JP2558957B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2558957B2
JP2558957B2 JP3005038A JP503891A JP2558957B2 JP 2558957 B2 JP2558957 B2 JP 2558957B2 JP 3005038 A JP3005038 A JP 3005038A JP 503891 A JP503891 A JP 503891A JP 2558957 B2 JP2558957 B2 JP 2558957B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
chemical formula
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3005038A
Other languages
Japanese (ja)
Other versions
JPH04237967A (en
Inventor
靖彦 美藤
祐之 村井
修二 伊藤
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3005038A priority Critical patent/JP2558957B2/en
Publication of JPH04237967A publication Critical patent/JPH04237967A/en
Application granted granted Critical
Publication of JP2558957B2 publication Critical patent/JP2558957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池に関
し、特に正極を改良した非水電解液二次電池に関する。
The present invention relates to an non-aqueous electrolyte secondary battery, relates to a non-aqueous electrolyte secondary battery, especially improved positive electrode.

【0002】[0002]

【従来の技術】リチウム、リチウム合金またはリチウム
化合物を負極とする非水電解質二次電池は高電圧で高エ
ネルギー密度となることが期待され、多くの研究が行な
われている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries having lithium, a lithium alloy or a lithium compound as a negative electrode are expected to have high energy density at high voltage, and many studies have been conducted.

【0003】特に、これら電池の正極活物質として(化
2)に示す化学式の物質などがよく検討されている。
In particular, as the positive electrode active material of these batteries, a substance of the chemical formula shown in (Chemical Formula 2) and the like have been well studied.

【0004】[0004]

【化2】 MnO2、TiS2 [Chemical 2] MnO2, TiS 2

【0005】これらの正極活物質はLiに対する電位が
3V程度であるが、最近(化3)に示す化学式の物質お
よび(化4)に示す化学式の物質がLiに対して4V以
上の電位を示す正極活物質として注目されている。
These positive electrode active materials have a potential of about 3 V with respect to Li, but recently, the substances of the chemical formula shown in (Chemical formula 3) and the substances of the chemical formula shown in (Chemical formula 4) show a potential of 4 V or more with respect to Li. It has attracted attention as a positive electrode active material.

【0006】[0006]

【化3】 LiMn2O4 [Chemical 3] LiMn 2 O 4

【0007】[0007]

【化4】 LiCoO2 [Chemical 4] LiCoO 2

【0008】すなわち、電池の高エネルギー密度を得る
手段として容量の増加とともに電池電圧を高める努力が
なされている。
That is, efforts have been made to increase the battery voltage as well as the capacity as a means for obtaining a high energy density of the battery.

【0009】このうち、(化4)に示す物質は、その放
電容量が大きく、優れたサイクル特性を有する可能性が
あることから正極活物質として有望と考えられている。
Of these, the substance represented by (Chemical Formula 4) is considered to be promising as a positive electrode active material because it has a large discharge capacity and may have excellent cycle characteristics.

【0010】さらに、二次電池として重要な必要特性の
1つであるサイクル特性を向上するため、(化4)に示
す化学式の物質を骨格とする(化5)に示す化学式で表
わされる複合酸化物を正極活物質として用いる改良がな
され、充放電サイクル特性の一層の向上が図られてい
る。
Further, in order to improve the cycle characteristics, which is one of the important characteristics required for the secondary battery, the complex oxidation represented by the chemical formula shown in (Chemical formula 5) having the substance of the chemical formula shown in (Chemical formula 4) as a skeleton. As a positive electrode active material, improvements have been made to further improve charge / discharge cycle characteristics.

【0011】[0011]

【化5】 LiyCo1-xMexO2(Me:Mn,Ni,Cr,0≦x≦0.5,0.85≦y≦1.15)Embedded image LiyCo 1 -xMexO 2 (Me: Mn, Ni, Cr, 0 ≦ x ≦ 0.5, 0.85 ≦ y ≦ 1.15)

【0012】[0012]

【発明が解決しようとする課題】上記の正極活物質を用
いることにより、放電容量が大きくサイクル特性の優れ
た非水電解液二次電池を実現できるが、充電電圧が4V
を越えるため、充電後の電池の自己放電特性が不充分で
あるという問題があった。非水電解液二次電池の自己放
電については電池内部の微量水分や電解液溶媒の分解が
原因となり、電池内部抵抗の増大や充放電容量の低下と
いう問題を引き起こす。特に電池電圧が高くなるほどこ
れらの現象は顕著になり、また、高温保存時においてよ
り著しいものとなる。
By using the above positive electrode active material, a non-aqueous electrolyte secondary battery having a large discharge capacity and excellent cycle characteristics can be realized, but the charging voltage is 4 V.
Therefore, there is a problem that the self-discharge characteristics of the battery after charging are insufficient. The self-discharge of a non-aqueous electrolyte secondary battery is caused by the decomposition of a small amount of water inside the battery and the solvent of the electrolyte solution, which causes problems such as an increase in internal resistance of the battery and a decrease in charge / discharge capacity. In particular, these phenomena become more remarkable as the battery voltage becomes higher, and become more remarkable when stored at high temperature.

【0013】電池内部へ持ち込まれる水分については、
電解液の蒸留処理を始めとする精製および正極活物質の
乾燥処理などにより電池内部への水分の持込みを抑える
努力がなされている。しかし、充放電を繰り返し行なう
必要のある二次電池の場合、特に、充電電圧が4Vを越
える場合にはこれら水分の除去だけでは良好な自己放電
特性を得ることができない。
Regarding the moisture brought into the battery,
Efforts are being made to suppress the carry-in of water into the inside of the battery by purification such as distillation of the electrolytic solution and drying of the positive electrode active material. However, in the case of a secondary battery that needs to be repeatedly charged and discharged, especially when the charging voltage exceeds 4 V, good self-discharge characteristics cannot be obtained only by removing these water contents.

【0014】正極活物質と電解液溶媒との反応や、この
反応により生成した物質と負極リチウムとの反応が起こ
りやすくなり、電池の性能低下が生じると考えられる。
It is considered that the reaction between the positive electrode active material and the electrolytic solution solvent and the reaction between the material produced by this reaction and the negative electrode lithium are likely to occur, resulting in deterioration of battery performance.

【0015】本発明はこのような課題を解決するもの
で、自己放電特性を向上した非水電解液二次電池を提供
することを目的とする。
The present invention solves such problems, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery having improved self-discharge characteristics.

【0016】[0016]

【課題を解決するための手段】この課題を解決するため
本発明の非水電解液二次電池は、リチウム、リチウム合
金またはリチウム化合物の負極、(化5)に示す化学式
で表わされる複合酸化物を用いた正極活物質および非水
電解液を有し、前記正極活物質を含む正極合剤にアルカ
リ金属水酸化物を添加したものを用い、また正極への
ルカリ金属水酸化物の添加量を前記正極活物質100g
あたり0.05〜0.15モルとするものである。
In order to solve this problem, a non-aqueous electrolyte secondary battery of the present invention comprises a lithium, a lithium alloy or a lithium compound negative electrode and a complex oxide represented by the chemical formula shown in (Chemical Formula 5). A positive electrode active material containing a positive electrode active material and a non-aqueous electrolytic solution, in which an alkali metal hydroxide is added to a positive electrode mixture containing the positive electrode active material , and an alkaline metal hydroxide for the positive electrode is used. 100 g of the positive electrode active material
The amount is 0.05 to 0.15 mol.

【0017】[0017]

【作用】 この構成により本発明の非水電解液二次電池
は、非水電解液二次電池内部におけるアルカリ金属水酸
化物の働きは明確ではないが、その作用としては、有機
電解液の分解の抑制や分解生成物との反応などを挙げる
ことができる。この結果、溶媒分解生成物が原因と考え
られる電池性能の低下を軽減できるものと思われる。
With this configuration, in the non-aqueous electrolyte secondary battery of the present invention, the action of the alkali metal hydroxide inside the non-aqueous electrolyte secondary battery is not clear, but the action is to decompose the organic electrolyte. And the reaction with decomposition products. As a result, it is considered that the deterioration of battery performance, which is considered to be caused by the solvent decomposition product, can be reduced.

【0018】[0018]

【実施例】以下本発明の一実施例の非水電解液二次電池
について図面を基にして説明する。
EXAMPLE A non-aqueous electrolyte secondary battery of one example of the present invention will be described below with reference to the drawings.

【0019】(実施例1)電池の製造を次のようにして
行なう。正極活物質として(化6)に示す化学式の物質
100gに導電剤としてアセチレンブラック3.0gを
混合し、さらに、アルカリ金属水酸化物として水酸化リ
チウム1.8gを水溶液として添加し、混合した。この
混合物を80℃で10時間乾燥し、その後、結着剤とし
てのポリ4弗化エチレン樹脂4.0gを混合して正極合
剤とした。
Example 1 A battery is manufactured as follows. 3.0 g of acetylene black as a conductive agent was mixed with 100 g of the substance represented by the chemical formula (Chemical Formula 6) as a positive electrode active material, and 1.8 g of lithium hydroxide as an alkali metal hydroxide was added as an aqueous solution and mixed. This mixture was dried at 80 ° C. for 10 hours, and then 4.0 g of polytetrafluoroethylene resin as a binder was mixed to obtain a positive electrode mixture.

【0020】[0020]

【化6】 LiCo0.9Ni0.1O2 [Chemical 6] LiCo 0.9 Ni 0.1 O 2

【0021】正極合剤0.1グラムを直径17.5mm
に1トン/cm2でプレス成型して、正極とした。製造
した電池の断面図を図3に示す。成型した正極1をケー
ス2に置く。正極1の上にセパレータ3としての多孔性
ポリプロピレンフィルムを置いた。負極として直径1
7.5mm厚さ0.3mmのリチウム板4を、ポリプロ
ピレン製ガスケット6を付けた封口板5に圧着した。非
水電解液として、1モル/lの過塩素酸リチウムを溶解
したプロピレンカーボネート溶液を用い、これをセパレ
ータ3上および負極4上に加えた。その後電池を封口し
た。上記のようにして得られた電池をAとする。
0.1 gram of positive electrode material mixture having a diameter of 17.5 mm
Was press-molded at 1 ton / cm 2 to obtain a positive electrode. A cross-sectional view of the manufactured battery is shown in FIG. The molded positive electrode 1 is placed in the case 2. A porous polypropylene film as the separator 3 was placed on the positive electrode 1. Diameter 1 as negative electrode
A lithium plate 4 having a thickness of 7.5 mm and a thickness of 0.3 mm was pressure-bonded to a sealing plate 5 having a polypropylene gasket 6. A propylene carbonate solution in which 1 mol / l lithium perchlorate was dissolved was used as the non-aqueous electrolyte, and this was added onto the separator 3 and the negative electrode 4. Thereafter, the battery was sealed. The battery obtained as described above is designated as A.

【0022】同様の方法により水酸化カリウムを添加し
た正極を用いた電池をB、水酸化ナトリウムを添加した
正極を用いた電池をC、水酸化カリウムと水酸化ナトリ
ウムをそれぞれ0.9g添加した正極を用いた電池を
D、水酸化リチウム、水酸化カリウム、水酸化ナトリウ
ムをそれぞれ0.6g添加した正極を用いた電池をEと
する。
By the same method, B is a battery using a positive electrode to which potassium hydroxide is added, C is a battery using a positive electrode to which sodium hydroxide is added, and a positive electrode to which 0.9 g each of potassium hydroxide and sodium hydroxide is added. Let B be the battery using E, and let E be the battery using the positive electrode to which 0.6 g of lithium hydroxide, potassium hydroxide and sodium hydroxide were added.

【0023】比較例として、アルカリ金属水酸化物を添
加しない電池として、(化6)に示す化学式の物質10
0g、アセチレンブラック3.0g、ポリ4弗化エチレ
ン樹脂4.0gを混合して正極合剤として使用し、以
下、同様に電池を構成した。この電池をFとする。
As a comparative example, as a battery to which no alkali metal hydroxide was added, a substance 10 of the chemical formula shown in (Chemical Formula 6) was used.
0 g, acetylene black 3.0 g, and polytetrafluoroethylene resin 4.0 g were mixed and used as a positive electrode mixture, and a battery was similarly constructed. This battery is designated as F.

【0024】電池の自己放電試験を次の方法で行なう。
すなわち上記の方法で得られた電池について、1mAの
定電流で4.2ボルトまで充電し、3ボルトまで放電
し、この充電放電を10サイクル行なった後、11サイ
クル目の充電が終わった後、60℃で3週間貯蔵した。
貯蔵後同じ条件で放電した。ここで、自己放電率は次の
ように定義した。
A battery self-discharge test is performed by the following method.
That is, with respect to the battery obtained by the above method, the battery was charged to 4.2 V at a constant current of 1 mA, discharged to 3 V, and after 10 cycles of this charging / discharging, after the 11th cycle of charging, Stored at 60 ° C for 3 weeks.
After storage, it was discharged under the same conditions. Here, the self-discharge rate was defined as follows.

【0025】自己放電率=(10サイクル目の放電電気
量−11サイクル目の放電電気量)/10サイクル目の
放電電気量上記各電池の60℃保存にともなう電池内部
抵抗の変化を図1に示す。従来構成の電池Fでは保存直
後から急激な電池内部抵抗の増加が認められ、4週間後
には30Ω以上になる。一方、本実施例の電池A〜Eに
おいては、電池内部抵抗の増加は小さいものであり、電
池Fの1/4程度である。
Self-Discharge Rate = (Discharged Electricity at 10th Cycle−Discharged Electricity at 11th Cycle) / 10 Discharged Electricity at 10th Cycle FIG. 1 shows changes in internal resistance of the above batteries due to storage at 60 ° C. Show. In the battery F having the conventional structure, a rapid increase in the internal resistance of the battery was observed immediately after storage, and after 4 weeks, it became 30Ω or more. On the other hand, in the batteries A to E of this example, the increase in the internal resistance of the battery is small, which is about 1/4 that of the battery F.

【0026】また、(表1)には、各電池の3週間後の
自己放電率を示す。
Further, (Table 1) shows the self-discharge rate of each battery after 3 weeks.

【0027】[0027]

【表1】 [Table 1]

【0028】電池Fは非常に大きな自己放電率である
が、本実施例の電池A〜Eでは10%以内に抑えられて
いる。このように正極へアルカリ金属水酸化物を添加す
ることは高温保存にともなう自己放電を抑制する効果が
あり、水酸化カリウム、水酸化ナトリウム、水酸化リチ
ウムのいずれを添加した場合にも効果がある。
The battery F has a very large self-discharge rate, but in the batteries A to E of this embodiment, it is suppressed within 10%. Thus, the addition of alkali metal hydroxide to the positive electrode has the effect of suppressing self-discharge associated with high temperature storage, and is effective when any of potassium hydroxide, sodium hydroxide, or lithium hydroxide is added. .

【0029】さらに、これらのアルカリ金属水酸化物を
混合して添加した場合にも同様の効果が認められる。
Further, the same effect is observed when these alkali metal hydroxides are mixed and added.

【0030】(実施例2)さらに、正極への水酸化リチ
ウムの添加量について検討した。正極活物質としては、
(化7)に示す化学式の物質100gを用いた。図2に
水酸化リチウムの添加量(活物質100gに対するモル
数)とこれらの正極を用いた電池の60℃、3週間保存
後の電池内部抵抗との関係を示す。
Example 2 Further, the amount of lithium hydroxide added to the positive electrode was examined. As the positive electrode active material,
100 g of the chemical compound represented by Chemical formula 7 was used. FIG. 2 shows the relationship between the added amount of lithium hydroxide (the number of moles based on 100 g of the active material) and the internal resistance of the battery using these positive electrodes after storage at 60 ° C. for 3 weeks.

【0031】[0031]

【化7】 LiCo0.9Mi0.1O2 [Chemical 7] LiCo 0.9 Mi 0.1 O 2

【0032】結果から正極への水酸化リチウムの添加量
が0.05モル〜0.15モルの範囲で電池内部抵抗の
増加を抑える効果が認められる。したがって、正極への
水酸化リチウムの添加量は活物質100gに対して、
0.05モル〜0.15モルの範囲が望ましい。
From the results, the effect of suppressing the increase of the internal resistance of the battery is recognized when the amount of lithium hydroxide added to the positive electrode is in the range of 0.05 mol to 0.15 mol. Therefore, the amount of lithium hydroxide added to the positive electrode is 100 g of the active material,
The range of 0.05 mol to 0.15 mol is desirable.

【0033】また、水酸化カリウム、水酸化ナトリウム
の場合にも、同様の結果が得られ、正極活物質として
(化8)に示す化学式の物質を用いた場合にも同じ効果
が認められた。
Similar results were obtained in the case of potassium hydroxide and sodium hydroxide, and the same effect was observed when the substance having the chemical formula shown in (Chemical Formula 8) was used as the positive electrode active material.

【0034】[0034]

【化8】 LiCoO2、LiCo0.5Ni0.5O2、LiCo0.5Mn0.5、LiCo0.5Cr0.5O2 Embedded image LiCoO 2 , LiCo 0.5 Ni 0.5 O 2 , LiCo 0.5 Mn 0.5 , LiCo 0.5 Cr 0.5 O 2

【0035】以上のように、(化5)に示す化学式で表
わされる複合酸化物を正極活物質とする非水電解質電池
において、正極中にアルカリ金属水酸化物を添加するこ
とにより、自己放電特性に優れた非水電解質二次電池を
得ることができる。
As described above, in the non-aqueous electrolyte battery using the composite oxide represented by the chemical formula (Chem. 5) as the positive electrode active material, the self-discharge characteristics can be obtained by adding the alkali metal hydroxide to the positive electrode. It is possible to obtain an excellent non-aqueous electrolyte secondary battery.

【0036】以上の実施例では、電解液として1モル/
lの過塩素酸リチウムを溶解したプロピレンカーボネー
ト溶液を用いた場合の結果であるが、電解液としてこれ
以外に、溶質として過塩素酸リチウム、6フッ化燐酸リ
チウムやトリフロロメタンスルフォン酸リチウム、ホウ
フッ化リチウム、溶媒としてプロピレンカーボネート、
エチレンカーボネートなどのカーボネート類、ガンマー
ブチロラクトン、酢酸メチルなどのエステル類を用いた
電解液が良好であった。しかしながら、ジメトキシエタ
ンやテトラヒドロフランなどのエーテル類を使用した場
合には、自己放電特性は悪く、正極中にアルカリ金属水
酸化物を添加することによる自己放電特性の向上は認め
られず、実施例で示したプロピレンカーボネートを用い
た場合の約2倍の自己放電率であった。本実施例では正
極は4V以上の電圧となるため、エーテル類は酸化され
るためと考えている。
In the above examples, the electrolyte solution was 1 mol / mol.
This is the result when a propylene carbonate solution in which 1 liter of lithium perchlorate was dissolved was used. Lithium fluoride, propylene carbonate as a solvent,
Electrolytes using carbonates such as ethylene carbonate and esters such as gamma-butyrolactone and methyl acetate were good. However, when ethers such as dimethoxyethane and tetrahydrofuran were used, the self-discharge characteristics were poor, and the improvement of the self-discharge characteristics by adding an alkali metal hydroxide to the positive electrode was not observed. The self-discharge rate was about twice that when propylene carbonate was used. In this example, it is considered that the positive electrode has a voltage of 4 V or higher and the ethers are oxidized.

【0037】[0037]

【発明の効果】以上の実施例の説明で明らかなように本
発明の非水電解液二次電池によれば、リチウム、リチウ
ム合金またはリチウム化合物の負極、(化5)に示す化
学式で表わされる複合酸化物を用いた正極活物質、およ
び非水電解液を有し、前記正極活物質を含む正極合剤
アルカリ金属水酸化物を添加したものを用いることによ
り自己放電の抑制された非水電解液二次電池を得ること
ができ、産業上の意義は大きい。
As is apparent from the above description of the embodiments, according to the non-aqueous electrolyte secondary battery of the present invention, the negative electrode of lithium, a lithium alloy or a lithium compound is represented by the chemical formula shown in (Chemical Formula 5). A positive electrode active material using a composite oxide, and a non-aqueous electrolytic solution, the non-aqueous suppressed self-discharge by using a positive electrode mixture containing the positive electrode active material added with an alkali metal hydroxide An electrolyte secondary battery can be obtained, which has great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の電池の60℃保存にともな
う電池内部抵抗の変化を示したグラフ
FIG. 1 is a graph showing changes in the internal resistance of the battery of Example 1 of the present invention during storage at 60 ° C.

【図2】本発明の実施例2の水酸化リチウムの添加量
(活物質100gに対するモル数)とこれらの正極を用
いた電池の60℃保存後の電池内部抵抗との関係を示し
たグラフ
FIG. 2 is a graph showing the relationship between the amount of lithium hydroxide added (mole number relative to 100 g of active material) of Example 2 of the present invention and the internal resistance of a battery using these positive electrodes after storage at 60 ° C.

【図3】本発明の実施例に用いたコイン型の電池の縦断
面図
FIG. 3 is a vertical sectional view of a coin-type battery used in an example of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム、リチウム合金またはリチウム化
合物の負極、(化1)に示す化学式で表わされる複合酸
化物を用いた正極活物質、および非水電解液を有し、前
記正極活物質を含む正極合剤にアルカリ金属水酸化物を
添加した非水電解液二次電池。 【化1】 LiyCo1-xMexO2(Me:Mn,Ni,Cr,0≦x≦0.5,0.85≦y≦1.15)
1. A negative electrode made of lithium, a lithium alloy or a lithium compound, a positive electrode active material using a composite oxide represented by the chemical formula (formula 1), and a non-aqueous electrolytic solution, and containing the positive electrode active material . A non-aqueous electrolyte secondary battery in which an alkali metal hydroxide is added to the positive electrode mixture . [Chemical formula 1] LiyCo 1 -xMexO 2 (Me: Mn, Ni, Cr, 0 ≦ x ≦ 0.5, 0.85 ≦ y ≦ 1.15)
【請求項2】正極合剤へのアルカリ金属水酸化物の添加
量が正極活物質100gあたり0.05〜0.15モル
である請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of the alkali metal hydroxide added to the positive electrode mixture is 0.05 to 0.15 mol per 100 g of the positive electrode active material.
JP3005038A 1991-01-21 1991-01-21 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2558957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005038A JP2558957B2 (en) 1991-01-21 1991-01-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005038A JP2558957B2 (en) 1991-01-21 1991-01-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04237967A JPH04237967A (en) 1992-08-26
JP2558957B2 true JP2558957B2 (en) 1996-11-27

Family

ID=11600279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005038A Expired - Fee Related JP2558957B2 (en) 1991-01-21 1991-01-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2558957B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378012B1 (en) * 2000-11-09 2003-03-29 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery and lithium secondary battery using same
JP4213659B2 (en) * 2004-12-20 2009-01-21 株式会社東芝 Nonaqueous electrolyte battery and positive electrode active material
JP5885020B2 (en) * 2011-12-21 2016-03-15 トヨタ自動車株式会社 Lithium ion secondary battery manufacturing method

Also Published As

Publication number Publication date
JPH04237967A (en) 1992-08-26

Similar Documents

Publication Publication Date Title
JP2697365B2 (en) Non-aqueous electrolyte secondary battery
JPH08236155A (en) Lithium secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JP3419119B2 (en) Non-aqueous electrolyte secondary battery
JP3029271B2 (en) Non-aqueous secondary battery
JP2558957B2 (en) Non-aqueous electrolyte secondary battery
JPH0744042B2 (en) Electrolyte for lithium secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
JPH07230825A (en) Nonaqueous electrolyte battery
JPH0778632A (en) Lithium secondary battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JP3451601B2 (en) Lithium battery
JP2975627B2 (en) Battery
JP4217290B2 (en) Nonaqueous electrolyte battery using aluminum as negative electrode
JP2830479B2 (en) Non-aqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JP3418715B2 (en) Organic electrolyte secondary battery
JPH0359963A (en) Lithium secondary battery
JPH0955201A (en) Nonaqueous electrolytic battery
JP3374124B2 (en) Non-aqueous electrolyte secondary battery
JP3021478B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees