JP2004186149A - Positive electrode material for li ion secondary battery - Google Patents

Positive electrode material for li ion secondary battery Download PDF

Info

Publication number
JP2004186149A
JP2004186149A JP2003391780A JP2003391780A JP2004186149A JP 2004186149 A JP2004186149 A JP 2004186149A JP 2003391780 A JP2003391780 A JP 2003391780A JP 2003391780 A JP2003391780 A JP 2003391780A JP 2004186149 A JP2004186149 A JP 2004186149A
Authority
JP
Japan
Prior art keywords
positive electrode
spinel
electrode material
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003391780A
Other languages
Japanese (ja)
Other versions
JP4676691B2 (en
Inventor
Shintaro Ishida
新太郎 石田
Shingo Kikukawa
真吾 菊川
Koichi Numata
幸一 沼田
Shigeo Hirayama
成生 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003391780A priority Critical patent/JP4676691B2/en
Publication of JP2004186149A publication Critical patent/JP2004186149A/en
Application granted granted Critical
Publication of JP4676691B2 publication Critical patent/JP4676691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode material for Li ion secondary battery that has superior high temperature characteristics without having capacity degradation and separation of spinel surface, in the Li ion secondary battery positive electrode material obtained by mixing and baking a Li compound, a Mn compound, an Al compound. <P>SOLUTION: This is a positive electrode material for Li ion secondary battery which contains a spinel type lithium manganate as expressed by general formula Li<SB>1+x</SB>Mn<SB>2-x-y</SB>Al<SB>y</SB>O<SB>4</SB>and which contains Al in non-solid solution state not dissolved in the spinel type lithium manganate 20-80% of the total Al contained in the positive electrode material. By having a part of the Al added existing in a state not solid-soluted in the spinel, the high temperature characteristics can be improved. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、Al元素を含有するLiイオン二次電池用正極材料に関する。   The present invention relates to a positive electrode material for a Li ion secondary battery containing an Al element.

近年、Li−Mnスピネル(スピネル型マンガン酸リチウムの略称。以下同様。)を、Liイオン二次電池の正極材に用いた電池が多く市販されている。しかし、Li−MnスピネルをLiイオン二次電池の正極材に用いたときに、高温で電池が劣化するという問題があった。   In recent years, many batteries using Li-Mn spinel (abbreviation for spinel-type lithium manganate; the same applies hereinafter) as a positive electrode material of a Li-ion secondary battery are commercially available. However, when Li-Mn spinel is used as a cathode material of a Li-ion secondary battery, there is a problem that the battery is deteriorated at a high temperature.

そこで、Li-Mnスピネルを正極材として用いたLiイオン二次電池の高温特性を向上するための方法の一つに、比表面積を低下させることでMnの溶出量を低減させる方法がある。低比表面積化のためには焼成温度を上げる方法、B系酸化物を添加する方法があげられる。しかし、同時に比表面積を低下させると高容量が得られにくいという問題があった。   Thus, as one of the methods for improving the high-temperature characteristics of a Li-ion secondary battery using Li-Mn spinel as a positive electrode material, there is a method of reducing the specific surface area to reduce the elution amount of Mn. In order to reduce the specific surface area, there are a method of raising the firing temperature and a method of adding a B-based oxide. However, when the specific surface area is reduced at the same time, there is a problem that it is difficult to obtain a high capacity.

他の元素でLi-Mnスピネル中のMnの一部を置換することにより、スピネル構造を安定化してMnの溶出を抑制し、かつLi−Mnスピネルの劣化を抑制する方法も提案されている。しかし、置換量の増加に伴い容量が低下することから、高容量が得られにくいという問題があった。   A method has also been proposed in which the spinel structure is stabilized by substituting a part of Mn in the Li-Mn spinel with another element to suppress the elution of Mn and to suppress the deterioration of the Li-Mn spinel. However, there is a problem that it is difficult to obtain a high capacity because the capacity decreases with an increase in the replacement amount.

その他の方法としてLi-Mnスピネルの表面を他の元素でコートする方法も提案されている。例えば、特許文献1では、水、酸水溶液、またはアルコールを用いてアルカリ金属酸化物および金属酸化物を1または2以上の層で被覆するリチウム複合酸化物粒子が提案されている。   As another method, a method of coating the surface of a Li-Mn spinel with another element has been proposed. For example, Patent Literature 1 proposes lithium composite oxide particles in which an alkali metal oxide and a metal oxide are coated with one or more layers using water, an aqueous acid solution, or alcohol.

また、特許文献2では、アルミニウムイソプロポキシドを用いて合成された元素Alの濃度が表面から内部に向けて連続的に減少する非水二次電池用活物質が提案されている
特開2001−313034号公報 特開2001−196063号公報
Patent Document 2 proposes an active material for a non-aqueous secondary battery in which the concentration of an element Al synthesized using aluminum isopropoxide continuously decreases from the surface toward the inside.
JP 2001-313034 A JP-A-2001-196063

本発明は、容量の低下やLi−Mnスピネル表面のコート層の剥離の問題を伴うことなく、高温特性の優れたLiイオン二次電池用正極材料を提供することを課題とする。   An object of the present invention is to provide a positive electrode material for a Li-ion secondary battery having excellent high-temperature characteristics without causing a problem of a decrease in capacity or peeling of a coat layer on a Li-Mn spinel surface.

本発明者らは、鋭意研究の結果、スピネル型マンガン酸リチウムを含有する正極材料においては、添加したAlの一部がスピネル構造中に固溶しない未固溶状態で正極材料中に存在することで、これを用いたLiイオン二次電池の高温特性が飛躍的に改善されることを見出し、かかる知見に基づき本発明を想到した。   The present inventors have conducted intensive studies and found that in the cathode material containing spinel-type lithium manganate, a part of the added Al exists in the cathode material in an undissolved state that does not dissolve in the spinel structure. Thus, they found that the high-temperature characteristics of a Li-ion secondary battery using the same were drastically improved, and conceived the present invention based on such findings.

本発明は第1の態様として、Li化合物、Mn化合物及びAl化合物を混合し焼成して得られるLiイオン二次電池用正極材料であって、一般式Li1+xMn2-x-yAly4で表されるスピネル型マンガン酸リチウム(「Li−Mnスピネル」という)を含有し、かつ当該Li−Mnスピネルに固溶されない未固溶状態のAlを、正極材料に含まれる全Alの20〜80%含有することを特徴とするLiイオン二次電池用正極材料を提案する。 According to a first aspect of the present invention, there is provided a positive electrode material for a Li ion secondary battery obtained by mixing and firing a Li compound, a Mn compound and an Al compound, wherein the positive electrode material has a general formula Li 1 + x Mn 2-xy Al y O The undissolved Al that contains spinel-type lithium manganate represented by 4 (referred to as “Li—Mn spinel”) and is not dissolved in the Li—Mn spinel is converted into 20% of the total Al contained in the positive electrode material. The present invention proposes a positive electrode material for a Li-ion secondary battery, which is characterized by containing about 80%.

本発明は第2の態様として、Li化合物、Mn化合物、Al化合物及びM元素化合物(M元素:置換元素)を混合し焼成して得られLiイオン二次電池用正極材料であって、一般式Li1+xMn2-x-y-zAlyz4で表されるLi−Mnスピネルを含有し、かつ、当該Li−Mnスピネルに固溶されない未固溶状態のAlを、正極材料に含まれる全Alの20〜80%含有することを特徴とするLiイオン二次電池用正極材料を提案する。 According to a second aspect of the present invention, there is provided a positive electrode material for a Li ion secondary battery obtained by mixing and firing a Li compound, a Mn compound, an Al compound and an M element compound (M element: substitution element), Li 1 + x Mn 2-xyz Al y M z O 4 It contains a Li-Mn spinel represented by, and does not form a solid solution in the Li-Mn spinel. A positive electrode material for a Li-ion secondary battery characterized by containing 20 to 80% of the total Al is proposed.

本発明は第3の態様として、Li化合物、Mn化合物、Al化合物及びB元素化合物を混合し焼成して得られるLiイオン二次電池用正極材料であって、一般式Li1+xMn2-x-yAly4で表されるLi−Mnスピネルを含有し、かつ当該Li−Mnスピネルに固溶されない未固溶状態のAlを、正極材料に含まれる全Alの20〜80%含有することを特徴とするLiイオン二次電池用正極材料を提案する。 According to a third aspect of the present invention, there is provided a positive electrode material for a Li ion secondary battery obtained by mixing and firing a Li compound, a Mn compound, an Al compound and a B element compound, wherein the positive electrode material has a general formula Li 1 + x Mn 2- It contains Li-Mn spinel represented by xy Al y O 4 , and contains 20 to 80% of undissolved Al not solid-dissolved in the Li-Mn spinel, based on the total Al contained in the positive electrode material. A positive electrode material for a Li-ion secondary battery, characterized by the following, is proposed.

本発明は第4の態様として、Li化合物、Mn化合物、Al化合物、M元素化合物(M元素:置換元素)及びB元素化合物を混合し焼成して得られるLiイオン二次電池用正極材料であって、一般式Li1+xMn2-x-y-zAlyz4で表されるLi−Mnスピネルを含有し、かつ、当該Li−Mnスピネルに固溶されない未固溶状態のAlを、正極材料に含まれる全Alの20〜80%含有することを特徴とするLiイオン二次電池用正極材料を提案する。 According to a fourth aspect of the present invention, there is provided a positive electrode material for a Li-ion secondary battery obtained by mixing and firing a Li compound, a Mn compound, an Al compound, an M element compound (M element: substitution element) and a B element compound. Te, contains Li-Mn spinel represented by the general formula Li 1 + x Mn 2-xyz Al y M z O 4, and the Al of the undissolved state without being dissolved in the Li-Mn spinel, a positive electrode A positive electrode material for a Li-ion secondary battery characterized by containing 20 to 80% of the total Al contained in the material is proposed.

AlはLi−Mnスピネル中に全て固溶されるよりも、一部がLi−Mnスピネル中に固溶し、他の一部が未固溶状態で存在する場合の方がより高温特性が向上することが判明した。この際、未固溶状態で存在するAlは、Li−Mnスピネル焼成後に添加されるものではなく、Li−Mnスピネルと同時に焼成されたものである必要がある。   Higher temperature characteristics are improved when a part of Al is dissolved in Li-Mn spinel and another part is in a non-dissolved state rather than all solid solution in Li-Mn spinel. It turned out to be. At this time, the Al present in the undissolved state is not added after firing the Li-Mn spinel, but needs to be fired simultaneously with the Li-Mn spinel.

なお、本発明が特定する数値範囲の上限値及び下限値は、特定する数値範囲から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備えている限り本発明の範囲に含まる意を包含する。   The upper limit and the lower limit of the numerical range specified by the present invention are within the scope of the present invention as long as they have the same operation and effect as those within the numerical range, even if they slightly deviate from the specified numerical range. Include the meaning of inclusion.

次に、本発明を実施するための最良の形態について説明するが、本発明の範囲が以下の実施形態のみに限定されるものではない。   Next, the best mode for carrying out the present invention will be described, but the scope of the present invention is not limited to only the following embodiments.

本発明に係る正極材料は、Li化合物、Mn化合物及びAl化合物、或いはさらにM元素化合物を混合し、焼成することにより得ることができる。また、必要に応じて前記化合物すなわちスピネル構成元素化合物にB元素化合物を加えて混合し焼成して得ることもできる。   The positive electrode material according to the present invention can be obtained by mixing a Li compound, a Mn compound and an Al compound, or an M element compound, and baking the mixture. Further, if necessary, the compound can be obtained by adding the element B compound to the compound, that is, the spinel constituent element compound, mixing and firing.

(原料)
Li化合物、すなわちLi原料としては、LiOH、Li2CO3、LiNO3、LiOH・H2O、Li2O、その他脂肪酸リチウムやリチウムハロゲン化物等が挙げられる。中でもリチウムの水酸化物塩、炭酸塩、硝酸塩が好ましい。
(material)
Examples of the Li compound, that is, the Li raw material include LiOH, Li 2 CO 3 , LiNO 3 , LiOH · H 2 O, Li 2 O, and other fatty acid lithium and lithium halide. Among them, lithium hydroxide, carbonate and nitrate are preferred.

Mn化合物、すなわちMn原料としては、二酸化マンガン、四酸化三マンガン、三酸化二マンガン、炭酸マンガン等のいずれか或いはこれらから選択される二種類以上の組合わせからなる混合物を用いることができる。
Mn化合物の平均粒径は、5〜30μmであるのが好ましい。平均粒径5〜30μmであれば、非水電解質二次電池の正極材料として膜厚100μm程度の厚膜に加工する際、大き過ぎてひび割れ等が発生することもなく均一な膜厚を形成し易い。しかも、この範囲の平均粒径の電解二酸化マンガンを原料としてスピネル型マンガン酸リチウムを合成すれば、追加の粉砕をしないでも、製膜に適した正極材料を製造することができる。
二酸化マンガンとしては、化学合成二酸化マンガン(CMD),電解二酸化マンガン(EMD)、炭酸マンガン或いは天然二酸化マンガンを用いることができる。
As the Mn compound, that is, as the Mn raw material, any one of manganese dioxide, trimanganese tetroxide, dimanganese trioxide, manganese carbonate, and the like, or a mixture of two or more kinds selected from these can be used.
The average particle size of the Mn compound is preferably 5 to 30 μm. When the average particle size is 5 to 30 μm, when processing into a thick film having a thickness of about 100 μm as a positive electrode material of a non-aqueous electrolyte secondary battery, a uniform film thickness is formed without excessive cracking or the like. easy. In addition, if the spinel-type lithium manganate is synthesized from electrolytic manganese dioxide having an average particle diameter in this range, a positive electrode material suitable for film formation can be manufactured without additional pulverization.
As manganese dioxide, chemically synthesized manganese dioxide (CMD), electrolytic manganese dioxide (EMD), manganese carbonate or natural manganese dioxide can be used.

Al化合物、すなわちAl原料としては、水酸化アルミニウム、フッ化アルミニウム(AlF3)等のいずれか或いはこれらから選択される二種類以上の組合わせからなる混合物を用いることができる。 As the Al compound, that is, the Al raw material, any one of aluminum hydroxide, aluminum fluoride (AlF 3 ), and the like, or a mixture of two or more kinds selected from these can be used.

M元素、すなわちMnの一部を置換するAl以外の添加元素としては、Mg、Ni、Co、Cr、Fe、Zn、Sn、Cu、Ti等の金属元素を挙げることができ。M元素化合物としては、これら置換元素の酸化物、水酸化物、硝酸塩、炭酸塩、ジカルボン酸塩、脂肪酸塩、アンモニウム塩等いずれか或いはこれらから選択される二種類以上の組合わせからなる混合物を用いることができる。中でもMg、Fe、Co、Ni、Znの酸化物、水酸化物又は炭酸塩のいずれか或いはこれらから選択される二種類以上の組合わせからなる混合物を用いるのが好ましい。   Examples of the additional element other than Al that replaces part of Mn, ie, M element, include metal elements such as Mg, Ni, Co, Cr, Fe, Zn, Sn, Cu, and Ti. As the M element compound, an oxide, a hydroxide, a nitrate, a carbonate, a dicarboxylate, a fatty acid salt, an ammonium salt, or the like of these substitution elements, or a mixture of two or more kinds selected from these. Can be used. Among them, it is preferable to use any of oxides, hydroxides, and carbonates of Mg, Fe, Co, Ni, and Zn, or a mixture of two or more kinds selected from these.

B元素化合物、すなわちB(ホウ素)原料としては、四ホウ酸リチウム(Li247)、B23、H3BO3などが好適に用いられる。 As the element B compound, that is, B (boron) raw material, lithium tetraborate (Li 2 B 4 O 7 ), B 2 O 3 , H 3 BO 3 and the like are preferably used.

(混合)
原料の混合割合は、Li化合物、Mn化合物、Al化合物、さらに必要に応じてM元素化合物、B元素化合物を適宜割合で混合すればよいが、好ましくは一般式Li1+xMn2-x-yAly4又は一般式Li1+xMn2-x-y-zAlyz4で表される組成となるように各スピネル構成元素量を算出しスピネル構成元素化合物を秤量して混合するのが好ましい。
一般式Li1+xMn2-x-yAly4又は一般式Li1+xMn2-x-y-zAlyz4で表される組成となるAl量分以上にAl化合物を混合することによって未固溶状態のAl量を増加させることは可能であるが、そうするとLi−Mnスピネル粉体全体に占めるMn量の割合が相対的に低くなり、放電容量が低下することになる。よって、上記の如く、一般式Li1+xMn2-x-yAly4又は一般式Li1+xMn2-x-y-zAlyz4で表される組成となるAl量分のAl化合物を添加するのが好ましい。
なお、B元素はスピネル構成元素ではない。B元素化合物は、得られるLi−Mnスピネルに対して0.01〜5wt%、特に0.1〜1wt%となるように添加するのが好ましい。
(mixture)
As for the mixing ratio of the raw materials, a Li compound, a Mn compound, an Al compound, and if necessary, an M element compound and a B element compound may be mixed in an appropriate ratio, but preferably, a general formula Li 1 + x Mn 2-xy Al preferably mixed with weighed y O 4, or the general formula Li 1 + x Mn 2-xyz Al y M z O 4 calculates each spinel structure element content such that the composition represented by and spinel structure element compound .
By mixing the Al compound in the general formula Li 1 + x Mn 2-xy Al y O 4 , or the general formula Li 1 + x Mn 2-xyz Al y M z O 4 or Al amount having a composition represented by Although it is possible to increase the amount of Al in the undissolved state, the proportion of the amount of Mn in the whole Li-Mn spinel powder becomes relatively low, so that the discharge capacity decreases. Therefore, as described above, the general formula Li 1 + x Mn 2-xy Al y O 4 , or the general formula Li 1 + x Mn 2-xyz Al y M z O a composition expressed by 4 Al amount of Al compound Is preferably added.
Note that the B element is not a spinel constituent element. The B element compound is preferably added so as to be 0.01 to 5% by weight, particularly 0.1 to 1% by weight based on the obtained Li-Mn spinel.

混合方法は、均一に混合できれば、その方法を特に限定するものではない。例えばミキサー等の公知の混合機を用いて各原料を同時又は適当な順序で加えて乾式で攪拌混合すればよい。   The mixing method is not particularly limited as long as it can be uniformly mixed. For example, the respective raw materials may be added simultaneously or in an appropriate order using a known mixer such as a mixer, and may be stirred and mixed in a dry system.

上記の如く混合した原料はそのまま焼成してもよいが、所定の大きさに造粒して焼成するようにしてもよい。
造粒方法は、湿式でも乾式でもよく、押し出し造粒、転動造粒、流動造粒、混合造粒、噴霧乾燥造粒、加圧成型造粒、或いはロール等を用いたフレーク造粒でもよい。但し、湿式造粒した場合には、焼成前に充分に乾燥させることが必要である。乾燥方法としては、噴霧熱乾燥、熱風乾燥、真空乾燥、フリーズドライなどの公知の乾燥方法によって乾燥させればよい。
The raw material mixed as described above may be fired as it is, or may be granulated to a predetermined size and fired.
The granulation method may be wet or dry, and may be extrusion granulation, tumbling granulation, fluidized granulation, mixing granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like. . However, in the case of wet granulation, it is necessary to sufficiently dry before firing. The drying may be performed by a known drying method such as spray heat drying, hot air drying, vacuum drying, freeze drying and the like.

(焼成)
上記の如く混合された原料粉は、焼成炉にて、大気雰囲気下で、約600℃以上1000℃以下の適宜温度で適宜時間保持するように焼成すればよいが、中でもB元素化合物を添加しない場合には800〜1000℃、特に810〜850℃で焼成するのが好ましい。又、B元素化合物を添加する場合には600〜800℃、特に650〜730℃で焼成するのが好ましい。
焼成温度を上げると、スピネル構造中へAlの固溶量を高めることができる。
他方、BはLi−Mnスピネル中には固溶しないが、焼成過程においてLi−Mnスピネルの焼結を促進する働きがあるため、B系化合物を添加して焼成するとAlの未固溶量を高めることができる。よって、焼成温度とBの添加量をコントロールすることでAlの未固溶量を調整することが可能である。
なお、ここでの焼成温度は焼成炉の最高焼成温度における品温を意味する。
(Fired)
The raw material powder mixed as described above may be fired in a firing furnace at an appropriate temperature of about 600 ° C. or more and 1000 ° C. or less in an air atmosphere for an appropriate time, and among them, no B element compound is added. In this case, firing at 800 to 1000C, particularly 810 to 850C is preferable. In addition, when the element B compound is added, it is preferable to bake at 600 to 800 ° C, especially 650 to 730 ° C.
Increasing the firing temperature can increase the amount of Al dissolved in the spinel structure.
On the other hand, B does not form a solid solution in the Li-Mn spinel, but has a function of accelerating the sintering of the Li-Mn spinel in the firing process. Can be enhanced. Therefore, the undissolved amount of Al can be adjusted by controlling the firing temperature and the amount of B added.
Here, the firing temperature means the product temperature at the highest firing temperature of the firing furnace.

焼成時間、すなわち上記焼成温度を保持する時間は0.5〜20時間が好ましく、所定時間保持した後は、降温して室温放置して徐冷するのが好ましい。
焼成炉としては、ロータリーキルン或いは静置炉等を用いることができ、焼成雰囲気は、大気雰囲気下のほか、酸化性雰囲気を採用することも可能である。
The calcination time, that is, the time for maintaining the calcination temperature is preferably 0.5 to 20 hours, and after maintaining for a predetermined time, it is preferable to lower the temperature and leave it at room temperature for slow cooling.
As the firing furnace, a rotary kiln or a stationary furnace can be used. The firing atmosphere may be an air atmosphere or an oxidizing atmosphere.

(Li−Mnスピネル粉体)
上記の如くして得られるLi−Mnスピネル粉体は、一般式Li1+xMn2-x-yAly4で表されるスピネル型マンガン酸リチウム又は一般式Li1+xMn2-x-y-zAlyz4で表されるスピネル型マンガン酸リチウムと、当該スピネル型マンガン酸リチウムに固溶されない未固溶状態で存在するAlとを含有する。
(Li-Mn spinel powder)
Li-Mn spinel powder obtained in the above manner, the general formula Li 1 + x Mn 2-xy Al y O 4 spinel-type lithium manganate represented by or formula Li 1 + x Mn 2-xyz Al spinel type lithium manganate represented by y M z O 4, containing Al which is present in undissolved state without being dissolved in the spinel-type lithium manganate.

未固溶状態で存在するAlは、添加したAl、すなわち正極材料に含まれる全Alの20〜80%であれば電池の高温サイクル特性を高めることができ、特に30〜60%、中でも特に35〜55%であるのが好ましい。
未固溶状態で存在するAlの定量方法としては、Li−Mnスピネル粉体を、硫酸:水:過酸化水素=1:16:3を混合してなる酸に浸漬して1分間攪拌しながら溶解させ、溶け残ったLi−Mnスピネル分中のAl量を未固溶状態のAl量として算出することができる。
If the Al present in the undissolved state is 20 to 80% of the added Al, that is, 20 to 80% of the total Al contained in the positive electrode material, the high-temperature cycle characteristics of the battery can be improved. Preferably it is ~ 55%.
As a method for quantifying Al existing in an undissolved state, a Li-Mn spinel powder is immersed in an acid obtained by mixing sulfuric acid: water: hydrogen peroxide = 1: 16: 3 and stirred for 1 minute. The amount of Al in the dissolved and undissolved Li-Mn spinel can be calculated as the amount of undissolved Al.

Li−Mnスピネル粉体中に未固溶状態で存在するAlは、Li−Mnスピネル焼成後に添加されて存在するものではなく、Li−Mnスピネルと同時に焼成されたものである必要がある。Li−Mnスピネル焼成後に添加した場合には電池特性が向上しないことが確かめられている。このことは、Li−Mnスピネルと完全に独立して存在するAlは電池特性に寄与せず、Li−Mnスピネルの粒子表面に存在するAlが電池特性に寄与すると推察することができる。
また、M元素化合物を添加しない場合には、未固溶状態で存在するAlの全てが酸化アルミニウム化合物の状態で存在し、M元素化合物を添加する場合には、ほとんどのAlが酸化アルミニウム化合物の状態で存在し、一部のAlがM元素との化合物を形成することが確認されている。
Al present in the undissolved state in the Li-Mn spinel powder does not need to be added after the firing of the Li-Mn spinel, but must be fired simultaneously with the Li-Mn spinel. It has been confirmed that when added after firing of Li-Mn spinel, battery characteristics are not improved. This can be inferred that Al existing completely independently of the Li-Mn spinel does not contribute to the battery characteristics, and that Al existing on the particle surface of the Li-Mn spinel contributes to the battery characteristics.
In addition, when the M element compound is not added, all of the Al present in the undissolved state exists in the state of the aluminum oxide compound, and when the M element compound is added, almost all of the Al exists in the aluminum oxide compound. It has been confirmed that Al exists in a state and a part of Al forms a compound with M element.

スピネル型マンガン酸リチウムは、格子定数の異なる二相以上のLi−Mnスピネルからなるものが好ましい。添加したAl又はM元素がLi−Mnスピネルの一部又は表面にだけ固溶すると、格子定数の異なる二相以上のLi−Mnスピネルが生成する。このLi−Mnスピネルは、Alなどの置換量が多く、Mnの溶出量も少ないことが予想され、これが粒子表面に存在することでLi−Mnスピネルの電解液との反応が抑制されることが期待できる。   The spinel-type lithium manganate is preferably composed of two or more phases of Li-Mn spinels having different lattice constants. When the added Al or M element forms a solid solution only in part or on the surface of the Li-Mn spinel, two or more phases of Li-Mn spinel having different lattice constants are generated. It is expected that this Li-Mn spinel has a large amount of substitution of Al and the like and a small amount of Mn eluted, and the presence of this on the particle surface suppresses the reaction of the Li-Mn spinel with the electrolytic solution. Can be expected.

正極材料の比表面積は0.3〜2m2/g、特に0.3〜1m2/g、なかでも特に0.3〜0.7m2/gの範囲にあるのが好ましい。比表面積がこの範囲にあれば、電解液中のMn溶出量が増加することによって高温特性が劣化することが少ない。 The specific surface area of the positive electrode material is preferably in the range of 0.3 to 2 m 2 / g, particularly 0.3 to 1 m 2 / g, and particularly preferably in the range of 0.3 to 0.7 m 2 / g. When the specific surface area is within this range, the high-temperature characteristics are less likely to be degraded due to an increase in the amount of Mn eluted in the electrolytic solution.

(用途)
上記の如く得られたLi−Mnスピネル粉体は、必要に応じて振動ミルやローラーミルで解砕処理した後、これに導電材、結着剤、充填材等を配合して混練して合剤(ペースト)とし、これを例えばステンレスメッシュからなる正極集電体に塗布し、ロールプレスした後、減圧下で加熱乾燥させて正極を製造することができる。
また、必要に応じて、上記合剤を円板状等、適宜の形状に加圧成形し、必要に応じて真空下に熱処理するようにして、正極を製造することもできる。
(Application)
The Li-Mn spinel powder obtained as described above is subjected to a crushing treatment with a vibration mill or a roller mill, if necessary, and then mixed with a conductive material, a binder, a filler, etc., and kneaded. An agent (paste) is applied to a positive electrode current collector made of, for example, a stainless steel mesh, roll-pressed, and then heated and dried under reduced pressure to produce a positive electrode.
Further, if necessary, the positive electrode can be manufactured by press-molding the above-mentioned mixture into an appropriate shape such as a disc shape and performing heat treatment under vacuum as necessary.

本発明のLi−Mnスピネル粉体から形成される正極は、リチウムイオン電池、特に非水溶媒系リチウムイオン電池の正極材料として好適である。例えば、負極にリチウムまたはカーボン等のリチウムを吸蔵、脱蔵できる材料を用い、非水系電解質に六フッ化リン酸リチウム(LiPF6)等のリチウム塩をエチレンカーボネート−ジメチルカーボネート等の混合溶媒に溶解したものを用いて、非水溶媒系リチウムイオン電池を構成することができる。
このように構成した非水溶媒系リチウムイオン電池は、例えばノート型パソコン、携帯電話、コードレスフォン子機、ビデオムービー、液晶テレビ、電気シェーバー、携帯ラジオ、ヘッドホンステレオ、バックアップ電源、メモリーカード等の電子機器、ペースメーカー、補聴器等の医療機器、電気自動車搭載用の駆動電源に使用することができる。
The positive electrode formed from the Li-Mn spinel powder of the present invention is suitable as a positive electrode material for a lithium ion battery, particularly a nonaqueous solvent-based lithium ion battery. For example, a material such as lithium or carbon capable of occluding and desorbing lithium is used for a negative electrode, and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate for a non-aqueous electrolyte. A non-aqueous solvent-based lithium-ion battery can be configured by using the above.
Non-aqueous solvent-based lithium-ion batteries configured in this manner can be used, for example, in notebook computers, mobile phones, cordless phone handsets, video movies, LCD televisions, electric shavers, portable radios, headphone stereos, backup power supplies, memory cards, and other electronic devices. It can be used for medical devices such as devices, pacemakers and hearing aids, and drive power supplies for electric vehicles.

次に、本発明を実施例及び比較例に基づいてさらに詳細に説明する。   Next, the present invention will be described in more detail based on examples and comparative examples.

(実施例1)
Li1.02Mn1.96Al0.024の組成となるように、平均粒径23μm程度の電解二酸化マンガン989.9g、炭酸リチウム218.6g、水酸化アルミニウム8.65g及び四ホウ酸リチウム2gを混合し、690℃で10時間焼成した。その後10℃/hrで500℃まで降温した後に室温まで放冷し、Li1.02Mn1.96Al0.024を含むLi−Mnスピネル粉体を得た。
(Example 1)
A mixture of 989.9 g of electrolytic manganese dioxide having an average particle size of about 23 μm, 218.6 g of lithium carbonate, 8.65 g of aluminum hydroxide, and 2 g of lithium tetraborate was formed so as to have a composition of Li 1.02 Mn 1.96 Al 0.02 O 4 , It was baked at 690 ° C. for 10 hours. Thereafter, the temperature was lowered to 500 ° C. at 10 ° C./hr, and then allowed to cool to room temperature to obtain a Li—Mn spinel powder containing Li 1.02 Mn 1.96 Al 0.02 O 4 .

得られたLi−Mnスピネル粉体は、Li−Mnスピネル粉体:導電材:バインダー=0.5:0.3:0.2の質量比で混合してシート状にした後に打ち抜いて正極として用い、電解液に1M-LiPF6/PC:DMC(1:1)、負極にLiメタルを用いてコイン型電池を作製し、常温サイクル充放電試験及び高温サイクル充放電試験を実施した。
なお、常温サイクル充放電試験は、温度:25℃、充電条件:0.2C、充電終止電圧:4.3V、放電条件:0.2C、放電終止電圧=3.0Vの条件においてコイン型電池に対して充放電を繰り返し、各サイクル後の電池容量(mAh/g)を測定した。この際、1〜10サイクル後の最高容量を求め、これを容量として表1に示した。また、前記最高容量を示したサイクル数から8サイクル目の容量の、前記最高容量に対する割合を求め、その割合を8サイクル維持率(%)として表1に示した。
高温サイクル充放電試験は、温度:60℃、充電条件:0.6C、充電終止電圧:4.3V、放電条件:0.6C、放電終止電圧:3.0Vの条件においてコイン型電池に対して充放電を繰り返し、各サイクル後の容量(mAh/g)を測定した。この際、最高容量を示したサイクル数から25サイクル目の容量の、前記最高容量に対する割合を求め、その割合を高温サイクル維持率(%)として表1に示した。
The obtained Li-Mn spinel powder was mixed at a mass ratio of Li-Mn spinel powder: conductive material: binder = 0.5: 0.3: 0.2 to form a sheet, and then punched out to form a positive electrode. A coin-type battery was prepared using 1M-LiPF 6 / PC: DMC (1: 1) as an electrolyte and Li metal as a negative electrode, and a normal temperature cycle charge / discharge test and a high temperature cycle charge / discharge test were performed.
The room temperature cycle charge / discharge test was performed on a coin-type battery under the conditions of temperature: 25 ° C., charge condition: 0.2 C, charge end voltage: 4.3 V, discharge condition: 0.2 C, discharge end voltage = 3.0 V. The battery was repeatedly charged and discharged, and the battery capacity (mAh / g) after each cycle was measured. At this time, the highest capacity after 1 to 10 cycles was obtained, and this is shown in Table 1 as the capacity. The ratio of the capacity at the eighth cycle to the maximum capacity was determined from the number of cycles indicating the maximum capacity, and the ratio was shown in Table 1 as an eight-cycle maintenance rate (%).
The high-temperature cycle charge / discharge test was performed on a coin-type battery under the following conditions: temperature: 60 ° C., charge condition: 0.6 C, charge end voltage: 4.3 V, discharge condition: 0.6 C, discharge end voltage: 3.0 V. The charge and discharge were repeated, and the capacity (mAh / g) after each cycle was measured. At this time, the ratio of the capacity at the 25th cycle to the maximum capacity was determined from the number of cycles indicating the highest capacity, and the ratio was shown in Table 1 as a high-temperature cycle maintenance rate (%).

Alの未固溶量の測定は、硫酸:水:過酸化水素=1:16:3で混合した酸400ccに、得られたLi−Mnスピネル粉体20gを分散して1分間攪拌し、細孔径0.8μmのフィルターでろ過し、フィルター上の溶解残渣分の分析結果から判断した。溶解残渣は、酸に溶解し、また、溶解しないものについては溶融させて分析を行なった。
分析にはICP発光分光法を用いた。
未固溶量は、添加したAl量に対する、フィルター上に残ったAl量の割合を100分率(%)で表したものを指標とした。結果を表1に示す。
なお、Li−Mnスピネル粉体の溶解残渣についてX線回折を行った結果、全てがAl酸化物(Al23)であることが分かった。
The amount of undissolved Al was measured by dispersing 20 g of the obtained Li-Mn spinel powder in 400 cc of an acid mixed with sulfuric acid: water: hydrogen peroxide = 1: 16: 3, stirring for 1 minute, The solution was filtered through a filter having a pore size of 0.8 μm, and judgment was made based on the analysis result of the dissolved residue on the filter. The dissolved residue was dissolved in an acid, and those not dissolved were melted and analyzed.
ICP emission spectroscopy was used for the analysis.
The undissolved amount was determined by using, as an index, the ratio of the amount of Al remaining on the filter to the amount of added Al expressed as 100 parts (%). Table 1 shows the results.
In addition, as a result of performing X-ray diffraction on the dissolved residue of the Li—Mn spinel powder, it was found that all were Al oxides (Al 2 O 3 ).

Figure 2004186149
Figure 2004186149

Al,Mg,Mn,Liの未固溶量については、添加した量に対する割合で示した。なお、本法において、Mgのとけ残り量は正確に測定できていない可能性があるため、参考値として掲載する。   The undissolved amounts of Al, Mg, Mn, and Li are shown as ratios to the added amounts. In addition, in this method, since the melting residual amount of Mg may not be measured accurately, it is described as a reference value.

(実施例2)
Li1.02Mn1.95Al0.02Mg0.014の組成となるように、平均粒径23μm程度の電解二酸化マンガン984.8g、炭酸リチウム218.6g、水酸化アルミニウム8.65g、酸化マグネシウム2.31g及び四ホウ酸リチウム2gを混合し、690℃で10時間焼成した。その後10℃/hrで500℃まで降温した後に室温まで放冷し、Li1.02Mn1.96Al0.024を含むLi−Mnスピネル粉体を得た。
得られたLi−Mnスピネル粉体は実施例1と同様に評価した。
(Example 2)
984.8 g of electrolytic manganese dioxide having an average particle size of about 23 μm, 218.6 g of lithium carbonate, 8.65 g of aluminum hydroxide, 2.31 g of magnesium oxide, and 2.31 g of Li 1.02 Mn 1.95 Al 0.02 Mg 0.01 O 4 having a mean particle size of about 23 μm. 2 g of lithium borate was mixed and fired at 690 ° C. for 10 hours. Thereafter, the temperature was lowered to 500 ° C. at 10 ° C./hr, and then allowed to cool to room temperature to obtain a Li—Mn spinel powder containing Li 1.02 Mn 1.96 Al 0.02 O 4 .
The obtained Li-Mn spinel powder was evaluated in the same manner as in Example 1.

また、得られたLi−MnスピネルのX線回折を行ったので、その結果を図1に示す。これにより、Li−Mnスピネルのピークの右側にショルダーが出ており、該Li−Mnスピネルが単一相ではなく、格子定数の異なる二相以上のLi−Mnスピネルからなることが判明した。   Further, the obtained Li-Mn spinel was subjected to X-ray diffraction, and the results are shown in FIG. As a result, a shoulder appeared on the right side of the peak of the Li-Mn spinel, and it was found that the Li-Mn spinel was not composed of a single phase but composed of two or more Li-Mn spinels having different lattice constants.

同時に、実施例1と同様な方法で酸溶解したときのLi−Mnスピネルの溶解残渣についてX線回折を行ったので、その結果を図2に示す。これより、ほとんどがAl酸化物及びAl−M(M=Li, Mn, Mg)酸化物であることが推察された。   Simultaneously, X-ray diffraction was performed on the dissolved residue of Li—Mn spinel when the acid was dissolved in the same manner as in Example 1, and the results are shown in FIG. From this, it was inferred that most were Al oxides and Al-M (M = Li, Mn, Mg) oxides.

(実施例3)
Li1.02Mn1.95Al0.02Mg0.014の組成となるように、平均粒径23μm程度の電解二酸化マンガン984.8g、炭酸リチウム218.6g、水酸化アルミニウム8.65g及び酸化マグネシウム2.31gを混合し、790℃で10時間焼成した。その後10℃/hrで500℃まで降温した後に室温まで放冷し、Li1.02Mn1.95Al0.02Mg0.014を含むLi−Mnスピネル粉体を得た。得られたLi−Mnスピネル粉体は、実施例1と同様に評価した。
(Example 3)
A mixture of 984.8 g of electrolytic manganese dioxide having an average particle size of about 23 μm, 218.6 g of lithium carbonate, 8.65 g of aluminum hydroxide, and 2.31 g of magnesium oxide was formed to have a composition of Li 1.02 Mn 1.95 Al 0.02 Mg 0.01 O 4. And baked at 790 ° C. for 10 hours. Thereafter, the temperature was lowered to 500 ° C. at 10 ° C./hr, and then allowed to cool to room temperature to obtain a Li—Mn spinel powder containing Li 1.02 Mn 1.95 Al 0.02 Mg 0.01 O 4 . The obtained Li-Mn spinel powder was evaluated in the same manner as in Example 1.

(比較例1)
実施例2と同量で混合した原料を、焼成温度が実施例1より高い700℃で10時間焼成した後に、10℃/hrで500℃まで降温した後に室温まで放冷した。得られたLi−Mnスピネル粉体は、実施例1と同様に評価した。
(Comparative Example 1)
The raw materials mixed in the same amount as in Example 2 were fired at 700 ° C., which was higher than that in Example 1, for 10 hours, cooled to 500 ° C. at 10 ° C./hr, and allowed to cool to room temperature. The obtained Li-Mn spinel powder was evaluated in the same manner as in Example 1.

(比較例2)
実施例2の量で混合した原料を、焼成温度が実施例1より低い650℃で10時間焼成した後に、10℃/hrで500℃まで降温した後に室温まで放冷した。得られたLi−Mnスピネル粉体は、実施例1と同様に評価した。
(Comparative Example 2)
The raw materials mixed in the amount of Example 2 were fired at 650 ° C., which was lower than that of Example 1, for 10 hours, cooled to 500 ° C. at 10 ° C./hr, and allowed to cool to room temperature. The obtained Li-Mn spinel powder was evaluated in the same manner as in Example 1.

(比較例3)
Li1.02Mn1.95Al0.02Mg0.014の組成となるように、平均粒径23μm程度の電解二酸化マンガン984.8g、炭酸リチウム218.6g、水酸化アルミニウム8.65g及び酸化マグネシウム2.31gを混合し、690℃で10時間焼成した。その後10℃/hrで500℃まで降温した後に室温まで放冷し、Li1.02Mn1.95Al0.02Mg0.014を含むLi−Mnスピネル粉体を得た。
得られたLi−Mnスピネル粉体は、実施例1と同様に評価した。
(Comparative Example 3)
A mixture of 984.8 g of electrolytic manganese dioxide having an average particle size of about 23 μm, 218.6 g of lithium carbonate, 8.65 g of aluminum hydroxide, and 2.31 g of magnesium oxide was formed to have a composition of Li 1.02 Mn 1.95 Al 0.02 Mg 0.01 O 4. And baked at 690 ° C. for 10 hours. Thereafter, the temperature was lowered to 500 ° C. at 10 ° C./hr, and then allowed to cool to room temperature to obtain a Li—Mn spinel powder containing Li 1.02 Mn 1.95 Al 0.02 Mg 0.01 O 4 .
The obtained Li-Mn spinel powder was evaluated in the same manner as in Example 1.

(比較例4)
比較例1で作製したLi−Mnスピネル粉体に、Al23粉末をLi−Mnスピネル重量に対して3wt%添加して、高温サイクル試験を行った。
(Comparative Example 4)
A high temperature cycle test was performed by adding Al 2 O 3 powder to the Li—Mn spinel powder prepared in Comparative Example 1 at 3 wt% based on the weight of the Li—Mn spinel.

上記結果より、Alの未固溶量が多いと高温サイクル特性に優れる事が分かった。特に、比較例と実施例の値を考慮すると、Alの未固溶量は、添加したAl量すなわち正極材料に含まれる全Al量の20〜80%、特に30〜60%、中でも特に35〜55%であるのが好ましいことが分かった。   From the above results, it was found that when the amount of undissolved Al was large, the high-temperature cycle characteristics were excellent. In particular, considering the values of Comparative Examples and Examples, the undissolved amount of Al is 20 to 80%, preferably 30 to 60%, and especially 35 to 35% of the amount of added Al, that is, the total amount of Al contained in the positive electrode material. It has been found that 55% is preferable.

(実施例4)
実施例2の量で混合した原料を680℃で10時間焼成した後に、10℃/hrで500℃まで降温した後に室温まで放冷した。
得られたLi−Mnスピネル粉体は、実施例1と同様に評価した。
(Example 4)
The raw material mixed in the amount of Example 2 was fired at 680 ° C. for 10 hours, then cooled to 500 ° C. at 10 ° C./hr, and then allowed to cool to room temperature.
The obtained Li-Mn spinel powder was evaluated in the same manner as in Example 1.

(実施例5)
実施例2の量で混合した原料を670℃で10時間焼成した後に、10℃/hrで500℃まで降温した後に室温まで放冷した。
得られたLi−Mnスピネル粉体は、実施例1と同様に評価した。
(Example 5)
The raw material mixed in the amount of Example 2 was calcined at 670 ° C. for 10 hours, then cooled to 500 ° C. at 10 ° C./hr, and then allowed to cool to room temperature.
The obtained Li-Mn spinel powder was evaluated in the same manner as in Example 1.

(比較例5)
実施例2の量で混合した原料を、焼成温度が実施例2より低い660℃で10時間焼成した後に、10℃/hrで500℃まで降温した後に室温まで放冷した。
得られたLi−Mnスピネル粉体は、実施例1と同様に評価した。
得られた結果を表2に示す。
(Comparative Example 5)
The raw materials mixed in the amount of Example 2 were fired at 660 ° C. for 10 hours, at a firing temperature lower than that of Example 2, cooled down to 500 ° C. at 10 ° C./hr, and allowed to cool to room temperature.
The obtained Li-Mn spinel powder was evaluated in the same manner as in Example 1.
Table 2 shows the obtained results.

Figure 2004186149
Figure 2004186149

本発明に係る、格子定数の異なる二相以上のLi−Mnスピネルからなる様子を示すX線回折図である。FIG. 2 is an X-ray diffraction diagram showing a state of two or more phases of Li—Mn spinels having different lattice constants according to the present invention. 本発明に係る、Li−Mnスピネル中に固溶しない部分の様子を示すX線回折図である。FIG. 4 is an X-ray diffraction diagram showing a state of a portion that does not form a solid solution in the Li—Mn spinel according to the present invention.

Claims (10)

Li化合物、Mn化合物及びAl化合物を混合し焼成して得られるLiイオン二次電池用正極材料であって、
一般式Li1+xMn2-x-yAly4で表されるスピネル型マンガン酸リチウムを含有し、かつ当該スピネル型マンガン酸リチウムに固溶されない未固溶状態のAlを、正極材料に含まれる全Alの20〜80%含有することを特徴とするLiイオン二次電池用正極材料。
A positive electrode material for a Li ion secondary battery obtained by mixing and firing a Li compound, a Mn compound and an Al compound,
The positive electrode material contains spinel-type lithium manganate represented by the general formula Li 1 + x Mn 2-xy Al y O 4 , and contains undissolved Al that is not dissolved in the spinel-type lithium manganate. A positive electrode material for a Li-ion secondary battery, comprising 20 to 80% of the total Al content.
Li化合物、Mn化合物、Al化合物及び置換元素(M元素)化合物を混合し焼成して得られLiイオン二次電池用正極材料であって、
一般式Li1+xMn2-x-y-zAlyz4で表されるスピネル型マンガン酸リチウムを含有し、かつ、当該スピネル型マンガン酸リチウムに固溶されない未固溶状態のAlを、正極材料に含まれる全Alの20〜80%含有することを特徴とするLiイオン二次電池用正極材料。
A positive electrode material for a Li ion secondary battery obtained by mixing and firing a Li compound, a Mn compound, an Al compound and a substitution element (M element) compound,
Formula Li 1 + x Mn 2-xyz Al y M z O containing spinel-type lithium manganate represented by 4, and the Al of the undissolved state without being dissolved in the spinel-type lithium manganate, positive A positive electrode material for a Li-ion secondary battery, comprising 20 to 80% of the total Al contained in the material.
未固溶状態で存在するAlは、スピネル型マンガン酸リチウムと同時に焼成されたものであることを特徴とする請求項1又は2に記載のLiイオン二次電池用正極材料。   3. The positive electrode material for a Li-ion secondary battery according to claim 1, wherein Al existing in an undissolved state is fired simultaneously with spinel-type lithium manganate. Liイオン二次電池用正極材料を、硫酸:水:過酸化水素=1:16:3を混合してなる酸で1分間攪拌しながら溶解させた時に、正極材料に含まれる全Alの20〜80%が溶解せずに溶け残ることを特徴とする請求項1〜3のいずれかに記載のLiイオン二次電池用正極材料。   When the positive electrode material for a Li-ion secondary battery is dissolved in an acid obtained by mixing sulfuric acid: water: hydrogen peroxide = 1: 16: 3 with stirring for 1 minute, 20 to 20% of the total Al contained in the positive electrode material is dissolved. The positive electrode material for a Li-ion secondary battery according to any one of claims 1 to 3, wherein 80% of the positive electrode material remains undissolved without being dissolved. スピネル型マンガン酸リチウムは、格子定数の異なる二相以上のスピネル型マンガン酸リチウムからなることを特徴とする請求項1〜4のいずれかに記載のLiイオン二次電池用正極材料。   The positive electrode material for a Li-ion secondary battery according to any one of claims 1 to 4, wherein the spinel-type lithium manganate comprises two or more phases of spinel-type lithium manganate having different lattice constants. 正極材料の比表面積は0.3〜2m2/gの範囲にあることを特徴とする請求項1〜5のいずれかに記載のLiイオン二次電池用正極材料。 The positive electrode material for a Li-ion secondary battery according to any one of claims 1 to 5, wherein the specific surface area of the positive electrode material is in a range of 0.3 to 2 m2 / g. スピネル構成元素化合物に加えてB元素化合物を混合し焼成して得られるLiイオン二次電池用正極材料であって、
スピネル型マンガン酸リチウムとして、一般式Li1+xMn2-x-yAly4又は一般式Li1+xMn2-x-y-zAlyz4で表されるスピネル型マンガン酸リチウムを含有することを特徴とする請求項1〜6のいずれかに記載のLiイオン二次電池用正極材料。
A cathode material for a Li-ion secondary battery obtained by mixing and firing a B element compound in addition to the spinel constituent element compound,
As a spinel type lithium manganate, containing spinel-type lithium manganate represented by the general formula Li 1 + x Mn 2-xy Al y O 4 , or the general formula Li 1 + x Mn 2-xyz Al y M z O 4 The positive electrode material for a Li-ion secondary battery according to any one of claims 1 to 6, wherein
一般式Li1+xMn2-x-yAly4又は一般式Li1+xMn2-x-y-zAlyz4の組成となるように各スピネル構成元素化合物を秤量して混合し、800℃〜1000℃で焼成して得られるものである請求項1〜6のいずれかに記載のLiイオン二次電池用正極材料。 Formula Li 1 + x Mn 2-xy Al y O 4 , or the general formula Li 1 + x Mn 2-xyz Al y M z O 4 and so as to be weighed each spinel structure element compound composition were mixed, 800 The positive electrode material for a Li-ion secondary battery according to any one of claims 1 to 6, which is obtained by firing at a temperature of from 1000C to 1000C. 一般式Li1+xMn2-x-yAly4又は一般式Li1+xMn2-x-y-zAlyz4の組成となるように各スピネル構成元素化合物を秤量し、これらスピネル構成元素化合物にB元素を加えて混合し、600〜800℃で焼成して得られるものである請求項7に記載のLiイオン二次電池用正極材料。 Weigh general formula Li 1 + x Mn 2-xy Al y O 4 , or the general formula Li 1 + x Mn 2-xyz Al y M z O 4 in such a composition the spinel structure element compounds, these spinels constituent elements The cathode material for a Li-ion secondary battery according to claim 7, which is obtained by adding a B element to a compound, mixing and baking the mixture at 600 to 800 ° C. 請求項1〜9のいずれかに記載の正極材料を正極に用いて構成されるLiイオン二次電池。

A Li-ion secondary battery comprising the positive electrode material according to any one of claims 1 to 9 for a positive electrode.

JP2003391780A 2002-11-22 2003-11-21 Positive electrode material for Li-ion secondary battery Expired - Lifetime JP4676691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391780A JP4676691B2 (en) 2002-11-22 2003-11-21 Positive electrode material for Li-ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002339950 2002-11-22
JP2003391780A JP4676691B2 (en) 2002-11-22 2003-11-21 Positive electrode material for Li-ion secondary battery

Publications (2)

Publication Number Publication Date
JP2004186149A true JP2004186149A (en) 2004-07-02
JP4676691B2 JP4676691B2 (en) 2011-04-27

Family

ID=32774713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391780A Expired - Lifetime JP4676691B2 (en) 2002-11-22 2003-11-21 Positive electrode material for Li-ion secondary battery

Country Status (1)

Country Link
JP (1) JP4676691B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054436A1 (en) 2007-10-23 2009-04-30 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium-transition metal oxide
JP2009263176A (en) * 2008-04-25 2009-11-12 Kanto Denka Kogyo Co Ltd Spinel type lithium manganate surface-coated with magnesium-aluminum multiple oxide, method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using the same
WO2010084855A1 (en) * 2009-01-20 2010-07-29 戸田工業株式会社 Positive electrode active material for secondary batteries with nonaqueous electrolytic solution, process for the production of the active material, and secondary batteries with nonaqueous electrolytic solution
JP2010198899A (en) * 2009-02-25 2010-09-09 Nec Tokin Corp Lithium ion secondary battery
JP2011082188A (en) * 2009-03-31 2011-04-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing material for positive electrode active material for lithium battery
US11532806B2 (en) 2014-04-01 2022-12-20 The Research Foundation For The State University Of New York Electrode materials that include an active composition of the formula MgzMxOy for group II cation-based batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048545A (en) * 1999-08-09 2001-02-20 Mitsubishi Chemicals Corp Production of lithium-manganese multiple oxide and secondary battery using the same
JP2001180938A (en) * 1999-12-28 2001-07-03 Mitsui Mining & Smelting Co Ltd Lithium manganese compound oxide and manufacturing method
JP2002008654A (en) * 2000-06-20 2002-01-11 Sony Corp Positive electrode active material and its manufacturing method and non-aqueous electrolyte battery and its manufacturing method
JP2002042812A (en) * 2000-07-27 2002-02-08 Yuasa Corp Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2002056845A (en) * 2000-08-08 2002-02-22 Denso Corp Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2002056846A (en) * 2000-08-08 2002-02-22 Denso Corp Method of manufacturing positive electrode active material for lithium secondary battery, and method of manufacturing lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048545A (en) * 1999-08-09 2001-02-20 Mitsubishi Chemicals Corp Production of lithium-manganese multiple oxide and secondary battery using the same
JP2001180938A (en) * 1999-12-28 2001-07-03 Mitsui Mining & Smelting Co Ltd Lithium manganese compound oxide and manufacturing method
JP2002008654A (en) * 2000-06-20 2002-01-11 Sony Corp Positive electrode active material and its manufacturing method and non-aqueous electrolyte battery and its manufacturing method
JP2002042812A (en) * 2000-07-27 2002-02-08 Yuasa Corp Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2002056845A (en) * 2000-08-08 2002-02-22 Denso Corp Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2002056846A (en) * 2000-08-08 2002-02-22 Denso Corp Method of manufacturing positive electrode active material for lithium secondary battery, and method of manufacturing lithium secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988880B2 (en) 2007-10-23 2011-08-02 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium transition metal oxide
JP2010097947A (en) * 2007-10-23 2010-04-30 Mitsui Mining & Smelting Co Ltd Spinel type lithium transition metal oxide
JP4489841B2 (en) * 2007-10-23 2010-06-23 三井金属鉱業株式会社 Spinel type lithium transition metal oxide
JPWO2009054436A1 (en) * 2007-10-23 2011-03-03 三井金属鉱業株式会社 Spinel type lithium transition metal oxide
WO2009054436A1 (en) 2007-10-23 2009-04-30 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium-transition metal oxide
EP2442388A1 (en) 2007-10-23 2012-04-18 Mitsui Mining & Smelting Co., Ltd Spinel type lithium-transition metal oxide
JP2009263176A (en) * 2008-04-25 2009-11-12 Kanto Denka Kogyo Co Ltd Spinel type lithium manganate surface-coated with magnesium-aluminum multiple oxide, method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using the same
WO2010084855A1 (en) * 2009-01-20 2010-07-29 戸田工業株式会社 Positive electrode active material for secondary batteries with nonaqueous electrolytic solution, process for the production of the active material, and secondary batteries with nonaqueous electrolytic solution
JP2010192428A (en) * 2009-01-20 2010-09-02 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
US9505631B2 (en) 2009-01-20 2016-11-29 Toda Kogyo Corporation Positive electrode active material for secondary batteries with nonaqueous electrolytic solution, process for the production of the active material, and secondary batteries with nonaqueous electrolytic solution
JP2010198899A (en) * 2009-02-25 2010-09-09 Nec Tokin Corp Lithium ion secondary battery
JP2011082188A (en) * 2009-03-31 2011-04-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing material for positive electrode active material for lithium battery
US11532806B2 (en) 2014-04-01 2022-12-20 The Research Foundation For The State University Of New York Electrode materials that include an active composition of the formula MgzMxOy for group II cation-based batteries

Also Published As

Publication number Publication date
JP4676691B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4839633B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5352736B2 (en) Lithium manganese solid solution cathode material
JP5549321B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6978182B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JPWO2018123951A1 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2016204239A (en) Aluminum coated nickel cobalt composite hydroxide particle and manufacturing method therefor, cathode active material for non-aqueous electrolyte secondary battery and manufacturing method therefor and non-aqueous electrolyte secondary battery
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JP2015201432A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP6544579B2 (en) Method for producing lithium tungstate, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using lithium tungstate
JP2006019229A (en) Positive electrode material for lithium secondary battery, and its manufacturing method
JP2005011713A (en) Positive electrode material for lithium secondary battery and its manufacturing method
JP6582750B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2006344567A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2018528153A (en) Precursor of lithium transition metal oxide cathode material for rechargeable batteries
JP6540077B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6754891B2 (en) Spinel-type lithium nickel-manganese-containing composite oxide
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2017010842A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
WO2013118220A1 (en) Negative electrode active material for lithium ion secondary batteries and method for producing same
JP4676691B2 (en) Positive electrode material for Li-ion secondary battery
JPWO2014185548A1 (en) Positive electrode active material for lithium secondary battery
JP6511761B2 (en) Method of producing coated composite oxide particles for positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using coated composite oxide particles produced by the method
JP2019040675A (en) Method for manufacturing positive electrode active material for nonaqueous secondary battery, and transition metal compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term