JPH10324521A - Lithium-manganese multiple oxide, its production and its use - Google Patents

Lithium-manganese multiple oxide, its production and its use

Info

Publication number
JPH10324521A
JPH10324521A JP9133678A JP13367897A JPH10324521A JP H10324521 A JPH10324521 A JP H10324521A JP 9133678 A JP9133678 A JP 9133678A JP 13367897 A JP13367897 A JP 13367897A JP H10324521 A JPH10324521 A JP H10324521A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
manganese composite
manganese
lithium manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9133678A
Other languages
Japanese (ja)
Inventor
Shunichi Hamamoto
俊一 浜本
Akira Ueki
明 植木
Kazuhiro Miyoshi
和弘 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9133678A priority Critical patent/JPH10324521A/en
Publication of JPH10324521A publication Critical patent/JPH10324521A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain lithium-manganese multiple oxide ensuring a higher capacity even at the time of discharge at high current density and having satisfactory cycle characteristics as a positive electrode material for a lithium secondary battery by specifying the ratio of particle diameter to crystallite diameter and imparting a spinel structure. SOLUTION: A lithium compd. and a manganese compd. are fired in the presence of an inert flux preferably contg. one or more among halides, sulfates and molybdates of potassium and barium or sulfate and molybdate of lithium and their hydrates to obtain the objective lithium-manganese multiple oxide. The ratio (DBET/DX) of the particle diameter DBET of the multiple oxide calculated from the BET specific surface area to the crystallite diameter DX calculated using the Scherrer's expression from the measurement of X-ray diffraction is <=5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サイクル特性に優
れたリチウム二次電池用正極活物質として使用されるリ
チウムマンガン複合酸化物およびその製造法ならびにそ
の用途に関するものである。
The present invention relates to a lithium manganese composite oxide used as a positive electrode active material for a lithium secondary battery having excellent cycle characteristics, a method for producing the same, and uses thereof.

【0002】[0002]

【従来の技術】近年、ノート型パーソナルコンピュー
タ、携帯電話等ポータブル機器の性能の進化は著しく、
小型軽量化、高性能化が促進され、それに伴い、これら
機器の電源として搭載される電池についても、小型軽量
で高性能の充放電サイクル劣化の少ない二次電池が必要
とされ、リチウムイオン二次電池が実用化されている。
しかし、この電池の正極活物質として用いられているL
iCoO2 は高価なコバルトを原料に用いるため、製造
コストを下げるために安価なマンガンを原料とするリチ
ウムとマンガンとの複合酸化物であるスピネル型構造の
LiMn2 4 が注目され、その研究が活発に進められ
ている。
2. Description of the Related Art In recent years, the performance of portable devices such as notebook personal computers and mobile phones has been remarkably advanced.
With the promotion of miniaturization, lightening and high performance, batteries used as power supplies for these devices also need to be small, lightweight, and high performance secondary batteries with little deterioration in charge / discharge cycles. Batteries have been put into practical use.
However, L used as a positive electrode active material of this battery
Since iCoO 2 uses expensive cobalt as a raw material, attention has been paid to spinel-type LiMn 2 O 4 , a composite oxide of lithium and manganese, which is made of inexpensive manganese as a raw material in order to reduce manufacturing costs. It is being actively promoted.

【0003】従来、高結晶性のスピネル型LiMn2
4 は、例えばMn2 3 とLi2 CO3 とをMn:Li
=2:1(モル比)で混合し、650℃で6時間、85
0℃で14時間空気中で焼成する方法で得られる(特開
昭63−187569号公報)。しかし、このような高
温の処理を行うと固相反応の促進により粒子同士の焼結
反応が進行する。LiMn2 4 は、Liイオン伝導性
がLiCoO2 と比べて低いため、粒子同士の焼結が進
むほど高い電流密度でのLiイオンの脱離、挿入反応が
困難になり、充分な放電容量を得ることが出来なくなる
だけでなく、サイクル特性も悪い。一方、低温焼成で得
られる低結晶性のスピネル型LiMn24 は、粒子同
士の焼結はほとんど無いが、放電容量が低く、かつサイ
クル特性も悪い。
Conventionally, spinel-type LiMn 2 O of high crystallinity has been used.
4 , for example, converts Mn 2 O 3 and Li 2 CO 3 into Mn: Li
= 2: 1 (molar ratio) and mixed at 650 ° C. for 6 hours, 85
It is obtained by calcination in air at 0 ° C. for 14 hours (JP-A-63-187569). However, when such a high-temperature treatment is performed, the sintering reaction between the particles proceeds due to the promotion of the solid-phase reaction. Since LiMn 2 O 4 has a lower Li ion conductivity than LiCoO 2 , as the sintering of particles progresses, the desorption and insertion reaction of Li ions at a higher current density becomes more difficult, and a sufficient discharge capacity is obtained. Not only can it not be obtained, but also the cycle characteristics are poor. On the other hand, low-crystal spinel-type LiMn 2 O 4 obtained by low-temperature sintering has almost no sintering among particles, but has a low discharge capacity and poor cycle characteristics.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、リチ
ウム二次電池用の正極材料として、高電流密度放電時に
もより大きな容量が得られ、かつサイクル特性が良好な
スピネル型構造からなるリチウムマンガン複合酸化物お
よびその製造法を提供することにあり、このリチウムマ
ンガン複合酸化物を正極に用いて高出力、高エネルギ密
度なリチウム二次電池を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a lithium secondary battery having a spinel structure having a larger capacity and a good cycle characteristic even when discharged at a high current density. It is an object of the present invention to provide a manganese composite oxide and a method for producing the same, and to provide a lithium secondary battery with high output and high energy density using this lithium manganese composite oxide as a positive electrode.

【0005】[0005]

【課題を解決するための手段】本発明者らは、鋭意検討
を行った結果、放電容量が高く、サイクル安定性に優れ
たスピネル型構造からなるリチウムマンガン複合酸化物
を見出した。本発明は、BET法により測定した比表面
積から計算される粒子径DBET とX線回折測定結果から
Scherrerの式を用いて計算される結晶子径DX との比D
BET/DX が5以下であることを特徴とするスピネル型
構造からなるリチウムマンガン複合酸化物に関する。ま
た本発明は、リチウム化合物およびマンガン化合物を不
活性溶融剤の存在下に焼成することを特徴とするスピネ
ル型構造からなるリチウムマンガン複合酸化物の製造法
に関する。さらに、本発明は前記スピネル型構造からな
るリチウムマンガン複合酸化物を正極材料とすることを
特徴とするリチウム二次電池に関する。
Means for Solving the Problems As a result of intensive studies, the present inventors have found a lithium manganese composite oxide having a spinel structure having a high discharge capacity and excellent cycle stability. The present invention is based on the particle diameter DBET calculated from the specific surface area measured by the BET method and the result of X-ray diffraction measurement.
Ratio D to crystallite diameter D X calculated using Scherrer's equation
The present invention relates to a lithium manganese composite oxide having a spinel structure, wherein BET / D X is 5 or less. The present invention also relates to a method for producing a lithium manganese composite oxide having a spinel structure, which comprises sintering a lithium compound and a manganese compound in the presence of an inert flux. Further, the present invention relates to a lithium secondary battery using the lithium manganese composite oxide having the spinel structure as a positive electrode material.

【0006】[0006]

【作用】以下、本発明をさらに詳細に説明する。本発明
のリチウムマンガン複合酸化物は、立方晶系のスピネル
型結晶構造であり、X線回折パターンがJCPDS:N
o.35−782のLiMn2 4 と同様のパターンを
示すものである。また、本発明のリチウムマンガン複合
酸化物は、BET法により測定した比表面積から計算さ
れる粒子径DBET とX線回折測定結果からScherrerの式
を用いて計算される結晶子径DX との比DBET /DX
5以下のものである。該比DBET /DX が5を超えると
粒子間の焼結が進みすぎ、結晶子の表面のうちLiイオ
ンや電子の拡散の抵抗となる粒界部分の割合が大きくな
り、高い電流密度で放電を行った際に充分な放電容量が
得られなかったり、構造破壊の原因となるなど、電池性
能を低下させる恐れがあるためである。本発明のリチウ
ムマンガン複合酸化物の粒子径DBET は、BET法によ
り測定した比表面積Sと立方晶の格子定数から計算され
る理論密度ρから、粉末粒子が全て一定の直径DBET
有する球状粒子であると仮定し、DBET =6/(ρ・
S)により計算して求める。また、結晶子径DX はX線
回折パターンの最大の強度を示すピークについて下記Sc
herrerの式より求めた。 DX =(K・λ)・(β・cosθ) (但し、K=1、β:回折系に固有な広がりを補正した
ピークの半値幅、2θ:回折角)
Hereinafter, the present invention will be described in more detail. The lithium manganese composite oxide of the present invention has a cubic spinel-type crystal structure and an X-ray diffraction pattern of JCPDS: N
o. This shows a pattern similar to that of LiMn 2 O 4 of No. 35-782. Further, the lithium manganese composite oxide of the present invention, the particle being the diameter D BET and X-ray diffraction measurement results calculated from the measured specific surface area by the BET method of the crystallite diameter D X to be calculated using the Scherrer equation the ratio D BET / D X is 5 or less. When the ratio D BET / D X exceeds 5, sintering between particles proceeds too much, and the ratio of the grain boundary portion which becomes the resistance of the diffusion of Li ions and electrons on the surface of the crystallite becomes large, and at a high current density, This is because there is a possibility that a sufficient discharge capacity cannot be obtained when the discharge is performed, or the structure may be destroyed, thereby deteriorating the battery performance. The particle diameter DBET of the lithium manganese composite oxide of the present invention is a spherical particle having a constant diameter DBET , based on the specific surface area S measured by the BET method and the theoretical density ρ calculated from the cubic lattice constant. Particles, and D BET = 6 / (ρ ·
It is calculated by S). Further, the crystallite diameter D X is below the peak indicating the maximum intensity of X-ray diffraction pattern Sc
It was calculated from herrer's formula. D X = (K · λ) · (β · cos θ) (where K = 1, β: half-width of the peak corrected for the spread peculiar to the diffraction system, 2θ: diffraction angle)

【0007】以下に本発明のリチウムマンガン複合酸化
物の製造法について説明する。原料としては、リチウム
マンガン複合酸化物のリチウム源となるリチウム化合物
とリチウムマンガン複合酸化物のマンガン源となるマン
ガン化合物、そしてこれらの原料及び生成物のリチウム
マンガン複合酸化物と反応しない不活性溶融剤である。
リチウム源となるリチウム化合物としては熱処理時に酸
化物となるものであれば特に限定されないが、酸化リチ
ウム、炭酸リチウム、水酸化リチウム、硝酸リチウム、
塩化リチウム、酢酸リチウム等が挙げられる。マンガン
源となるマンガン化合物としては熱処理時に酸化物にな
るものであれば特に限定されないが、MnO、Mn3
4 、Mn2 3 、MnO2 などの酸化マンガン、炭酸マ
ンガン、水酸化マンガン、硝酸マンガン、酢酸マンガン
等が挙げられる。
Hereinafter, a method for producing the lithium manganese composite oxide of the present invention will be described. The raw materials are a lithium compound serving as a lithium source of the lithium manganese composite oxide, a manganese compound serving as a manganese source of the lithium manganese composite oxide, and an inert flux that does not react with the lithium manganese composite oxide of these raw materials and products. It is.
The lithium compound serving as a lithium source is not particularly limited as long as it becomes an oxide during heat treatment, but lithium oxide, lithium carbonate, lithium hydroxide, lithium nitrate,
Lithium chloride, lithium acetate and the like can be mentioned. The manganese compound serving as a manganese source is not particularly limited as long as it becomes an oxide during heat treatment, but MnO, Mn 3 O
4 , manganese oxides such as Mn 2 O 3 and MnO 2 , manganese carbonate, manganese hydroxide, manganese nitrate, manganese acetate and the like.

【0008】不活性溶融剤としては、焼成温度で分解せ
ず、原料及び生成物のリチウムマンガン複合酸化物と反
応しないものであれば特に制限されないが、リチウムイ
オン(イオン半径:0.68オングストローム、Ahr
enによる)やマンガンイオン(イオン半径:Mn3+
0.66オングストローム、Mn4+;0.60オングス
トローム、Ahrenによる)のイオン半径に比べ2倍
程度の大きさを持つカリウムイオン(イオン半径:1.
33オングストローム、Ahrenによる)やバリウム
イオン(イオン半径:1.34オングストローム、Ah
renによる)をカチオンとするハロゲン化物、硫酸
塩、モリブデン酸塩、あるいはリチウムイオンをカチオ
ンとする硫酸塩、モリブデン酸塩、およびこれらの水和
物を少なくとも一種類以上含むものがスピネル型リチウ
ムマンガン複合酸化物の構造中に取り込まれないので不
活性溶融剤として特に好ましい。リチウムマンガン複合
酸化物の製造の際には、まず、これらの原料を混合する
が、混合方法としては特に限定されず、乳鉢、ミキサ
ー、ボールミル等を用いて混合する乾式法、水やエタノ
ールなどを用いる湿式混合法など均一に混合できる方法
であればよい。
[0008] The inert melting agent is not particularly limited as long as it does not decompose at the firing temperature and does not react with the lithium manganese composite oxide as a raw material and a product, and lithium ion (ionic radius: 0.68 Å, Ahr
en) and manganese ions (ionic radius: Mn 3+ ;
Potassium ion (ion radius: 1.6 Angstrom, Mn 4+ ; 0.60 Angstrom, according to Ahren) having a size about twice as large as the ion radius.
33 Å, according to Ahren) and barium ions (ion radius: 1.34 Å, Ah
a) a spinel-type lithium manganese composite comprising at least one of halides, sulfates, molybdates having a cation as a cation or sulfates, molybdates having a lithium ion as a cation, and hydrates thereof. It is particularly preferred as an inert flux because it is not incorporated into the oxide structure. In the production of the lithium manganese composite oxide, first, these raw materials are mixed, but the mixing method is not particularly limited, and a dry method of mixing using a mortar, a mixer, a ball mill, or the like, water, ethanol, or the like. Any method can be used as long as it can be uniformly mixed such as a wet mixing method used.

【0009】本発明のリチウムマンガン複合酸化物の製
造においては、前記のリチウム源とマンガン源と不活性
溶融剤とを混合し、500℃以上900℃以下で1時間
以上熱処理を行う。不活性溶融剤が作る液相がリチウム
源、マンガン源の移動を容易にするため、スピネル型構
造からなるリチウムマンガン複合酸化物以外のリチウム
酸化物、マンガン酸化物、リチウムマンガン複合酸化物
の生成をなくし、また生成したスピネル型構造からなる
リチウムマンガン複合酸化物結晶の周りには該液相が存
在するため結晶粒同士の焼結が生じにくいと考えられ
る。不活性溶融剤の添加量は、使用される溶融剤の種類
によっても異なるが、結晶粒子間の焼結を抑制するのに
充分な液量が確保される量であればよく、前記のリチウ
ム源となるリチウム化合物とマンガン源となるマンガン
化合物の酸化物換算重量に対して0.1倍量以上が好ま
しく、さらに0.5倍量以上が好ましい。熱処理後、水
により洗浄し、溶融剤を除去した後、ろ過、乾燥し、リ
チウムマンガン複合酸化物を作製する。
In the production of the lithium-manganese composite oxide of the present invention, the above-mentioned lithium source, manganese source and inert flux are mixed and heat-treated at 500 ° C. to 900 ° C. for 1 hour or more. Since the liquid phase created by the inert flux facilitates the transfer of lithium and manganese sources, it is necessary to generate lithium oxide, manganese oxide, and lithium manganese composite oxide other than the lithium manganese composite oxide having a spinel structure. Further, it is considered that the liquid phase exists around the generated lithium manganese composite oxide crystal having the spinel structure, so that sintering of the crystal grains hardly occurs. The addition amount of the inert melting agent varies depending on the type of the melting agent used, but may be any amount as long as a liquid amount sufficient to suppress sintering between crystal particles is secured. It is preferably at least 0.1 times, more preferably at least 0.5 times the weight of the lithium compound and the manganese compound as the manganese source in terms of oxide. After the heat treatment, the resultant is washed with water to remove the melting agent, filtered, and dried to produce a lithium manganese composite oxide.

【0010】次に、本発明のリチウム二次電池について
詳細に説明する。本発明のリチウム二次電池の正極は、
前述したリチウムマンガン複合酸化物を活物質として含
むものである。該正極は、具体的には、該リチウムマン
ガン複合酸化物、導電剤、バインダーからなり、導電剤
としては、天然黒鉛、人造黒鉛、コークスなどの炭素質
材料が挙げられ、バインダーとしては、ポリフッ化ビニ
リデン、ポリテトラフルオロエチレン、ポリエチレン、
ポリプロピレンなどの熱可塑性樹脂が挙げられる。本発
明のリチウム二次電池の負極としては、リチウム金属、
リチウム合金、またリチウムイオンを吸蔵、放出可能な
材料が用いられる。リチウムイオンを吸蔵、放出可能な
材料が用いられる。リチウムイオンを吸蔵、放出可能な
材料としては、天然黒鉛、人造黒鉛、コークス類、カー
ボンブラック、熱分解炭素類、炭素繊維などの炭素質材
料が挙げられる。
Next, the lithium secondary battery of the present invention will be described in detail. The positive electrode of the lithium secondary battery of the present invention,
It contains the above-mentioned lithium manganese composite oxide as an active material. Specifically, the positive electrode is composed of the lithium-manganese composite oxide, a conductive agent, and a binder. Examples of the conductive agent include carbonaceous materials such as natural graphite, artificial graphite, and coke. Vinylidene, polytetrafluoroethylene, polyethylene,
Thermoplastic resins such as polypropylene are exemplified. As the negative electrode of the lithium secondary battery of the present invention, lithium metal,
A lithium alloy or a material capable of inserting and extracting lithium ions is used. A material capable of inserting and extracting lithium ions is used. Materials capable of occluding and releasing lithium ions include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, and carbon fibers.

【0011】本発明のリチウム二次電池の電解質として
は、リチウム塩を有機溶媒に溶解させた非水電解質溶液
または固体電解質のいずれかから選ばれる公知のものが
用いられる。リチウム塩としては、LiClO4 、Li
PF6 、LiAsF6 、LiBF4 、LiCF3 SO3
などのうち一種あるいは二種以上の混合物が挙げられ
る。
As the electrolyte of the lithium secondary battery of the present invention, a known electrolyte selected from a nonaqueous electrolyte solution obtained by dissolving a lithium salt in an organic solvent and a solid electrolyte is used. LiClO 4 , Li
PF 6 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3
One or a mixture of two or more of these.

【0012】有機溶媒としてはプロピレンカーボネー
ト、エチレンカーボネート、ジメチルカーボネート、ジ
エチルカーボネートなどのカーボネート類;1,2−ジ
メトキシエタン、1,3−ジメトキシプロパン、テトラ
ヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチ
ル、γ−ブチロラクトンなどのエステル類;アセトニト
リル、ブチロニトリルなどのニトリル類;N,N−ジメ
チルホルムアミドなどのアミド類;スルホラン、ジメチ
ルスルホキシド、1,3−プロパンサルトンなどの含硫
黄化合物が挙げられるが、通常はこれらのうち二種以上
を混合して用いる。
Examples of the organic solvent include carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate and diethyl carbonate; ethers such as 1,2-dimethoxyethane, 1,3-dimethoxypropane and tetrahydrofuran; methyl formate, methyl acetate, γ Esters such as -butyrolactone; nitriles such as acetonitrile and butyronitrile; amides such as N, N-dimethylformamide; and sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, and 1,3-propane sultone. Two or more of these are used as a mixture.

【0013】固体電解質としては、ポリエリレンオキサ
イド誘導体又は該誘導体を含むポリマー、ポリプロピレ
ンオキサイド誘導体又は該誘導体を含むポリマーなどの
有機固体電解質や、Li3 N、LiI、Li3 N−Li
I−LiOH、Li4 SiO 4 、Li4 SiO4 −Li
3 PO4 などの無機固体電解質が挙げられる。また、高
分子に非水電解質溶液を保持させたゲル状のものを用い
ることもできる。本発明のリチウム二次電池の形状は特
に限定されず、ペーパー型、コイン型、円筒型、角型な
どのいずれであってもよい。
As the solid electrolyte, polyerylene oxa
Id derivative or polymer containing the derivative, polypropylene
Oxide derivatives or polymers containing the derivatives
Organic solid electrolyte, LiThreeN, LiI, LiThreeN-Li
I-LiOH, LiFourSiO Four, LiFourSiOFour−Li
ThreePOFourAnd other inorganic solid electrolytes. Also high
Using a gel-like material that holds a non-aqueous electrolyte solution in the molecule
You can also. The shape of the lithium secondary battery of the present invention is
Not limited to paper type, coin type, cylindrical type, square type
Any one may be used.

【0014】[0014]

【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明はこれによって何ら限定されるもので
はない。 実施例1 Li2 CO3 ;10.32g及びMn3 4 ;42.6
2g(Li/Mn=0.5,モル比)とKCl;41.
43gを乳鉢でよく混合した後、大気中で800℃まで
2時間で昇温し、800℃で1時間保持した。反応生成
物を熱水洗浄を繰り返すことにより不活性溶融剤を除去
した後、ろ過、乾燥し、リチウムマンガン複合酸化物を
作製した。X線回折測定の結果、得られたリチウムマン
ガン複合酸化物はJCPDS:No.35−782のL
iMn2 4 と同様のパターンを示すスピネル型結晶構
造であることがわかり、また、その他の結晶相のピーク
は全く検出されなかった。また、ICP分光法による組
成分析の結果、Li/Mn=0.5とほぼ仕込み通りの
モル比であった。さらに、Kイオンについてフレームレ
ス原子吸光法により、塩化物イオンについてイオンクロ
マトグラフィーにより分析した結果、検出されなかっ
た。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. Example 1 10.32 g of Li 2 CO 3 and Mn 3 O 4 ; 42.6
41. 2 g (Li / Mn = 0.5, molar ratio) and KCl;
After well mixing 43 g in a mortar, the temperature was raised to 800 ° C. in the air in 2 hours, and kept at 800 ° C. for 1 hour. The reaction product was washed with hot water repeatedly to remove the inert flux, then filtered and dried to produce a lithium manganese composite oxide. As a result of the X-ray diffraction measurement, the obtained lithium manganese composite oxide was JCPDS: No. L of 35-782
It was found that the crystal had a spinel-type crystal structure showing a pattern similar to that of iMn 2 O 4, and no other crystal phase peak was detected. Further, as a result of composition analysis by ICP spectroscopy, the molar ratio was Li / Mn = 0.5, almost as charged. Furthermore, as a result of analyzing the K ion by flameless atomic absorption spectrometry and the chloride ion by ion chromatography, it was not detected.

【0015】実施例2 溶融剤としてKClの代わりにLi2 SO4 ・H2 O;
17.87gを使用したほかは実施例1と同様にしてリ
チウムマンガン複合酸化物を作製した。得られたリチウ
ムマンガン複合酸化物を前記X線回折等により分析した
ところ実施例1と同様の結果であった。
Example 2 Li 2 SO 4 .H 2 O instead of KCl as a melting agent;
A lithium manganese composite oxide was produced in the same manner as in Example 1 except that 17.87 g was used. When the obtained lithium manganese composite oxide was analyzed by the X-ray diffraction and the like, the result was the same as in Example 1.

【0016】実施例3 溶融剤としてKClの代わりにLi2 MoO4 ;49.
04gを使用し、焼成温度を750℃としたほかは実施
例1と同様にしてリチウムマンガン複合酸化物を作製し
た。得られたリチウムマンガン複合酸化物を前記X線回
折等により分析したところ実施例1と同様の結果であっ
た。
Example 3 Li 2 MoO 4 instead of KCl as a melting agent;
Lithium manganese composite oxide was produced in the same manner as in Example 1 except that 04 g was used and the firing temperature was 750 ° C. When the obtained lithium manganese composite oxide was analyzed by the X-ray diffraction and the like, the result was the same as in Example 1.

【0017】実施例4 溶融剤としてKCl;26.19g及びLi2 SO4
2 O;48.89gを使用したほかは実施例1と同様
にしてリチウムマンガン複合酸化物を作製した。得られ
たリチウムマンガン複合酸化物を前記X線回折等により
分析したところ実施例1と同様の結果であった。
Example 4 26.19 g of KCl as a melting agent and Li 2 SO 4.
A lithium manganese composite oxide was produced in the same manner as in Example 1 except that 48.89 g of H 2 O was used. When the obtained lithium manganese composite oxide was analyzed by the X-ray diffraction and the like, the result was the same as in Example 1.

【0018】実施例5 溶融剤としてBaCl2 ・2H2 O;33.80gを使
用したほかは実施例1と同様にしてリチウムマンガン複
合酸化物を作製した。得られたリチウムマンガン複合酸
化物を前記X線回折等により分析したところ実施例1と
同様の結果であった。
Example 5 A lithium manganese composite oxide was prepared in the same manner as in Example 1 except that 33.80 g of BaCl 2 .2H 2 O was used as a melting agent. When the obtained lithium manganese composite oxide was analyzed by the X-ray diffraction and the like, the result was the same as in Example 1.

【0019】比較例1 溶融剤を使用しなかったほかは実施例1と同様にしてリ
チウムマンガン複合酸化物を作製した。X線回折測定の
結果、得られたリチウムマンガン複合酸化物はJCPD
S:No.35−782のLiMn2 4 と同様のパタ
ーンを示すスピネル型結晶構造であることがわかり、ま
た、その他の結晶相のピークは全く検出されなかった。
また、ICP分光法による組成分析の結果、Li/Mn
=0.5とほぼ仕込み通りのモル比であった。
Comparative Example 1 A lithium-manganese composite oxide was prepared in the same manner as in Example 1 except that no melting agent was used. As a result of the X-ray diffraction measurement, the obtained lithium manganese composite oxide was JCPD
S: No. It was found that the crystal had a spinel-type crystal structure showing a pattern similar to that of LiMn 2 O 4 of No. 35-782, and no other crystal phase peak was detected.
As a result of composition analysis by ICP spectroscopy, Li / Mn
= 0.5, which was almost the same as the charged molar ratio.

【0020】〔結晶子同士の焼結性の評価〕実施例1〜
5及び比較例1で得られたリチウムマンガン複合酸化物
粉末のBET法により測定した比表面積から計算される
粒子径DBET 、X線回折測定結果からScherrerの式を用
いて計算される結晶子径DX 、及び比DBET /DX を表
1に示す。従来法では比DBET /DX が9程度であった
のに対して、本発明の実施例で得られたリチウムマンガ
ン複合酸化物では5より小さい値を示し、結晶子同士の
焼結が比較的小さく抑えられていることがわかる。
[Evaluation of Sinterability between Crystallites]
5 and the particle diameter D BET calculated from the specific surface area measured by the BET method of the lithium manganese composite oxide powder obtained in Comparative Example 1, and the crystallite diameter calculated from the X-ray diffraction measurement result using the Scherrer equation D X, and the ratio D BET / D X shown in Table 1. While the ratio D BET / D X was about 9 in the conventional method, the lithium manganese composite oxide obtained in the example of the present invention showed a value smaller than 5, indicating that the sintering of crystallites was compared. It can be seen that the size is kept very small.

【0021】〔充放電特性の評価〕実施例1〜5及び比
較例で得られたリチウムマンガン複合酸化物を正極活物
質として使用し、以下のように3極式の電気化学セルを
構成し、充放電特性を測定した。得られたリチウムマン
ガン複合酸化物と導電剤のアセチレンブラックとポリテ
トラフルオロエチレンの混合物(商品名:TAB−2)
を重量比で2:1の割合で混合し、混合物30mgをS
US316のリード端子をスポット溶接したSUS31
6製のメッシュ(1.9cm2 )に加圧、充填し試験極
とした。また、金属リチウム箔をSUS316のリード
端子をスポット溶接したSUS316製のメッシュに加
圧、充填し、対極、参照極を構成した。電解質として
は、LiPF 6 をエチレンカーボネートとジメチルカー
ボネートを体積比で1:2の割合で混合した溶媒中に1
Mの濃度で溶解させたものを用いた。このようにして得
られた試験極、対極、及び参照極を電解質中に浸漬し、
電気化学セルを構成した。この電気化学セルを用い、1
mA/cm2 の一定な電流密度で、参照極に対する試験
極の電極電位が3.5Vから4.3Vの範囲で充放電を
行った。1サイクル目の放電容量を100とした場合の
50サイクル目の放電容量維持率を表2に示す。従来法
では、放電容量維持率は84%であるのに対して、本発
明の実施例ではいずれも90%以上の高い維持率を示し
た。
[Evaluation of charge / discharge characteristics] Examples 1 to 5 and ratio
The lithium manganese composite oxide obtained in Comparative Example was used as the positive electrode active material.
Using a three-electrode electrochemical cell as follows
And the charge / discharge characteristics were measured. Lithium man obtained
Acetylene black and polyethylene
Mixture of trafluoroethylene (trade name: TAB-2)
Are mixed at a ratio of 2: 1 by weight, and 30 mg of the mixture is mixed with S
SUS31 with US316 lead terminal spot welded
6 mesh (1.9cmTwo) Pressurized, filled and test electrode
And In addition, metal lithium foil is used for SUS316 lead.
The terminal is added to the SUS316 mesh spot-welded.
Pressure, filling, and the counter and reference electrodes were constructed. As electrolyte
Is LiPF 6The ethylene carbonate and dimethyl carbonate
1: 1 in a solvent in which the carbonate is mixed at a volume ratio of 1: 2.
M dissolved at a concentration of M was used. Gain in this way
The test electrode, the counter electrode, and the reference electrode are immersed in the electrolyte,
An electrochemical cell was constructed. Using this electrochemical cell, 1
mA / cmTwoTest for reference electrode at constant current density
Charge and discharge when the electrode potential of the pole is in the range of 3.5V to 4.3V
went. When the discharge capacity at the first cycle is 100
Table 2 shows the discharge capacity retention ratio at the 50th cycle. Conventional method
, The discharge capacity retention rate is 84%,
In all of the clear examples, a high retention rate of 90% or more was shown.
Was.

【0022】[0022]

【発明の効果】本発明により、リチウム二次電池用の正
極材料として、高電流密度放電時にもより大きな容量が
得られ、かつサイクル特性が良好なスピネル型構造から
なるリチウムマンガン複合酸化物およびその製造法を提
供することができ、このリチウムマンガン複合酸化物を
正極に用いて高出力、高エネルギ密度なリチウム二次電
池を構成することができる。
According to the present invention, as a positive electrode material for a lithium secondary battery, a lithium manganese composite oxide having a spinel structure having a higher capacity even at high current density discharge and excellent cycle characteristics, and A manufacturing method can be provided, and a high-output, high-energy-density lithium secondary battery can be formed using the lithium-manganese composite oxide as a positive electrode.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 BET法により測定した比表面積から計
算される粒子径DBE T とX線回折測定結果からScherrer
の式を用いて計算される結晶子径DX との比DBET /D
X が5以下であることを特徴とするスピネル型構造から
なるリチウムマンガン複合酸化物。
1. A Scherrer from the particle diameter D BE T and X-ray diffraction measurement results calculated from the specific surface area measured by the BET method
The ratio D BET / D with crystallite size D X to be calculated using the formula
A lithium manganese composite oxide having a spinel structure, wherein X is 5 or less.
【請求項2】 リチウム化合物およびマンガン化合物を
不活性溶融剤の存在下に焼成して得られる請求項1記載
のスピネル型構造からなるリチウムマンガン複合酸化
物。
2. The lithium manganese composite oxide having a spinel structure according to claim 1, which is obtained by calcining a lithium compound and a manganese compound in the presence of an inert flux.
【請求項3】 不活性溶融剤がカリウムの塩、またはそ
の他の金属の硫酸塩およびモリブデン酸塩、またはこれ
らの混合物であることを特徴とする請求項2記載のスピ
ネル型構造からなるリチウムマンガン複合酸化物。
3. The lithium manganese composite having a spinel structure according to claim 2, wherein the inert flux is a potassium salt, a sulfate and a molybdate of another metal, or a mixture thereof. Oxides.
【請求項4】 リチウム化合物およびマンガン化合物を
不活性溶融剤の存在下に焼成することを特徴とするスピ
ネル型構造からなるリチウムマンガン複合酸化物の製造
法。
4. A method for producing a lithium manganese composite oxide having a spinel structure, comprising firing a lithium compound and a manganese compound in the presence of an inert flux.
【請求項5】 リチウム化合物およびマンガン化合物を
不活性溶融剤の存在下に焼成することを特徴とする請求
項1記載のリチウムマンガン複合酸化物の製造法。
5. The method for producing a lithium-manganese composite oxide according to claim 1, wherein the lithium compound and the manganese compound are calcined in the presence of an inert flux.
【請求項6】 不活性溶融剤がカリウムの塩、またはそ
の他の金属の硫酸塩およびモリブデン酸塩、またはこれ
らの混合物であることを特徴とする請求項4または5記
載のリチウムマンガン複合酸化物の製造法。
6. The lithium manganese composite oxide according to claim 4, wherein the inert flux is a potassium salt, a sulfate and a molybdate of another metal, or a mixture thereof. Manufacturing method.
【請求項7】 請求項1記載のリチウムマンガン複合酸
化物を正極材料とすることを特徴とするリチウム二次電
池。
7. A lithium secondary battery comprising the lithium manganese composite oxide according to claim 1 as a positive electrode material.
JP9133678A 1997-05-23 1997-05-23 Lithium-manganese multiple oxide, its production and its use Pending JPH10324521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9133678A JPH10324521A (en) 1997-05-23 1997-05-23 Lithium-manganese multiple oxide, its production and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9133678A JPH10324521A (en) 1997-05-23 1997-05-23 Lithium-manganese multiple oxide, its production and its use

Publications (1)

Publication Number Publication Date
JPH10324521A true JPH10324521A (en) 1998-12-08

Family

ID=15110334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9133678A Pending JPH10324521A (en) 1997-05-23 1997-05-23 Lithium-manganese multiple oxide, its production and its use

Country Status (1)

Country Link
JP (1) JPH10324521A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192210A (en) * 1999-11-02 2001-07-17 Seimi Chem Co Ltd Method for manufacturing lithium-manganese multiple oxide for non-aqueous lithium secondary battery
JP2001302245A (en) * 2000-04-20 2001-10-31 Toyota Central Res & Dev Lab Inc Method of producing lithium manganese complex oxide
WO2009151128A1 (en) 2008-06-11 2009-12-17 住友化学株式会社 Method for producing lithium complex metal oxide
JP2011003551A (en) * 2006-11-10 2011-01-06 Mitsubishi Chemicals Corp Lithium transition metal based compound powder, its manufacturing method, spray drying object used as baking precursor of the powder, and positive electrode of lithium secondary battery and lithium secondary battery using the powder
WO2011071094A1 (en) * 2009-12-07 2011-06-16 住友化学株式会社 Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
WO2012005173A1 (en) * 2010-07-05 2012-01-12 住友化学株式会社 Raw-material mixture and alkali-metal/transition-metal complex oxide
WO2012005176A1 (en) * 2010-07-05 2012-01-12 住友化学株式会社 Raw-material mixture and alkali-metal/transition-metal complex oxide
JP2012109190A (en) * 2009-12-07 2012-06-07 Sumitomo Chemical Co Ltd Method for producing lithium composite metal oxide
US8535829B2 (en) 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
US8758455B2 (en) 2009-03-23 2014-06-24 Sumitomo Chemical Company, Limited Process for producing lithium composite metal oxide having layered structure

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192210A (en) * 1999-11-02 2001-07-17 Seimi Chem Co Ltd Method for manufacturing lithium-manganese multiple oxide for non-aqueous lithium secondary battery
JP4691228B2 (en) * 1999-11-02 2011-06-01 Agcセイミケミカル株式会社 Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery
JP2001302245A (en) * 2000-04-20 2001-10-31 Toyota Central Res & Dev Lab Inc Method of producing lithium manganese complex oxide
US8535829B2 (en) 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
JP2011003551A (en) * 2006-11-10 2011-01-06 Mitsubishi Chemicals Corp Lithium transition metal based compound powder, its manufacturing method, spray drying object used as baking precursor of the powder, and positive electrode of lithium secondary battery and lithium secondary battery using the powder
WO2009151128A1 (en) 2008-06-11 2009-12-17 住友化学株式会社 Method for producing lithium complex metal oxide
JP2010021134A (en) * 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method for manufacturing lithium complex metal oxide
US8758455B2 (en) 2009-03-23 2014-06-24 Sumitomo Chemical Company, Limited Process for producing lithium composite metal oxide having layered structure
CN102639443A (en) * 2009-12-07 2012-08-15 住友化学株式会社 Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
JP2012109190A (en) * 2009-12-07 2012-06-07 Sumitomo Chemical Co Ltd Method for producing lithium composite metal oxide
WO2011071094A1 (en) * 2009-12-07 2011-06-16 住友化学株式会社 Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
US9822015B2 (en) 2009-12-07 2017-11-21 Sumitomo Chemical Company, Limited Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
JP2012012273A (en) * 2010-07-05 2012-01-19 Sumitomo Chemical Co Ltd Raw material mixture for alkali metal-based complex metal oxide
JP2012012272A (en) * 2010-07-05 2012-01-19 Sumitomo Chemical Co Ltd Raw material mixture for alkali metal-based complex metal oxide
WO2012005176A1 (en) * 2010-07-05 2012-01-12 住友化学株式会社 Raw-material mixture and alkali-metal/transition-metal complex oxide
WO2012005173A1 (en) * 2010-07-05 2012-01-12 住友化学株式会社 Raw-material mixture and alkali-metal/transition-metal complex oxide

Similar Documents

Publication Publication Date Title
EP2985822B1 (en) Positive electrode active material and non-aqueous elecrolyte cell
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
EP0820113B1 (en) Spinel-type lithium manganese oxide as a cathode active material for nonaqueous electrolyte lithium secondary batteries
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP2004193115A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3982658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
KR20020070495A (en) Nonaqueous electrolyte secondary cell and positive electrode active material
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JP7207261B2 (en) Method for manufacturing positive electrode active material, and method for manufacturing lithium ion battery
JP2001148249A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
KR100946006B1 (en) Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP2003242976A (en) Manufacturing method of positive active material for lithium secondary battery
JP2003151548A (en) Positive electrode material and battery using it
JP2003229129A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JPH0992285A (en) Nonaqueous electrolyte lithium secondary battery
JP2974213B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JPH10324521A (en) Lithium-manganese multiple oxide, its production and its use
JP2003187801A (en) Method of making positive electrode active material for lithium secondary cell
JP2019114454A (en) Method of manufacturing positive electrode material for non-aqueous secondary battery
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JPH08217451A (en) Needle manganese complex oxide, production and use thereof
JP2003238162A (en) Lithium manganese composite oxide powder and its manufacturing method
JP3578902B2 (en) Lithium secondary battery