JP2001243943A - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP2001243943A JP2001243943A JP2000054589A JP2000054589A JP2001243943A JP 2001243943 A JP2001243943 A JP 2001243943A JP 2000054589 A JP2000054589 A JP 2000054589A JP 2000054589 A JP2000054589 A JP 2000054589A JP 2001243943 A JP2001243943 A JP 2001243943A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive electrode
- discharge
- active material
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は非水電解液二次電池
に係り、特に二種の正極活物質からなる混合物を正極と
して用いた非水電解質二次電池を直列に接続し組電池と
しての使用に適した非水電解液二次電池に係わるもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery in which a mixture of two kinds of positive electrode active materials is connected in series to form a battery pack. The present invention relates to a nonaqueous electrolyte secondary battery suitable for use.
【0002】[0002]
【従来の技術】近年、携帯型パーソナルコンピュータや
コードレス機器が急速に普及し、また大気汚染を低減す
るために電気自動車への社会的関心が高まっきている。
それらの電源としては安価でかつ高性能な二次電池が要
求され、必要な電圧、電流に対応するため複数本の単電
池を接続してなる組電池が用いられる。2. Description of the Related Art In recent years, portable personal computers and cordless devices have rapidly spread, and public interest in electric vehicles has been increasing in order to reduce air pollution.
Inexpensive and high performance rechargeable batteries are required for such power sources, and assembled batteries formed by connecting a plurality of unit cells to cope with required voltages and currents are used.
【0003】かかる二次電池として、リチウムイオンを
吸蔵・放出できる物質を正極及び負極材料に用いた非水
電解液二次電池が開発され、既に小型電子機器用の電源
として実用化されている。この非水電解液二次電池の正
極材料としてはリチウムコバルト複合酸化物が、また負
極材料としては黒鉛が広く用いられている。しかし、非
水電解液二次電池に対する需要の高まりに対し、正極材
料となるリチウムコバルト複合酸化物はその原料として
コバルトを用いるため高価であり、また資源量も十分で
あるとはいえない。このため、代替材料としてスピネル
型リチウムマンガン酸化物やリチウムニッケル複合酸化
物などが提案され、研究が活発に行われている。As such a secondary battery, a non-aqueous electrolyte secondary battery using a material capable of occluding and releasing lithium ions as a material for a positive electrode and a negative electrode has been developed, and has already been put into practical use as a power source for small electronic devices. A lithium-cobalt composite oxide is widely used as a positive electrode material of this non-aqueous electrolyte secondary battery, and graphite is widely used as a negative electrode material. However, in response to increasing demand for non-aqueous electrolyte secondary batteries, lithium-cobalt composite oxide as a positive electrode material is expensive because cobalt is used as its raw material, and the amount of resources is not sufficient. For this reason, spinel-type lithium manganese oxide, lithium nickel composite oxide, and the like have been proposed as alternative materials, and research is being actively conducted.
【0004】スピネル型リチウムマンガン酸化物は特に
安価であり、また安全性も高いことが知られているが、
リチウムコバルト酸化物と比較して単位重量あたりの放
電容量が小さい上に嵩密度も小さいことから、電池とし
てのエネルギー密度が小さくなってしまうという欠点が
ある。It is known that spinel-type lithium manganese oxide is particularly inexpensive and has high safety.
Since the discharge capacity per unit weight is small and the bulk density is small as compared with lithium cobalt oxide, there is a disadvantage that the energy density as a battery is reduced.
【0005】一方、上記リチウムニッケル複合酸化物
は、リチウムコバルト複合酸化物と比較して単位重量あ
たりの放電容量が大きく、高エネルギー密度の電池が実
現できる反面、充電状態では高温時の熱安定性が小さ
く、電池が内部短絡などを起こして電池温度が上昇した
場合、正極の熱分解反応が急速に進む可能性がある。On the other hand, the lithium-nickel composite oxide has a larger discharge capacity per unit weight than the lithium-cobalt composite oxide, and can realize a battery with a high energy density. If the battery temperature is small and the battery temperature rises due to internal short circuit or the like, the thermal decomposition reaction of the positive electrode may proceed rapidly.
【0006】以上のような問題点を解決するため、リチ
ウムニッケル複合酸化物とスピネル型リチウムマンガン
酸化物のような二種の複合酸化物を混合したものを正極
活物質として用いた正極が提案されている(特開平9−
180718号公報)。この提案は、リチウムコバルト
複合酸化物を用いた正極に比較して、安価で、かつ放電
容量が大きく、比較的安全な正極を得られる方法として
期待されている。In order to solve the above problems, a positive electrode using a mixture of two types of composite oxides such as a lithium nickel composite oxide and a spinel type lithium manganese oxide as a positive electrode active material has been proposed. (Japanese Patent Laid-Open No. 9-
180718). This proposal is expected as a method for obtaining a relatively safe positive electrode that is inexpensive and has a large discharge capacity as compared with a positive electrode using a lithium-cobalt composite oxide.
【0007】ところが、リチウムニッケル複合酸化物に
おいて通常設定される放電終止電圧が2.7V〜3.0
Vであるのに対し、スピネル型リチウムマンガン酸化物
は3.0V以下の電圧領域では過放電状態となる。従っ
て、両者を複合した正極においては、放電容量の100
%近くを利用し、且つ過放電状態に陥らないようにする
ために、正極の組成などに応じて最適に設定された放電
終止電圧となるよう正確に制御された充放電方法をとる
必要がある。[0007] However, the discharge end voltage usually set in the lithium nickel composite oxide is 2.7 V to 3.0 V.
In contrast to V, the spinel-type lithium manganese oxide is in an overdischarged state in a voltage region of 3.0 V or less. Therefore, in the positive electrode in which both are combined, the discharge capacity of 100
%, And in order not to fall into an overdischarge state, it is necessary to adopt a charging / discharging method that is accurately controlled so that the discharge end voltage is optimally set according to the composition of the positive electrode. .
【0008】しかし、放電終了電圧が異なる2種の正極
活物質の混合物を使用した正極では、同じ組成比で混合
物を作成しても2種の活物質の分散状態によって、各電
池の容量ばらつきが生じてしまい、その結果、特に個々
の電池を直列に接続した組電池として使用した際には特
定の単電池が過放電状態になり易く、これが組電池のサ
イクル特性を更に悪化させるという問題が生じる。However, in a positive electrode using a mixture of two types of positive electrode active materials having different discharge end voltages, even if a mixture is prepared with the same composition ratio, the dispersion of the capacity of each battery depends on the dispersion state of the two types of active materials. As a result, a particular unit cell is likely to be in an overdischarged state, particularly when individual cells are used as an assembled battery connected in series, which causes a problem that the cycle characteristics of the assembled battery are further deteriorated. .
【0009】これを回避するための方法としては、組電
池を構成する各単電池として、容量ばらつきがない組み
合わせを選別するという方法がある。しかし、容量ばら
つきが全くない単電池を選別するのは不可能であり、仮
に製造時の容量ばらつきが無かったとしても、各電池の
サイクル劣化速度が一致しているとは限らず、この方法
で過放電を完全に抑制することは現実的でない。As a method for avoiding this, there is a method of selecting a combination having no capacity variation as each of the cells constituting the assembled battery. However, it is impossible to select cells having no variation in capacity, and even if there is no variation in capacity at the time of manufacturing, the cycle deterioration rates of the batteries are not necessarily the same, and this method is not used. It is not realistic to completely suppress overdischarge.
【0010】他の方法としては、組電池を構成する単電
池全ての電圧を測定し、各々の単電池が過放電状態に陥
らないように組電池全体の放電を停止させるという方法
がある。しかし、この方法では組電池の電池数が多くな
った場合に実現が困難であり、組電池全体のコストの大
幅な増大、エネルギー密度の低下を招いてしまい、リチ
ウムニッケル酸化物とリチウムマンガン酸化物の混合正
極を用いることによる高容量・低コストというメリット
を相殺してしまうという問題があった。As another method, there is a method in which the voltages of all the cells constituting the assembled battery are measured, and the discharge of the entire assembled battery is stopped so that each of the cells does not fall into an overdischarged state. However, this method is difficult to realize when the number of batteries in the assembled battery increases, resulting in a large increase in the cost of the entire assembled battery and a decrease in energy density, and the lithium nickel oxide and lithium manganese oxide There is a problem in that the advantages of high capacity and low cost due to the use of a mixed positive electrode are offset.
【0011】[0011]
【発明が解決しようとする課題】上述したように、2種
の正極活物質の混合物を正極に使用した非水電解液二次
電池は、電池容量、安全性の面で優れている反面、個々
の電池容量にばらつきがあるため、複数の単電池を直列
に接続し組電池とした場合、特定の単電池が過放電状態
になり、組電池のサイクル特性を低下させるという問題
が生じた。As described above, a non-aqueous electrolyte secondary battery using a mixture of two kinds of positive electrode active materials for a positive electrode is excellent in battery capacity and safety, but is not In the case where a plurality of cells are connected in series to form a battery pack, a specific battery cell is over-discharged and the cycle characteristics of the battery pack deteriorate.
【0012】本発明は、このような問題に鑑みてなされ
たものであり、高容量化が可能で、安全性の高い正極活
物質の混合物を正極に使用した電池であって、組電池と
して使用した際にもサイクル特性の良好な非水電解液二
次電池を提供することを目的とする。The present invention has been made in view of the above problems, and is a battery using a mixture of a positive electrode active material, which can have a high capacity and high safety, for a positive electrode, and is used as an assembled battery. It is another object of the present invention to provide a non-aqueous electrolyte secondary battery having good cycle characteristics.
【0013】[0013]
【課題を解決するための手段】本発明の非水電解液二次
電池は、リチウムニッケル複合酸化物、およびスピネル
型リチウムマンガン酸化物を含有する混合物からなる正
極活物質を具備する正極と、非黒鉛性炭素材料および黒
鉛を含有する炭素材混合物からなる負極活物質を具備す
る負極と、前記正極および負極に挟持される非水電解液
とを具備し、前記負極活物質は、前記負極の作動電位で
の放電電位変化率が20mV/(mAh/g)以下とな
るように非黒鉛炭素材料および黒鉛の比率を制御した組
成の炭素材混合物であることを特徴とする。A nonaqueous electrolyte secondary battery according to the present invention comprises a positive electrode having a positive electrode active material comprising a mixture containing a lithium nickel composite oxide and a spinel type lithium manganese oxide; A negative electrode including a negative electrode active material composed of a graphitic carbon material and a carbon material mixture containing graphite; and a nonaqueous electrolyte interposed between the positive electrode and the negative electrode, wherein the negative electrode active material operates the negative electrode. It is a carbon material mixture having a composition in which the ratio of the non-graphite carbon material and graphite is controlled such that the discharge potential change rate at the potential is 20 mV / (mAh / g) or less.
【0014】本発明の別の非水電解液二次電池は、リチ
ウムニッケル複合酸化物、およびスピネル型リチウムマ
ンガン酸化物を含有する混合物からなる正極活物質を具
備する正極と、非黒鉛性炭素材料および黒鉛を含有する
炭素材混合物からなる負極活物質を具備する負極と、前
記正極および負極に挟持される非水電解液とを具備し、
前記負極活物質は、前記負極の作動電位での放電電位変
化率が20mV/(mAh/g)以下となるように非黒
鉛炭素材料および黒鉛の比率を制御した組成の炭素材混
合物であることを特徴とする。Another non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode having a positive electrode active material comprising a mixture containing a lithium nickel composite oxide and a spinel-type lithium manganese oxide, and a non-graphitic carbon material. A negative electrode including a negative electrode active material comprising a carbon material mixture containing graphite and a non-aqueous electrolyte sandwiched between the positive electrode and the negative electrode,
The negative electrode active material is a carbon material mixture having a composition in which a ratio of a non-graphitic carbon material and graphite is controlled such that a discharge potential change rate at an operating potential of the negative electrode is 20 mV / (mAh / g) or less. Features.
【0015】本発明の非水電解液二次電池は、正極にリ
チウムニッケル複合酸化物、およびスピネル型リチウム
マンガン酸化物を含有する混合物からなる正極活物質を
用いることで、電池容量を大きくし、かつ安全性を高め
ることが可能である。In the nonaqueous electrolyte secondary battery of the present invention, the battery capacity is increased by using a positive electrode active material comprising a mixture containing a lithium nickel composite oxide and a spinel type lithium manganese oxide for the positive electrode, And it is possible to improve safety.
【0016】また、負極に用いる負極活物質に黒鉛が含
有されているため、電池容量を大きくすることが可能で
ある。Further, since the negative electrode active material used for the negative electrode contains graphite, the battery capacity can be increased.
【0017】一方、混合物からなる正極活物質を正極に
用いた単電池は、各電池毎の電池容量にばらつきが生じ
やすく、この単電池を直列に接続し組電池とした際に
は、特定の電池が過放電状態になりやすくなり、その結
果組電池のサイクル特性を著しく劣化させる。On the other hand, in a cell using a positive electrode active material composed of a mixture as a positive electrode, the battery capacity of each cell tends to vary, and when these cells are connected in series to form an assembled battery, The battery is likely to be in an overdischarged state, and as a result, the cycle characteristics of the assembled battery are significantly deteriorated.
【0018】本発明においては、負極活物質に黒鉛を含
有させることで電池容量を高めると共に、非黒鉛性活物
質を含有させ、負極の放電変化率を低減させることで、
組電池に充電された電力を無駄なく使用し、かつ各単電
池の過放電状態を軽減することができる。In the present invention, the battery capacity is increased by including graphite in the negative electrode active material, and the non-graphite active material is included to reduce the discharge change rate of the negative electrode.
The power charged in the assembled battery can be used without waste, and the overdischarge state of each cell can be reduced.
【0019】図面を用いて説明する。This will be described with reference to the drawings.
【0020】図1は、放電特性にばらつきのある2本の
単電池A1、A2を直列に接続した時、B1、B2を直
列に接続した時のそれぞれの電池の放電変化を示す図で
ある(A1、B1は設計値通り作成できた電池、A2、
B2はばらつきが生じた電池)。FIG. 1 is a diagram showing a discharge change of each battery when two unit cells A1 and A2 having variations in discharge characteristics are connected in series and B1 and B2 are connected in series. A1 and B1 are batteries that can be created as designed, A2 and
B2 is a battery with variations).
【0021】単電池を複数本直列接続した組電池におい
て、電池設計時における電気量Q放電した時の単電池放
電終止電圧をVSF、得られた各単電池の実際の放電容量
との差(各単電池の放電容量のばらつき)をΔQ、ΔQ
単電池の放電終止時の電圧変化率をdV/dQとしたと
き、 VSFと各単電池の実際の放電終止電圧との差(各
電池の放電終止電圧のばらつき)ΔVSFは、式(1)で
示される。In a battery pack in which a plurality of cells are connected in series, the discharge end voltage of the cells when the quantity of electricity Q is discharged at the time of battery design is V SF , and the difference between the obtained discharge capacity of each cell ( ΔQ, ΔQ
Assuming that the voltage change rate at the end of discharge of the unit cell is dV / dQ, the difference (variation in the end-of-discharge voltage of each cell) ΔV SF between V SF and the actual end-of-discharge voltage of each unit cell is expressed by the formula (1) ).
【0022】ΔVSF=dV/dQ×ΔQ (1) 図示されるように、電圧変化率の小さい電池A1、A2
においては、放電終止電圧ばらつきΔVSFAが小さく、
電圧変化率の大きな電池B1、B2においては、放電終
止電圧ばらつきΔVSFBが大きいことが分かる。ΔV SF = dV / dQ × ΔQ (1) As shown, batteries A1 and A2 having a small voltage change rate
In the discharge end voltage variation [Delta] V SF A is small,
In large batteries B1, B2 of the voltage change rate, it is seen that a large discharge end voltage variation [Delta] V SF B.
【0023】例えば、VSFを境界に過放電状態になるよ
うに設計された電池の場合、ΔVSFの大きいB2の電池
は、ΔVSFの小さいA2の電池に比べ大きく過放電状態
となる。[0023] For example, if the battery is designed to be over-discharged state V SF to the boundary, B2 of the battery large [Delta] V SF becomes larger over-discharge state than the batteries of small [Delta] V SF A2.
【0024】したがって、直列に接続された複数の電池
の過放電状態を軽減するためには、電池A1、A2に示
すような電圧変化率dV/dQを小さく抑えることが有
効であることがわかる。Therefore, it can be seen that it is effective to reduce the rate of voltage change dV / dQ as shown by the batteries A1 and A2 in order to reduce the overdischarge state of a plurality of batteries connected in series.
【0025】単電池における電圧変化率dV/dQは正
極電位と負極電位の差によって与えられるが、リチウム
ニッケル酸化物とリチウムマンガン酸化物の複合正極を
用いた電池においては、負極の電圧変化率dV/dQを
小さくすることで単電池における電圧変化率を小さく抑
えることができる。The voltage change rate dV / dQ in a single battery is given by the difference between the positive electrode potential and the negative electrode potential. In a battery using a composite positive electrode of lithium nickel oxide and lithium manganese oxide, the voltage change rate dV of the negative electrode is dV / dQ. By reducing / dQ, the voltage change rate of the unit cell can be reduced.
【0026】そこで本発明者らが電池放電終止時の負極
の電位変化率と組電池の過放電、サイクル劣化との関係
について詳細に検討を重ねた結果、負極活物質として所
定の方法にて充放電を行った場合の負極の放電電位変化
率が20mV/(mAh/g)以下であるものを用いた
場合、特に組電池の過放電、サイクル劣化を効果的に抑
制することができることを確認した。The inventors of the present invention have conducted detailed studies on the relationship between the negative electrode potential change rate at the end of battery discharge and the overdischarge and cycle deterioration of the battery pack. It was confirmed that when a negative electrode having a discharge potential change rate of 20 mV / (mAh / g) or less was used when discharging was performed, in particular, overdischarge and cycle deterioration of the assembled battery could be effectively suppressed. .
【0027】すなわち、一般に負極活物質の作動電位で
ある、0.5(VvsLi/Li+)以下の電位領域にお
いて、常に放電電位変化率が20mV/(mAh/g)
以下となるような負極を使用すればよい。That is, the discharge potential change rate is always 20 mV / (mAh / g) in a potential region of 0.5 (V vs Li / Li + ) or less, which is generally the operating potential of the negative electrode active material.
The following negative electrode may be used.
【0028】ただし、できるだけエネルギー密度の大き
な電池を実現するためには、電池の正負極容量バランス
を適正とすることは不可欠である。従って、負極活物質
には負極自体の放電末期の電位変化率が小さいことが特
に要求される。例えば黒鉛などは平坦な放電曲線を持っ
ているが、放電末期には急激に電位が立ち上がり、通常
負極の放電終止電位に設定される負極放電電位0.5
(VvsLi/Li+)程度の時には放電電位変化率が2
0mV/(mAh/g)を超えてしまい、上記条件を満
たさない。However, in order to realize a battery having as large an energy density as possible, it is essential to properly balance the positive and negative electrode capacities of the battery. Therefore, the negative electrode active material is particularly required to have a small potential change rate at the end of discharge of the negative electrode itself. For example, graphite and the like have a flat discharge curve, but the potential rises sharply at the end of discharge, and the negative electrode discharge potential 0.5, which is normally set to the negative electrode discharge termination potential.
(Vvs Li / Li + ), the discharge potential change rate is 2
It exceeds 0 mV / (mAh / g) and does not satisfy the above conditions.
【0029】このような条件を満たす負極活物質として
は、例えば難黒鉛化性炭素材料や易黒鉛化性炭素材料の
ような非黒鉛材料が挙げられる。しかし、非黒鉛材料は
一般に不可逆容量が大きく、密度が小さいなどの欠点を
持っている。そのため、非黒鉛性炭素材料と黒鉛を混合
することにより、黒鉛単体と比較して密度を著しく低下
させること無く、不可逆容量の増加を抑えて、混合比に
よって放電末期の電位変化率を任意に設計した負極を得
ることが可能となる。Examples of the negative electrode active material satisfying such conditions include non-graphitizable materials such as non-graphitizable carbon materials and graphitizable carbon materials. However, non-graphite materials generally have disadvantages such as high irreversible capacity and low density. Therefore, by mixing the non-graphitic carbon material and graphite, the density of the irreversible capacity is suppressed without significantly lowering the density compared to graphite alone, and the potential change rate at the end of discharge can be arbitrarily designed according to the mixing ratio. It is possible to obtain a negative electrode that has been used.
【0030】[0030]
【発明の実施の形態】以下、本発明に係る非水電解質二
次電池を、図2を参照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to the present invention will be described below with reference to FIG.
【0031】図2は、円筒型非水電解液二次電池の右半
分を断面的に示した図面である。FIG. 2 is a sectional view showing the right half of the cylindrical non-aqueous electrolyte secondary battery.
【0032】電極群5は、正極2、セパレータ3および
負極4を積層した帯状物を渦巻き状に捲回した構造にな
っている。前記電極群5は、例えばステンレスからなる
有底円筒状の容器1内に収納され、例えばポリプロピレ
ン製の中空円筒状の電極群押さえ12により固定されて
いる。前記セパレータ3は、例えば不織布、ポリプロピ
レン微多孔フィルム、ポリエチレン微多孔フィルム、ポ
リエチレン−ポリプロピレン微多孔積層フィルムから形
成される。The electrode group 5 has a structure in which a band formed by laminating the positive electrode 2, the separator 3, and the negative electrode 4 is spirally wound. The electrode group 5 is housed in a bottomed cylindrical container 1 made of, for example, stainless steel, and is fixed by a hollow cylindrical electrode group holder 12 made of, for example, polypropylene. The separator 3 is formed of, for example, a nonwoven fabric, a microporous polypropylene film, a microporous polyethylene film, or a microporous polyethylene-polypropylene laminated film.
【0033】前記容器1は上部に封口板9を溶接されて
密閉され、内部に電解液が収容されている。前記封口板
9の開口部には安全弁10が溶接され、正極端子8は前
記封口版9に例えばハーメチックシール11により固定
されている。正極集電リード6の一端は、前記正極2
に、他端は前記正極端子8にそれぞれ接続されている。
前記負極4は、負極集電リード7を介して負極端子であ
る前記容器1に接続されている。The container 1 is hermetically sealed by welding a sealing plate 9 on an upper part, and contains an electrolyte therein. A safety valve 10 is welded to the opening of the sealing plate 9, and the positive electrode terminal 8 is fixed to the sealing plate 9 by, for example, a hermetic seal 11. One end of the positive electrode current collecting lead 6 is connected to the positive electrode 2.
The other end is connected to the positive terminal 8.
The negative electrode 4 is connected to the container 1 serving as a negative electrode terminal via a negative electrode current collecting lead 7.
【0034】次に、前記正極2、負極4及び非水電解液
等について説明する。Next, the positive electrode 2, the negative electrode 4, the non-aqueous electrolyte and the like will be described.
【0035】1)正極2 正極2は、リチウムニッケル複合酸化物、およびスピネ
ル型リチウムマンガン酸化物を含有する混合物からなる
正極活物質を具備するものであれば特に限定されず、既
知の構成のものが使用できる。1) Positive Electrode 2 The positive electrode 2 is not particularly limited as long as it has a positive electrode active material composed of a mixture containing a lithium nickel composite oxide and a spinel-type lithium manganese oxide. Can be used.
【0036】前記リチウムニッケル複合酸化物として
は、組成式LiNiO2で示される複合酸化物、あるい
はLiNiO2のリチウム、ニッケルあるいは酸素の一
部を適当な元素で置換した複合酸化物、さらにはリチウ
ム、ニッケルおよび酸素の比率を適当な値に変化させた
ものが使用できる。Examples of the lithium-nickel composite oxide include a composite oxide represented by the composition formula LiNiO 2 , a composite oxide in which a part of lithium, nickel or oxygen of LiNiO 2 is replaced by an appropriate element, Those in which the ratio of nickel and oxygen is changed to an appropriate value can be used.
【0037】特に、組成式Li1‐xNi1-x-yMy(O
2-zFz)(但し、前記Mは硼素、ニオブ、およびアルミ
ニウムから選ばれる少なくとも1種の元素、前記x、y
は(z+0.05)/2≦x<(z+1)/3、かつ0
<x+y≦0.5、かつ0≦z<0.66を示す)で表
されるリチウムニッケル複合金属酸化物、あるいは、L
iNi1-x-yCoxMyO2(但し、前記Mは アルミニウ
ム、硼素およびニオブから選ばれる少なくとも1種の元
素、前記x、yは0<x≦0.5、0<y<0.5、か
つ0<x+y≦0.5を示す)で表されるリチウムニッ
ケル複合酸化物は安全性が高く、電池の容量を大きくで
きる点で好ましい。[0037] Particularly, the composition formula Li 1-x Ni 1-xy M y (O
2-z F z) (where the M represents at least one element selected boron, niobium, and aluminum, the x, y
Is (z + 0.05) / 2 ≦ x <(z + 1) / 3 and 0
<X + y ≦ 0.5 and 0 ≦ z <0.66) or a lithium-nickel composite metal oxide represented by the formula:
iNi 1-xy Co x M y O2 ( provided that at least one element M may be selected from aluminum, boron, and niobium, wherein x, y are 0 <x ≦ 0.5,0 <y < 0.5, And 0 <x + y ≦ 0.5) are preferable because they have high safety and can increase the capacity of the battery.
【0038】より具体的には、Li1.075Ni0.755Co
0.17O1.9F0.1、Li1.10Ni0.74Co0.16O1.85F
0.15、Li1.075Ni0.705Co0.17Al0.05O
1.9F0.1、Li 1.10Ni0.72Co0.16Nb0.02O1.85F
0.15や、LiNi0.795Co0.175B0.03O2、LiNi
0.795Co0.175Nb0.03O2、LiNi0.725Co0.17N
b0.02O2 等を挙げることができる。前記スピネル型リ
チウムマンガン酸化物としては、具体的には、Li1+a
Mn2 -aO4、Li1+aMn2-a-bCobO4、Li1+aMn
2-a-bAlbO4、Li1+aMn2- a-bFebO4、Li1+aM
n2-a-bMgbO4、Li1+aMn2-a-bTibO4、Li1+a
Mn2-a-bNbbO4、Li1+aMn2-a-bGebO4等を挙
げることができる(前記aは0<a、かつ2>a+bを
示す)。More specifically, Li1.075Ni0.755Co
0.17O1.9F0.1, Li1.10Ni0.74Co0.16O1.85F
0.15, Li1.075Ni0.705Co0.17Al0.05O
1.9F0.1, Li 1.10Ni0.72Co0.16Nb0.02O1.85F
0.15And LiNi0.795Co0.175B0.03OTwo, LiNi
0.795Co0.175Nb0.03OTwo, LiNi0.725Co0.17N
b0.02OTwo And the like.The spinel type
As the lithium manganese oxide, specifically, Li1 + a
MnTwo -aOFour, Li1 + aMn2-abCobOFour, Li1 + aMn
2-abAlbOFour, Li1 + aMn2- abFebOFour, Li1 + aM
n2-abMgbOFour, Li1 + aMn2-abTibOFour, Li1 + a
Mn2-abNbbOFour, Li1 + aMn2-abGebOFourEtc.
(Where a is 0 <a and 2> a + b
Shown).
【0039】前記正極活物質においては、リチウムニッ
ケル複合金属酸化物の割合が60重量%以上80重量%
未満であることが好ましい。In the positive electrode active material, the proportion of the lithium-nickel composite metal oxide is at least 60% by weight and at least 80% by weight.
It is preferably less than.
【0040】前記リチウム複合酸化物の粒径は、レーザ
ー回折式粒度分布計(マイクロトラックHRA粒度分布
計:Leeds&Northup 社製)による累積平
均径DN50の値が5μmから50μmの範囲にあること
が好ましい。The particle diameter of the lithium composite oxide is preferably such that the value of the cumulative average diameter DN50 measured by a laser diffraction particle size distribution analyzer (Microtrac HRA particle size distribution analyzer: manufactured by Leeds & Northup) is in the range of 5 μm to 50 μm. .
【0041】また、前記スピネル型リチウムマンガン酸
化物の累積平均径DM50の値は、1μmから30μmの
範囲にあることが好ましい。The value of the cumulative average diameter D M50 of the spinel-type lithium manganese oxide is preferably in the range of 1 μm to 30 μm.
【0042】このような構成とすることにより、安全性
と容量特性のバランスに優れた非水電解質二次電池を構
成することができる。With such a configuration, a non-aqueous electrolyte secondary battery having an excellent balance between safety and capacity characteristics can be formed.
【0043】前記正極2は、例えば前記正極活物質、導
電剤および結着剤を適当な溶媒に分散させて得られる正
極材ペーストを集電体の片側、もしくは両面に塗布する
ことにより作製できる。The positive electrode 2 can be produced, for example, by applying a positive electrode material paste obtained by dispersing the positive electrode active material, a conductive agent and a binder in an appropriate solvent to one side or both sides of a current collector.
【0044】前記正極層の片面あたりの正極活物質の塗
布量としては、80g/m2から200g/m2の範囲に
することが好ましい。このような構成とすることによ
り、安全性と容量特性のバランスに優れ、かつ高出力特
性の非水電解質二次電池を得ることができる。前記正極
層の片面あたりの重量は、さらに好ましくは100g/
m2から150g/m2である。The coating amount of the positive electrode active material per one side of the positive electrode layer is preferably in the range of 80 g / m 2 to 200 g / m 2 . With such a configuration, a non-aqueous electrolyte secondary battery having an excellent balance between safety and capacity characteristics and high output characteristics can be obtained. The weight per one side of the positive electrode layer is more preferably 100 g /
m 2 to 150 g / m 2 .
【0045】前記導電剤としては、例えばアセチレンブ
ラック、グラファイト、カーボンブラック等を挙げるこ
とができる。Examples of the conductive agent include acetylene black, graphite, carbon black and the like.
【0046】前記結着剤としては、ポリテトラフルオロ
エチレン(PTFE)、ポリフッ化ビニリデン(PVd
F)、ポリフッ化ビニリデン−テトラフルオロエチレン
−6フッ化プロピレンの3元共重合体、エチレン−プロ
ピレン−ジエン共重合体(EPDM)等を用いることが
できる。中でも、ポリフッ化ビニリデン(PVdF)
は、基板との密着性および活物質どうしの結着性に優れ
るため好ましい。As the binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVd)
F), a terpolymer of polyvinylidene fluoride-tetrafluoroethylene-6-propylene fluoride, an ethylene-propylene-diene copolymer (EPDM) and the like can be used. Among them, polyvinylidene fluoride (PVdF)
Is preferred because of its excellent adhesion to the substrate and good binding between the active materials.
【0047】前記結着剤を分散させるための有機溶媒と
しては、N−メチル−2−ピロリドン(NMP)、ジメ
チルホルムアミド(DMF)等が使用される。As the organic solvent for dispersing the binder, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) and the like are used.
【0048】前記結着剤の配合量は、前記正極活物質1
00重量部(前記導電剤を含む場合には導電剤も合わせ
て100重量部)に対して2重量部〜20重量部の範囲
にすることが好ましい。The amount of the binder is determined by the amount of the positive electrode active material 1
It is preferable that the amount is in the range of 2 parts by weight to 20 parts by weight with respect to 00 parts by weight (100 parts by weight in total when the conductive agent is included).
【0049】前記導電剤の配合量は、前記正極活物質1
00重量部に対して0重量部〜18重量部の範囲にする
ことが好ましい。The amount of the conductive agent is determined by the amount of the positive electrode active material 1
It is preferable that the amount is in the range of 0 to 18 parts by weight based on 00 parts by weight.
【0050】前記有機溶媒の配合量は、前記正極活物質
100重量部(前記導電剤を含む場合には導電剤も合わ
せて100重量部)に対して65重量部〜150重量部
の範囲にすることが好ましい。The compounding amount of the organic solvent is in the range of 65 parts by weight to 150 parts by weight based on 100 parts by weight of the positive electrode active material (100 parts by weight in total when the conductive agent is included). Is preferred.
【0051】前記集電体としては、厚さが15μm〜3
5μmのアルミニウム箔、アルミニウム製メッシュ、ア
ルミニウム製パンチドメタル、アルミニウム製ラスメタ
ル、ステンレス箔、チタン箔などを挙げることができ
る。The current collector has a thickness of 15 μm to 3 μm.
Examples include 5 μm aluminum foil, aluminum mesh, aluminum punched metal, aluminum lath metal, stainless steel foil, titanium foil, and the like.
【0052】2)負極4 この負極4は、例えば負極活物質、導電剤及び結着剤か
らなる負極合剤5bを適当な溶媒に懸濁して混合し、塗
液したものを集電体の片面もしくは両面に塗布し、乾燥
することにより形成される。2) Negative Electrode 4 The negative electrode 4 is prepared by suspending and mixing a negative electrode mixture 5b composed of, for example, a negative electrode active material, a conductive agent and a binder in an appropriate solvent, and coating the solution with one surface of a current collector. Alternatively, it is formed by coating on both sides and drying.
【0053】本発明に係る負極活物質は、非黒鉛の炭素
材料と黒鉛の混合物を含有する。The negative electrode active material according to the present invention contains a mixture of a non-graphite carbon material and graphite.
【0054】非黒鉛の炭素材料としては例えばコーク
ス、炭素繊維、熱分解気相炭素物、樹脂焼成体、などが
挙げられ、X線回折法で求められる(002)面の面間
隔が0.34nm以上の炭素材料が放電容量が大きいた
め好ましい。The non-graphite carbon material includes, for example, coke, carbon fiber, pyrolysis gas phase carbon material, and fired resin, and the (002) plane spacing determined by the X-ray diffraction method is 0.34 nm. The above carbon materials are preferable because of their large discharge capacity.
【0055】黒鉛としては天然黒鉛の他にメソフェーズ
ピッチ系炭素繊維またはメソフェーズ球状カーボン等が
挙げられ、X線回折法で求められる(002)面の面間
隔が0.34nm以下である繊維状炭素材料であること
が好ましい。Examples of graphite include mesophase pitch-based carbon fiber or mesophase spherical carbon in addition to natural graphite, and a fibrous carbon material having a (002) plane spacing of 0.34 nm or less determined by X-ray diffraction. It is preferred that
【0056】非黒鉛の炭素材料と黒鉛との比率は、正極
活物質のリチウムニッケル複合酸化物、およびスピネル
型リチウムマンガン酸化物の比率、すなわち電池の放電
終了電圧によって異なるが、電池の放電が行われる間の
負極の放電電位変化率が20mV/(mAh/g)とな
るような比率にすることが好ましい。The ratio between the non-graphite carbon material and the graphite varies depending on the ratio of the lithium nickel composite oxide and the spinel type lithium manganese oxide as the positive electrode active material, that is, the discharge end voltage of the battery. It is preferable to set the ratio such that the discharge potential change rate of the negative electrode during the heating is 20 mV / (mAh / g).
【0057】なお、通常負極の放電変化率は放電が進む
に連れて急峻になることから放電終止電圧において放電
電圧変化率が20mV/(mAh/g)となるように負
極活物質の混合比を調整すればよい。Since the discharge change rate of the negative electrode usually becomes steep as the discharge proceeds, the mixing ratio of the negative electrode active material is adjusted so that the discharge voltage change rate becomes 20 mV / (mAh / g) at the discharge end voltage. Adjust it.
【0058】たとえば、負極の放電終止電位を0.5
(VvsLi/Li+)とすると、負極活物質において
は、非黒鉛性炭素材料の割合を10重量%以上とするこ
とが好ましい。For example, when the discharge termination potential of the negative electrode is 0.5
When (VvsLi / Li + ), the ratio of the non-graphitic carbon material in the negative electrode active material is preferably 10% by weight or more.
【0059】また、黒鉛の比率が少なすぎると電池容量
が低下するため、非黒鉛性炭素材の比率を60重量%以
下とすることが望ましい。If the proportion of graphite is too small, the battery capacity is reduced. Therefore, the proportion of the non-graphitic carbon material is desirably 60% by weight or less.
【0060】前記炭素材は負極5を作製した状態で、片
面当たりの塗布量として30〜100g/m2の範囲に
することが好ましい。It is preferable that the amount of the carbon material to be applied is 30 to 100 g / m 2 in a state where the negative electrode 5 is prepared.
【0061】このような構成とすることにより、放電末
期の負極電位変化率が過放電抑制に適したものとなり、
かつ不可逆容量も低減された非水電解質二次電池を構成
することができる。With this configuration, the negative electrode potential change rate at the end of discharge is suitable for suppressing overdischarge,
In addition, a non-aqueous electrolyte secondary battery having a reduced irreversible capacity can be configured.
【0062】前記結着剤としては、例えばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVdF)、エチレン−プロピレン−ジエン共重合体
(EPDM)、スチレン−ブタジエンゴム(SBR)等
を用いることができる。Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). it can.
【0063】前記負極材料、結着剤の配合割合は、負極
材料80〜98重量%、結着剤2〜20重量%の範囲で
あることが好ましい。The mixing ratio of the negative electrode material and the binder is preferably in the range of 80 to 98% by weight of the negative electrode material and 2 to 20% by weight of the binder.
【0064】前記集電体としては、厚さが10μm〜3
5μmの銅箔、銅製メッシュ、銅製パンチドメタル、銅
製ラスメタル、ステンレス箔、ニッケル箔などを用いる
ことができる。The current collector has a thickness of 10 μm to 3 μm.
5 μm copper foil, copper mesh, copper punched metal, copper lath metal, stainless steel foil, nickel foil and the like can be used.
【0065】前記セパレータ3としては、例えば不織
布、ポリプロピレン微多孔フィルム、ポリエチレン微多
孔フィルム、ポリエチレン−ポリプロピレン微多孔積層
フィルム、多孔性の紙等を用いることができる。As the separator 3, for example, nonwoven fabric, polypropylene microporous film, polyethylene microporous film, polyethylene-polypropylene microporous laminated film, porous paper and the like can be used.
【0066】3)非水電解液 前記非水電解液は非水溶媒に電解質を溶解した組成を有
する。3) Non-aqueous electrolyte The non-aqueous electrolyte has a composition in which an electrolyte is dissolved in a non-aqueous solvent.
【0067】前記非水溶媒としては、例えばプロピレン
カーボネート(PC)、エチレンカーボネート(EC)
などの環状カーボネート、例えばジメチルカーボネート
(DMC)、メチルエチルカーボネート(MEC)、ジ
エチルカーボネート(DEC)、などの鎖状カーボネー
ト、1,2−ジメトキシエタン(DME)、ジエトキシ
エタン(DEE)などの鎖状エーテル、テトラヒドロフ
ラン(THF)や2−メチルテトラヒドロフラン(2−
MeTHF)などの環状エーテルやクラウンエーテル、
γ−ブチロラクトン(γ−BL)などの脂肪酸エステ
ル、アセトニトリル(AN)などの窒素化合物、スルホ
ラン(SL)やジメチルスルホキシド(DMSO)など
の硫黄化合物などから選ばれる少なくとも1種を用いる
ことができる。Examples of the non-aqueous solvent include propylene carbonate (PC) and ethylene carbonate (EC).
And cyclic carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), and the like, chains such as 1,2-dimethoxyethane (DME), and diethoxyethane (DEE). Ether, tetrahydrofuran (THF) or 2-methyltetrahydrofuran (2-
Cyclic ethers and crown ethers such as MeTHF),
At least one selected from fatty acid esters such as γ-butyrolactone (γ-BL), nitrogen compounds such as acetonitrile (AN), and sulfur compounds such as sulfolane (SL) and dimethyl sulfoxide (DMSO) can be used.
【0068】中でも、EC、PC、γ−BLから選ばれ
る少なくとも1種からなるものや、EC、PC、γ−B
Lから選ばれる少なくとも1種とDMC、MEC、DE
C、DME、DEE、THF、2−MeTHF、ANか
ら選ばれる少なくとも1種とからなる混合溶媒を用いる
ことが望ましい。また、負極に前記リチウムイオンを吸
蔵・放出する炭素質物を含むものを用いる場合に、前記
負極を備えた二次電池のサイクル寿命を向上させる観点
から、ECとPCとγ−BL、ECとPCとMEC、E
CとPCとDEC、ECとPCとDEE、ECとAN、
ECとMEC、PCとDMC、PCとDEC、またはE
CとDECからなる混合溶媒を用いることが望ましい。Among them, one consisting of at least one selected from EC, PC and γ-BL, EC, PC and γ-B
L, DMC, MEC, DE
It is desirable to use a mixed solvent comprising at least one selected from C, DME, DEE, THF, 2-MeTHF, and AN. Further, when using a negative electrode containing a carbonaceous material that occludes and releases lithium ions, from the viewpoint of improving the cycle life of a secondary battery including the negative electrode, EC, PC and γ-BL, EC and PC And MEC, E
C and PC and DEC, EC and PC and DEE, EC and AN,
EC and MEC, PC and DMC, PC and DEC, or E
It is desirable to use a mixed solvent consisting of C and DEC.
【0069】前記電解質としては、例えば過塩素酸リチ
ウム(LiClO4)、六フッ化リン酸リチウム(Li
PF4)、ホウフッ化リチウム(LiBF4)、六フッ化
砒素リチウム(LiAsF6)、トリフルオロメタスル
ホン酸リチウム(LiCF3SO3)、四塩化アルミニウ
ムリチウム(LiAlCl4)、ビストリフルオロメチ
ルスルホニルイミドリチウム[LiN(CF3S
O2)2]などのリチウム塩を挙げることができる。中で
もLiPF6 、LiBF4、LiN(CF3SO2)2を用
いると、導電性や安全性が向上されるために好ましい。Examples of the electrolyte include lithium perchlorate (LiClO 4 ) and lithium hexafluorophosphate (Li
PF 4 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluorometasulfonate (LiCF 3 SO 3 ), lithium aluminum tetrachloride (LiAlCl 4 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 S
O 2 ) 2 ]. Among them, it is preferable to use LiPF 6 , LiBF 4 , and LiN (CF 3 SO 2 ) 2 because conductivity and safety are improved.
【0070】前記電解質の前記非水溶媒に対する溶解量
は、0.5モル/L〜1.5モル/Lの範囲にすること
が好ましい。The amount of the electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 mol / L to 1.5 mol / L.
【0071】図3に非水電解液二次電池を直列に接続し
た組電池の概略図を示す。FIG. 3 is a schematic diagram of an assembled battery in which nonaqueous electrolyte secondary batteries are connected in series.
【0072】図2に示すような非水電解液二次電池の単
電池を複数個準備し、各単電池の正極端子8と負極端子
(容器1)とを導体20で接続した組電池とすること
で、大電圧を要する電気機器への対応が可能になる。A plurality of cells of a non-aqueous electrolyte secondary battery as shown in FIG. 2 are prepared, and a positive electrode terminal 8 and a negative electrode terminal (container 1) of each cell are connected by a conductor 20 to form an assembled battery. Accordingly, it is possible to deal with electric equipment that requires a large voltage.
【0073】[0073]
【実施例】以下に、本発明の実施例について具体的に説
明する。EXAMPLES Examples of the present invention will be specifically described below.
【0074】<電池作製> 実施例1 リチウムニッケル酸化物としてLiNi0.711Co0.206
Al0.083O2(DN50=13μm)
を、スピネル型マンガン酸化物としてLi 1.06 Mn 1.94
O 4 (DN5 0=15μm)を用いた。<Production of Battery> Example 1 LiNi 0.711 Co 0.206 as lithium nickel oxide
Al 0.083 O 2 (D N50 = 13 μm)
With Li 1.06 Mn 1.94 as a spinel-type manganese oxide
O 4 and (D N5 0 = 15μm) was used.
【0075】まず、前記リチウムニッケル酸化物と前記
スピネル型マンガン酸化物を、ボールミルを用いて、リ
チウムニッケル酸化物70%、スピネル型マンガン酸化
物30%の配合比(重量比)で混合した。得られた混合
物100重量部に対し、導電剤としてのアセチレンブラ
ック5重量部および燐片状黒鉛(人造黒鉛)5重量部を
加えて再び混合し正極合剤を作製した。この正極合剤
を、結着剤としてポリフッ化ビニリデン5重量部をN−
メチル−2−ピロリドンに溶解させた溶液に分散させ正
極材ペーストを調製した。これを集電体としてのアルミ
ニウム箔の両面に塗布し、乾燥後、圧延して正極を作製
した。First, the lithium nickel oxide and the spinel-type manganese oxide were mixed at a mixing ratio (weight ratio) of 70% lithium nickel oxide and 30% spinel-type manganese oxide using a ball mill. To 100 parts by weight of the obtained mixture, 5 parts by weight of acetylene black as a conductive agent and 5 parts by weight of flake graphite (artificial graphite) were added and mixed again to prepare a positive electrode mixture. This positive electrode mixture was used as a binder with 5 parts by weight of polyvinylidene fluoride as N-
The mixture was dispersed in a solution of methyl-2-pyrrolidone to prepare a positive electrode material paste. This was applied to both sides of an aluminum foil as a current collector, dried, and then rolled to produce a positive electrode.
【0076】一方、メソフェーズピッチ炭素繊維を黒鉛
化した繊維状黒鉛(MCF)50%と樹脂を低温焼成し
て得られた難黒鉛化性炭素(HC)50%(重量比)を
混合して負極活物質とした。負極活物質100重量部に
対し、ポリフッ化ビニリデン5重量部からなる混合物を
N−メチルピロリドンに分散させてペースト状にした
後、集電体基板である銅箔の両面に塗布し、乾燥後、ロ
ールプレスを行い負極を作製した。On the other hand, a mixture of 50% fibrous graphite (MCF) obtained by graphitizing mesophase pitch carbon fibers and 50% (weight ratio) of non-graphitizable carbon (HC) obtained by sintering a resin at low temperature was mixed. An active material was used. For 100 parts by weight of the negative electrode active material, a mixture consisting of 5 parts by weight of polyvinylidene fluoride was dispersed in N-methylpyrrolidone to form a paste, applied to both sides of a copper foil as a current collector substrate, and dried. Roll pressing was performed to produce a negative electrode.
【0077】前記正極、ポリエチレン製多孔質フィルム
からなるセパレータおよび前記負極を積層した後、渦巻
き状に捲回して電極群を作製した。After laminating the positive electrode, the separator made of a porous film made of polyethylene, and the negative electrode, they were spirally wound to form an electrode group.
【0078】電解液としては、エチレンカーボネート
(EC)とメチルエチルカーボネート(MEC)の混合
溶媒(混合体積比1:2)に、六フッ化リン酸リチウム
(LiPF6)を1mol/l溶解したものを使用し、
前記電極群および前記電解液をステンレス製の有底円筒
状容器内にそれぞれ収納し、円筒形リチウムイオン二次
電池(φ35mm×65mm)を50個組み立てた。As the electrolytic solution, 1 mol / l of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (mixing volume ratio 1: 2). Use
The electrode group and the electrolytic solution were respectively housed in a stainless steel bottomed cylindrical container, and 50 cylindrical lithium ion secondary batteries (φ35 mm × 65 mm) were assembled.
【0079】つづいて、作製した単電池をそれぞれ4.
2V、1.2Aの定電圧定電流で8時間充電し、次に
0.8Aの定電流で3Vになるまで放電し、各単電池の
放電容量を求めた。50個の単電池を放電容量順に順位
付けし、放電容量の大きい方から5個、小さい方から5
個は除き、残った40個を容量順に4個づつ組電池化す
ることにより、容量ばらつきのできるだけ小さい4本直
列の組電池を10組作製した。Subsequently, each of the produced single cells was used for 4.
The battery was charged at a constant voltage and constant current of 2 V and 1.2 A for 8 hours, and then discharged at a constant current of 0.8 A until the voltage reached 3 V. The discharge capacity of each cell was determined. The 50 cells are ranked in order of discharge capacity, and 5 cells from the larger discharge capacity and 5 from the smaller discharge capacity.
The remaining 40 batteries were removed, and the remaining 40 batteries were assembled into four batteries in the order of capacity, thereby producing 10 batteries in a series of four batteries with the smallest possible variation in capacity.
【0080】実施例2 負極活物質として、メソフェーズピッチ炭素繊維を黒鉛
化した繊維状黒鉛(MCF)70%と樹脂を低温焼成して得
られた難黒鉛化性炭素(HC)30%(重量比)を混合し
たものを用い、以下実施例1と同様にして円筒形リチウ
ムイオン二次電池(φ35mm×65mm)を50個組
み立て、4本直列の組電池10組を作製した。Example 2 As the negative electrode active material, 70% of fibrous graphite (MCF) obtained by graphitizing mesophase pitch carbon fibers and 30% by weight of non-graphitizable carbon (HC) obtained by calcining a resin at a low temperature (weight ratio) ), 50 cylindrical lithium ion secondary batteries (φ35 mm × 65 mm) were assembled in the same manner as in Example 1 to produce 10 sets of four series assembled batteries.
【0081】実施例3 負極活物質として、メソフェーズピッチ炭素繊維を黒鉛
化した繊維状黒鉛(MCF)90%と樹脂を低温焼成して得
られた難黒鉛化性炭素(HC)10%(重量比)を混合し
たものを用い、以下実施例1と同様にして円筒形リチウ
ムイオン二次電池(φ35mm×65mm)を50個組
み立て、4本直列の組電池10組を作製した。Example 3 As the negative electrode active material, 90% of fibrous graphite (MCF) obtained by graphitizing mesophase pitch carbon fibers and 10% of a non-graphitizable carbon (HC) obtained by firing a resin at a low temperature (weight ratio) ), 50 cylindrical lithium ion secondary batteries (φ35 mm × 65 mm) were assembled in the same manner as in Example 1 to produce 10 sets of four series assembled batteries.
【0082】比較例1 負極活物質として、メソフェーズピッチ炭素繊維を黒鉛
化した繊維状黒鉛(MCF)を用い、以下実施例1と同様
にして円筒形リチウムイオン二次電池(φ35mm×6
5mm)を50個組み立て、4本直列の組電池10組を
作製した。Comparative Example 1 As a negative electrode active material, fibrous graphite (MCF) obtained by graphitizing mesophase pitch carbon fibers was used, and in the same manner as in Example 1, a cylindrical lithium ion secondary battery (φ35 mm × 6) was used.
5 mm) were assembled to produce 10 sets of four battery packs in series.
【0083】比較例2 負極活物質として燐片状黒鉛(人造黒鉛)を用い、以下
実施例1と同様にして円筒形リチウムイオン二次電池
(φ35mm×65mm)を50個組み立て、4本直列
の組電池10組を作製した。Comparative Example 2 Fifty cylindrical lithium ion secondary batteries (φ35 mm × 65 mm) were assembled in the same manner as in Example 1 using flaky graphite (artificial graphite) as the negative electrode active material. Ten sets of assembled batteries were produced.
【0084】比較例3 負極活物質として、樹脂を低温焼成して得られた難黒鉛
化性炭素(HC)を用い、以下実施例1と同様にして円筒
形リチウムイオン二次電池(φ35mm×65mm)を
50個組み立て、4本直列の組電池10組を作製した。Comparative Example 3 Using a non-graphitizable carbon (HC) obtained by baking a resin at a low temperature as a negative electrode active material, a cylindrical lithium ion secondary battery (φ35 mm × 65 mm) was produced in the same manner as in Example 1. ) Were assembled, and 10 sets of four battery packs in series were produced.
【0085】<負極活物質の放電特性評価>まず、実施
例1〜3及び比較例1〜3に用いた負極活物質の放電特
性を評価した。<Evaluation of Discharge Characteristics of Negative Electrode Active Material> First, the discharge characteristics of the negative electrode active materials used in Examples 1 to 3 and Comparative Examples 1 to 3 were evaluated.
【0086】負極活物質50mgを含む負極と、対極と
して金属Liを用い、電解液にはエチレンカーボネート
とメチルエチルカーボネートを1:2の割合で混合した
溶媒にLiPF6を1mol/lの濃度で溶解した、電
池に使用したものと同じ電解液を用いて単極評価用セル
を作製した。このセルを負極電位が10 mVに達する
まで5mAの定電流(100mA/g)で充電し、その
後充電時間の合計が8時間になるまで10mVに保持
し、初充電とした。つぎに30分の休止時間の後、5m
Aの定電流で負極電位が0.5Vに達するまで放電し
た。Using a negative electrode containing 50 mg of the negative electrode active material and metallic Li as a counter electrode, LiPF 6 was dissolved at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a ratio of 1: 2 as an electrolytic solution. A single-electrode evaluation cell was prepared using the same electrolytic solution used for the battery. This cell was charged at a constant current of 5 mA (100 mA / g) until the negative electrode potential reached 10 mV, and then maintained at 10 mV until the total charging time was 8 hours, and the battery was initially charged. Next, after 30 minutes of rest time, 5m
The battery was discharged at a constant current of A until the negative electrode potential reached 0.5 V.
【0087】負極電位が0.5Vに達した時点での負極
放電電位の変化率をそれぞれの実施例及び比較例の負極
について求めた。この結果を表1に示す。実施例1〜
3、および比較例3については、放電電位変化率が20
mV/(mAh/g)以下という条件を満たした。比較
例1及び2については放電電位変化率は20mV/(m
Ah/g)を超える値を示した。The rate of change of the negative electrode discharge potential at the time when the negative electrode potential reached 0.5 V was determined for each of the negative electrodes of Examples and Comparative Examples. Table 1 shows the results. Example 1
3 and Comparative Example 3, the discharge potential change rate was 20
The condition of mV / (mAh / g) or less was satisfied. For Comparative Examples 1 and 2, the discharge potential change rate was 20 mV / (m
Ah / g).
【表1】 <組電池のサイクル特性評価>作製した実施例1〜3及
び比較例1〜3で得られた各組電池について、サイクル
試験を実施した。[Table 1] <Evaluation of Cycle Characteristics of Assembled Battery> A cycle test was performed on each of the assembled batteries obtained in Examples 1 to 3 and Comparative Examples 1 to 3.
【0088】充電は、単電池の容量確認試験によって得
られている放電容量を1時間で放電する際の電流値(1
C)で16.8Vまで行った後、16.8Vの定電圧で保
持し、計3時間行った。放電は、1C定電流で行い、放
電終止電圧は12Vとした。充電、放電の後の休止時間
はそれぞれ30分間とした。このような充放電を繰り返
し行い、各サイクル毎に放電容量を測定した。また、放
電終止時には組電池を構成する各4本の単電池の電圧を
それぞれ測定し、ばらつきを調べた。For charging, the current value (1) at the time of discharging the discharge capacity obtained by the capacity confirmation test of the cell in one hour.
After performing to 16.8V in C), it was maintained at a constant voltage of 16.8V and performed for a total of 3 hours. The discharge was performed at a constant current of 1 C, and the discharge end voltage was 12 V. The rest time after charging and discharging was 30 minutes each. Such charge / discharge was repeated, and the discharge capacity was measured for each cycle. Further, at the end of the discharge, the voltages of the four cells constituting the assembled battery were measured, respectively, and the variation was examined.
【0089】そして、サイクル数が300サイクルに達
した時の放電容量と1サイクル目の放電容量の比、すな
わち、(100サイクル目の放電容量)/(1サイクル
目の放電容量)を容量維持率として求めた。単電池の容
量確認試験結果及び組電池のサイクル特性評価結果を表
2に示す。The ratio of the discharge capacity when the number of cycles reaches 300 cycles to the discharge capacity in the first cycle, that is, (discharge capacity in the 100th cycle) / (discharge capacity in the first cycle) is the capacity retention ratio. Asked. Table 2 shows the results of the capacity confirmation test of the cells and the results of evaluating the cycle characteristics of the assembled battery.
【表2】 表1及び表2から明らかなように、負極の放電電圧が1
V時の負極放電電圧変化率が20mV/(mAh/g)
以上の値を示す比較例1及び2では、組電池の放電終止
電圧を12.0Vとした時の各単電池電圧のばらつきが
1.7V及び1.5Vと著しく大きくなり、一部の単電
池が過放電状態となっていることが確認され、300サ
イクル後の容量維持率は70%以下という低い値となっ
た。[Table 2] As is clear from Tables 1 and 2, the discharge voltage of the negative electrode is 1
The negative electrode discharge voltage change rate at V is 20 mV / (mAh / g)
In Comparative Examples 1 and 2 showing the above values, when the discharge end voltage of the assembled battery was set to 12.0 V, the variation of each cell voltage became remarkably large at 1.7 V and 1.5 V. Was confirmed to be in an overdischarged state, and the capacity retention after 300 cycles was as low as 70% or less.
【0090】一方、充電状態から放電電位が0.5(V
vsLi/Li+)になるまで、負極放電電位変化率が20
mV/(mAh/g)以下の値を示す実施例1から4に
おいては、組電池の放電終止電圧を12.0Vとした時
の各単電池電圧のばらつきは1V以下であり、過放電が
抑制された。これら実施例における300サイクル後の
容量維持率は最低でも79%であり、優れた値を示し
た。On the other hand, from the charged state, the discharge potential is 0.5 (V
vsLi / Li + ) until the negative electrode discharge potential change rate is 20
In Examples 1 to 4 showing a value of not more than mV / (mAh / g), when the discharge end voltage of the assembled battery was set to 12.0 V, the variation of each cell voltage was 1 V or less, and overdischarge was suppressed. Was done. The capacity retention rate after 300 cycles in these examples was at least 79%, showing an excellent value.
【0091】また、負極活物質として難黒鉛化性炭素
(HC)100%を使用した比較例3などと比較し、難黒
鉛化性炭素(HC)とメソフェーズピッチ炭素繊維を黒鉛
化した繊維状黒鉛(MCF)の混合比を30:70とした
実施例2、10:90とした実施例3では初期容量、初
期効率などの電池の初期特性でも優れた値を示すことが
確認された。In addition, as compared with Comparative Example 3 using 100% non-graphitizable carbon (HC) as the negative electrode active material, fibrous graphite obtained by graphitizing non-graphitizable carbon (HC) and mesophase pitch carbon fiber was used. In Example 2 in which the mixing ratio of (MCF) was 30:70 and Example 3 in which 10:90 was used, it was confirmed that the battery also exhibited excellent initial characteristics such as initial capacity and initial efficiency.
【0092】なお、前述した実施例においては、円筒形
非水電解液二次電池に適用した例を説明したが、ラミネ
ートフィルムからなる外装材の内部に正極、負極、セパ
レータ及び非水電解液が収納された構造の薄型非水電解
質二次電池にも同様に適用することができる。In the above-described embodiment, an example in which the present invention is applied to a cylindrical non-aqueous electrolyte secondary battery has been described. However, a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte are provided inside a packaging material made of a laminate film. The present invention can be similarly applied to a thin nonaqueous electrolyte secondary battery having a stored structure.
【0093】[0093]
【発明の効果】本発明の非水電解液二次電池によれば、
高容量、安全性の高い正極活物質を使用し、組電池とし
て使用してもサイクル劣化を低減させることが可能にな
る。According to the non-aqueous electrolyte secondary battery of the present invention,
Even if a positive electrode active material having high capacity and high safety is used and used as an assembled battery, cycle deterioration can be reduced.
【図1】 直列接続時の各単電池の放電特性を示す図。FIG. 1 is a diagram showing discharge characteristics of each cell when connected in series.
【図2】 本発明に係わる円筒形非水電解質二次電池を
示す図。FIG. 2 is a diagram showing a cylindrical non-aqueous electrolyte secondary battery according to the present invention.
【図3】 本発明の非水電解液二次電池の組電池を示す
図。FIG. 3 is a view showing an assembled battery of the non-aqueous electrolyte secondary battery of the present invention.
1・・・容器 2・・・ 正極 3・・・セパレータ 4・・・負極 5・・・電極群 6・・・正極集電リード 7・・・負極集電リード 8・・・正極端子 9・・・封口板 10・・・安全弁 11・・・ハーメチックシール 12・・・電極群押さえ DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Positive electrode 3 ... Separator 4 ... Negative electrode 5 ... Electrode group 6 ... Positive electrode current collecting lead 7 ... Negative electrode current collecting lead 8 ... Positive electrode terminal 9. ..Sealing plate 10 Safety valve 11 Hermetic seal 12 Electrode group holder
フロントページの続き (72)発明者 神田 基 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5H029 AJ03 AJ12 AK03 AL06 AL07 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ12 DJ17 DJ18 HJ18 HJ19 5H050 AA08 AA15 BA17 CA08 CA09 CB07 CB08 FA12 FA19 FA20 HA18 HA19 Continuing from the front page (72) Inventor Moto Kanda 1 Tokoba R & D Center, Komukai Toshiba-cho, Saitama-ku, Kawasaki-shi, Kanagawa F-term (Reference) 5H029 AJ03 AJ12 AK03 AL06 AL07 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ12 DJ17 DJ18 HJ18 HJ19 5H050 AA08 AA15 BA17 CA08 CA09 CB07 CB08 FA12 FA19 FA20 HA18 HA19
Claims (2)
ネル型リチウムマンガン酸化物を含有する混合物からな
る正極活物質を具備する正極と、 非黒鉛性炭素材料および黒鉛を含有する炭素材混合物か
らなる負極活物質を具備する負極と、 前記正極および負極に挟持される非水電解液とを具備
し、 前記負極活物質は、前記負極の作動電位での放電電位変
化率が20mV/(mAh/g)以下となるように非黒
鉛炭素材料および黒鉛の比率を制御した組成の炭素材混
合物であることを特徴とする非水電解液二次電池。A positive electrode comprising a positive electrode active material comprising a mixture containing a lithium nickel composite oxide and a spinel type lithium manganese oxide; and a negative electrode comprising a carbon material mixture containing a non-graphitic carbon material and graphite. A negative electrode comprising a substance; and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode. The negative electrode active material has a discharge potential change rate at an operating potential of the negative electrode of 20 mV / (mAh / g) or less. A non-aqueous electrolyte secondary battery comprising a carbon material mixture having a composition in which the ratio of the non-graphite carbon material and graphite is controlled such that
ネル型リチウムマンガン酸化物を含有する混合物からな
る正極活物質を具備する正極と、 作動電位での放電電位変化率が20mV/(mAh/
g)以下となるように非黒鉛炭素材料および黒鉛の比率
を制御した黒鉛および非黒鉛炭素材料からなる炭素材混
合物からなる負極活物質を具備する負極と、 前記正極および負極に挟持される非水電解液とからな
り、 同一の組成比の前記正極活物質および前記負極活物質を
それぞれ用いた複数の単電池を直列に接続したことを特
徴とする非水電解液二次電池。2. A positive electrode comprising a positive electrode active material comprising a mixture containing a lithium nickel composite oxide and a spinel type lithium manganese oxide, and a discharge potential change rate at an operating potential of 20 mV / (mAh /
g) a negative electrode comprising a negative electrode active material comprising a non-graphitic carbon material and a carbon material mixture comprising graphite and a non-graphitic carbon material in which the ratio of graphite is controlled, and a non-aqueous material sandwiched between the positive electrode and the negative electrode. A non-aqueous electrolyte secondary battery comprising an electrolyte and a plurality of cells using the positive electrode active material and the negative electrode active material, each having the same composition ratio, connected in series.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000054589A JP3705728B2 (en) | 2000-02-29 | 2000-02-29 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000054589A JP3705728B2 (en) | 2000-02-29 | 2000-02-29 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001243943A true JP2001243943A (en) | 2001-09-07 |
JP3705728B2 JP3705728B2 (en) | 2005-10-12 |
Family
ID=18575823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000054589A Expired - Fee Related JP3705728B2 (en) | 2000-02-29 | 2000-02-29 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3705728B2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100484713B1 (en) * | 2002-03-22 | 2005-04-22 | 주식회사 엘지화학 | Lithium ion secondary battery comprising overdischarge retardant |
US7282300B2 (en) | 2002-03-22 | 2007-10-16 | Lg Chem, Ltd. | Lithium secondary battery comprising overdischarge-preventing agent |
WO2006071972A3 (en) * | 2004-12-28 | 2007-10-18 | Boston Power Inc | Lithium-ion secondary battery |
US7656125B2 (en) | 2005-07-14 | 2010-02-02 | Boston-Power, Inc. | Method and device for controlling a storage voltage of a battery pack |
US7695867B2 (en) | 2002-03-22 | 2010-04-13 | Lg Chem, Ltd. | Method for regulating terminal voltage of cathode during overdischarge and cathode active material for lithium secondary battery |
US7811708B2 (en) | 2004-12-28 | 2010-10-12 | Boston-Power, Inc. | Lithium-ion secondary battery |
US7923150B2 (en) | 2005-08-26 | 2011-04-12 | Panasonic Corporation | Non-aqueous electrolyte secondary battery |
JP4742866B2 (en) * | 2003-05-26 | 2011-08-10 | 日本電気株式会社 | Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery |
JP2012018775A (en) * | 2010-07-06 | 2012-01-26 | Toyota Motor Corp | Lithium ion secondary battery and battery pack |
US8138726B2 (en) | 2006-06-28 | 2012-03-20 | Boston-Power, Inc. | Electronics with multiple charge rate |
US8483886B2 (en) | 2009-09-01 | 2013-07-09 | Boston-Power, Inc. | Large scale battery systems and method of assembly |
CN103503204A (en) * | 2011-05-23 | 2014-01-08 | 株式会社Lg化学 | High-power lithium secondary battery having improved output density properties |
CN103548187A (en) * | 2011-05-23 | 2014-01-29 | 株式会社Lg化学 | High output lithium secondary battery having enhanced output density characteristic |
CN103563140A (en) * | 2011-05-23 | 2014-02-05 | 株式会社Lg化学 | High output lithium secondary battery having enhanced output density characteristic |
US8679670B2 (en) | 2007-06-22 | 2014-03-25 | Boston-Power, Inc. | CID retention device for Li-ion cell |
EP2720302A2 (en) * | 2011-07-13 | 2014-04-16 | LG Chem, Ltd. | High-energy lithium secondary battery having improved energy density characteristics |
US8828605B2 (en) | 2004-12-28 | 2014-09-09 | Boston-Power, Inc. | Lithium-ion secondary battery |
US8835055B2 (en) | 2002-03-22 | 2014-09-16 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
WO2015098758A1 (en) * | 2013-12-26 | 2015-07-02 | 積水化学工業株式会社 | Capacitor electrode material, method for producing same, and electric double layer capacitor |
JP2016513239A (en) * | 2013-03-04 | 2016-05-12 | エルジー・ケム・リミテッド | Apparatus and method for estimating output of secondary battery including mixed positive electrode material |
US9385372B2 (en) | 2011-05-23 | 2016-07-05 | Lg Chem, Ltd. | Lithium secondary battery of high power property with improved high energy density |
US9601756B2 (en) | 2011-05-23 | 2017-03-21 | Lg Chem, Ltd. | Lithium secondary battery of high energy density with improved energy property |
US9985278B2 (en) | 2011-05-23 | 2018-05-29 | Lg Chem, Ltd. | Lithium secondary battery of high energy density with improved energy property |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110431109B (en) | 2017-11-17 | 2022-06-24 | 株式会社Lg化学 | Method for preparing irreversible additive, positive electrode material comprising irreversible additive, and lithium secondary battery |
-
2000
- 2000-02-29 JP JP2000054589A patent/JP3705728B2/en not_active Expired - Fee Related
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100484713B1 (en) * | 2002-03-22 | 2005-04-22 | 주식회사 엘지화학 | Lithium ion secondary battery comprising overdischarge retardant |
US7282300B2 (en) | 2002-03-22 | 2007-10-16 | Lg Chem, Ltd. | Lithium secondary battery comprising overdischarge-preventing agent |
US9023525B2 (en) | 2002-03-22 | 2015-05-05 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
US9236610B2 (en) | 2002-03-22 | 2016-01-12 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
US7695867B2 (en) | 2002-03-22 | 2010-04-13 | Lg Chem, Ltd. | Method for regulating terminal voltage of cathode during overdischarge and cathode active material for lithium secondary battery |
US8835055B2 (en) | 2002-03-22 | 2014-09-16 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
JP4742866B2 (en) * | 2003-05-26 | 2011-08-10 | 日本電気株式会社 | Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery |
US7811708B2 (en) | 2004-12-28 | 2010-10-12 | Boston-Power, Inc. | Lithium-ion secondary battery |
US7811707B2 (en) | 2004-12-28 | 2010-10-12 | Boston-Power, Inc. | Lithium-ion secondary battery |
EP2178137A1 (en) | 2004-12-28 | 2010-04-21 | Boston-Power, Inc. | Lithium-Ion secondary battery |
US8828605B2 (en) | 2004-12-28 | 2014-09-09 | Boston-Power, Inc. | Lithium-ion secondary battery |
WO2006071972A3 (en) * | 2004-12-28 | 2007-10-18 | Boston Power Inc | Lithium-ion secondary battery |
US8084998B2 (en) | 2005-07-14 | 2011-12-27 | Boston-Power, Inc. | Method and device for controlling a storage voltage of a battery pack |
US7656125B2 (en) | 2005-07-14 | 2010-02-02 | Boston-Power, Inc. | Method and device for controlling a storage voltage of a battery pack |
US7923150B2 (en) | 2005-08-26 | 2011-04-12 | Panasonic Corporation | Non-aqueous electrolyte secondary battery |
US8138726B2 (en) | 2006-06-28 | 2012-03-20 | Boston-Power, Inc. | Electronics with multiple charge rate |
US8679670B2 (en) | 2007-06-22 | 2014-03-25 | Boston-Power, Inc. | CID retention device for Li-ion cell |
US8483886B2 (en) | 2009-09-01 | 2013-07-09 | Boston-Power, Inc. | Large scale battery systems and method of assembly |
JP2012018775A (en) * | 2010-07-06 | 2012-01-26 | Toyota Motor Corp | Lithium ion secondary battery and battery pack |
CN103563140B (en) * | 2011-05-23 | 2015-11-25 | 株式会社Lg化学 | The height with the power density properties of enhancing exports lithium secondary battery |
US9385372B2 (en) | 2011-05-23 | 2016-07-05 | Lg Chem, Ltd. | Lithium secondary battery of high power property with improved high energy density |
CN103503204A (en) * | 2011-05-23 | 2014-01-08 | 株式会社Lg化学 | High-power lithium secondary battery having improved output density properties |
EP2696408A4 (en) * | 2011-05-23 | 2014-11-05 | Lg Chemical Ltd | High output lithium secondary battery having enhanced output density characteristic |
US9985278B2 (en) | 2011-05-23 | 2018-05-29 | Lg Chem, Ltd. | Lithium secondary battery of high energy density with improved energy property |
CN103548187A (en) * | 2011-05-23 | 2014-01-29 | 株式会社Lg化学 | High output lithium secondary battery having enhanced output density characteristic |
US9601756B2 (en) | 2011-05-23 | 2017-03-21 | Lg Chem, Ltd. | Lithium secondary battery of high energy density with improved energy property |
US9184447B2 (en) | 2011-05-23 | 2015-11-10 | Lg Chem, Ltd. | Lithium secondary battery of high power property with improved high power density |
EP2696408A2 (en) * | 2011-05-23 | 2014-02-12 | LG Chem, Ltd. | High output lithium secondary battery having enhanced output density characteristic |
US9203081B2 (en) | 2011-05-23 | 2015-12-01 | Lg Chem, Ltd. | Lithium secondary battery of high power property with improved high power density |
CN103563140A (en) * | 2011-05-23 | 2014-02-05 | 株式会社Lg化学 | High output lithium secondary battery having enhanced output density characteristic |
US9263737B2 (en) | 2011-05-23 | 2016-02-16 | Lg Chem, Ltd. | Lithium secondary battery of high power property with improved high power density |
EP2720302A2 (en) * | 2011-07-13 | 2014-04-16 | LG Chem, Ltd. | High-energy lithium secondary battery having improved energy density characteristics |
US9525167B2 (en) | 2011-07-13 | 2016-12-20 | Lg Chem, Ltd. | Lithium secondary battery of high energy with improved energy property |
EP2720302A4 (en) * | 2011-07-13 | 2014-11-26 | Lg Chemical Ltd | High-energy lithium secondary battery having improved energy density characteristics |
JP2016513239A (en) * | 2013-03-04 | 2016-05-12 | エルジー・ケム・リミテッド | Apparatus and method for estimating output of secondary battery including mixed positive electrode material |
CN105493214A (en) * | 2013-12-26 | 2016-04-13 | 积水化学工业株式会社 | Capacitor electrode material, method for producing same, and electric double layer capacitor |
JP5969126B2 (en) * | 2013-12-26 | 2016-08-17 | 積水化学工業株式会社 | ELECTRODE MATERIAL FOR CAPACITOR, MANUFACTURING METHOD THEREOF, AND ELECTRIC DOUBLE LAYER CAPACITOR |
WO2015098758A1 (en) * | 2013-12-26 | 2015-07-02 | 積水化学工業株式会社 | Capacitor electrode material, method for producing same, and electric double layer capacitor |
US10658126B2 (en) | 2013-12-26 | 2020-05-19 | Sekisui Chemical Co., Ltd. | Capacitor electrode material, method for producing same, and electric double layer capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP3705728B2 (en) | 2005-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11799081B2 (en) | Positive electrode material for lithium secondary battery, positive electrode including same, and lithium secondary battery | |
US9843044B2 (en) | Positive electrode | |
JP3705728B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5070753B2 (en) | battery | |
US8187752B2 (en) | High energy lithium ion secondary batteries | |
RU2546654C1 (en) | Accumulator battery | |
JP6087489B2 (en) | Assembled battery system | |
US7635542B2 (en) | Non-aqueous electrolyte secondary battery | |
US9184441B2 (en) | Battery electrode, nonaqueous electrolyte battery, and battery pack | |
JP2004139743A (en) | Nonaqueous electrolyte secondary battery | |
JP2013110134A (en) | Nonaqueous electrolyte battery | |
KR20200036424A (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JP2004047180A (en) | Nonaqueous electrolytic solution battery | |
JP5412843B2 (en) | battery | |
JP3529750B2 (en) | Non-aqueous electrolyte secondary battery | |
KR20200090727A (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
EP3113276A1 (en) | Rolled electrode set and nonaqueous-electrolyte battery | |
KR20210034416A (en) | Method for preparing positive electrode material for secondary battery | |
JPH11288712A (en) | Nonaqueous secondary battery and its manufacture | |
JP2013080726A (en) | Positive electrode, nonaqueous electrolyte battery, and battery pack | |
JP2001185143A (en) | Secondary battery using non-aqueous electrolyte and its battery pack | |
US20230059519A1 (en) | Irreversible Additive, Positive Electrode Including the Irreversible Additive, and Lithium Secondary Battery Including the Positive Electrode | |
JP2004311308A (en) | Secondary battery comprising unit cell battery for detecting capacity, battery pack and battery pack unit, and electric vehicle mounting battery pack and battery pack unit | |
KR101064791B1 (en) | Mixed electrode active material and secondary battery comprising the same | |
JP2005243448A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050610 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050726 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090805 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090805 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100805 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100805 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110805 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110805 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120805 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120805 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130805 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |