JPH05144472A - Secondary battery with nonaqueous electrolyte - Google Patents

Secondary battery with nonaqueous electrolyte

Info

Publication number
JPH05144472A
JPH05144472A JP3308811A JP30881191A JPH05144472A JP H05144472 A JPH05144472 A JP H05144472A JP 3308811 A JP3308811 A JP 3308811A JP 30881191 A JP30881191 A JP 30881191A JP H05144472 A JPH05144472 A JP H05144472A
Authority
JP
Japan
Prior art keywords
carbon material
lithium
negative electrode
secondary battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3308811A
Other languages
Japanese (ja)
Other versions
JP3063320B2 (en
Inventor
Yukio Nishikawa
幸雄 西川
Junichi Yamaura
純一 山浦
Teruyoshi Morita
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3308811A priority Critical patent/JP3063320B2/en
Publication of JPH05144472A publication Critical patent/JPH05144472A/en
Application granted granted Critical
Publication of JP3063320B2 publication Critical patent/JP3063320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery, which is embodied light and small, equipped with a high energy density, and presenting excellent resistance against over-discharging. CONSTITUTION:A metal lithium foil is in advance affixed to the carbon material of a negative electrode 2, and the lithium is allowed to permeate the carbon material through the action of the potential difference or concentration difference, and thereby the lithium for enabling charging is retained by the negative electrode carbon material. Therein the capacity of metal Li foil affixation ranges 4-40% of the saturated reversible capacity of the negative electrode carbon material. The metal lithium foil affixed to the carbon material forms a local cell together with the carbon material under existence of nonaqueous electrolytic solution, and the lithium is intercalated in the carbon material electrochemically to be retained as dischargeable lithium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池、
特にリチウム二次電池の耐過放電特性の向上に関するも
のである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, it relates to improvement of over-discharge resistance of a lithium secondary battery.

【0002】近年、携帯電話、カムコーダなどのコード
レス情報・通信機器の目覚しいポータブル化、インテリ
ジェンス化に伴い、その駆動用電源電池として小形軽量
で、高エネルギー密度の二次電池が求められている。非
水電解液二次電池、特にリチウム二次電池は次世代電池
の主力として大いに期待され、その潜在的な市場規模も
非常に大きい。
In recent years, with the remarkable portable and intelligent use of cordless information / communication devices such as mobile phones and camcorders, there has been a demand for a small-sized and lightweight secondary battery having a high energy density as a power source battery for driving the cordless information / communication device. Non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, are highly expected as the mainstay of next-generation batteries, and their potential market size is also very large.

【0003】[0003]

【従来の技術】従来、リチウム二次電池としては、正極
活物質に遷移金属の酸化物や硫化物、例えば二酸化マン
ガン(MnO2)、二硫化モリブデン(MoS2)など
を、負極活物質に金属リチウムをそれぞれ用いた電池系
が提案されていた。しかし、この電池では、充電時のリ
チウムの析出形態が、非水電解液の組成、充電条件など
の影響を大きく受け、主として針状や苔状となり、これ
が負極から脱落して、あるいはセパレータを貫通して正
極と接触し、内部短絡や発火の原因となるなど、安全性
に問題があるとされていた。
2. Description of the Related Art Conventionally, in a lithium secondary battery, a transition metal oxide or sulfide such as manganese dioxide (MnO 2 ) or molybdenum disulfide (MoS 2 ) is used as a negative electrode active material as a positive electrode active material. Battery systems using lithium have been proposed. However, in this battery, the lithium deposition pattern during charging is greatly affected by the composition of the non-aqueous electrolyte, charging conditions, etc., and mainly becomes needle-like or mossy, which falls off from the negative electrode or penetrates the separator. It has been said that there is a problem with safety such as contact with the positive electrode and causing internal short circuit or ignition.

【0004】そこで、正、負極に電気化学的にリチウム
をインターカレーション/ディインターカレーションす
る化合物をそれぞれ用いた電池系が提案された。この電
池では、充電時にリチウムが電極上に析出することはな
く、安全性の向上が期待できると同時に急速充電特性に
も優れていると考えられ、現在、研究開発が活発に行わ
れている。
Therefore, a battery system using a compound for electrochemically intercalating / deintercalating lithium in the positive and negative electrodes has been proposed. In this battery, lithium is not deposited on the electrode during charging, and it is considered that it can be expected to improve safety and at the same time has excellent rapid charging characteristics, and currently, research and development are actively carried out.

【0005】そしてこの電池では、正極の活物質として
は、遷移金属のリチウム含有複合酸化物、すなわち層状
構造を有するLiMO2あるいはスピネル構造を有する
LiM24(但しMは遷移金属、例えばコバルト、マン
ガン、ニッケル鉄のいずれか)などが、高電圧、高エネ
ルギー密度を有するものとして注目されている。
In this battery, as a positive electrode active material, a lithium-containing composite oxide of a transition metal, that is, LiMO 2 having a layered structure or LiM 2 O 4 having a spinel structure (where M is a transition metal such as cobalt, Any one of manganese and nickel-iron) has been attracting attention as having high voltage and high energy density.

【0006】一方、負極物質としては、層状構造を有す
る炭素材が可逆的にリチウムをインターカレーション/
ディインターカレーションするものとして有望視されて
おり、そのインターカレーション/ディインターカレー
ションにおける可逆性と炭素材の物性、構造との関係な
どについてさかんに検討が進められている。
On the other hand, as a negative electrode material, a carbon material having a layered structure reversibly intercalates lithium /
It is regarded as a promising material for deintercalation, and the reversibility of the intercalation / deintercalation, the physical properties of the carbon material, the relationship with the structure, etc. are being actively investigated.

【0007】[0007]

【発明が解決しようとする課題】以上のように、正極活
物質に遷移金属のリチウム含有複合酸化物を、負極物質
に炭素材をそれぞれ用いることにより、小形軽量で、安
全性にも優れた高エネルギー密度の非水電解液二次電池
を提供できると考えられる。
As described above, by using a lithium-containing composite oxide of a transition metal for the positive electrode active material and a carbon material for the negative electrode material, respectively, the size and weight are small and the safety is high. It is considered possible to provide a non-aqueous electrolyte secondary battery having an energy density.

【0008】しかし、この電池にはまだいくつかの課題
が残されている。そのひとつとして、耐過放電特性の向
上が挙げられる。
However, some problems still remain in this battery. One of them is improvement in over-discharge resistance.

【0009】最近のコードレス情報・通信機器には電源
電池の浪費をさけるため、いわゆるオートパワーオフ機
能が搭載されている場合が多い。この機能はパワーオン
状態で、(1)機器は駆動していない、いわゆるポーズ
状態で一定時間経過した場合、(2)機器は駆動してお
り、電池電圧が設定下限電圧に到達した場合、に自動的
にパワーオフ状態となるものである。
In recent years, cordless information / communication devices are often equipped with a so-called auto power-off function in order to avoid wasting a power battery. This function is in the power-on state, when (1) the device is not driven, that is, when a certain time has passed in a so-called pause state, (2) the device is driven, and when the battery voltage reaches the set lower limit voltage, The power is automatically turned off.

【0010】このオートパワーオフ機能が作動した状態
のままでさらに放置された場合、電池は回路負荷により
放電し続け、やがて電池電圧が0Vに到達する。したが
って、このような過放電後においても再充電すれば容量
が回復する、いわゆる耐過放電特性に優れなければ、電
池の実用性は非常に低いものとなる。
When the auto power-off function is still in operation, the battery is continuously discharged by the circuit load, and eventually the battery voltage reaches 0V. Therefore, if the so-called over-discharge resistance characteristic, in which the capacity is restored by recharging even after such over-discharge, is not excellent, the practicality of the battery is extremely low.

【0011】しかし、正極の活物質に遷移金属のリチウ
ム含有複合酸化物を、負極物質に炭素材をそれぞれ用い
た非水電解液二次電池の場合、このような過放電後、再
充電しても容量がほとんど回復せず、しかもサイクルに
伴う容量劣化が過放電前と比較して非常に大きくなるこ
とがわかった。
However, in the case of a non-aqueous electrolyte secondary battery in which a lithium-containing composite oxide of a transition metal is used as the active material of the positive electrode and a carbon material is used as the negative electrode material, recharging is performed after such over-discharging. It was found that the capacity was hardly recovered and that the deterioration of capacity with the cycle was much larger than that before the overdischarge.

【0012】負極物質に炭素材を用いる場合、負極の電
位、すなわち炭素材がリチウムをインターカレーション
/ディインターカレーションする電位は、炭素材の物
性、特に層状構造の発達の度合い(層間距離、c軸方向
の層の重なり、a軸方向の層の広がり)により異なる
が、リチウムに対して約1.5V以下である。
When a carbon material is used as the negative electrode material, the potential of the negative electrode, that is, the potential at which the carbon material intercalates / deintercalates lithium depends on the physical properties of the carbon material, particularly the degree of development of the layered structure (interlayer distance, It is about 1.5 V or less with respect to lithium, though it depends on the overlap of layers in the c-axis direction and the spread of layers in the a-axis direction.

【0013】しかし、この電池を過放電した場合、負極
の電位がリチウムに対して約3.2V以上にまで上昇し
て正極の電位と等しくなり、電池電圧が0Vに到達して
いることがわかった。
However, when this battery was over-discharged, it was found that the potential of the negative electrode rose to about 3.2 V or more with respect to lithium and became equal to the potential of the positive electrode, and the battery voltage reached 0 V. It was

【0014】このため、炭素材の物性および構造が変化
して、リチウムのインターカレーション/ディインター
カレーションにおける可逆性が失われ、それが過放電
後、再充電しても容量がほとんど回復せず、サイクルに
伴う容量劣化が過放電前と比較して非常に大きくなる原
因であると考えられる。
For this reason, the physical properties and structure of the carbon material change, and the reversibility of lithium intercalation / deintercalation is lost, and even if it is recharged after overdischarging, the capacity is almost restored. It is considered that the reason is that the capacity deterioration due to the cycle becomes much larger than that before the overdischarge.

【0015】本発明は、この課題を解決するものであ
り、リチウム二次電池の耐過放電特性を向上させること
を目的とするものである。
The present invention solves this problem, and an object of the present invention is to improve the over-discharge resistance of a lithium secondary battery.

【0016】[0016]

【課題を解決するための手段】本発明は、正極に遷移金
属のリチウム含有複合酸化物を、負極に炭素材をそれぞ
れ用いた非水電解液二次電池であり、負極は予め炭素材
に貼付した金属リチウム箔を電位差または濃度差によっ
て炭素材中に拡散することで、負極の炭素材に放電可能
なリチウムを保持させたものである。
The present invention is a non-aqueous electrolyte secondary battery in which a lithium-containing composite oxide of a transition metal is used for the positive electrode and a carbon material is used for the negative electrode, and the negative electrode is previously attached to the carbon material. The metal lithium foil described above is diffused into the carbon material due to the potential difference or the concentration difference, so that the carbon material of the negative electrode holds the dischargeable lithium.

【0017】さらに、その金属リチウム箔の貼付容量
は、負極物質に用いる炭素材の飽和可逆容量に対して4
〜40%とするものである。
Further, the sticking capacity of the metallic lithium foil is 4 with respect to the saturation reversible capacity of the carbon material used for the negative electrode material.
-40%.

【0018】ここで、負極物質に用いる炭素材の飽和可
逆容量は、以下の手法により算出した。正極物質に炭素
材を、負極物質に金属リチウムをそれぞれ用いて、20
℃で電流密度0.5mA/cm2の定電流充放電を5サイ
クル繰り返した。このときの容量を飽和可逆容量とし
た。なお、充電時の上限電圧は1.0V、放電時の下限
電圧は0Vとした。
Here, the saturation reversible capacity of the carbon material used as the negative electrode material was calculated by the following method. A carbon material is used for the positive electrode material and metallic lithium is used for the negative electrode material.
Constant-current charging / discharging with a current density of 0.5 mA / cm 2 at 5 ° C. was repeated 5 cycles. The capacity at this time was defined as the saturated reversible capacity. The upper limit voltage during charging was 1.0V and the lower limit voltage during discharging was 0V.

【0019】加えて正極の活物質には、一般式LiMO
2あるいはLiM24(但しMはコバルト、マンガン、
ニッケル、鉄のいずれか)で表せる物質の単独かあるい
はコバルト、マンガン、ニッケル、鉄の一部を他の遷移
金属で置換したリチウム含有複合酸化物を、一方負極物
質には、粉末X線回折法による格子面間隔(d002)が
0.342nm以下の炭素材が好ましい。
In addition, the active material of the positive electrode may be of the general formula LiMO
2 or LiM 2 O 4 (where M is cobalt, manganese,
(A nickel or iron) alone or a lithium-containing composite oxide in which cobalt, manganese, nickel, or iron is partially replaced by another transition metal, while the negative electrode material is a powder X-ray diffraction method. A carbon material having a lattice spacing (d 002 ) of 0.342 nm or less is preferable.

【0020】[0020]

【作用】本発明により、負極の炭素材に貼付した金属リ
チウム箔は、非水電解液の存在下で、炭素材との間で局
部電池を構成し、電気化学的に金属リチウムが溶解して
近傍の炭素材にインターカレーションされ、放電可能な
リチウムとして炭素材中に保持される。
According to the present invention, the metallic lithium foil attached to the carbon material of the negative electrode constitutes a local battery between the metallic lithium foil and the carbon material in the presence of the non-aqueous electrolyte, and the metallic lithium is electrochemically dissolved. The carbon material is intercalated in the vicinity and is retained in the carbon material as lithium that can be discharged.

【0021】この炭素材に保持されたリチウムが、過放
電時に放電することにより負極の電位が上昇することは
なく、このため、炭素材の物性および構造が変化せず、
リチウムの炭素材へのインターカレーション/ディイン
ターカレーションにおける可逆性が失われない。したが
って過放電後の電池であっても、再充電によって容量が
速やかに回復し、サイクルに伴う容量劣化が過放電前と
比較して変化しない。すなわち、耐過放電特性を向上す
ることができる。
The lithium held on the carbon material does not raise the potential of the negative electrode due to discharge at the time of over-discharging. Therefore, the physical properties and structure of the carbon material do not change,
The reversibility of lithium intercalation / deintercalation into carbon material is not lost. Therefore, even in the case of a battery after over-discharging, the capacity is promptly restored by recharging, and the capacity deterioration due to the cycle does not change as compared with that before over-discharging. That is, the over-discharge resistance can be improved.

【0022】[0022]

【実施例】以下、本発明の実施例について図面を参照し
つつ説明する。本発明の円筒形リチウム二次電池の構成
縦断面図を図1に示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a vertical cross-sectional view of the configuration of the cylindrical lithium secondary battery of the present invention.

【0023】正極板1は、炭酸リチウム(LiCO3
と四酸化三コバルト(Co34)を混合し、空気中にお
いて900℃で焼成したコバルト酸リチウム(LiCo
2)を活物質とし、これに導電剤としてアセチレンブ
ラックを3重量%混合した後、結着剤としてポリ四フッ
化エチレン樹脂の水性ディスパージョンを7重量%練合
してペースト状とした合剤を、アルミニウム箔からなる
芯材の両面に塗着、乾燥し圧延したものである。またそ
の端部に正極リード板4をスポット溶接している。この
正極板の寸法は、幅40mm、長さ250mmであり、厚さ
は0.170mmである。
The positive electrode plate 1 is made of lithium carbonate (LiCO 3 )
And tricobalt tetroxide (Co 3 O 4 ) were mixed and fired at 900 ° C. in air lithium cobalt oxide (LiCo
O 2 ) as an active material, 3% by weight of acetylene black as a conductive agent was mixed therein, and then 7% by weight of an aqueous dispersion of polytetrafluoroethylene resin was kneaded as a binder to form a paste. The agent is applied on both sides of a core material made of aluminum foil, dried and rolled. Further, the positive electrode lead plate 4 is spot-welded to the end portion thereof. The positive electrode plate has a width of 40 mm, a length of 250 mm, and a thickness of 0.170 mm.

【0024】また、負極板2は、メソフェーズピッチを
アルゴン雰囲気下において2800℃で熱処理した球状
黒鉛に、結着剤としてポリ四フッ化エチレン樹脂の水性
ディスパージョンを5重量%練合してペースト状とした
合剤を、銅箔からなる芯材の両面に塗着、乾燥し圧延し
たものである。またその端部に負極リード板5をスポッ
ト溶接している。負極板の寸法は、幅42mm、長さ27
0mmであり、厚さは0.205mmである。
The negative electrode plate 2 is a paste prepared by kneading 5% by weight of an aqueous dispersion of polytetrafluoroethylene resin as a binder into spherical graphite obtained by heat-treating mesophase pitch at 2800 ° C. in an argon atmosphere. The above mixture was applied to both sides of a core material made of copper foil, dried and rolled. Further, the negative electrode lead plate 5 is spot-welded to the end portion thereof. The negative electrode plate has a width of 42 mm and a length of 27.
The thickness is 0 mm and the thickness is 0.205 mm.

【0025】ここで、物性、構造の異なる種々の炭素材
について予備検討を進めたところ、粉末X線回折法によ
る格子面間隔(d002)が0.342nm以下の炭素材
が高容量であり、可逆性にも優れることがわかった。ち
なみに、メソフェーズピッチをアルゴン雰囲気下におい
て2800℃で熱処理した球状黒鉛は粉末X線回折法に
よる格子面間隔(d002)が0.342nm以下であっ
た。
As a result of preliminary examination of various carbon materials having different physical properties and structures, a carbon material having a lattice spacing (d 002 ) of 0.342 nm or less by the powder X-ray diffraction method has a high capacity. It was also found to be excellent in reversibility. Incidentally, the spherical graphite obtained by heat-treating mesophase pitch at 2800 ° C. in an argon atmosphere had a lattice plane spacing (d 002 ) of 0.342 nm or less measured by a powder X-ray diffraction method.

【0026】セパレータ3は、ポリプロピレンからなる
多孔性フィルムを正極板および負極板よりも幅広く裁断
したものを用いた。
As the separator 3, a polypropylene porous film cut into a wider area than the positive electrode plate and the negative electrode plate was used.

【0027】正極板および負極板を、間にセパレータを
介在させ全体を渦巻状に巻回して極板群を構成した。
The positive electrode plate and the negative electrode plate were spirally wound as a whole with a separator interposed therebetween to form an electrode plate group.

【0028】次に、上記極板群の上下部を温風で加熱
し、セパレータ3を熱収縮させる。極板群の下側に下部
絶縁リング6を装着し、電池ケース7に収容して負極リ
ード板5を電池ケース7にスポット溶接する。また極板
群の上側には上部絶縁リング8を装着し、電池ケース7
の上部に溝入れした後、非水電解液を注入する。非水電
解液は、エチレンカーボネート(EC)およびジエチレ
ンカーボネート(DEC)を体積比で1:1に混合し、
六フッ化リン酸リチウム(LiPF6)を1モル/l溶
解させた。あらかじめガスケットが組み込まれた組立封
口板9と正極リード板4をスポット溶接した後、組立封
口板9を電池ケース7に装着し、カシメ封口して電池を
構成した。この電池の寸法は、外径14mm、総高50mm
(単3形)である。
Next, the upper and lower parts of the electrode plate group are heated by hot air to heat-shrink the separator 3. The lower insulating ring 6 is attached to the lower side of the electrode plate group, is housed in the battery case 7, and the negative electrode lead plate 5 is spot-welded to the battery case 7. Also, the upper insulating ring 8 is attached to the upper side of the electrode plate group, and the battery case 7
After grooving on the top of, the non-aqueous electrolyte is injected. The non-aqueous electrolyte is a mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a volume ratio of 1: 1.
Lithium hexafluorophosphate (LiPF 6 ) was dissolved at 1 mol / l. After the assembly sealing plate 9 in which a gasket was incorporated in advance and the positive electrode lead plate 4 were spot-welded, the assembly sealing plate 9 was mounted on the battery case 7 and caulked and sealed to form a battery. The size of this battery is 14mm in outer diameter and 50mm in total height.
(AAA).

【0029】試験評価 上記で構成した電池の耐過放電特性は以下の試験方法で
評価した。まず、20℃で100mAの定電流充放電を
50サイクル繰り返した。なお、充電時の上限電圧を
4.1V、放電時の下限電圧を3.0Vとした。その後
電池を放電状態から過放電状態としてさらに1kΩの定
抵抗放電を2週間継続した。このとき、参照極として金
属リチウムを用いて正負極の過放電挙動を観察した結果
を図2に示した。そして再び100mAの定電流放電を
50サイクル繰り返した。ここでの容量回復特性および
過放電前後でサイクル特性を比較した結果を図3に示し
た。
Test Evaluation The over-discharge resistance of the battery configured as described above was evaluated by the following test method. First, 100 mA constant current charge / discharge at 20 ° C. was repeated 50 cycles. The upper limit voltage during charging was 4.1V and the lower limit voltage during discharging was 3.0V. After that, the battery was changed from a discharged state to an over-discharged state, and a constant resistance discharge of 1 kΩ was continued for 2 weeks. At this time, the result of observing the overdischarge behavior of the positive and negative electrodes using metallic lithium as the reference electrode is shown in FIG. Then, the constant current discharge of 100 mA was repeated again for 50 cycles. FIG. 3 shows the result of comparison between the capacity recovery characteristic and the cycle characteristic before and after over-discharging.

【0030】図3から明らかなように、過放電後、容量
は約55%しか回復せず、しかもサイクルに伴う容量劣
化が過放電前と比較して著しく大きいことがわかった。
As is clear from FIG. 3, the capacity recovers only about 55% after over-discharging, and the capacity deterioration due to the cycle is significantly larger than that before over-discharging.

【0031】また、図2に示すように、負極の電位が過
放電時にリチウムに対して3.2V以上にまで上昇して
正極の電位と等しくなり、電池電圧が0Vに到達してい
ることがわかった。
Further, as shown in FIG. 2, the potential of the negative electrode rises to 3.2 V or more with respect to lithium during over-discharging, becomes equal to the potential of the positive electrode, and the battery voltage reaches 0 V. all right.

【0032】通常の充放電において、正極の電位はこの
付近であり問題はないと考えられるが、負極の電位は約
0.1V(充放電)
In normal charging / discharging, the potential of the positive electrode is in the vicinity of this and there is no problem, but the potential of the negative electrode is about 0.1 V (charging / discharging).

【0033】[0033]

【外1】 [Outer 1]

【0034】約0.5V(放電時)である。このため、
炭素材の物性および構造が変化して、リチウムのインタ
ーカレーション/ディインターカレーションにおける可
逆性が失われ、その結果過放電後、再充電しても容量が
ほとんど回復せず、サイクルに伴う容量劣化が過放電前
と比較して非常に大きくなると考えられる。
It is about 0.5 V (during discharge). For this reason,
Due to changes in the physical properties and structure of the carbon material, the reversibility of lithium intercalation / deintercalation is lost, and as a result, the capacity hardly recovers even after recharging after overdischarge, and the capacity associated with cycling It is considered that the deterioration is much larger than that before the overdischarge.

【0035】実施例1 予め炭素材に金属リチウム箔を貼付した負極板を用いて
前記の場合と同様に電池を構成し、耐過放電特性を評価
した。一例として金属リチウム箔の貼付容量を炭素材の
飽和可逆容量に対して20%とした場合の正負極の過放
電挙動を観察した結果を図4に示した。このとき、金属
リチウム箔の寸法は幅40mm、長さ40mm、厚さ0.0
30mmとした。
Example 1 A battery was constructed in the same manner as in the above case using a negative electrode plate prepared by pasting a metallic lithium foil on a carbon material in advance, and the overdischarge resistance was evaluated. As an example, FIG. 4 shows the results of observing the overdischarge behavior of the positive and negative electrodes when the sticking capacity of the metallic lithium foil was 20% of the saturated reversible capacity of the carbon material. At this time, the dimensions of the metallic lithium foil are 40 mm in width, 40 mm in length, and 0.0 in thickness.
It was set to 30 mm.

【0036】また、金属リチウム箔の貼付容量と耐過放
電特性として容量回復特性との関係を図5に示した。こ
のとき、金属リチウム箔の寸法は幅40mm、長さ40mm
で固定し、その容量は厚さで調整した。
FIG. 5 shows the relationship between the sticking capacity of the metallic lithium foil and the capacity recovery characteristic as the over-discharge resistance characteristic. At this time, the size of the metallic lithium foil is 40 mm in width and 40 mm in length.
It was fixed with and the volume was adjusted by the thickness.

【0037】図5から明らかなように、金属リチウム箔
の貼付容量を炭素材の飽和可逆容量に対して4%以上と
すれば、従来例と比較して良好な耐過放電特性が得られ
ることがわかった。
As is clear from FIG. 5, when the sticking capacity of the metallic lithium foil is 4% or more of the saturated reversible capacity of the carbon material, good over-discharge resistance can be obtained as compared with the conventional example. I understood.

【0038】また、図4に示すように、負極の電位が過
放電時にリチウムに対して1.5V前後までしか上昇し
ないことがわかった。さらに、金属リチウム箔の貼付容
量を炭素材の飽和可逆容量に対して4%以上とすれば同
様の過放電挙動となることを確認した。
Further, as shown in FIG. 4, it was found that the potential of the negative electrode increased to about 1.5 V with respect to lithium during overdischarge. Further, it was confirmed that similar over-discharge behavior was obtained when the attachment capacity of the metallic lithium foil was 4% or more with respect to the saturated reversible capacity of the carbon material.

【0039】これは、負極炭素材に貼付した金属リチウ
ム箔が、非水電解液の存在下で炭素材との間で局部電池
を構成し、電気化学的に金属リチウム箔が溶解して近傍
の炭素材にインターカレーションされ、放電可能なリチ
ウムとして炭素材に保持されており、これが過放電時に
放電したためであると考えられる。
This is because the metallic lithium foil attached to the negative electrode carbon material forms a local battery between the metallic lithium foil and the carbon material in the presence of the non-aqueous electrolyte, and the metallic lithium foil is electrochemically dissolved to form a local battery. It is considered that the carbon is intercalated in the carbon material and held as lithium that can be discharged in the carbon material, and this is due to discharge during overdischarge.

【0040】このため、炭素材の物性および構造が変化
せず、リチウムのインターカレーション/ディインター
カレーションにおける可逆性が失われない。したがって
過放電後、再充電することによって容量が速やかに回復
し、サイクルに伴う容量劣化が過放電前と比較して変化
しない。すなわち、良好な耐過放電特性が得られたと考
えられる。
Therefore, the physical properties and structure of the carbon material do not change, and reversibility in lithium intercalation / deintercalation is not lost. Therefore, after over-discharging, the capacity is quickly restored by recharging, and the capacity deterioration due to the cycle does not change as compared with that before over-discharging. That is, it is considered that good over-discharge resistance characteristics were obtained.

【0041】ここで、金属リチウム箔の貼付容量を炭素
材の飽和可逆容量に対して4%以上とした場合、容量回
復特性は良好であったが、これをさらに40%以上とし
た場合には容量回復特性が劣化し始める。これは、金属
リチウム箔の貼付容量が増加すると、正極の電位が過放
電時にリチウムに対して1.5V以下にまで下降してか
ら負極の電位と等しくなり、電池電圧が0Vに到達する
までの容量が増加することによる。このため、コバルト
酸リチウム(LiCoO2)の物性および構造が変化し
て、リチウムの炭素材に対するインターカレーション/
ディインターカレーションにおける可逆性が失われたと
考えられる。
Here, when the sticking capacity of the metallic lithium foil was 4% or more of the saturated reversible capacity of the carbon material, the capacity recovery characteristics were good, but when it was further 40% or more, The capacity recovery characteristic begins to deteriorate. This is because when the sticking capacity of the metallic lithium foil increases, the potential of the positive electrode drops to 1.5 V or less with respect to lithium during over-discharging and becomes equal to the potential of the negative electrode until the battery voltage reaches 0 V. Due to the increased capacity. Therefore, the physical properties and structure of lithium cobalt oxide (LiCoO 2 ) change, and the intercalation of lithium with the carbon material /
It is considered that the reversibility in deintercalation was lost.

【0042】したがって、炭素材に金属リチウム箔を貼
付することで負極に放電可能なリチウムを拡散、保持さ
せる際、その金属リチウム箔の貼付容量は、負極物質に
用いる炭素材の飽和可逆容量に対して4〜40%とする
のが好ましい。
Therefore, when the metal lithium foil is attached to the carbon material to diffuse and hold the dischargeable lithium in the negative electrode, the attachment capacity of the metal lithium foil is the saturated reversible capacity of the carbon material used for the negative electrode material. It is preferably 4 to 40%.

【0043】なお、本実施例では正極活物質にコバルト
酸リチウム(LiCoO2)を用いたが、LiMO2ある
いはLiM24(但しMはコバルト、マンガン、ニッケ
ル、鉄のいずれか)を、単独あるいはコバルト、マンガ
ン、ニッケル、鉄の一部を他の遷移金属で置換したリチ
ウム含有複合酸化物を用いた場合も同様の効果が得られ
た。
In this embodiment, lithium cobalt oxide (LiCoO 2 ) was used as the positive electrode active material, but LiMO 2 or LiM 2 O 4 (where M is cobalt, manganese, nickel or iron) was used alone. Alternatively, the same effect was obtained when a lithium-containing composite oxide in which a part of cobalt, manganese, nickel and iron was replaced with another transition metal was used.

【0044】また、本実施例では非水電解液の溶質に六
フッ化リン酸リチウム(LiPF6)を用いたが、他の
リチウム塩、例えば過塩素酸リチウム(LiCl
4)、六フッ化砒酸リチウム(LiAsF6)、ホウフ
ッ化リチウム(LiBF4)などを用いた場合もほぼ同
様の効果が得られた。
In this embodiment, lithium hexafluorophosphate (LiPF 6 ) is used as the solute of the non-aqueous electrolyte, but other lithium salts such as lithium perchlorate (LiCl 6 ) are used.
Similar effects were obtained when O 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium borofluoride (LiBF 4 ) and the like were used.

【0045】さらに、本実施例では非水電解液の溶媒に
エチレンカーボネート(EC)およびジエチレンカーボ
ネート(DEC)を混合して用いたが、プロピレンカー
ボネート(PC)、ブチレンカーボネート(BC)など
のエステル類、エトラヒドロフラン(THF)などのエ
ーテル類などを、単独あるいはこれらを混合して用いた
場合も同様の効果が得られた。
Furthermore, in this embodiment, ethylene carbonate (EC) and diethylene carbonate (DEC) were mixed and used in the solvent of the non-aqueous electrolyte, but esters such as propylene carbonate (PC) and butylene carbonate (BC) were used. Similar effects were also obtained when ethers such as etorahydrofuran (THF) were used alone or in combination.

【0046】[0046]

【発明の効果】以上のように本発明によれば、正極に遷
移金属のリチウム含有酸化物を、負極に炭素材をそれぞ
れ用いた非水電解液二次電池で、負極の炭素材に予め金
属リチウム箔を貼付し、これを電位差または濃度差によ
って炭素材に拡散させ、負極の炭素材に放電可能なリチ
ウムを保持させることにより、この電池の耐過放電特性
を著しく向上させることができる。
As described above, according to the present invention, a lithium-containing oxide of a transition metal is used for the positive electrode, and a carbon material is used for the negative electrode. By sticking a lithium foil and diffusing it into a carbon material due to a potential difference or a concentration difference, and allowing the carbon material of the negative electrode to hold dischargeable lithium, the overdischarge resistance of this battery can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒形リチウム二次電池の構成を示す
縦断面図
FIG. 1 is a vertical cross-sectional view showing the structure of a cylindrical lithium secondary battery of the present invention.

【図2】これまでの電池の正、負極の過放電挙動を示す
FIG. 2 is a view showing the overdischarge behavior of positive and negative electrodes of a conventional battery.

【図3】これまでの電池の耐過放電特性を示す図FIG. 3 is a diagram showing the over-discharge resistance characteristics of conventional batteries.

【図4】本発明における電池の正、負極の過放電挙動を
示す図
FIG. 4 is a diagram showing overdischarge behavior of positive and negative electrodes of a battery according to the present invention.

【図5】実施例1の金属リチウムの貼付容量と耐過放電
特性の関係を示す図
FIG. 5 is a diagram showing the relationship between the sticking capacity of metallic lithium and over-discharge resistance of Example 1.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 正極リード板 5 負極リード板 6 下部絶縁リング 7 電池ケース 8 上部絶縁板 9 組立封口板 1 Positive Electrode Plate 2 Negative Electrode Plate 3 Separator 4 Positive Electrode Lead Plate 5 Negative Electrode Lead Plate 6 Lower Insulation Ring 7 Battery Case 8 Upper Insulation Plate 9 Assembly Seal Plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極に遷移金属のリチウム含有複合酸化物
を、負極に炭素材をそれぞれ用いた非水電解液二次電池
であり、 負極は予め炭素材に貼付した金属リチウム箔を電位差ま
たは濃度差によって炭素材中に拡散させ保持させたもの
である非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery in which a lithium-containing composite oxide of a transition metal is used in the positive electrode and a carbon material is used in the negative electrode, and the negative electrode is a metal lithium foil previously attached to the carbon material in potential difference or concentration. A non-aqueous electrolyte secondary battery that is diffused and held in a carbon material due to a difference.
【請求項2】金属リチウム箔の貼付容量は、負極炭素材
の飽和可逆容量に対して4〜40%である請求項1記載
の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the attachment capacity of the metallic lithium foil is 4 to 40% of the saturation reversible capacity of the negative electrode carbon material.
【請求項3】負極の炭素材は、粉末X線回折法による格
子面間隔(d002)が0.342nm以下である請求項
1記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonaceous material of the negative electrode has a lattice spacing (d 002 ) determined by a powder X-ray diffraction method of 0.342 nm or less.
【請求項4】正極のリチウム含有複合酸化物は、一般式
LiMO2あるいはLiM24(但しMはコバルト、マ
ンガン、ニッケル、鉄のいずれか)の単独か、あるいは
上記コバルト、マンガン、ニッケル、鉄の一部を他の遷
移金属で置換したものである請求項1記載の非水電解液
二次電池。
4. The lithium-containing composite oxide of the positive electrode is one of the general formulas LiMO 2 or LiM 2 O 4 (where M is cobalt, manganese, nickel or iron) alone, or the above cobalt, manganese, nickel, The non-aqueous electrolyte secondary battery according to claim 1, wherein a part of iron is replaced with another transition metal.
JP3308811A 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3063320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3308811A JP3063320B2 (en) 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3308811A JP3063320B2 (en) 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05144472A true JPH05144472A (en) 1993-06-11
JP3063320B2 JP3063320B2 (en) 2000-07-12

Family

ID=17985599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3308811A Expired - Fee Related JP3063320B2 (en) 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3063320B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718902A3 (en) * 1994-12-09 1996-12-11 Japan Storage Battery Co Ltd Organic electrolyte secondary cell
EP0817294A1 (en) * 1995-03-06 1998-01-07 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell
WO1998033227A1 (en) * 1997-01-27 1998-07-30 Kanebo Limited Organic electrolytic battery
JP2005294028A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Lithium secondary battery
JP2007128919A (en) * 2007-02-19 2007-05-24 Kyushu Electric Power Co Inc Operation method for nonaqueous electrolyte secondary battery
JP2007305596A (en) * 1995-03-06 2007-11-22 Ube Ind Ltd Nonaqueous secondary battery
JP2008198593A (en) * 2007-01-16 2008-08-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2009170384A (en) * 2008-01-21 2009-07-30 Nec Tokin Corp Lithium secondary battery
US7682739B2 (en) 2004-05-12 2010-03-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery and process of producing the same
US7732097B2 (en) 2005-02-17 2010-06-08 Sony Corporation Battery
US20110136012A1 (en) * 2008-08-04 2011-06-09 Hiromasa Yagi Lithium secondary battery manufacturing method and lithium secondary battery
WO2011083423A1 (en) * 2010-01-06 2011-07-14 Etv Energy Ltd. Lithium-ion secondary electrochemical cell and method of making lithium-ion secondary electrochemical cell
US20160133941A1 (en) * 2003-09-09 2016-05-12 Sony Corporation Anode and battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672445A (en) * 1994-12-09 1997-09-30 Japan Storage Battery Co., Ltd. Organic elecrolyte secondary cell
EP0718902A3 (en) * 1994-12-09 1996-12-11 Japan Storage Battery Co Ltd Organic electrolyte secondary cell
EP0959514A3 (en) * 1994-12-09 2001-06-06 Japan Storage Battery Company Limited Organic electrolyte secondary cell
EP1679756A1 (en) * 1995-03-06 2006-07-12 Ube Industries, Ltd. Nonaqueous secondary lithium battery
EP0817294A1 (en) * 1995-03-06 1998-01-07 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell
EP0817294A4 (en) * 1995-03-06 2004-07-28 Ube Industries Nonaqueous secondary cell
JP2007305596A (en) * 1995-03-06 2007-11-22 Ube Ind Ltd Nonaqueous secondary battery
CN100380726C (en) * 1997-01-27 2008-04-09 富士重工业株式会社 Organic electrolytic battery
WO1998033227A1 (en) * 1997-01-27 1998-07-30 Kanebo Limited Organic electrolytic battery
US20160133941A1 (en) * 2003-09-09 2016-05-12 Sony Corporation Anode and battery
JP2005294028A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Lithium secondary battery
US7682739B2 (en) 2004-05-12 2010-03-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery and process of producing the same
US7732097B2 (en) 2005-02-17 2010-06-08 Sony Corporation Battery
JP2008198593A (en) * 2007-01-16 2008-08-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2007128919A (en) * 2007-02-19 2007-05-24 Kyushu Electric Power Co Inc Operation method for nonaqueous electrolyte secondary battery
JP4638453B2 (en) * 2007-02-19 2011-02-23 九州電力株式会社 Nonaqueous electrolyte secondary battery operation method
JP2009170384A (en) * 2008-01-21 2009-07-30 Nec Tokin Corp Lithium secondary battery
US20110136012A1 (en) * 2008-08-04 2011-06-09 Hiromasa Yagi Lithium secondary battery manufacturing method and lithium secondary battery
US8603196B2 (en) * 2008-08-04 2013-12-10 Panasonic Corporation Lithium secondary battery manufacturing method comprising forming lithium metal layer and lithium secondary battery
WO2011083423A1 (en) * 2010-01-06 2011-07-14 Etv Energy Ltd. Lithium-ion secondary electrochemical cell and method of making lithium-ion secondary electrochemical cell

Also Published As

Publication number Publication date
JP3063320B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
KR100670507B1 (en) Lithium secondary battery
KR101568418B1 (en) Anode and secondary battery
US20040096733A1 (en) Battery
KR101836043B1 (en) Nonaqueous electrolyte secondary battery
JP2002042889A (en) Nonaqueous electrolyte secondary battery
US10734688B2 (en) Constant-current charging and discharging method for lithium secondary battery by controlling current based on internal resistance measurement
JP2004296256A (en) Nonaqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP2001243943A (en) Non-aqueous electrolyte secondary battery
JPH10188953A (en) Non-aqueous electrolyte secondary battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
KR20190047195A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP3063320B2 (en) Non-aqueous electrolyte secondary battery
JP3030996B2 (en) Non-aqueous electrolyte secondary battery
KR100624970B1 (en) Positive active material for lithium secondary battery, thereof method, and Lithium secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
JPH06349493A (en) Secondary battery
JPH07153495A (en) Secondary battery
JP2007172947A (en) Nonaqueous electrolyte secondary battery
JP3030995B2 (en) Non-aqueous electrolyte secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
US20020127476A1 (en) Non-aqueous electrolyte secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP2007157538A (en) Battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees