JP3063320B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3063320B2
JP3063320B2 JP3308811A JP30881191A JP3063320B2 JP 3063320 B2 JP3063320 B2 JP 3063320B2 JP 3308811 A JP3308811 A JP 3308811A JP 30881191 A JP30881191 A JP 30881191A JP 3063320 B2 JP3063320 B2 JP 3063320B2
Authority
JP
Japan
Prior art keywords
lithium
carbon material
capacity
negative electrode
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3308811A
Other languages
Japanese (ja)
Other versions
JPH05144472A (en
Inventor
幸雄 西川
純一 山浦
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3308811A priority Critical patent/JP3063320B2/en
Publication of JPH05144472A publication Critical patent/JPH05144472A/en
Application granted granted Critical
Publication of JP3063320B2 publication Critical patent/JP3063320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池、
特にリチウム二次電池の耐過放電特性の向上に関するも
のである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, the present invention relates to improvement of overdischarge resistance of a lithium secondary battery.

【0002】近年、携帯電話、カムコーダなどのコード
レス情報・通信機器の目覚しいポータブル化、インテリ
ジェンス化に伴い、その駆動用電源電池として小形軽量
で、高エネルギー密度の二次電池が求められている。非
水電解液二次電池、特にリチウム二次電池は次世代電池
の主力として大いに期待され、その潜在的な市場規模も
非常に大きい。
In recent years, with remarkable portability and intelligence of cordless information and communication devices such as mobile phones and camcorders, small and lightweight secondary batteries with high energy density have been demanded as power supply batteries for driving the devices. Non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, are highly expected as the mainstay of next-generation batteries, and their potential market size is very large.

【0003】[0003]

【従来の技術】従来、リチウム二次電池としては、正極
活物質に遷移金属の酸化物や硫化物、例えば二酸化マン
ガン(MnO2)、二硫化モリブデン(MoS2)など
を、負極活物質に金属リチウムをそれぞれ用いた電池系
が提案されていた。しかし、この電池では、充電時のリ
チウムの析出形態が、非水電解液の組成、充電条件など
の影響を大きく受け、主として針状や苔状となり、これ
が負極から脱落して、あるいはセパレータを貫通して正
極と接触し、内部短絡や発火の原因となるなど、安全性
に問題があるとされていた。
2. Description of the Related Art Conventionally, as a lithium secondary battery, an oxide or sulfide of a transition metal such as manganese dioxide (MnO 2 ) or molybdenum disulfide (MoS 2 ) is used as a positive electrode active material and a metal is used as a negative electrode active material. Battery systems using lithium respectively have been proposed. However, in this battery, the form of lithium deposition during charging is greatly affected by the composition of the non-aqueous electrolyte, charging conditions, etc., and becomes mainly acicular or moss-like, which falls off the negative electrode or penetrates through the separator. It was said that there was a problem with safety, such as contact with the positive electrode, causing an internal short circuit or fire.

【0004】そこで、正、負極に電気化学的にリチウム
をインターカレーション/ディインターカレーションす
る化合物をそれぞれ用いた電池系が提案された。この電
池では、充電時にリチウムが電極上に析出することはな
く、安全性の向上が期待できると同時に急速充電特性に
も優れていると考えられ、現在、研究開発が活発に行わ
れている。
[0004] Therefore, a battery system using a compound for electrochemically intercalating / deintercalating lithium in the positive and negative electrodes has been proposed. In this battery, lithium does not precipitate on the electrode during charging, which is expected to improve safety and at the same time, is considered to be excellent in quick charging characteristics, and research and development are being actively conducted at present.

【0005】そしてこの電池では、正極の活物質として
は、遷移金属のリチウム含有複合酸化物、すなわち層状
構造を有するLiMO2あるいはスピネル構造を有する
LiM24(但しMは遷移金属、例えばコバルト、マン
ガン、ニッケル鉄のいずれか)などが、高電圧、高エネ
ルギー密度を有するものとして注目されている。
In this battery, the active material of the positive electrode is a lithium-containing composite oxide of a transition metal, that is, LiMO 2 having a layered structure or LiM 2 O 4 having a spinel structure (where M is a transition metal such as cobalt, Manganese, nickel iron, etc.) have attracted attention as having high voltage and high energy density.

【0006】一方、負極物質としては、層状構造を有す
る炭素材が可逆的にリチウムをインターカレーション/
ディインターカレーションするものとして有望視されて
おり、そのインターカレーション/ディインターカレー
ションにおける可逆性と炭素材の物性、構造との関係な
どについてさかんに検討が進められている。
On the other hand, as a negative electrode material, a carbon material having a layered structure reversibly intercalates lithium.
It is considered to be promising for deintercalation, and the reversibility of the intercalation / deintercalation and the relationship between the physical properties and structure of the carbon material are being actively studied.

【0007】[0007]

【発明が解決しようとする課題】以上のように、正極活
物質に遷移金属のリチウム含有複合酸化物を、負極物質
に炭素材をそれぞれ用いることにより、小形軽量で、安
全性にも優れた高エネルギー密度の非水電解液二次電池
を提供できると考えられる。
As described above, by using a lithium-containing composite oxide of a transition metal as a positive electrode active material and a carbon material as a negative electrode material, a small and light-weight, high-safety material having excellent safety can be obtained. It is considered that a non-aqueous electrolyte secondary battery having an energy density can be provided.

【0008】しかし、この電池にはまだいくつかの課題
が残されている。そのひとつとして、耐過放電特性の向
上が挙げられる。
However, this battery still has some problems. One of them is an improvement in overdischarge resistance.

【0009】最近のコードレス情報・通信機器には電源
電池の浪費をさけるため、いわゆるオートパワーオフ機
能が搭載されている場合が多い。この機能はパワーオン
状態で、(1)機器は駆動していない、いわゆるポーズ
状態で一定時間経過した場合、(2)機器は駆動してお
り、電池電圧が設定下限電圧に到達した場合、に自動的
にパワーオフ状態となるものである。
Recent cordless information / communication devices are often equipped with a so-called automatic power-off function in order to save power batteries. This function is performed when the power is on, (1) the device is not driven, that is, when a certain period of time has elapsed in a so-called pause state, and (2) when the device is driven and the battery voltage reaches the set lower limit voltage. The power is automatically turned off.

【0010】このオートパワーオフ機能が作動した状態
のままでさらに放置された場合、電池は回路負荷により
放電し続け、やがて電池電圧が0Vに到達する。したが
って、このような過放電後においても再充電すれば容量
が回復する、いわゆる耐過放電特性に優れなければ、電
池の実用性は非常に低いものとなる。
[0010] If the auto power-off function is operated and the battery is further left, the battery continues to be discharged by the circuit load, and the battery voltage eventually reaches 0V. Therefore, even if the battery is recharged even after such overdischarge, the capacity is restored. If the battery is not excellent in so-called overdischarge resistance, the practicality of the battery is extremely low.

【0011】しかし、正極の活物質に遷移金属のリチウ
ム含有複合酸化物を、負極物質に炭素材をそれぞれ用い
た非水電解液二次電池の場合、このような過放電後、再
充電しても容量がほとんど回復せず、しかもサイクルに
伴う容量劣化が過放電前と比較して非常に大きくなるこ
とがわかった。
However, in the case of a non-aqueous electrolyte secondary battery using a lithium-containing composite oxide of a transition metal as the active material of the positive electrode and a carbon material as the negative electrode material, recharging is performed after such overdischarge. It was also found that the capacity hardly recovered, and that the capacity deterioration due to the cycle was much greater than before the overdischarge.

【0012】負極物質に炭素材を用いる場合、負極の電
位、すなわち炭素材がリチウムをインターカレーション
/ディインターカレーションする電位は、炭素材の物
性、特に層状構造の発達の度合い(層間距離、c軸方向
の層の重なり、a軸方向の層の広がり)により異なる
が、リチウムに対して約1.5V以下である。
When a carbon material is used as the negative electrode material, the potential of the negative electrode, that is, the potential at which the carbon material intercalates / deintercalates lithium, depends on the physical properties of the carbon material, particularly the degree of development of the layered structure (interlayer distance, It is about 1.5 V or less with respect to lithium, depending on the overlap of the layers in the c-axis direction and the spread of the layers in the a-axis direction.

【0013】しかし、この電池を過放電した場合、負極
の電位がリチウムに対して約3.2V以上にまで上昇し
て正極の電位と等しくなり、電池電圧が0Vに到達して
いることがわかった。
However, when this battery is over-discharged, the potential of the negative electrode rises to about 3.2 V or more with respect to lithium, becomes equal to the potential of the positive electrode, and the battery voltage reaches 0 V. Was.

【0014】このため、炭素材の物性および構造が変化
して、リチウムのインターカレーション/ディインター
カレーションにおける可逆性が失われ、それが過放電
後、再充電しても容量がほとんど回復せず、サイクルに
伴う容量劣化が過放電前と比較して非常に大きくなる原
因であると考えられる。
For this reason, the physical properties and structure of the carbon material change, and the reversibility of lithium intercalation / deintercalation is lost. After overdischarge, the capacity is almost recovered even if recharged. It is considered that the capacity deterioration due to the cycle is extremely large as compared with that before the overdischarge.

【0015】本発明は、この課題を解決するものであ
り、リチウム二次電池の耐過放電特性を向上させること
を目的とするものである。
The present invention has been made to solve this problem, and has as its object to improve the overdischarge resistance of a lithium secondary battery.

【0016】[0016]

【課題を解決するための手段】本発明は、正極に遷移金
属のリチウム含有複合酸化物を、負極に炭素材をそれぞ
れ用いた非水電解液二次電池であり、負極は予め炭素材
に貼付した金属リチウム箔を電位差または濃度差によっ
て炭素材中に拡散することで、負極の炭素材に放電可能
なリチウムを保持させたものである。
SUMMARY OF THE INVENTION The present invention is a non-aqueous electrolyte secondary battery in which a lithium-containing composite oxide of a transition metal is used for a positive electrode and a carbon material is used for a negative electrode. The dischargeable lithium is held in the carbon material of the negative electrode by diffusing the metallic lithium foil into the carbon material by a potential difference or a concentration difference.

【0017】さらに、その金属リチウム箔の貼付容量
は、負極物質に用いる炭素材の飽和可逆容量に対して4
〜40%とするものである。
Further, the adhering capacity of the metallic lithium foil is 4 times the saturated reversible capacity of the carbon material used for the negative electrode material.
4040%.

【0018】ここで、負極物質に用いる炭素材の飽和可
逆容量は、以下の手法により算出した。正極物質に炭素
材を、負極物質に金属リチウムをそれぞれ用いて、20
℃で電流密度0.5mA/cm2の定電流充放電を5サイ
クル繰り返した。このときの容量を飽和可逆容量とし
た。なお、充電時の上限電圧は1.0V、放電時の下限
電圧は0Vとした。
Here, the saturation reversible capacity of the carbon material used for the negative electrode material was calculated by the following method. Using carbon material for the cathode material and metallic lithium for the anode material, respectively,
Five cycles of constant current charging / discharging at a current density of 0.5 mA / cm 2 at ℃ were repeated. The capacity at this time was defined as a saturated reversible capacity. The upper limit voltage during charging was 1.0 V, and the lower limit voltage during discharging was 0 V.

【0019】加えて正極の活物質には、一般式LiMO
2あるいはLiM24(但しMはコバルト、マンガン、
ニッケル、鉄のいずれか)で表せる物質の単独かあるい
はコバルト、マンガン、ニッケル、鉄の一部を他の遷移
金属で置換したリチウム含有複合酸化物を、一方負極物
質には、粉末X線回折法による格子面間隔(d002)が
0.342nm以下の炭素材が好ましい。
In addition, the active material of the positive electrode has the general formula LiMO
2 or LiM 2 O 4 (where M is cobalt, manganese,
Nickel or iron) or a lithium-containing composite oxide in which cobalt, manganese, nickel or iron is partially replaced by another transition metal, while the negative electrode material is powder X-ray diffraction A carbon material having a lattice spacing (d 002 ) of 0.342 nm or less is preferred.

【0020】[0020]

【作用】本発明により、負極の炭素材に貼付した金属リ
チウム箔は、非水電解液の存在下で、炭素材との間で局
部電池を構成し、電気化学的に金属リチウムが溶解して
近傍の炭素材にインターカレーションされ、放電可能な
リチウムとして炭素材中に保持される。
According to the present invention, the metal lithium foil adhered to the carbon material of the negative electrode forms a local battery with the carbon material in the presence of the non-aqueous electrolyte, and the metal lithium is dissolved electrochemically. It is intercalated into a nearby carbon material and is held in the carbon material as dischargeable lithium.

【0021】この炭素材に保持されたリチウムが、過放
電時に放電することにより負極の電位が上昇することは
なく、このため、炭素材の物性および構造が変化せず、
リチウムの炭素材へのインターカレーション/ディイン
ターカレーションにおける可逆性が失われない。したが
って過放電後の電池であっても、再充電によって容量が
速やかに回復し、サイクルに伴う容量劣化が過放電前と
比較して変化しない。すなわち、耐過放電特性を向上す
ることができる。
The potential of the negative electrode does not increase due to the discharge of lithium retained in the carbon material during overdischarge, and therefore the physical properties and structure of the carbon material do not change.
Reversibility in intercalation / deintercalation of lithium to carbon material is not lost. Therefore, even in a battery after overdischarge, the capacity is quickly recovered by recharging, and the capacity deterioration due to the cycle does not change compared to that before the overdischarge. That is, the overdischarge resistance can be improved.

【0022】[0022]

【実施例】以下、本発明の実施例について図面を参照し
つつ説明する。本発明の円筒形リチウム二次電池の構成
縦断面図を図1に示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a longitudinal sectional view of the configuration of the cylindrical lithium secondary battery of the present invention.

【0023】正極板1は、炭酸リチウム(LiCO3
と四酸化三コバルト(Co34)を混合し、空気中にお
いて900℃で焼成したコバルト酸リチウム(LiCo
2)を活物質とし、これに導電剤としてアセチレンブ
ラックを3重量%混合した後、結着剤としてポリ四フッ
化エチレン樹脂の水性ディスパージョンでポリ四フッ化
エチレン樹脂を7重量%練合してペースト状とした合剤
を、アルミニウム箔からなる芯材の両面に塗着、乾燥し
圧延したものである。またその端部に正極リード板4を
スポット溶接している。この正極板の寸法は、幅40m
m、長さ250mmであり、厚さは0.170mmである。
The positive electrode plate 1 is made of lithium carbonate (LiCO 3 )
And cobalt trioxide (Co 3 O 4 ), and calcined in air at 900 ° C.
O 2 ) as an active material, 3% by weight of acetylene black as a conductive agent was mixed with the active material, and then polytetrafluoride was used as a binder with an aqueous dispersion of polytetrafluoroethylene resin .
A mixture prepared by kneading 7% by weight of ethylene resin into a paste is applied to both sides of a core material made of aluminum foil, dried and rolled. The positive electrode lead plate 4 is spot-welded to the end. The dimensions of this positive electrode plate are 40m in width.
m, length 250 mm, thickness 0.170 mm.

【0024】また負極板2は、メソフェーズピッチをア
ルゴン雰囲気下において2800℃で熱処理した球状黒
鉛に、結着剤としてポリ四フッ化エチレン樹脂の水性デ
ィスパージョンでポリ四フッ化エチレン樹脂を5重量%
練合してペースト状とした合剤を、銅箔からなる芯材の
両面に塗着、乾燥し圧延したものである。またその端部
に負極リード板5をスポット溶接している。負極板の寸
法は、幅42mm、長さ270mmであり、厚さは0.20
5mmである。
Further negative electrode plate 2, a mesophase pitch spheroidal graphite heat treated at 2800 ° C. under an argon atmosphere, an aqueous dispersion with polytetrafluoroethylene resin polytetrafluoroethylene resin as a binder 5 wt%
The mixture obtained by kneading into a paste is applied to both sides of a core material made of copper foil, dried and rolled. A negative electrode lead plate 5 is spot-welded to the end. The dimensions of the negative electrode plate are 42 mm in width and 270 mm in length, and the thickness is 0.20 mm.
5 mm.

【0025】ここで、物性、構造の異なる種々の炭素材
について予備検討を進めたところ、粉末X線回折法によ
る格子面間隔(d002)が0.342nm以下の炭素材
が高容量であり、可逆性にも優れることがわかった。ち
なみに、メソフェーズピッチをアルゴン雰囲気下におい
て2800℃で熱処理した球状黒鉛は粉末X線回折法に
よる格子面間隔(d002)が0.342nm以下であっ
た。
Preliminary studies were conducted on various carbon materials having different physical properties and structures. As a result, a carbon material having a lattice spacing (d 002 ) of 0.342 nm or less by powder X-ray diffraction method had a high capacity. It was also found that the reversibility was excellent. Incidentally, the spherical graphite obtained by heat-treating the mesophase pitch at 2800 ° C. in an argon atmosphere had a lattice spacing (d 002 ) of 0.342 nm or less according to the powder X-ray diffraction method.

【0026】セパレータ3は、ポリプロピレンからなる
多孔性フィルムを正極板および負極板よりも幅広く裁断
したものを用いた。
As the separator 3, a porous film made of polypropylene, which was cut more widely than the positive electrode plate and the negative electrode plate, was used.

【0027】正極板および負極板を、間にセパレータを
介在させ全体を渦巻状に巻回して極板群を構成した。
The whole of the positive electrode plate and the negative electrode plate was spirally wound with a separator interposed therebetween to form an electrode plate group.

【0028】次に、上記極板群の上下部を温風で加熱
し、セパレータ3を熱収縮させる。極板群の下側に下部
絶縁リング6を装着し、電池ケース7に収容して負極リ
ード板5を電池ケース7にスポット溶接する。また極板
群の上側には上部絶縁リング8を装着し、電池ケース7
の上部に溝入れした後、非水電解液を注入する。非水電
解液は、エチレンカーボネート(EC)およびジエチレ
ンカーボネート(DEC)を体積比で1:1に混合し、
六フッ化リン酸リチウム(LiPF6)を1モル/l溶
解させた。あらかじめガスケットが組み込まれた組立封
口板9と正極リード板4をスポット溶接した後、組立封
口板9を電池ケース7に装着し、カシメ封口して電池を
構成した。この電池の寸法は、外径14mm、総高50mm
(単3形)である。
Next, the upper and lower portions of the electrode plate group are heated with warm air to thermally shrink the separator 3. The lower insulating ring 6 is attached to the lower side of the electrode plate group, accommodated in the battery case 7, and spot-welded the negative electrode lead plate 5 to the battery case 7. An upper insulating ring 8 is mounted on the upper side of the electrode plate group, and a battery case 7 is provided.
Then, a non-aqueous electrolyte is injected. The non-aqueous electrolyte is prepared by mixing ethylene carbonate (EC) and diethylene carbonate (DEC) in a volume ratio of 1: 1.
Lithium hexafluorophosphate (LiPF 6 ) was dissolved at 1 mol / l. After spot welding the assembled sealing plate 9 in which the gasket was previously incorporated and the positive electrode lead plate 4, the assembled sealing plate 9 was mounted on the battery case 7 and swaged to form a battery. The dimensions of this battery are outer diameter 14mm, total height 50mm
(AAA).

【0029】試験評価 上記で構成した電池の耐過放電特性は以下の試験方法で
評価した。まず、20℃で100mAの定電流充放電を
50サイクル繰り返した。なお、充電時の上限電圧を
4.1V、放電時の下限電圧を3.0Vとした。その後
電池を放電状態から過放電状態としてさらに1kΩの定
抵抗放電を2週間継続した。このとき、参照極として金
属リチウムを用いて正負極の過放電挙動を観察した結果
を図2に示した。そして再び100mAの定電流放電を
50サイクル繰り返した。ここでの容量回復特性および
過放電前後でサイクル特性を比較した結果を図3に示し
た。
Test Evaluation The overdischarge resistance of the battery constructed as described above was evaluated by the following test method. First, 100 mA constant current charge / discharge at 20 ° C. was repeated 50 cycles. The upper limit voltage during charging was 4.1 V, and the lower limit voltage during discharging was 3.0 V. Thereafter, the battery was changed from the discharged state to the over-discharged state, and the constant-resistance discharge of 1 kΩ was further continued for 2 weeks. At this time, the results of observing the overdischarge behavior of the positive and negative electrodes using metallic lithium as the reference electrode are shown in FIG. Then, the constant current discharge at 100 mA was repeated 50 cycles. FIG. 3 shows the results of comparing the capacity recovery characteristics and the cycle characteristics before and after overdischarge.

【0030】図3から明らかなように、過放電後、容量
は約55%しか回復せず、しかもサイクルに伴う容量劣
化が過放電前と比較して著しく大きいことがわかった。
As apparent from FIG. 3, it was found that the capacity recovered only about 55% after overdischarge, and that the capacity deterioration accompanying the cycle was significantly larger than before the overdischarge.

【0031】通常の充放電において、正極の電位はこの
付近であり問題はないと考えられるが、負極の電位は約
0.1V(充電時)から約0.5V(放電時)である。
In normal charging and discharging, the potential of the positive electrode is
It is considered that there is no problem because it is near, but the potential of the negative electrode is about
It is from 0.1 V (during charging) to about 0.5 V (during discharging).

【0032】また図2に示すように、負極の電位が過放
電時にリチウムに対して3.2V以上にまで上昇して正
極の電位と等しくなり、電池電圧が0Vに到達している
ことがわかった。
As shown in FIG. 2, the potential of the negative electrode
It rises to 3.2V or more with respect to lithium when
It is equal to the potential of the pole, and the battery voltage has reached 0V
I understand.

【0033】[0033]

【0034】このため、炭素材の物性および構造が変化
して、リチウムのインターカレーション/ディインター
カレーションにおける可逆性が失われ、その結果過放電
後、再充電しても容量がほとんど回復せず、サイクルに
伴う容量劣化が過放電前と比較して非常に大きくなると
考えられる。
As a result, the physical properties and structure of the carbon material change, and the reversibility of lithium intercalation / deintercalation is lost. As a result, the capacity is almost recovered even after overdischarge and recharging. It is considered that the capacity deterioration due to the cycle becomes extremely large as compared with that before the overdischarge.

【0035】実施例1 予め炭素材に金属リチウム箔を貼付した負極板を用いて
前記の場合と同様に電池を構成し、耐過放電特性を評価
した。一例として金属リチウム箔の貼付容量を炭素材の
飽和可逆容量に対して20%とした場合の正負極の過放
電挙動を観察した結果を図4に示した。このとき、金属
リチウム箔の寸法は幅40mm、長さ40mm、厚さ0.0
30mmとした。
Example 1 A battery was constructed in the same manner as described above using a negative electrode plate in which a metallic lithium foil was previously adhered to a carbon material, and the overdischarge resistance was evaluated. As an example, FIG. 4 shows the result of observing the overdischarge behavior of the positive and negative electrodes when the attached capacity of the metal lithium foil was set to 20% of the saturated reversible capacity of the carbon material. At this time, the dimensions of the metallic lithium foil were 40 mm wide, 40 mm long, and 0.0 mm thick.
It was 30 mm.

【0036】また、金属リチウム箔の貼付容量と耐過放
電特性として容量回復特性との関係を図5に示した。こ
のとき、金属リチウム箔の寸法は幅40mm、長さ40mm
で固定し、その容量は厚さで調整した。
FIG. 5 shows the relationship between the attached capacity of the metal lithium foil and the capacity recovery property as the overdischarge resistance property. At this time, the dimensions of the metallic lithium foil were 40 mm wide and 40 mm long.
And the capacity was adjusted by the thickness.

【0037】図5から明らかなように、金属リチウム箔
の貼付容量を炭素材の飽和可逆容量に対して4%以上と
すれば、従来例と比較して良好な耐過放電特性が得られ
ることがわかった。
As is apparent from FIG. 5, when the adhering capacity of the metal lithium foil is set to 4% or more of the saturated reversible capacity of the carbon material, a better overdischarge resistance can be obtained as compared with the conventional example. I understood.

【0038】また、図4に示すように、負極の電位が過
放電時にリチウムに対して1.5V前後までしか上昇し
ないことがわかった。さらに、金属リチウム箔の貼付容
量を炭素材の飽和可逆容量に対して4%以上とすれば同
様の過放電挙動となることを確認した。
Further, as shown in FIG. 4, it was found that the potential of the negative electrode only increased to about 1.5 V with respect to lithium at the time of overdischarge. Furthermore, it was confirmed that the same overdischarge behavior was obtained when the attached capacity of the metal lithium foil was 4% or more of the saturated reversible capacity of the carbon material.

【0039】これは、負極炭素材に貼付した金属リチウ
ム箔が、非水電解液の存在下で炭素材との間で局部電池
を構成し、電気化学的に金属リチウム箔が溶解して近傍
の炭素材にインターカレーションされ、放電可能なリチ
ウムとして炭素材に保持されており、これが過放電時に
放電したためであると考えられる。
This is because the lithium metal foil adhered to the negative electrode carbon material forms a local battery with the carbon material in the presence of the non-aqueous electrolyte, and the lithium metal foil is dissolved electrochemically in the vicinity thereof. It is considered that lithium was intercalated in the carbon material and was held as dischargeable lithium by the carbon material, and this was discharged at the time of overdischarge.

【0040】このため、炭素材の物性および構造が変化
せず、リチウムのインターカレーション/ディインター
カレーションにおける可逆性が失われない。したがって
過放電後、再充電することによって容量が速やかに回復
し、サイクルに伴う容量劣化が過放電前と比較して変化
しない。すなわち、良好な耐過放電特性が得られたと考
えられる。
Therefore, the physical properties and structure of the carbon material do not change, and reversibility in lithium intercalation / deintercalation is not lost. Therefore, the capacity is quickly recovered by recharging after the overdischarge, and the capacity deterioration due to the cycle does not change compared to that before the overdischarge. That is, it is considered that good overdischarge resistance was obtained.

【0041】ここで、金属リチウム箔の貼付容量を炭素
材の飽和可逆容量に対して4%以上とした場合、容量回
復特性は良好であったが、これをさらに40%以上とし
た場合には容量回復特性が劣化し始める。これは、金属
リチウム箔の貼付容量が増加すると、正極の電位が過放
電時にリチウムに対して1.5V以下にまで下降してか
ら負極の電位と等しくなり、電池電圧が0Vに到達する
までの容量が増加することによる。このため、コバルト
酸リチウム(LiCoO2)の物性および構造が変化し
て、リチウムの炭素材に対するインターカレーション/
ディインターカレーションにおける可逆性が失われたと
考えられる。
Here, when the adhering capacity of the metal lithium foil was 4% or more of the saturated reversible capacity of the carbon material, the capacity recovery characteristics were good. The capacity recovery characteristics begin to deteriorate. This is because when the attached capacity of the metal lithium foil increases, the potential of the positive electrode falls to 1.5 V or less with respect to lithium at the time of overdischarge and becomes equal to the potential of the negative electrode until the battery voltage reaches 0 V. Due to the increase in capacity. For this reason, the physical properties and structure of lithium cobaltate (LiCoO 2 ) change, and the intercalation /
It is considered that reversibility in deintercalation was lost.

【0042】したがって、炭素材に金属リチウム箔を貼
付することで負極に放電可能なリチウムを拡散、保持さ
せる際、その金属リチウム箔の貼付容量は、負極物質に
用いる炭素材の飽和可逆容量に対して4〜40%とする
のが好ましい。
Therefore, when the dischargeable lithium is diffused and held in the negative electrode by attaching the metallic lithium foil to the carbon material, the attached capacity of the metallic lithium foil is larger than the saturated reversible capacity of the carbon material used for the anode material. It is preferably 4 to 40%.

【0043】なお、本実施例では正極活物質にコバルト
酸リチウム(LiCoO2)を用いたが、LiMO2ある
いはLiM24(但しMはコバルト、マンガン、ニッケ
ル、鉄のいずれか)を、単独あるいはコバルト、マンガ
ン、ニッケル、鉄の一部を他の遷移金属で置換したリチ
ウム含有複合酸化物を用いた場合も同様の効果が得られ
た。
[0043] Although using the lithium cobaltate (LiCoO 2) as a positive electrode active material in the present embodiment, LiMO 2 or LiM 2 O 4 (where M is cobalt, manganese, nickel, or iron), and alone Alternatively, a similar effect was obtained when a lithium-containing composite oxide in which part of cobalt, manganese, nickel, and iron was replaced with another transition metal was used.

【0044】また、本実施例では非水電解液の溶質に六
フッ化リン酸リチウム(LiPF6)を用いたが、他の
リチウム塩、例えば過塩素酸リチウム(LiCl
4)、六フッ化砒酸リチウム(LiAsF6)、ホウフ
ッ化リチウム(LiBF4)などを用いた場合もほぼ同
様の効果が得られた。
In this embodiment, lithium hexafluorophosphate (LiPF 6 ) is used as a solute of the nonaqueous electrolyte. However, other lithium salts, for example, lithium perchlorate (LiCl 6 ) are used.
O 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium borofluoride (LiBF 4 ), and the like provided almost the same effect.

【0045】さらに、本実施例では非水電解液の溶媒に
エチレンカーボネート(EC)およびジエチレンカーボ
ネート(DEC)を混合して用いたが、プロピレンカー
ボネート(PC)、ブチレンカーボネート(BC)など
のエステル類、エトラヒドロフラン(THF)などのエ
ーテル類などを、単独あるいはこれらを混合して用いた
場合も同様の効果が得られた。
Further, in this embodiment, ethylene carbonate (EC) and diethylene carbonate (DEC) are used as a mixture in the solvent of the non-aqueous electrolyte, but esters such as propylene carbonate (PC) and butylene carbonate (BC) are used. The same effect was obtained when ethers such as triethylhydrofuran (THF) and the like were used alone or in combination.

【0046】[0046]

【発明の効果】以上のように本発明によれば、正極に遷
移金属のリチウム含有酸化物を、負極に炭素材をそれぞ
れ用いた非水電解液二次電池で、負極の炭素材に予め金
属リチウム箔を貼付し、これを電位差または濃度差によ
って炭素材に拡散させ、負極の炭素材に放電可能なリチ
ウムを保持させることにより、この電池の耐過放電特性
を著しく向上させることができる。
As described above, according to the present invention, in a non-aqueous electrolyte secondary battery using a lithium-containing oxide of a transition metal for the positive electrode and a carbon material for the negative electrode, By sticking a lithium foil and diffusing the lithium foil into a carbon material by a potential difference or a concentration difference and holding the dischargeable lithium in the carbon material of the negative electrode, the overdischarge resistance of the battery can be remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒形リチウム二次電池の構成を示す
縦断面図
FIG. 1 is a longitudinal sectional view showing a configuration of a cylindrical lithium secondary battery of the present invention.

【図2】これまでの電池の正、負極の過放電挙動を示す
FIG. 2 is a diagram showing the overdischarge behavior of the positive and negative electrodes of a conventional battery;

【図3】これまでの電池の耐過放電特性を示す図FIG. 3 is a diagram showing overdischarge resistance characteristics of a conventional battery;

【図4】本発明における電池の正、負極の過放電挙動を
示す図
FIG. 4 is a diagram showing the overdischarge behavior of the positive and negative electrodes of the battery according to the present invention.

【図5】実施例1の金属リチウムの貼付容量と耐過放電
特性の関係を示す図
FIG. 5 is a diagram showing the relationship between the adhered capacity of metallic lithium and overdischarge resistance of Example 1.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 正極リード板 5 負極リード板 6 下部絶縁リング 7 電池ケース 8 上部絶縁板 9 組立封口板 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode lead plate 5 Negative electrode lead plate 6 Lower insulating ring 7 Battery case 8 Upper insulating plate 9 Assembly sealing plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−188559(JP,A) 特開 昭64−14881(JP,A) 特開 平4−229561(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 - 4/04 H01M 4/58 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-188559 (JP, A) JP-A-64-14881 (JP, A) JP-A-4-229561 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 10/40 H01M 4/02-4/04 H01M 4/58

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極に遷移金属のリチウム含有複合酸化
物を、負極に炭素材をそれぞれ用いた非水電解液二次電
池であり、 負極は予め炭素材に貼付した金属リチウム箔を電位差ま
たは濃度差によって炭素材中に拡散させ保持させたもの
あり、 前記金属リチウムの貼付容量は、負極炭素材の飽和可逆
容量に対して4〜40%で ある非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery using a lithium-containing composite oxide of a transition metal for a positive electrode and a carbon material for a negative electrode, wherein the negative electrode is formed by applying a potential difference or concentration to a lithium metal foil previously attached to the carbon material. It is diffused and held in the carbon material by the difference, and the attached capacity of the metallic lithium is the saturation reversibility of the negative carbon material.
A non-aqueous electrolyte secondary battery having a capacity of 4 to 40% based on the capacity .
【請求項2】 負極の炭素材は、粉末X線回折法による
格子面間隔(d002)が0.342nm以下である請求
項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon material of the negative electrode has a lattice spacing (d 002 ) of 0.342 nm or less as determined by a powder X-ray diffraction method.
【請求項3】 正極のリチウム含有複合酸化物は、一般
式LiMO2あるいはLiM24(但しMはコバルト、
マンガン、ニッケル、鉄のいずれか)の単独か、あるい
は上記コバルト、マンガン、ニッケル、鉄の一部を他の
遷移金属で置換したものである請求項1記載の非水電解
液二次電池。
3. The lithium-containing composite oxide of the positive electrode has a general formula LiMO 2 or LiM 2 O 4 (where M is cobalt,
The non-aqueous electrolyte secondary battery according to claim 1, wherein one of manganese, nickel, and iron) is used alone, or a part of the cobalt, manganese, nickel, and iron is replaced with another transition metal.
JP3308811A 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3063320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3308811A JP3063320B2 (en) 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3308811A JP3063320B2 (en) 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05144472A JPH05144472A (en) 1993-06-11
JP3063320B2 true JP3063320B2 (en) 2000-07-12

Family

ID=17985599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3308811A Expired - Fee Related JP3063320B2 (en) 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3063320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100474664C (en) * 2003-09-09 2009-04-01 索尼株式会社 Anode and battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959514A3 (en) * 1994-12-09 2001-06-06 Japan Storage Battery Company Limited Organic electrolyte secondary cell
EP1679756B1 (en) * 1995-03-06 2008-04-30 Ube Industries, Ltd. Nonaqueous secondary lithium battery
JP4893495B2 (en) * 1995-03-06 2012-03-07 宇部興産株式会社 Non-aqueous secondary battery
WO1998033227A1 (en) * 1997-01-27 1998-07-30 Kanebo Limited Organic electrolytic battery
JP2005294028A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Lithium secondary battery
US7682739B2 (en) 2004-05-12 2010-03-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery and process of producing the same
JP4483618B2 (en) 2005-02-17 2010-06-16 ソニー株式会社 Secondary battery
JP5376800B2 (en) * 2007-01-16 2013-12-25 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4638453B2 (en) * 2007-02-19 2011-02-23 九州電力株式会社 Nonaqueous electrolyte secondary battery operation method
JP5207282B2 (en) * 2008-01-21 2013-06-12 Necエナジーデバイス株式会社 Lithium secondary battery
WO2010016217A1 (en) * 2008-08-04 2010-02-11 パナソニック株式会社 Lithium secondary battery manufacturing method and lithium secondary battery
US20130149602A1 (en) * 2010-01-06 2013-06-13 Etv Energy Ltd Lithium-ion secondary electrochemical cell and method of making lithium-ion secondary electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100474664C (en) * 2003-09-09 2009-04-01 索尼株式会社 Anode and battery

Also Published As

Publication number Publication date
JPH05144472A (en) 1993-06-11

Similar Documents

Publication Publication Date Title
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
JP4454950B2 (en) Nonaqueous electrolyte secondary battery
KR101568418B1 (en) Anode and secondary battery
US4956247A (en) Nonaqueous electrolyte secondary cell
JP2009117159A (en) Positive electrode and lithium ion secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JP3063320B2 (en) Non-aqueous electrolyte secondary battery
JP3030996B2 (en) Non-aqueous electrolyte secondary battery
EP1109243A2 (en) Secondary battery
JPH06349493A (en) Secondary battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP3030995B2 (en) Non-aqueous electrolyte secondary battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3185273B2 (en) Non-aqueous electrolyte secondary battery
JPH07288124A (en) Nonaqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JP2002203555A (en) Non-aqueous electrolyte secondary battery
JP2004193139A (en) Non-aqueous electrolyte secondary battery
JPH07335201A (en) Nonaqueous electrolyte secondary battery
JP2001266890A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2002203551A (en) Non-aqueous electrolyte battery
JP2001196073A (en) Nonaqueous electrolyte battery
JP3050016B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees