)
The positive electrode material, positive electrode material-containing mixture, positive electrode, and lithium in Example 8-3 were prepared in the same manner as in Example 8-1, except that Li 3 PO 4 powder was used instead of Li 2 CO 3 powder. An ion secondary battery was manufactured. The molar ratio of the Li 6 CoO 4 powder, the Li 2 O powder and the Li 3 PO 4 powder in the positive electrode material of Example 8-3 is 58: 33: 9, and the mass ratio is 82: 9: 9.
 (実施例8-4)
 LiCO粉末に替えて、LiBF粉末を用いた以外は、実施例8-1と同様の方法で、実施例8-4の正極用材料、正極用材料含有混合物、正極及びリチウムイオン二次電池を製造した。実施例8-4の正極用材料におけるLiCoO粉末、LiO粉末及びLiBF粉末のモル比は60:28:11であり、質量比は84:7:9である。
(Example 8-4)
Except for using LiBF 4 powder in place of Li 2 CO 3 powder, the same procedure as in Example 8-1 was performed, and the positive electrode material, positive electrode material-containing mixture, positive electrode, and lithium ion secondary battery of Example 8-4 were used. A secondary battery was manufactured. The molar ratio of Li 6 CoO 4 powder, Li 2 O powder and LiBF 4 powder in the positive electrode material of Example 8-4 is 60:28:11, and the mass ratio is 84: 7: 9.
(評価例4)
 実施例8-1~実施例8-4のリチウムイオン二次電池につき、13.5mA/gの一定電流下、3.5Vまで充電を行い、1.5Vまで放電を行うとの充放電を行った。評価は25℃に制御された恒温槽内で実施した。 
 その結果、実施例8-1~実施例8-4のリチウムイオン二次電池の全てにおいて、比較例1の初回放電容量(表2を参照のこと。)よりも、著しく大きな放電容量を示した。
(Evaluation example 4)
The lithium ion secondary batteries of Examples 8-1 to 8-4 were charged to 3.5 V and discharged to 1.5 V under a constant current of 13.5 mA / g. It was. Evaluation was carried out in a thermostat controlled at 25 ° C.
As a result, all of the lithium ion secondary batteries of Examples 8-1 to 8-4 showed significantly larger discharge capacities than the initial discharge capacities of Comparative Example 1 (see Table 2). .
 実施例8-1のリチウムイオン二次電池における充放電曲線を図11に示す。なお、図11における「1cyc CHG」とは充電曲線を意味し、「1cyc DCHG」とは放電曲線を意味する。図11から、実施例8-1のリチウムイオン二次電池の初回放電容量は458.3mAh/gであった。また、実施例8-2のリチウムイオン二次電池の初回放電容量は446.6mAh/g、実施例8-3のリチウムイオン二次電池の初回放電容量は432.3mAh/g、実施例8-4のリチウムイオン二次電池の初回放電容量は418.7mAh/gであった。これらの初回放電容量は、比較例1の初回放電容量よりも著しく大きいのはもちろんのこと、実施例1-1~実施例7-2の初回放電容量と比較した場合でも、比較的大きな容量であるといえる。 FIG. 11 shows a charge / discharge curve of the lithium ion secondary battery of Example 8-1. In FIG. 11, “1cyc CHG” means a charging curve, and “1cyc DCHG” means a discharging curve. From FIG. 11, the initial discharge capacity of the lithium ion secondary battery of Example 8-1 was 458.3 mAh / g. The initial discharge capacity of the lithium ion secondary battery of Example 8-2 was 446.6 mAh / g, and the initial discharge capacity of the lithium ion secondary battery of Example 8-3 was 432.3 mAh / g, Example 8- The initial discharge capacity of the lithium ion secondary battery 4 was 418.7 mAh / g. These initial discharge capacities are remarkably larger than the initial discharge capacities of Comparative Example 1, and even when compared with the initial discharge capacities of Examples 1-1 to 7-2, It can be said that there is.
 これらの結果から、LiCO、LiPF、LiPO、LiBFから選択されるリチウム塩は、Liを正極活物質として機能させるためのトリガー化合物としてのLiの作用を、好適に補助かつ増大する効果を奏することが示唆される。また、図10で示される放電容量の値、及び、放電曲線の形状からみて、上記のリチウム塩それ自身が活物質として作用していることも示唆される。 These results, the lithium salt selected from Li 2 CO 3, LiPF 6, Li 3 PO 4, LiBF 4 is, Li e O Li a of f as a trigger compound to function as a positive electrode active material M b D It is suggested that there is an effect of suitably assisting and increasing the action of c O d . Moreover, it is suggested that said lithium salt itself is acting as an active material from the value of the discharge capacity shown in FIG. 10 and the shape of the discharge curve.

Claims (12)

  1.  Li(ただし、4<a<7、b+c=1、0.9≦b≦1、0≦c≦0.1、3<d<5を満足する。Mは少なくとも1種の遷移金属である。Dはドープ元素である。)と、Li(ただし、0<e、0<fを満足する。)とを含有することを特徴とする正極。 Li a M b D c O d (where 4 <a <7, b + c = 1, 0.9 ≦ b ≦ 1, 0 ≦ c ≦ 0.1, 3 <d <5. M is at least 1) A positive electrode characterized by containing a transition metal of a seed, D is a doping element, and Li e O f (where 0 <e, 0 <f is satisfied).
  2.  Li及びLiの合計質量に対して、Liを20~99質量%の範囲内で含有する請求項1に記載の正極。 Li a M b D c O with respect to the total mass of the d and li e O f, the positive electrode according to claim 1 containing Li a M b D c O d in the range of 20 to 99 mass%.
  3.  前記Liが逆ホタル石型の結晶構造を示す請求項1又は2に記載の正極。 The positive electrode according to claim 1, wherein the Li a Mb D c O d has an inverted fluorite-type crystal structure.
  4.  前記MはCo、Fe及びMnの少なくとも1種である請求項1~3のいずれか1項に記載の正極。 The positive electrode according to any one of claims 1 to 3, wherein the M is at least one of Co, Fe, and Mn.
  5.  前記Liが、LiO又はLiである請求項1~4のいずれか1項に記載の正極。 The Li e O f is, Li 2 O or Li 2 O 2 as a positive electrode according to any one of claims 1 to 4.
  6.  さらに、LiCO、LiPF、LiPO及びLiBFから選択されるリチウム塩を含有する、請求項1~5のいずれか1項に記載の正極。 The positive electrode according to claim 1, further comprising a lithium salt selected from Li 2 CO 3 , LiPF 6 , Li 3 PO 4 and LiBF 4 .
  7.  請求項1~6のいずれか1項に記載された正極を具備するリチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode according to any one of claims 1 to 6.
  8.  前記Liと前記Liを混合し混合物とする工程、
     前記混合物を正極の集電体に配置する工程、
    を含む、請求項1~6のいずれか1項に記載された正極の製造方法。
    The Li a M b D c O d and the Li e O f mixing step of the mixture,
    Disposing the mixture on a positive electrode current collector;
    The method for producing a positive electrode according to any one of claims 1 to 6, comprising:
  9.  前記Liと前記Liを混合し、さらに導電助剤を加えて混合物とする工程、
     前記混合物を正極の集電体に配置する工程、
    を含む、請求項1~6のいずれか1項に記載された正極の製造方法。
    The Li a M b D c O d and mixing the Li e O f, the step of further conductive additive were added and the mixture,
    Disposing the mixture on a positive electrode current collector;
    The method for producing a positive electrode according to any one of claims 1 to 6, comprising:
  10.  請求項8又は9に記載の製造方法で製造された正極を配置する工程、を含むリチウムイオン二次電池の製造方法。 A method for producing a lithium ion secondary battery, comprising a step of arranging a positive electrode produced by the production method according to claim 8 or 9.
  11.  Li(ただし、4<a<7、b+c=1、0.9≦b≦1、0≦c≦0.1、3<d<5を満足する。Mは少なくとも1種の遷移金属である。Dはドープ元素である。)と、Li(ただし、0<e、0<fを満足する。)とを含有することを特徴とする正極用材料。 Li a M b D c O d (where 4 <a <7, b + c = 1, 0.9 ≦ b ≦ 1, 0 ≦ c ≦ 0.1, 3 <d <5. M is at least 1) A positive electrode material comprising: a seed transition metal, D is a doping element, and Li e O f (where 0 <e, 0 <f is satisfied).
  12.  Li(ただし、4<a<7、b+c=1、0.9≦b≦1、0≦c≦0.1、3<d<5を満足する。Mは少なくとも1種の遷移金属である。Dはドープ元素である。)と、Li(ただし、0<e、0<fを満足する。)と、LiCO、LiPF、LiPO及びLiBFから選択されるリチウム塩とを含有することを特徴とする正極用材料。 Li a M b D c O d (where 4 <a <7, b + c = 1, 0.9 ≦ b ≦ 1, 0 ≦ c ≦ 0.1, 3 <d <5. M is at least 1) species of the transition metal .D is doping element.) and, Li e O f (although, 0 <e, 0 <satisfies f. a), Li 2 CO 3, LiPF 6, Li 3 PO 4 And a lithium salt selected from LiBF 4 .
PCT/JP2017/015675 2016-04-21 2017-04-19 Material for positive electrodes WO2017183653A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513193A JPWO2017183653A1 (en) 2016-04-21 2017-04-19 Positive electrode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016085533 2016-04-21
JP2016-085533 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017183653A1 true WO2017183653A1 (en) 2017-10-26

Family

ID=60116888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015675 WO2017183653A1 (en) 2016-04-21 2017-04-19 Material for positive electrodes

Country Status (2)

Country Link
JP (1) JPWO2017183653A1 (en)
WO (1) WO2017183653A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041677A (en) * 2016-09-09 2018-03-15 株式会社Gsユアサ Positive electrode active material, positive electrode, and nonaqueous electrolyte power storage device
CN109748328A (en) * 2019-03-19 2019-05-14 中南大学 A kind of prelithiation agent, preparation method and its method for being used to prepare capacitor
JP2019085316A (en) * 2017-11-09 2019-06-06 株式会社豊田自動織機 Carbon-coated Li5FeO4
WO2019163476A1 (en) * 2018-02-20 2019-08-29 株式会社Gsユアサ Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, method for producing positive electrode active material, method for producing positive electrode, and method for producing non-aqueous electrolyte power storage element
WO2019163475A1 (en) * 2018-02-20 2019-08-29 株式会社Gsユアサ Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, method for producing positive electrode active material, and method for producing non-aqueous electrolyte power storage element
JP2020053315A (en) * 2018-09-27 2020-04-02 株式会社豊田自動織機 Method of manufacturing composite particles
CN114988494A (en) * 2022-06-10 2022-09-02 宁波容百新能源科技股份有限公司 Boron-doped high-nickel ternary precursor material, preparation method thereof and high-nickel ternary cathode material
JP7443378B2 (en) 2019-01-15 2024-03-05 テスラ・インコーポレーテッド Compositions and methods for prelithiated energy storage devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207055A (en) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd Lithium battery and manufacturing method
JP2009252638A (en) * 2008-04-09 2009-10-29 Toyota Motor Corp Catalyst for air cell
JP2010225291A (en) * 2009-03-19 2010-10-07 Toyota Motor Corp Lithium-ion secondary battery and method of manufacturing the same
WO2015011883A1 (en) * 2013-07-25 2015-01-29 株式会社豊田自動織機 Pre-doping agent, positive electrode, lithium ion secondary battery, and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207055A (en) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd Lithium battery and manufacturing method
JP2009252638A (en) * 2008-04-09 2009-10-29 Toyota Motor Corp Catalyst for air cell
JP2010225291A (en) * 2009-03-19 2010-10-07 Toyota Motor Corp Lithium-ion secondary battery and method of manufacturing the same
WO2015011883A1 (en) * 2013-07-25 2015-01-29 株式会社豊田自動織機 Pre-doping agent, positive electrode, lithium ion secondary battery, and method for producing same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041677A (en) * 2016-09-09 2018-03-15 株式会社Gsユアサ Positive electrode active material, positive electrode, and nonaqueous electrolyte power storage device
JP7097153B2 (en) 2016-09-09 2022-07-07 株式会社Gsユアサ Positive electrode active material, positive electrode, and non-aqueous electrolyte power storage element
JP7027824B2 (en) 2017-11-09 2022-03-02 株式会社豊田自動織機 Carbon coated Li5FeO4
JP2019085316A (en) * 2017-11-09 2019-06-06 株式会社豊田自動織機 Carbon-coated Li5FeO4
JP7276310B2 (en) 2018-02-20 2023-05-18 株式会社Gsユアサ Positive electrode active material, positive electrode, non-aqueous electrolyte storage element, method for manufacturing positive electrode active material, and method for manufacturing non-aqueous electrolyte storage element
US11276857B2 (en) 2018-02-20 2022-03-15 Gs Yuasa International Ltd. Positive active material, positive electrode, nonaqueous electrolyte energy storage device, method of producing positive active material, and method of producing nonaqueous electrolyte
JPWO2019163476A1 (en) * 2018-02-20 2021-03-04 株式会社Gsユアサ Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, positive electrode active material manufacturing method, positive electrode manufacturing method, and non-aqueous electrolyte power storage element manufacturing method
JPWO2019163475A1 (en) * 2018-02-20 2021-03-18 株式会社Gsユアサ Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, positive electrode active material manufacturing method, and non-aqueous electrolyte power storage element manufacturing method
EP3736888A4 (en) * 2018-02-20 2021-10-13 GS Yuasa International Ltd. Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, method for producing positive electrode active material, and method for producing non-aqueous electrolyte power storage element
JP7294313B2 (en) 2018-02-20 2023-06-20 株式会社Gsユアサ Positive electrode active material, positive electrode, non-aqueous electrolyte storage element, method for manufacturing positive electrode active material, method for manufacturing positive electrode, and method for manufacturing non-aqueous electrolyte storage element
WO2019163475A1 (en) * 2018-02-20 2019-08-29 株式会社Gsユアサ Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, method for producing positive electrode active material, and method for producing non-aqueous electrolyte power storage element
WO2019163476A1 (en) * 2018-02-20 2019-08-29 株式会社Gsユアサ Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, method for producing positive electrode active material, method for producing positive electrode, and method for producing non-aqueous electrolyte power storage element
JP2020053315A (en) * 2018-09-27 2020-04-02 株式会社豊田自動織機 Method of manufacturing composite particles
JP7131258B2 (en) 2018-09-27 2022-09-06 株式会社豊田自動織機 Composite particle manufacturing method
JP7443378B2 (en) 2019-01-15 2024-03-05 テスラ・インコーポレーテッド Compositions and methods for prelithiated energy storage devices
US11949089B2 (en) 2019-01-15 2024-04-02 Tesla, Inc. Compositions and methods for prelithiating energy storage devices
CN109748328A (en) * 2019-03-19 2019-05-14 中南大学 A kind of prelithiation agent, preparation method and its method for being used to prepare capacitor
CN109748328B (en) * 2019-03-19 2021-12-14 中南大学 Pre-lithiation agent, preparation method and method for preparing capacitor by using pre-lithiation agent
CN114988494A (en) * 2022-06-10 2022-09-02 宁波容百新能源科技股份有限公司 Boron-doped high-nickel ternary precursor material, preparation method thereof and high-nickel ternary cathode material
CN114988494B (en) * 2022-06-10 2023-12-26 宁波容百新能源科技股份有限公司 Boron-doped high-nickel ternary precursor material, preparation method thereof and high-nickel ternary cathode material

Also Published As

Publication number Publication date
JPWO2017183653A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2017183653A1 (en) Material for positive electrodes
JP5817963B2 (en) Method for producing lithium manganese iron phosphate particle powder, lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using the particle powder
JP5298286B2 (en) Method for producing lithium silicate compound
JP5835107B2 (en) Nonaqueous electrolyte secondary battery
JP6102934B2 (en) Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary battery
WO2018163519A1 (en) Positive electrode active material and battery
JP2018116930A (en) Positive electrode active material and battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP2020504416A (en) Positive active material for lithium secondary battery, method for producing the same, electrode including the same, and lithium secondary battery including the electrode
WO2018092359A1 (en) Positive electrode active material for batteries, and battery
JP6990855B2 (en) Positive electrode active material and battery
WO2018100792A1 (en) Positive electrode active material and battery using positive electrode active material
WO2018198410A1 (en) Positive electrode active material and battery
JP2008311209A (en) Nonaqueous electrolyte secondary battery
JPWO2017013848A1 (en) Positive electrode active material and battery
JPWO2017047021A1 (en) Positive electrode active material and battery
WO2018163518A1 (en) Positive electrode active material, and cell
JP2018085324A (en) Cathode active material for battery, and battery using cathode active material
JP2009245940A (en) Nonaqueous electrolyte secondary battery
JP7233011B2 (en) Positive electrode active material and secondary battery
CN112313817A (en) Positive electrode material and secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JPWO2017047016A1 (en) Positive electrode active material and battery
EP3352262B1 (en) Positive electrode active material and battery
JP5625028B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513193

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785991

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785991

Country of ref document: EP

Kind code of ref document: A1