JP3705728B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3705728B2
JP3705728B2 JP2000054589A JP2000054589A JP3705728B2 JP 3705728 B2 JP3705728 B2 JP 3705728B2 JP 2000054589 A JP2000054589 A JP 2000054589A JP 2000054589 A JP2000054589 A JP 2000054589A JP 3705728 B2 JP3705728 B2 JP 3705728B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
active material
battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000054589A
Other languages
Japanese (ja)
Other versions
JP2001243943A (en
Inventor
義直 舘林
義之 五十崎
基 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000054589A priority Critical patent/JP3705728B2/en
Publication of JP2001243943A publication Critical patent/JP2001243943A/en
Application granted granted Critical
Publication of JP3705728B2 publication Critical patent/JP3705728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は非水電解液二次電池に係り、特に二種の正極活物質からなる混合物を正極として用いた非水電解質二次電池を直列に接続し組電池としての使用に適した非水電解液二次電池に係わるものである。
【0002】
【従来の技術】
近年、携帯型パーソナルコンピュータやコードレス機器が急速に普及し、また大気汚染を低減するために電気自動車への社会的関心が高まっきている。それらの電源としては安価でかつ高性能な二次電池が要求され、必要な電圧、電流に対応するため複数本の単電池を接続してなる組電池が用いられる。
【0003】
かかる二次電池として、リチウムイオンを吸蔵・放出できる物質を正極及び負極材料に用いた非水電解液二次電池が開発され、既に小型電子機器用の電源として実用化されている。この非水電解液二次電池の正極材料としてはリチウムコバルト複合酸化物が、また負極材料としては黒鉛が広く用いられている。しかし、非水電解液二次電池に対する需要の高まりに対し、正極材料となるリチウムコバルト複合酸化物はその原料としてコバルトを用いるため高価であり、また資源量も十分であるとはいえない。このため、代替材料としてスピネル型リチウムマンガン酸化物やリチウムニッケル複合酸化物などが提案され、研究が活発に行われている。
【0004】
スピネル型リチウムマンガン酸化物は特に安価であり、また安全性も高いことが知られているが、リチウムコバルト酸化物と比較して単位重量あたりの放電容量が小さい上に嵩密度も小さいことから、電池としてのエネルギー密度が小さくなってしまうという欠点がある。
【0005】
一方、上記リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物と比較して単位重量あたりの放電容量が大きく、高エネルギー密度の電池が実現できる反面、充電状態では高温時の熱安定性が小さく、電池が内部短絡などを起こして電池温度が上昇した場合、正極の熱分解反応が急速に進む可能性がある。
【0006】
以上のような問題点を解決するため、リチウムニッケル複合酸化物とスピネル型リチウムマンガン酸化物のような二種の複合酸化物を混合したものを正極活物質として用いた正極が提案されている(特開平9−180718号公報)。この提案は、リチウムコバルト複合酸化物を用いた正極に比較して、安価で、かつ放電容量が大きく、比較的安全な正極を得られる方法として期待されている。
【0007】
ところが、リチウムニッケル複合酸化物において通常設定される放電終止電圧が2.7V〜3.0Vであるのに対し、スピネル型リチウムマンガン酸化物は3.0V以下の電圧領域では過放電状態となる。従って、両者を複合した正極においては、放電容量の100%近くを利用し、且つ過放電状態に陥らないようにするために、正極の組成などに応じて最適に設定された放電終止電圧となるよう正確に制御された充放電方法をとる必要がある。
【0008】
しかし、放電終了電圧が異なる2種の正極活物質の混合物を使用した正極では、同じ組成比で混合物を作成しても2種の活物質の分散状態によって、各電池の容量ばらつきが生じてしまい、その結果、特に個々の電池を直列に接続した組電池として使用した際には特定の単電池が過放電状態になり易く、これが組電池のサイクル特性を更に悪化させるという問題が生じる。
【0009】
これを回避するための方法としては、組電池を構成する各単電池として、容量ばらつきがない組み合わせを選別するという方法がある。しかし、容量ばらつきが全くない単電池を選別するのは不可能であり、仮に製造時の容量ばらつきが無かったとしても、各電池のサイクル劣化速度が一致しているとは限らず、この方法で過放電を完全に抑制することは現実的でない。
【0010】
他の方法としては、組電池を構成する単電池全ての電圧を測定し、各々の単電池が過放電状態に陥らないように組電池全体の放電を停止させるという方法がある。しかし、この方法では組電池の電池数が多くなった場合に実現が困難であり、組電池全体のコストの大幅な増大、エネルギー密度の低下を招いてしまい、リチウムニッケル酸化物とリチウムマンガン酸化物の混合正極を用いることによる高容量・低コストというメリットを相殺してしまうという問題があった。
【0011】
【発明が解決しようとする課題】
上述したように、2種の正極活物質の混合物を正極に使用した非水電解液二次電池は、電池容量、安全性の面で優れている反面、個々の電池容量にばらつきがあるため、複数の単電池を直列に接続し組電池とした場合、特定の単電池が過放電状態になり、組電池のサイクル特性を低下させるという問題が生じた。
【0012】
本発明は、このような問題に鑑みてなされたものであり、高容量化が可能で、安全性の高い正極活物質の混合物を正極に使用した電池であって、組電池として使用した際にもサイクル特性の良好な非水電解液二次電池を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の非水電解液二次電池は、リチウムニッケル複合酸化物、およびスピネル型リチウムマンガン酸化物を含有する混合物からなる正極活物質を具備する正極と、10重量%以上60重量%以下の非黒鉛炭素材料と、黒鉛から成る炭素材混合物とからなり、作動電位が0.5(VvsLi/Li )以下の電位領域において放電電位変化率が20mV/(mAh/g)以下である負極活物質を具備する負極と、前記正極および前記負極に挟持される非水電解液とからなり、同一の組成比の前記正極活物質および前記負極活物質をそれぞれ用いた複数の単電池を直列に接続したことを特徴とする。
【0014】
また、本発明の別の非水電解質二次電池は、前記非水電解質二次電池において、前記負極活物質は、10重量%以上50重量%以下の難黒鉛化性炭素と、黒鉛化メソフェーズピッチ炭素繊維から成る炭素材混合物であることを特徴とする。
【0015】
本発明の非水電解液二次電池は、正極にリチウムニッケル複合酸化物、およびスピネル型リチウムマンガン酸化物を含有する混合物からなる正極活物質を用いることで、電池容量を大きくし、かつ安全性を高めることが可能である。
【0016】
また、負極に用いる負極活物質に黒鉛が含有されているため、電池容量を大きくすることが可能である。
【0017】
一方、混合物からなる正極活物質を正極に用いた単電池は、各電池毎の電池容量にばらつきが生じやすく、この単電池を直列に接続し組電池とした際には、特定の電池が過放電状態になりやすくなり、その結果組電池のサイクル特性を著しく劣化させる。
【0018】
本発明においては、負極活物質に黒鉛を含有させることで電池容量を高めると共に、非黒鉛性活物質を含有させ、負極の放電変化率を低減させることで、組電池に充電された電力を無駄なく使用し、かつ各単電池の過放電状態を軽減することができる。
【0019】
図面を用いて説明する。
【0020】
図1は、放電特性にばらつきのある2本の単電池A1、A2を直列に接続した時、B1、B2を直列に接続した時のそれぞれの電池の放電変化を示す図である(A1、B1は設計値通り作成できた電池、A2、B2はばらつきが生じた電池)。
【0021】
単電池を複数本直列接続した組電池において、電池設計時における電気量Q放電した時の単電池放電終止電圧をVSF、得られた各単電池の実際の放電容量との差(各単電池の放電容量のばらつき)をΔQ、ΔQ単電池の放電終止時の電圧変化率をdV/dQとしたとき、 VSFと各単電池の実際の放電終止電圧との差(各電池の放電終止電圧のばらつき)ΔVSFは、式(1)で示される。
【0022】
ΔVSF=dV/dQ×ΔQ (1)
図示されるように、電圧変化率の小さい電池A1、A2においては、放電終止電圧ばらつきΔVSFAが小さく、電圧変化率の大きな電池B1、B2においては、放電終止電圧ばらつきΔVSFBが大きいことが分かる。
【0023】
例えば、VSFを境界に過放電状態になるように設計された電池の場合、ΔVSFの大きいB2の電池は、ΔVSFの小さいA2の電池に比べ大きく過放電状態となる。
【0024】
したがって、直列に接続された複数の電池の過放電状態を軽減するためには、電池A1、A2に示すような電圧変化率dV/dQを小さく抑えることが有効であることがわかる。
【0025】
単電池における電圧変化率dV/dQは正極電位と負極電位の差によって与えられるが、リチウムニッケル酸化物とリチウムマンガン酸化物の複合正極を用いた電池においては、負極の電圧変化率dV/dQを小さくすることで単電池における電圧変化率を小さく抑えることができる。
【0026】
そこで本発明者らが電池放電終止時の負極の電位変化率と組電池の過放電、サイクル劣化との関係について詳細に検討を重ねた結果、負極活物質として所定の方法にて充放電を行った場合の負極の放電電位変化率が20mV/(mAh/g)以下であるものを用いた場合、特に組電池の過放電、サイクル劣化を効果的に抑制することができることを確認した。
【0027】
すなわち、一般に負極活物質の作動電位である、0.5(VvsLi/Li+)以下の電位領域において、常に放電電位変化率が20mV/(mAh/g)以下となるような負極を使用すればよい。
【0028】
ただし、できるだけエネルギー密度の大きな電池を実現するためには、電池の正負極容量バランスを適正とすることは不可欠である。従って、負極活物質には負極自体の放電末期の電位変化率が小さいことが特に要求される。例えば黒鉛などは平坦な放電曲線を持っているが、放電末期には急激に電位が立ち上がり、通常負極の放電終止電位に設定される負極放電電位0.5(VvsLi/Li+)程度の時には放電電位変化率が20mV/(mAh/g)を超えてしまい、上記条件を満たさない。
【0029】
このような条件を満たす負極活物質としては、例えば難黒鉛化性炭素材料や易黒鉛化性炭素材料のような非黒鉛材料が挙げられる。しかし、非黒鉛材料は一般に不可逆容量が大きく、密度が小さいなどの欠点を持っている。そのため、非黒鉛性炭素材料と黒鉛を混合することにより、黒鉛単体と比較して密度を著しく低下させること無く、不可逆容量の増加を抑えて、混合比によって放電末期の電位変化率を任意に設計した負極を得ることが可能となる。
【0030】
【発明の実施の形態】
以下、本発明に係る非水電解質二次電池を、図2を参照して説明する。
【0031】
図2は、円筒型非水電解液二次電池の右半分を断面的に示した図面である。
【0032】
電極群5は、正極2、セパレータ3および負極4を積層した帯状物を渦巻き状に捲回した構造になっている。前記電極群5は、例えばステンレスからなる有底円筒状の容器1内に収納され、例えばポリプロピレン製の中空円筒状の電極群押さえ12により固定されている。前記セパレータ3は、例えば不織布、ポリプロピレン微多孔フィルム、ポリエチレン微多孔フィルム、ポリエチレン−ポリプロピレン微多孔積層フィルムから形成される。
【0033】
前記容器1は上部に封口板9を溶接されて密閉され、内部に電解液が収容されている。前記封口板9の開口部には安全弁10が溶接され、正極端子8は前記封口版9に例えばハーメチックシール11により固定されている。正極集電リード6の一端は、前記正極2に、他端は前記正極端子8にそれぞれ接続されている。前記負極4は、負極集電リード7を介して負極端子である前記容器1に接続されている。
【0034】
次に、前記正極2、負極4及び非水電解液等について説明する。
【0035】
1)正極2
正極2は、リチウムニッケル複合酸化物、およびスピネル型リチウムマンガン酸化物を含有する混合物からなる正極活物質を具備するものであれば特に限定されず、既知の構成のものが使用できる。
【0036】
前記リチウムニッケル複合酸化物としては、組成式LiNiO2で示される複合酸化物、あるいはLiNiO2のリチウム、ニッケルあるいは酸素の一部を適当な元素で置換した複合酸化物、さらにはリチウム、ニッケルおよび酸素の比率を適当な値に変化させたものが使用できる。
【0037】
特に、組成式Li1 xNi1-x-yy(O2-zz)(但し、前記Mは硼素、ニオブ、およびアルミニウムから選ばれる少なくとも1種の元素、前記x、yは(z+0.05)/2≦x<(z+1)/3、かつ0<x+y≦0.5、かつ0≦z<0.66を示す)で表されるリチウムニッケル複合金属酸化物、あるいは、LiNi1-x-yCoxyO2(但し、前記Mは アルミニウム、硼素およびニオブから選ばれる少なくとも1種の元素、前記x、yは0<x≦0.5、0<y<0.5、かつ0<x+y≦0.5を示す)で表されるリチウムニッケル複合酸化物は安全性が高く、電池の容量を大きくできる点で好ましい。
【0038】
より具体的には、Li1.075Ni0.755Co0.171.90.1、Li1.10Ni0.74Co0.161.850.15、Li1.075Ni0.705Co0.17Al0.051.90.1、Li1.10Ni0.72Co0.16Nb0.021.850.15や、LiNi0.795Co0.1750.032、LiNi0.795Co0.175Nb0.032、LiNi0.725Co0.17Nb0.022 等を挙げることができる。
前記スピネル型リチウムマンガン酸化物としては、具体的には、Li1+aMn2-a4、Li1+aMn2-a-bCob4、Li1+aMn2-a-bAlb4、Li1+aMn2-a-bFeb4、Li1+aMn2-a-bMgb4、Li1+aMn2-a-bTib4、Li1+aMn2-a-bNbb4、Li1+aMn2-a-bGeb4等を挙げることができる(前記aは0<a、かつ2>a+bを示す)。
【0039】
前記正極活物質においては、リチウムニッケル複合金属酸化物の割合が60重量%以上80重量%未満であることが好ましい。
【0040】
前記リチウム複合酸化物の粒径は、レーザー回折式粒度分布計(マイクロトラックHRA粒度分布計:Leeds&Northup 社製)による累積平均径DN50の値が5μmから50μmの範囲にあることが好ましい。
【0041】
また、前記スピネル型リチウムマンガン酸化物の累積平均径DM50の値は、1μmから30μmの範囲にあることが好ましい。
【0042】
このような構成とすることにより、安全性と容量特性のバランスに優れた非水電解質二次電池を構成することができる。
【0043】
前記正極2は、例えば前記正極活物質、導電剤および結着剤を適当な溶媒に分散させて得られる正極材ペーストを集電体の片側、もしくは両面に塗布することにより作製できる。
【0044】
前記正極層の片面あたりの正極活物質の塗布量としては、80g/m2から200g/m2の範囲にすることが好ましい。このような構成とすることにより、安全性と容量特性のバランスに優れ、かつ高出力特性の非水電解質二次電池を得ることができる。前記正極層の片面あたりの重量は、さらに好ましくは100g/m2から150g/m2である。
【0045】
前記導電剤としては、例えばアセチレンブラック、グラファイト、カーボンブラック等を挙げることができる。
【0046】
前記結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−テトラフルオロエチレン−6フッ化プロピレンの3元共重合体、エチレン−プロピレン−ジエン共重合体(EPDM)等を用いることができる。中でも、ポリフッ化ビニリデン(PVdF)は、基板との密着性および活物質どうしの結着性に優れるため好ましい。
【0047】
前記結着剤を分散させるための有機溶媒としては、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)等が使用される。
【0048】
前記結着剤の配合量は、前記正極活物質100重量部(前記導電剤を含む場合には導電剤も合わせて100重量部)に対して2重量部〜20重量部の範囲にすることが好ましい。
【0049】
前記導電剤の配合量は、前記正極活物質100重量部に対して0重量部〜18重量部の範囲にすることが好ましい。
【0050】
前記有機溶媒の配合量は、前記正極活物質100重量部(前記導電剤を含む場合には導電剤も合わせて100重量部)に対して65重量部〜150重量部の範囲にすることが好ましい。
【0051】
前記集電体としては、厚さが15μm〜35μmのアルミニウム箔、アルミニウム製メッシュ、アルミニウム製パンチドメタル、アルミニウム製ラスメタル、ステンレス箔、チタン箔などを挙げることができる。
【0052】
2)負極4
この負極4は、例えば負極活物質、導電剤及び結着剤からなる負極合剤5bを適当な溶媒に懸濁して混合し、塗液したものを集電体の片面もしくは両面に塗布し、乾燥することにより形成される。
【0053】
本発明に係る負極活物質は、非黒鉛の炭素材料と黒鉛の混合物を含有する。
【0054】
非黒鉛の炭素材料としては例えばコークス、炭素繊維、熱分解気相炭素物、樹脂焼成体、などが挙げられ、X線回折法で求められる(002)面の面間隔が0.34nm以上の炭素材料が放電容量が大きいため好ましい。
【0055】
黒鉛としては天然黒鉛の他にメソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボン等が挙げられ、X線回折法で求められる(002)面の面間隔が0.34nm以下である繊維状炭素材料であることが好ましい。
【0056】
非黒鉛の炭素材料と黒鉛との比率は、正極活物質のリチウムニッケル複合酸化物、およびスピネル型リチウムマンガン酸化物の比率、すなわち電池の放電終了電圧によって異なるが、電池の放電が行われる間の負極の放電電位変化率が20mV/(mAh/g)となるような比率にすることが好ましい。
【0057】
なお、通常負極の放電変化率は放電が進むに連れて急峻になることから放電終止電圧において放電電圧変化率が20mV/(mAh/g)となるように負極活物質の混合比を調整すればよい。
【0058】
たとえば、負極の放電終止電位を0.5(VvsLi/Li+)とすると、負極活物質においては、非黒鉛性炭素材料の割合を10重量%以上とすることが好ましい。
【0059】
また、黒鉛の比率が少なすぎると電池容量が低下するため、非黒鉛性炭素材の比率を60重量%以下とすることが望ましい。
【0060】
前記炭素材は負極5を作製した状態で、片面当たりの塗布量として30〜100g/m2の範囲にすることが好ましい。
【0061】
このような構成とすることにより、放電末期の負極電位変化率が過放電抑制に適したものとなり、かつ不可逆容量も低減された非水電解質二次電池を構成することができる。
【0062】
前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
【0063】
前記負極材料、結着剤の配合割合は、負極材料80〜98重量%、結着剤2〜20重量%の範囲であることが好ましい。
【0064】
前記集電体としては、厚さが10μm〜35μmの銅箔、銅製メッシュ、銅製パンチドメタル、銅製ラスメタル、ステンレス箔、ニッケル箔などを用いることができる。
【0065】
前記セパレータ3としては、例えば不織布、ポリプロピレン微多孔フィルム、ポリエチレン微多孔フィルム、ポリエチレン−ポリプロピレン微多孔積層フィルム、多孔性の紙等を用いることができる。
【0066】
3)非水電解液
前記非水電解液は非水溶媒に電解質を溶解した組成を有する。
【0067】
前記非水溶媒としては、例えばプロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネート、例えばジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、などの鎖状カーボネート、1,2−ジメトキシエタン(DME)、ジエトキシエタン(DEE)などの鎖状エーテル、テトラヒドロフラン(THF)や2−メチルテトラヒドロフラン(2−MeTHF)などの環状エーテルやクラウンエーテル、γ−ブチロラクトン(γ−BL)などの脂肪酸エステル、アセトニトリル(AN)などの窒素化合物、スルホラン(SL)やジメチルスルホキシド(DMSO)などの硫黄化合物などから選ばれる少なくとも1種を用いることができる。
【0068】
中でも、EC、PC、γ−BLから選ばれる少なくとも1種からなるものや、EC、PC、γ−BLから選ばれる少なくとも1種とDMC、MEC、DEC、DME、DEE、THF、2−MeTHF、ANから選ばれる少なくとも1種とからなる混合溶媒を用いることが望ましい。また、負極に前記リチウムイオンを吸蔵・放出する炭素質物を含むものを用いる場合に、前記負極を備えた二次電池のサイクル寿命を向上させる観点から、ECとPCとγ−BL、ECとPCとMEC、ECとPCとDEC、ECとPCとDEE、ECとAN、ECとMEC、PCとDMC、PCとDEC、またはECとDECからなる混合溶媒を用いることが望ましい。
【0069】
前記電解質としては、例えば過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF4)、ホウフッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、四塩化アルミニウムリチウム(LiAlCl4)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]などのリチウム塩を挙げることができる。中でもLiPF6 LiBF4、LiN(CF3SO22を用いると、導電性や安全性が向上されるために好ましい。
【0070】
前記電解質の前記非水溶媒に対する溶解量は、0.5モル/L〜1.5モル/Lの範囲にすることが好ましい。
【0071】
図3に非水電解液二次電池を直列に接続した組電池の概略図を示す。
【0072】
図2に示すような非水電解液二次電池の単電池を複数個準備し、各単電池の正極端子8と負極端子(容器1)とを導体20で接続した組電池とすることで、大電圧を要する電気機器への対応が可能になる。
【0073】
【実施例】
以下に、本発明の実施例について具体的に説明する。
【0074】
<電池作製>
実施例1
リチウムニッケル酸化物としてLiNi0.711Co0.206Al0.0832(DN50=13μm)を、スピネル型マンガン酸化物としてLi 1.06 Mn 1.94 O4(N50=15μm)を用いた。
【0075】
まず、前記リチウムニッケル酸化物と前記スピネル型マンガン酸化物を、ボールミルを用いて、リチウムニッケル酸化物70%、スピネル型マンガン酸化物30%の配合比(重量比)で混合した。得られた混合物100重量部に対し、導電剤としてのアセチレンブラック5重量部および燐片状黒鉛(人造黒鉛)5重量部を加えて再び混合し正極合剤を作製した。この正極合剤を、結着剤としてポリフッ化ビニリデン5重量部をN−メチル−2−ピロリドンに溶解させた溶液に分散させ正極材ペーストを調製した。これを集電体としてのアルミニウム箔の両面に塗布し、乾燥後、圧延して正極を作製した。
【0076】
一方、メソフェーズピッチ炭素繊維を黒鉛化した繊維状黒鉛(MCF)50%と樹脂を低温焼成して得られた難黒鉛化性炭素(HC)50%(重量比)を混合して負極活物質とした。負極活物質100重量部に対し、ポリフッ化ビニリデン5重量部からなる混合物をN−メチルピロリドンに分散させてペースト状にした後、集電体基板である銅箔の両面に塗布し、乾燥後、ロールプレスを行い負極を作製した。
【0077】
前記正極、ポリエチレン製多孔質フィルムからなるセパレータおよび前記負極を積層した後、渦巻き状に捲回して電極群を作製した。
【0078】
電解液としては、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)の混合溶媒(混合体積比1:2)に、六フッ化リン酸リチウム(LiPF6)を1mol/l溶解したものを使用し、前記電極群および前記電解液をステンレス製の有底円筒状容器内にそれぞれ収納し、円筒形リチウムイオン二次電池(φ35mm×65mm)を50個組み立てた。
【0079】
つづいて、作製した単電池をそれぞれ4.2V、1.2Aの定電圧定電流で8時間充電し、次に0.8Aの定電流で3Vになるまで放電し、各単電池の放電容量を求めた。50個の単電池を放電容量順に順位付けし、放電容量の大きい方から5個、小さい方から5個は除き、残った40個を容量順に4個づつ組電池化することにより、容量ばらつきのできるだけ小さい4本直列の組電池を10組作製した。
【0080】
実施例2
負極活物質として、メソフェーズピッチ炭素繊維を黒鉛化した繊維状黒鉛(MCF)70%と樹脂を低温焼成して得られた難黒鉛化性炭素(HC)30%(重量比)を混合したものを用い、以下実施例1と同様にして円筒形リチウムイオン二次電池(φ35mm×65mm)を50個組み立て、4本直列の組電池10組を作製した。
【0081】
実施例3
負極活物質として、メソフェーズピッチ炭素繊維を黒鉛化した繊維状黒鉛(MCF)90%と樹脂を低温焼成して得られた難黒鉛化性炭素(HC)10%(重量比)を混合したものを用い、以下実施例1と同様にして円筒形リチウムイオン二次電池(φ35mm×65mm)を50個組み立て、4本直列の組電池10組を作製した。
【0082】
比較例1
負極活物質として、メソフェーズピッチ炭素繊維を黒鉛化した繊維状黒鉛(MCF)を用い、以下実施例1と同様にして円筒形リチウムイオン二次電池(φ35mm×65mm)を50個組み立て、4本直列の組電池10組を作製した。
【0083】
比較例2
負極活物質として燐片状黒鉛(人造黒鉛)を用い、以下実施例1と同様にして円筒形リチウムイオン二次電池(φ35mm×65mm)を50個組み立て、4本直列の組電池10組を作製した。
【0084】
比較例3
負極活物質として、樹脂を低温焼成して得られた難黒鉛化性炭素(HC)を用い、以下実施例1と同様にして円筒形リチウムイオン二次電池(φ35mm×65mm)を50個組み立て、4本直列の組電池10組を作製した。
【0085】
<負極活物質の放電特性評価>
まず、実施例1〜3及び比較例1〜3に用いた負極活物質の放電特性を評価した。
【0086】
負極活物質50mgを含む負極と、対極として金属Liを用い、電解液にはエチレンカーボネートとメチルエチルカーボネートを1:2の割合で混合した溶媒にLiPF6を1mol/lの濃度で溶解した、電池に使用したものと同じ電解液を用いて単極評価用セルを作製した。このセルを負極電位が10 mVに達するまで5mAの定電流(100mA/g)で充電し、その後充電時間の合計が8時間になるまで10mVに保持し、初充電とした。つぎに30分の休止時間の後、5mAの定電流で負極電位が0.5Vに達するまで放電した。
【0087】
負極電位が0.5Vに達した時点での負極放電電位の変化率をそれぞれの実施例及び比較例の負極について求めた。この結果を表1に示す。実施例1〜3、および比較例3については、放電電位変化率が20mV/(mAh/g)以下という条件を満たした。比較例1及び2については放電電位変化率は20mV/(mAh/g)を超える値を示した。
【表1】

Figure 0003705728
<組電池のサイクル特性評価>
作製した実施例1〜3及び比較例1〜3で得られた各組電池について、サイクル試験を実施した。
【0088】
充電は、単電池の容量確認試験によって得られている放電容量を1時間で放電する際の電流値(1C)で16.8Vまで行った後、16.8Vの定電圧で保持し、計3時間行った。放電は、1C定電流で行い、放電終止電圧は12Vとした。充電、放電の後の休止時間はそれぞれ30分間とした。このような充放電を繰り返し行い、各サイクル毎に放電容量を測定した。また、放電終止時には組電池を構成する各4本の単電池の電圧をそれぞれ測定し、ばらつきを調べた。
【0089】
そして、サイクル数が300サイクルに達した時の放電容量と1サイクル目の放電容量の比、すなわち、(100サイクル目の放電容量)/(1サイクル目の放電容量)を容量維持率として求めた。単電池の容量確認試験結果及び組電池のサイクル特性評価結果を表2に示す。
【表2】
Figure 0003705728
表1及び表2から明らかなように、負極の放電電圧が1V時の負極放電電圧変化率が20mV/(mAh/g)以上の値を示す比較例1及び2では、組電池の放電終止電圧を12.0Vとした時の各単電池電圧のばらつきが1.7V及び1.5Vと著しく大きくなり、一部の単電池が過放電状態となっていることが確認され、300サイクル後の容量維持率は70%以下という低い値となった。
【0090】
一方、充電状態から放電電位が0.5(VvsLi/Li+)になるまで、負極放電電位変化率が20mV/(mAh/g)以下の値を示す実施例1から4においては、組電池の放電終止電圧を12.0Vとした時の各単電池電圧のばらつきは1V以下であり、過放電が抑制された。これら実施例における300サイクル後の容量維持率は最低でも79%であり、優れた値を示した。
【0091】
また、負極活物質として難黒鉛化性炭素(HC)100%を使用した比較例3などと比較し、難黒鉛化性炭素(HC)とメソフェーズピッチ炭素繊維を黒鉛化した繊維状黒鉛(MCF)の混合比を30:70とした実施例2、10:90とした実施例3では初期容量、初期効率などの電池の初期特性でも優れた値を示すことが確認された。
【0092】
なお、前述した実施例においては、円筒形非水電解液二次電池に適用した例を説明したが、ラミネートフィルムからなる外装材の内部に正極、負極、セパレータ及び非水電解液が収納された構造の薄型非水電解質二次電池にも同様に適用することができる。
【0093】
【発明の効果】
本発明の非水電解液二次電池によれば、高容量、安全性の高い正極活物質を使用し、組電池として使用してもサイクル劣化を低減させることが可能になる。
【図面の簡単な説明】
【図1】 直列接続時の各単電池の放電特性を示す図。
【図2】 本発明に係わる円筒形非水電解質二次電池を示す図。
【図3】 本発明の非水電解液二次電池の組電池を示す図。
【符号の説明】
1・・・容器
2・・・ 正極
3・・・セパレータ
4・・・負極
5・・・電極群
6・・・正極集電リード
7・・・負極集電リード
8・・・正極端子
9・・・封口板
10・・・安全弁
11・・・ハーメチックシール
12・・・電極群押さえ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, and in particular, a non-aqueous electrolyte suitable for use as an assembled battery by connecting in series a non-aqueous electrolyte secondary battery using a mixture of two positive electrode active materials as a positive electrode. The present invention relates to a liquid secondary battery.
[0002]
[Prior art]
In recent years, portable personal computers and cordless devices have spread rapidly, and social interest in electric vehicles has been increasing in order to reduce air pollution. As those power sources, inexpensive and high-performance secondary batteries are required, and assembled batteries formed by connecting a plurality of single cells are used in order to cope with necessary voltages and currents.
[0003]
As such a secondary battery, a non-aqueous electrolyte secondary battery using a substance capable of inserting and extracting lithium ions as a positive electrode and a negative electrode material has been developed and has already been put into practical use as a power source for small electronic devices. Lithium cobalt composite oxide is widely used as the positive electrode material of this non-aqueous electrolyte secondary battery, and graphite is widely used as the negative electrode material. However, in response to the increasing demand for non-aqueous electrolyte secondary batteries, lithium cobalt composite oxide as a positive electrode material is expensive because it uses cobalt as a raw material, and the amount of resources is not sufficient. For this reason, spinel type lithium manganese oxide, lithium nickel composite oxide, etc. are proposed as an alternative material, and research is actively performed.
[0004]
It is known that spinel type lithium manganese oxide is particularly inexpensive and has high safety, but since the discharge capacity per unit weight is small and the bulk density is small compared to lithium cobalt oxide, There exists a fault that the energy density as a battery will become small.
[0005]
On the other hand, the lithium nickel composite oxide has a large discharge capacity per unit weight compared to the lithium cobalt composite oxide, and a high energy density battery can be realized. On the other hand, the thermal stability at high temperature is small in the charged state, When the battery temperature rises due to an internal short circuit or the like, the positive electrode thermal decomposition reaction may proceed rapidly.
[0006]
In order to solve the above problems, a positive electrode using a mixture of two kinds of composite oxides such as a lithium nickel composite oxide and a spinel type lithium manganese oxide as a positive electrode active material has been proposed ( JP-A-9-180718). This proposal is expected as a method for obtaining a relatively safe positive electrode that is inexpensive and has a large discharge capacity compared to a positive electrode using a lithium cobalt composite oxide.
[0007]
However, the discharge end voltage normally set in the lithium nickel composite oxide is 2.7 V to 3.0 V, whereas the spinel type lithium manganese oxide is overdischarged in a voltage region of 3.0 V or less. Therefore, in the positive electrode that combines both, the discharge end voltage is set optimally according to the composition of the positive electrode in order to use nearly 100% of the discharge capacity and not to fall into an overdischarge state. Therefore, it is necessary to take a charge / discharge method controlled accurately.
[0008]
However, in a positive electrode using a mixture of two types of positive electrode active materials having different discharge end voltages, the capacity variation of each battery occurs depending on the dispersion state of the two types of active materials even if the mixture is prepared with the same composition ratio. As a result, when used as an assembled battery in which individual batteries are connected in series, a specific unit cell tends to be in an overdischarged state, which causes a problem that the cycle characteristics of the assembled battery are further deteriorated.
[0009]
As a method for avoiding this, there is a method of selecting a combination having no capacity variation as each unit cell constituting the assembled battery. However, it is impossible to select cells that have no capacity variation. Even if there is no capacity variation at the time of manufacture, the cycle deterioration rate of each battery is not always the same. It is not realistic to completely suppress overdischarge.
[0010]
As another method, there is a method in which the voltage of all the unit cells constituting the assembled battery is measured, and the discharge of the entire assembled battery is stopped so that each unit cell does not fall into an overdischarged state. However, this method is difficult to realize when the number of batteries of the assembled battery increases, leading to a significant increase in the cost of the entire assembled battery and a decrease in energy density, and lithium nickel oxide and lithium manganese oxide. There is a problem that the advantages of high capacity and low cost are offset by using the mixed positive electrode.
[0011]
[Problems to be solved by the invention]
As described above, the non-aqueous electrolyte secondary battery using a mixture of two types of positive electrode active materials for the positive electrode is excellent in terms of battery capacity and safety, but has variations in individual battery capacities, When a plurality of unit cells are connected in series to form an assembled battery, a specific unit cell is overdischarged, resulting in a problem that the cycle characteristics of the assembled battery are degraded.
[0012]
The present invention has been made in view of such problems, and is a battery that uses a positive electrode active material mixture that can be increased in capacity and is highly safe when used as an assembled battery. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery having good cycle characteristics.
[0013]
[Means for Solving the Problems]
  The nonaqueous electrolyte secondary battery of the present invention comprises a positive electrode comprising a positive electrode active material comprising a mixture containing a lithium nickel composite oxide and a spinel type lithium manganese oxide, and a non-aqueous electrolyte of 10 wt% to 60 wt%. From graphite carbon material and carbon material mixture consisting of graphiteAnd the operating potential is 0.5 (VvsLi / Li + ) The discharge potential change rate is 20 mV / (mAh / g) or less in the following potential regions.A plurality of single cells each including the positive electrode active material and the negative electrode active material having the same composition ratio, each including a negative electrode having a negative electrode active material and the positive electrode and a non-aqueous electrolyte sandwiched between the negative electrode in series. It is characterized by being connected to.
[0014]
  Another non-aqueous electrolyte secondary battery of the present invention is the non-aqueous electrolyte secondary battery, wherein the negative electrode active material is 10% by weight or more and 50% by weight or less non-graphitizable carbon, and a graphitized mesophase pitch. It is a carbon material mixture made of carbon fiber.
[0015]
The non-aqueous electrolyte secondary battery of the present invention uses a positive electrode active material made of a mixture containing lithium nickel composite oxide and spinel type lithium manganese oxide for the positive electrode, thereby increasing battery capacity and safety. It is possible to increase.
[0016]
In addition, since the negative electrode active material used for the negative electrode contains graphite, the battery capacity can be increased.
[0017]
On the other hand, a unit cell using a positive electrode active material made of a mixture as a positive electrode tends to vary in the battery capacity of each cell, and when this unit cell is connected in series to form an assembled battery, a specific battery is excessive. It becomes easy to be in a discharged state, and as a result, the cycle characteristics of the assembled battery are significantly deteriorated.
[0018]
In the present invention, by adding graphite to the negative electrode active material, the battery capacity is increased, and by adding a non-graphitic active material to reduce the discharge change rate of the negative electrode, power charged in the assembled battery is wasted. Can be used and the overdischarge state of each unit cell can be reduced.
[0019]
This will be described with reference to the drawings.
[0020]
FIG. 1 is a diagram showing changes in discharge of batteries when two cells A1 and A2 having variations in discharge characteristics are connected in series and B1 and B2 are connected in series (A1 and B1). Is a battery created as designed, and A2 and B2 are batteries with variations.
[0021]
In an assembled battery in which a plurality of cells are connected in series, the cell discharge end voltage when the amount of electricity Q is discharged at the time of battery design is expressed as Vscience fictionWhen the difference from the actual discharge capacity of each obtained unit cell (variation in discharge capacity of each unit cell) is ΔQ, and the rate of change in voltage at the end of discharge of the ΔQ unit cell is dV / dQ, Vscience fictionAnd the actual discharge end voltage of each unit cell (variation in discharge end voltage of each battery) ΔVscience fictionIs represented by equation (1).
[0022]
ΔVscience fiction= DV / dQ × ΔQ (1)
As illustrated, in the batteries A1 and A2 having a small voltage change rate, the discharge end voltage variation ΔVscience fictionIn the batteries B1 and B2 having a small A and a large voltage change rate, the discharge end voltage variation ΔVscience fictionYou can see that B is large.
[0023]
For example, Vscience fictionIn the case of a battery designed to be overdischarged atscience fictionB2 battery with a largescience fictionCompared to the A2 battery with a small A2, the battery is overdischarged.
[0024]
Therefore, it can be seen that it is effective to reduce the voltage change rate dV / dQ as shown in the batteries A1 and A2 in order to reduce the overdischarge state of the plurality of batteries connected in series.
[0025]
The voltage change rate dV / dQ in a single battery is given by the difference between the positive electrode potential and the negative electrode potential. In a battery using a composite positive electrode of lithium nickel oxide and lithium manganese oxide, the voltage change rate dV / dQ of the negative electrode is By making it small, the voltage change rate in a single cell can be suppressed small.
[0026]
Therefore, as a result of repeated detailed studies on the relationship between the rate of change in potential of the negative electrode at the end of battery discharge and the overdischarge and cycle deterioration of the assembled battery, the present inventors performed charging and discharging as a negative electrode active material by a predetermined method. It was confirmed that overdischarge and cycle deterioration of the assembled battery can be effectively suppressed especially when the negative electrode has a discharge potential change rate of 20 mV / (mAh / g) or less.
[0027]
That is, it is generally 0.5 (VvsLi / Li, which is the operating potential of the negative electrode active material.+) A negative electrode whose discharge potential change rate is always 20 mV / (mAh / g) or less may be used in the following potential region.
[0028]
However, in order to realize a battery having as high an energy density as possible, it is essential to have a proper balance between the positive and negative electrode capacities of the battery. Accordingly, the negative electrode active material is particularly required to have a small potential change rate at the end of discharge of the negative electrode itself. For example, graphite and the like have a flat discharge curve, but the potential suddenly rises at the end of discharge, and the negative electrode discharge potential of 0.5 (VvsLi / Li), which is normally set to the discharge end potential of the negative electrode.+), The discharge potential change rate exceeds 20 mV / (mAh / g), which does not satisfy the above conditions.
[0029]
Examples of the negative electrode active material satisfying such conditions include non-graphite materials such as non-graphitizable carbon materials and graphitizable carbon materials. However, non-graphite materials generally have drawbacks such as large irreversible capacity and low density. Therefore, by mixing non-graphitic carbon material and graphite, the increase in irreversible capacity is suppressed without significantly reducing the density compared to graphite alone, and the potential change rate at the end of discharge is arbitrarily designed by the mixing ratio It becomes possible to obtain a negative electrode.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the nonaqueous electrolyte secondary battery according to the present invention will be described with reference to FIG.
[0031]
FIG. 2 is a cross-sectional view of the right half of the cylindrical nonaqueous electrolyte secondary battery.
[0032]
The electrode group 5 has a structure in which a strip-like material in which the positive electrode 2, the separator 3, and the negative electrode 4 are laminated is wound in a spiral shape. The electrode group 5 is housed in a bottomed cylindrical container 1 made of stainless steel, for example, and is fixed by a hollow cylindrical electrode group presser 12 made of polypropylene, for example. The separator 3 is formed of, for example, a nonwoven fabric, a polypropylene microporous film, a polyethylene microporous film, or a polyethylene-polypropylene microporous laminated film.
[0033]
The container 1 is hermetically sealed with a sealing plate 9 welded to the top, and an electrolyte is accommodated therein. A safety valve 10 is welded to the opening of the sealing plate 9, and the positive terminal 8 is fixed to the sealing plate 9 with a hermetic seal 11, for example. One end of the positive electrode current collecting lead 6 is connected to the positive electrode 2, and the other end is connected to the positive electrode terminal 8. The negative electrode 4 is connected to the container 1 which is a negative electrode terminal via a negative electrode current collecting lead 7.
[0034]
Next, the positive electrode 2, the negative electrode 4, the non-aqueous electrolyte and the like will be described.
[0035]
1) Positive electrode 2
The positive electrode 2 is not particularly limited as long as it includes a positive electrode active material made of a mixture containing a lithium nickel composite oxide and a spinel type lithium manganese oxide, and a known structure can be used.
[0036]
The lithium nickel composite oxide includes a composition formula LiNiO.2Or a composite oxide represented by LiNiO2A composite oxide obtained by substituting a part of lithium, nickel, or oxygen with an appropriate element, or a composition in which the ratio of lithium, nickel, and oxygen is changed to an appropriate value can be used.
[0037]
In particular, the composition formula Li1 - xNi1-xyMy(O2-zFz(Wherein M is at least one element selected from boron, niobium, and aluminum, x and y are (z + 0.05) / 2 ≦ x <(z + 1) / 3, and 0 <x + y ≦ 0. 5 and 0 ≦ z <0.66) or LiNi1-xyCoxMyO2 (wherein M is at least one element selected from aluminum, boron and niobium, x and y are 0 <x ≦ 0.5, 0 <y <0.5, and 0 <x + y ≦ 0.5. Lithium nickel composite oxide represented by (2) is preferable in that it has high safety and can increase the capacity of the battery.
[0038]
More specifically, Li1.075Ni0.755Co0.17O1.9F0.1, Li1.10Ni0.74Co0.16O1.85F0.15, Li1.075Ni0.705Co0.17Al0.05O1.9F0.1, Li1.10Ni0.72Co0.16Nb0.02O1.85F0.15LiNi0.795Co0.175B0.03O2, LiNi0.795Co0.175Nb0.03O2, LiNi0.725Co0.17Nb0.02O2 Etc.
As the spinel type lithium manganese oxide, specifically, Li1 + aMn2-aOFour, Li1 + aMn2-abCobOFour, Li1 + aMn2-abAlbOFour, Li1 + aMn2-abFebOFour, Li1 + aMn2-abMgbOFour, Li1 + aMn2-abTibOFour, Li1 + aMn2-abNbbOFour, Li1 + aMn2-abGebOFour(Wherein a represents 0 <a and 2> a + b).
[0039]
In the positive electrode active material, the proportion of the lithium nickel composite metal oxide is preferably 60% by weight or more and less than 80% by weight.
[0040]
The particle size of the lithium composite oxide is a cumulative average diameter D measured by a laser diffraction particle size distribution meter (Microtrac HRA particle size distribution meter: manufactured by Lees & Northup).N50Is preferably in the range of 5 μm to 50 μm.
[0041]
The cumulative average diameter D of the spinel type lithium manganese oxideM50The value of is preferably in the range of 1 μm to 30 μm.
[0042]
By setting it as such a structure, the nonaqueous electrolyte secondary battery excellent in the balance of safety | security and a capacity | capacitance characteristic can be comprised.
[0043]
The positive electrode 2 can be produced, for example, by applying a positive electrode material paste obtained by dispersing the positive electrode active material, a conductive agent and a binder in an appropriate solvent to one side or both sides of a current collector.
[0044]
The coating amount of the positive electrode active material per one side of the positive electrode layer is 80 g / m.2To 200g / m2It is preferable to be in the range. By adopting such a configuration, it is possible to obtain a non-aqueous electrolyte secondary battery having an excellent balance between safety and capacity characteristics and high output characteristics. The weight per one side of the positive electrode layer is more preferably 100 g / m.2To 150 g / m2It is.
[0045]
Examples of the conductive agent include acetylene black, graphite, and carbon black.
[0046]
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyvinylidene fluoride-tetrafluoroethylene-6-propylene terpolymer, ethylene-propylene-diene copolymer ( EPDM) or the like can be used. Among these, polyvinylidene fluoride (PVdF) is preferable because of excellent adhesion to the substrate and binding property between the active materials.
[0047]
As an organic solvent for dispersing the binder, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) or the like is used.
[0048]
The blending amount of the binder should be in the range of 2 parts by weight to 20 parts by weight with respect to 100 parts by weight of the positive electrode active material (100 parts by weight including the conductive agent when the conductive agent is included). preferable.
[0049]
The blending amount of the conductive agent is preferably in the range of 0 to 18 parts by weight with respect to 100 parts by weight of the positive electrode active material.
[0050]
The amount of the organic solvent is preferably in the range of 65 parts by weight to 150 parts by weight with respect to 100 parts by weight of the positive electrode active material (100 parts by weight including the conductive agent when the conductive agent is included). .
[0051]
Examples of the current collector include an aluminum foil having a thickness of 15 μm to 35 μm, an aluminum mesh, an aluminum punched metal, an aluminum lath metal, a stainless steel foil, and a titanium foil.
[0052]
2) Negative electrode 4
The negative electrode 4 is prepared by suspending and mixing a negative electrode mixture 5b made of, for example, a negative electrode active material, a conductive agent, and a binder in an appropriate solvent, and applying the applied liquid on one or both sides of a current collector, followed by drying. It is formed by doing.
[0053]
The negative electrode active material according to the present invention contains a mixture of a non-graphite carbon material and graphite.
[0054]
Non-graphite carbon materials include, for example, coke, carbon fiber, pyrolytic vapor phase carbon, and resin fired body, and carbon having a (002) plane spacing of 0.34 nm or more determined by X-ray diffraction method. A material is preferable because of its large discharge capacity.
[0055]
Graphite includes mesophase pitch-based carbon fiber or mesophase spherical carbon in addition to natural graphite, and is a fibrous carbon material having a (002) plane spacing of 0.34 nm or less determined by X-ray diffraction method. Is preferred.
[0056]
The ratio of the non-graphite carbon material and graphite varies depending on the ratio of the lithium nickel composite oxide of the positive electrode active material and the spinel type lithium manganese oxide, that is, the discharge end voltage of the battery, but during the discharge of the battery The ratio is preferably such that the rate of change in the discharge potential of the negative electrode is 20 mV / (mAh / g).
[0057]
Since the discharge change rate of the negative electrode usually becomes steeper as the discharge progresses, if the mixing ratio of the negative electrode active material is adjusted so that the discharge voltage change rate is 20 mV / (mAh / g) at the discharge end voltage. Good.
[0058]
For example, the discharge end potential of the negative electrode is set to 0.5 (VvsLi / Li+), The proportion of the non-graphitic carbon material is preferably 10% by weight or more in the negative electrode active material.
[0059]
Further, since the battery capacity is reduced when the ratio of graphite is too small, it is desirable that the ratio of non-graphitic carbon material is 60% by weight or less.
[0060]
The carbon material is in a state in which the negative electrode 5 is produced, and the coating amount per side is 30 to 100 g / m.2It is preferable to be in the range.
[0061]
By adopting such a configuration, it is possible to configure a nonaqueous electrolyte secondary battery in which the negative electrode potential change rate at the end of discharge is suitable for overdischarge suppression and the irreversible capacity is also reduced.
[0062]
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR).
[0063]
The mixing ratio of the negative electrode material and the binder is preferably in the range of 80 to 98% by weight of the negative electrode material and 2 to 20% by weight of the binder.
[0064]
As the current collector, a copper foil having a thickness of 10 μm to 35 μm, a copper mesh, a copper punched metal, a copper lath metal, a stainless steel foil, a nickel foil, or the like can be used.
[0065]
As the separator 3, for example, a nonwoven fabric, a polypropylene microporous film, a polyethylene microporous film, a polyethylene-polypropylene microporous laminated film, porous paper, or the like can be used.
[0066]
3) Non-aqueous electrolyte
The non-aqueous electrolyte has a composition in which an electrolyte is dissolved in a non-aqueous solvent.
[0067]
Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), for example, chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC). Chain ethers such as 1,2-dimethoxyethane (DME) and diethoxyethane (DEE), cyclic ethers and crown ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-MeTHF), γ-butyrolactone (γ- At least one selected from fatty acid esters such as BL), nitrogen compounds such as acetonitrile (AN), sulfur compounds such as sulfolane (SL) and dimethyl sulfoxide (DMSO), and the like can be used.
[0068]
Among these, at least one selected from EC, PC, and γ-BL, at least one selected from EC, PC, and γ-BL and DMC, MEC, DEC, DME, DEE, THF, 2-MeTHF, It is desirable to use a mixed solvent composed of at least one selected from AN. Moreover, when using what contains the carbonaceous material which occludes / releases the said lithium ion for a negative electrode, from a viewpoint of improving the cycle life of the secondary battery provided with the said negative electrode, EC and PC, (gamma) -BL, EC and PC It is desirable to use a mixed solvent composed of EC and MEC, EC and PC and DEC, EC and PC and DEE, EC and AN, EC and MEC, PC and DMC, PC and DEC, or EC and DEC.
[0069]
Examples of the electrolyte include lithium perchlorate (LiClO).Four), Lithium hexafluorophosphate (LiPF)Four), Lithium borofluoride (LiBF)Four), Lithium hexafluoroarsenide (LiAsF)6), Lithium trifluorometasulfonate (LiCF)ThreeSOThree), Lithium aluminum tetrachloride (LiAlCl)Four), Bistrifluoromethylsulfonylimide lithium [LiN (CFThreeSO2)2And the like. Among them, LiPF6 ,LiBFFour, LiN (CFThreeSO2)2Is preferable because conductivity and safety are improved.
[0070]
The amount of the electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 mol / L to 1.5 mol / L.
[0071]
FIG. 3 shows a schematic diagram of an assembled battery in which nonaqueous electrolyte secondary batteries are connected in series.
[0072]
By preparing a plurality of cells of a nonaqueous electrolyte secondary battery as shown in FIG. 2 and making a battery assembly in which the positive electrode terminal 8 and the negative electrode terminal (container 1) of each single cell are connected by a conductor 20, It is possible to handle electrical equipment that requires a large voltage.
[0073]
【Example】
Examples of the present invention will be specifically described below.
[0074]
<Battery fabrication>
Example 1
LiNi as the lithium nickel oxide0.711Co0.206Al0.083O2(DN50= 13μm)Li as spinel-type manganese oxide 1.06 Mn 1.94 O4 (DN50= 15 μm) was used.
[0075]
First, the lithium nickel oxide and the spinel manganese oxide were mixed at a blending ratio (weight ratio) of 70% lithium nickel oxide and 30% spinel manganese oxide using a ball mill. To 100 parts by weight of the obtained mixture, 5 parts by weight of acetylene black as a conductive agent and 5 parts by weight of flake graphite (artificial graphite) were added and mixed again to prepare a positive electrode mixture. This positive electrode mixture was dispersed in a solution prepared by dissolving 5 parts by weight of polyvinylidene fluoride as a binder in N-methyl-2-pyrrolidone to prepare a positive electrode material paste. This was applied to both surfaces of an aluminum foil as a current collector, dried and rolled to produce a positive electrode.
[0076]
On the other hand, 50% fibrous graphite (MCF) obtained by graphitizing mesophase pitch carbon fiber and 50% (weight ratio) non-graphitizable carbon (HC) obtained by low-temperature firing of the resin were mixed with the negative electrode active material. did. After mixing a mixture of 5 parts by weight of polyvinylidene fluoride with N-methylpyrrolidone into a paste form with respect to 100 parts by weight of the negative electrode active material, it was applied to both sides of a copper foil as a current collector substrate, dried, Roll press was performed to produce a negative electrode.
[0077]
After laminating the positive electrode, a separator made of a polyethylene porous film, and the negative electrode, they were wound in a spiral shape to produce an electrode group.
[0078]
As the electrolytic solution, a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (mixing volume ratio 1: 2), lithium hexafluorophosphate (LiPF) is used.6) 1 mol / l dissolved, and the electrode group and the electrolyte solution were respectively stored in a stainless steel bottomed cylindrical container, and 50 cylindrical lithium ion secondary batteries (φ35 mm × 65 mm) were assembled. It was.
[0079]
Subsequently, the produced single cells were charged at a constant voltage and constant current of 4.2 V and 1.2 A for 8 hours, respectively, and then discharged at a constant current of 0.8 A until reaching 3 V. Asked. 50 cells are ranked in the order of discharge capacity, and the remaining 40 batteries are assembled into 4 batteries in order of capacity, except for 5 from the largest discharge capacity and 5 from the smallest. Ten sets of four series batteries as small as possible were produced.
[0080]
Example 2
As a negative electrode active material, a mixture of 70% fibrous graphite (MCF) graphitized mesophase pitch carbon fiber and 30% (weight ratio) non-graphitizable carbon (HC) obtained by low-temperature firing of resin. Then, 50 cylindrical lithium ion secondary batteries (φ35 mm × 65 mm) were assembled in the same manner as in Example 1 to prepare 10 battery packs in series.
[0081]
Example 3
As a negative electrode active material, a mixture of 90% fibrous graphite (MCF) graphitized mesophase pitch carbon fiber and 10% (weight ratio) non-graphitizable carbon (HC) obtained by low-temperature firing of resin Then, 50 cylindrical lithium ion secondary batteries (φ35 mm × 65 mm) were assembled in the same manner as in Example 1 to prepare 10 battery packs in series.
[0082]
Comparative Example 1
As the negative electrode active material, fibrous graphite (MCF) obtained by graphitizing mesophase pitch carbon fibers was used, and 50 cylindrical lithium ion secondary batteries (φ35 mm × 65 mm) were assembled in the same manner as in Example 1 and four in series. 10 sets of assembled batteries were produced.
[0083]
Comparative Example 2
As a negative electrode active material, flake graphite (artificial graphite) is used, and 50 cylindrical lithium ion secondary batteries (φ35 mm × 65 mm) are assembled in the same manner as in Example 1 to prepare 10 battery packs in series. did.
[0084]
Comparative Example 3
As the negative electrode active material, non-graphitizable carbon (HC) obtained by baking the resin at low temperature was used, and 50 cylindrical lithium ion secondary batteries (φ35 mm × 65 mm) were assembled in the same manner as in Example 1 below. Ten sets of four assembled batteries in series were produced.
[0085]
<Evaluation of discharge characteristics of negative electrode active material>
First, the discharge characteristics of the negative electrode active materials used in Examples 1 to 3 and Comparative Examples 1 to 3 were evaluated.
[0086]
A negative electrode containing 50 mg of the negative electrode active material and metal Li as the counter electrode, and LiPF in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a ratio of 1: 2 as the electrolyte solution6Was dissolved at a concentration of 1 mol / l, and a single electrode evaluation cell was produced using the same electrolyte solution used for the battery. This cell was charged with a constant current of 5 mA (100 mA / g) until the negative electrode potential reached 10 mV, and then maintained at 10 mV until the total charging time reached 8 hours, and was initially charged. Next, after a rest time of 30 minutes, the battery was discharged at a constant current of 5 mA until the negative electrode potential reached 0.5V.
[0087]
The rate of change of the negative electrode discharge potential when the negative electrode potential reached 0.5 V was determined for the negative electrodes of the respective examples and comparative examples. The results are shown in Table 1. For Examples 1 to 3 and Comparative Example 3, the condition that the discharge potential change rate was 20 mV / (mAh / g) or less was satisfied. For Comparative Examples 1 and 2, the discharge potential change rate exceeded 20 mV / (mAh / g).
[Table 1]
Figure 0003705728
<Evaluation of cycle characteristics of battery pack>
A cycle test was performed on each assembled battery obtained in Examples 1 to 3 and Comparative Examples 1 to 3.
[0088]
Charging is performed at a constant current of 16.8 V after the discharge capacity obtained by the capacity confirmation test of the single cell is discharged to 16.8 V at the current value (1 C) when discharging in 1 hour. Went for hours. Discharging was performed at a constant current of 1 C, and the final discharge voltage was 12V. The rest time after charging and discharging was 30 minutes each. Such charge / discharge was repeated, and the discharge capacity was measured for each cycle. At the end of discharge, the voltage of each of the four unit cells constituting the assembled battery was measured to examine variation.
[0089]
Then, the ratio of the discharge capacity when the number of cycles reached 300 and the discharge capacity at the first cycle, that is, (discharge capacity at the 100th cycle) / (discharge capacity at the first cycle) was obtained as the capacity maintenance rate. . Table 2 shows the results of the capacity confirmation test of the single cell and the cycle characteristic evaluation result of the assembled battery.
[Table 2]
Figure 0003705728
As is clear from Tables 1 and 2, in Comparative Examples 1 and 2 where the negative electrode discharge voltage change rate when the negative electrode discharge voltage is 1 V is 20 mV / (mAh / g) or more, the discharge end voltage of the assembled battery When the voltage is 12.0V, the variation of each cell voltage is significantly increased to 1.7V and 1.5V, confirming that some of the cells are in an overdischarged state, and the capacity after 300 cycles The maintenance rate was as low as 70% or less.
[0090]
On the other hand, the discharge potential is 0.5 (VvsLi / Li from the charged state.+In Examples 1 to 4 in which the rate of change in the negative electrode discharge potential is 20 mV / (mAh / g) or less until each of the battery cell voltage is 12.0V, The variation was 1 V or less, and overdischarge was suppressed. In these examples, the capacity retention rate after 300 cycles was at least 79%, indicating an excellent value.
[0091]
Further, compared with Comparative Example 3 using 100% non-graphitizable carbon (HC) as the negative electrode active material, fibrous graphite (MCF) graphitized non-graphitizable carbon (HC) and mesophase pitch carbon fiber. In Example 2 in which the mixing ratio was 30:70 and Example 3 in which 10:90 was used, it was confirmed that the initial characteristics of the battery such as initial capacity and initial efficiency were excellent.
[0092]
In the above-described embodiment, an example in which the present invention is applied to a cylindrical non-aqueous electrolyte secondary battery has been described. However, a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte are accommodated in an exterior material made of a laminate film. The present invention can be similarly applied to a thin nonaqueous electrolyte secondary battery having a structure.
[0093]
【The invention's effect】
According to the non-aqueous electrolyte secondary battery of the present invention, cycle deterioration can be reduced even when a positive electrode active material with high capacity and high safety is used and used as an assembled battery.
[Brief description of the drawings]
FIG. 1 is a diagram showing discharge characteristics of each unit cell in series connection.
FIG. 2 is a view showing a cylindrical non-aqueous electrolyte secondary battery according to the present invention.
FIG. 3 is a view showing an assembled battery of the non-aqueous electrolyte secondary battery of the present invention.
[Explanation of symbols]
1 ... Container
2 ... Positive electrode
3 ... Separator
4 ... Negative electrode
5 ... Electrode group
6 ... Positive current collector lead
7 ... Negative electrode current collector lead
8 ... Positive terminal
9 ... Sealing plate
10 ... Safety valve
11 ... Hermetic seal
12 ... Electrode group holder

Claims (2)

リチウムニッケル複合酸化物、およびスピネル型リチウムマンガン酸化物を含有する混合物からなる正極活物質を具備する正極と、
10重量%以上60重量%以下の非黒鉛炭素材料と、黒鉛から成る炭素材混合物とからなり、作動電位が0.5(VvsLi/Li )以下の電位領域において放電電位変化率が20mV/(mAh/g)以下である負極活物質を具備する負極と、
前記正極および前記負極に挟持される非水電解液とからなり、
同一の組成比の前記正極活物質および前記負極活物質をそれぞれ用いた複数の単電池を直列に接続したことを特徴とする非水電解液二次電池。
A positive electrode comprising a positive electrode active material comprising a mixture containing a lithium nickel composite oxide and a spinel type lithium manganese oxide;
It comprises a non-graphite carbon material of 10 wt% or more and 60 wt% or less and a carbon material mixture made of graphite , and the discharge potential change rate is 20 mV / (in a potential region where the operating potential is 0.5 (VvsLi / Li + ) or less. negative electrode comprising a negative electrode active material that is less than or equal to mAh / g) ;
The non-aqueous electrolyte sandwiched between the positive electrode and the negative electrode,
A nonaqueous electrolyte secondary battery, wherein a plurality of unit cells each using the positive electrode active material and the negative electrode active material having the same composition ratio are connected in series.
前記負極活物質は、10重量%以上50重量%以下の難黒鉛化性炭素と、黒鉛化メソフェーズピッチ炭素繊維とから成る炭素材混合物であることを特徴とする請求項1記載の非水電解液二次電池。2. The non-aqueous electrolyte according to claim 1, wherein the negative electrode active material is a carbon material mixture composed of 10% by weight or more and 50% by weight or less non- graphitizable carbon and graphitized mesophase pitch carbon fiber. Secondary battery.
JP2000054589A 2000-02-29 2000-02-29 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3705728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054589A JP3705728B2 (en) 2000-02-29 2000-02-29 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054589A JP3705728B2 (en) 2000-02-29 2000-02-29 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001243943A JP2001243943A (en) 2001-09-07
JP3705728B2 true JP3705728B2 (en) 2005-10-12

Family

ID=18575823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054589A Expired - Fee Related JP3705728B2 (en) 2000-02-29 2000-02-29 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3705728B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476466B2 (en) 2017-11-17 2022-10-18 Lg Energy Solution, Ltd. Method of preparing irreversible additive included in cathode material for lithium secondary battery, cathode material including irreversible additive prepared by the same, and lithium secondary battery including cathode material

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484713B1 (en) * 2002-03-22 2005-04-22 주식회사 엘지화학 Lithium ion secondary battery comprising overdischarge retardant
US9023525B2 (en) 2002-03-22 2015-05-05 Lg Chem, Ltd. Cathode active material for lithium secondary battery
US7695867B2 (en) 2002-03-22 2010-04-13 Lg Chem, Ltd. Method for regulating terminal voltage of cathode during overdischarge and cathode active material for lithium secondary battery
CN1234179C (en) 2002-03-22 2005-12-28 Lg化学株式会社 Lithium storage battery comprising over-discharge preventing agent
JP4742866B2 (en) * 2003-05-26 2011-08-10 日本電気株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
WO2006071972A2 (en) * 2004-12-28 2006-07-06 Boston-Power, Inc. Lithium-ion secondary battery
US7811707B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US20080008933A1 (en) 2005-12-23 2008-01-10 Boston-Power, Inc. Lithium-ion secondary battery
WO2007011661A1 (en) 2005-07-14 2007-01-25 Boston-Power, Inc. Control electronics for li-ion batteries
US7923150B2 (en) 2005-08-26 2011-04-12 Panasonic Corporation Non-aqueous electrolyte secondary battery
TWI426678B (en) 2006-06-28 2014-02-11 Boston Power Inc Electronics with multiple charge rate, battery packs, methods of charging a lithium ion charge storage power supply in an electronic device and portable computers
WO2009002438A1 (en) 2007-06-22 2008-12-31 Boston-Power, Inc. Cid retention device for li-ion cell
EP2819212A1 (en) 2009-09-01 2014-12-31 Boston-Power, Inc. Large scale battery systems and method of assembly
JP5708977B2 (en) * 2010-07-06 2015-04-30 トヨタ自動車株式会社 Assembled battery
EP2696409B1 (en) 2011-05-23 2017-08-09 LG Chem, Ltd. High energy density lithium secondary battery having enhanced energy density characteristic
JP2014517453A (en) 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
KR101336083B1 (en) * 2011-05-23 2013-12-03 주식회사 엘지화학 Lithium Secondary Battery of High Power Property with Improved High Energy Density
WO2012161477A2 (en) 2011-05-23 2012-11-29 주식회사 엘지화학 High output lithium secondary battery having enhanced output density characteristic
CN103563140B (en) * 2011-05-23 2015-11-25 株式会社Lg化学 The height with the power density properties of enhancing exports lithium secondary battery
JP2014514726A (en) 2011-05-23 2014-06-19 エルジー ケム. エルティーディ. High energy density lithium secondary battery with improved energy density characteristics
KR101336070B1 (en) 2011-07-13 2013-12-03 주식회사 엘지화학 Lithium Secondary Battery of High Energy with Improved energy Property
CN104769767B (en) * 2013-03-04 2017-03-01 株式会社Lg化学 Comprise equipment and the method for the power of the secondary cell of blended anode material for estimation
JP5969126B2 (en) * 2013-12-26 2016-08-17 積水化学工業株式会社 ELECTRODE MATERIAL FOR CAPACITOR, MANUFACTURING METHOD THEREOF, AND ELECTRIC DOUBLE LAYER CAPACITOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476466B2 (en) 2017-11-17 2022-10-18 Lg Energy Solution, Ltd. Method of preparing irreversible additive included in cathode material for lithium secondary battery, cathode material including irreversible additive prepared by the same, and lithium secondary battery including cathode material

Also Published As

Publication number Publication date
JP2001243943A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP3705728B2 (en) Non-aqueous electrolyte secondary battery
JP4439456B2 (en) Battery pack and automobile
RU2307431C2 (en) Active cathode material incorporating its recharge characteristic improving dope and secondary lithium battery using such material
JP5070753B2 (en) battery
US9634328B2 (en) Positive electrode
US20050233220A1 (en) Lithium secondary cell with high charge and discharge rate capability
US20120028105A1 (en) Battery Packs for Vehicles and High Capacity Pouch Secondary Batteries for Incorporation into Compact Battery Packs
JP6087489B2 (en) Assembled battery system
JP5066798B2 (en) Secondary battery
JP4707426B2 (en) Nonaqueous electrolyte secondary battery
JP2007200865A (en) Nonaqueous electrolyte secondary battery
JP2004047180A (en) Nonaqueous electrolytic solution battery
US9184441B2 (en) Battery electrode, nonaqueous electrolyte battery, and battery pack
JP5412843B2 (en) battery
JP2003308817A (en) Battery pack
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
CN109075383B (en) Lithium ion secondary battery and battery pack
JP2008226643A (en) Nonaqueous electrolyte secondary battery
JP5748972B2 (en) Non-aqueous electrolyte secondary battery pack
WO2017195332A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2004311308A (en) Secondary battery comprising unit cell battery for detecting capacity, battery pack and battery pack unit, and electric vehicle mounting battery pack and battery pack unit
JP2001185143A (en) Secondary battery using non-aqueous electrolyte and its battery pack
JP2010135115A (en) Nonaqueous electrolyte secondary battery
JP2009129632A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees