JPH04237967A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH04237967A
JPH04237967A JP3005038A JP503891A JPH04237967A JP H04237967 A JPH04237967 A JP H04237967A JP 3005038 A JP3005038 A JP 3005038A JP 503891 A JP503891 A JP 503891A JP H04237967 A JPH04237967 A JP H04237967A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
lithium
active material
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3005038A
Other languages
Japanese (ja)
Other versions
JP2558957B2 (en
Inventor
Yasuhiko Mifuji
靖彦 美藤
Sukeyuki Murai
村井 祐之
Shuji Ito
修二 伊藤
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3005038A priority Critical patent/JP2558957B2/en
Publication of JPH04237967A publication Critical patent/JPH04237967A/en
Application granted granted Critical
Publication of JP2558957B2 publication Critical patent/JP2558957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To reduce the deterioration of the battery performance and obtain a battery with an excellent self-discharge characteristic by using a positive electrode added with an alkaline metal hydroxide to an active material made of a specific composite oxide and a negative electrode made of a lithium metal. CONSTITUTION:Lithium hydroxide as an alkaline metal hydroxide is added to a positive electrode 1 using a composite oxide expressed by LiCoO2 as an active material. A lithium metal is used for a negative electrode 4, and a propylene carbonate solution solved with lithium perchlorate is used as a nonaqueous electrolyte. When the alkaline metal hydroxide is added to the positive electrode active material, the reaction between the positive electrode active material and an electrolyte solvent and the deterioration of the battery performance due to the reaction between the material generated by this reaction and the negative electrode lithium can be mitigated, and a battery with an excellent self-discharge characteristic is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は非水電解液二次電池に関
し、特に正極活物質を改良した非水電解液二次電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery with an improved positive electrode active material.

【0002】0002

【従来の技術】                  
                         
             リチウム、リチウム合金ま
たはリチウム化合物を負極とする非水電解質二次電池は
高電圧で高エネルギー密度となることが期待され、多く
の研究が行なわれている。
[Conventional technology]

Non-aqueous electrolyte secondary batteries using lithium, lithium alloys, or lithium compounds as negative electrodes are expected to have high voltage and high energy density, and many studies are being conducted.

【0003】特に、これら電池の正極活物質として(化
2)に示す化学式の物質などがよく検討されている。
In particular, substances having the chemical formula shown in (Chemical formula 2) have been extensively studied as positive electrode active materials for these batteries.

【0004】0004

【化2】[Case 2]

【0005】これらの正極活物質はLiに対する電位が
3V程度であるが、最近(化3)に示す化学式の物質お
よび(化4)に示す化学式の物質がLiに対して4V以
上の電位を示す正極活物質として注目されている。
These cathode active materials have a potential of about 3 V with respect to Li, but recently a substance with the chemical formula shown in (Chemical formula 3) and a substance with the chemical formula shown in (Chemical formula 4) show a potential of 4 V or more with respect to Li. It is attracting attention as a positive electrode active material.

【0006】[0006]

【化3】[Chemical formula 3]

【0007】[0007]

【化4】[C4]

【0008】すなわち、電池の高エネルギー密度を得る
手段として容量の増加とともに電池電圧を高める努力が
なされている。
That is, efforts are being made to increase battery voltage as well as increase capacity as a means of obtaining high energy density of batteries.

【0009】このうち、(化4)に示す物質は、その放
電容量が大きく、優れたサイクル特性を有する可能性が
あることから正極活物質として有望と考えられている。
Among these, the material shown in (Chemical formula 4) is considered to be promising as a positive electrode active material because it has a large discharge capacity and may have excellent cycle characteristics.

【0010】さらに、二次電池として重要な必要特性の
1つであるサイクル特性を向上するため、(化4)に示
す化学式の物質を骨格とする(化5)に示す化学式で表
わされる複合酸化物を正極活物質として用いる改良がな
され、充放電サイクル特性の一層の向上が図られている
Furthermore, in order to improve the cycle characteristics, which is one of the important characteristics required for a secondary battery, a composite oxide represented by the chemical formula shown in (Chemical formula 5) whose skeleton is a substance shown in the chemical formula shown in (Chemical formula 4) Improvements have been made to use these materials as positive electrode active materials, and further improvements in charge/discharge cycle characteristics are being attempted.

【0011】[0011]

【化5】[C5]

【0012】0012

【発明が解決しようとする課題】上記の正極活物質を用
いることにより、放電容量が大きくサイクル特性の優れ
た非水電解液二次電池を実現できるが、充電電圧が4V
を越えるため、充電後の電池の自己放電特性が不充分で
あるという問題があった。非水電解液二次電池の自己放
電については電池内部の微量水分や電解液溶媒の分解が
原因となり、電池内部抵抗の増大や充放電容量の低下と
いう問題を引き起こす。特に電池電圧が高くなるほどこ
れらの現象は顕著になり、また、高温保存時においてよ
り著しいものとなる。
[Problems to be Solved by the Invention] By using the above positive electrode active material, a nonaqueous electrolyte secondary battery with a large discharge capacity and excellent cycle characteristics can be realized, but the charging voltage is 4V.
Therefore, there was a problem that the self-discharge characteristics of the battery after charging were insufficient. Self-discharge of non-aqueous electrolyte secondary batteries is caused by trace amounts of moisture inside the battery and decomposition of the electrolyte solvent, causing problems such as an increase in battery internal resistance and a decrease in charge/discharge capacity. In particular, these phenomena become more pronounced as the battery voltage increases, and become more pronounced during high-temperature storage.

【0013】電池内部へ持ち込まれる水分については、
電解液の蒸留処理を始めとする精製および正極活物質の
乾燥処理などにより電池内部への水分の持込みを抑える
努力がなされている。しかし、充放電を繰り返し行なう
必要のある二次電池の場合、特に、充電電圧が4Vを越
える場合にはこれら水分の除去だけでは良好な自己放電
特性を得ることができない。
Regarding moisture brought into the battery,
Efforts are being made to suppress the introduction of moisture into the battery through purification such as distillation of the electrolyte and drying of the positive electrode active material. However, in the case of a secondary battery that needs to be repeatedly charged and discharged, particularly when the charging voltage exceeds 4 V, it is not possible to obtain good self-discharge characteristics only by removing the moisture.

【0014】正極活物質と電解液溶媒との反応や、この
反応により生成した物質と負極リチウムとの反応が起こ
りやすくなり、電池の性能低下が生じると考えられる。
[0014] It is thought that the reaction between the positive electrode active material and the electrolyte solvent and the reaction between the substance produced by this reaction and the negative electrode lithium tend to occur, resulting in a decrease in battery performance.

【0015】本発明はこのような課題を解決するもので
、自己放電特性を向上した非水電解液二次電池を提供す
ることを目的とする。
[0015] The present invention solves these problems and aims to provide a non-aqueous electrolyte secondary battery with improved self-discharge characteristics.

【0016】[0016]

【課題を解決するための手段】  この課題を解決する
ため本発明の非水電解液二次電池は、リチウム、リチウ
ム合金またはリチウム化合物の負極、(化5)に示す化
学式で表わされる複合酸化物を用いた正極活物質および
非水電解液を有し、前記正極活物質にアルカリ金属水酸
化物を添加したものを用い、またアルカリ金属水酸化物
の添加量を前記正極活物質100gあたり0.05〜0
.15モルとするものである。
[Means for Solving the Problem] In order to solve this problem, the nonaqueous electrolyte secondary battery of the present invention includes a negative electrode of lithium, a lithium alloy, or a lithium compound, and a composite oxide represented by the chemical formula shown in (Chemical formula 5). The cathode active material has a non-aqueous electrolyte and an alkali metal hydroxide is added to the cathode active material, and the amount of the alkali metal hydroxide added is 0.5 g per 100 g of the cathode active material. 05~0
.. The amount is 15 moles.

【0017】[0017]

【作用】 この構成により本発明の非水電解液二次電池
は、非水電解液二次電池内部におけるアルカリ金属水酸
化物の働きは明確ではないが、その作用としては、有機
電解液の分解の抑制や分解生成物との反応などを挙げる
ことができる。この結果、溶媒分解生成物が原因と考え
られる電池性能の低下を軽減できるものと思われる。
[Function] With this configuration, the non-aqueous electrolyte secondary battery of the present invention can be used to decompose the organic electrolyte, although the function of the alkali metal hydroxide inside the non-aqueous electrolyte secondary battery is not clear. Examples include suppression of oxidation and reaction with decomposition products. As a result, it seems possible to reduce the decrease in battery performance that is thought to be caused by solvent decomposition products.

【0018】[0018]

【実施例】以下本発明の一実施例の非水電解液二次電池
について図面を基にして説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0019】(実施例1)電池の製造を次のようにして
行なう。正極活物質として(化6)に示す化学式の物質
100gに導電剤としてアセチレンブラック3.0gを
混合し、さらに、アルカリ金属水酸化物として水酸化リ
チウム1.8gを水溶液として添加し、混合した。この
混合物を80℃で10時間乾燥し、その後、結着剤とし
てのポリ4弗化エチレン樹脂4.0gを混合して正極合
剤とした。
(Example 1) A battery was manufactured as follows. 3.0 g of acetylene black as a conductive agent was mixed with 100 g of a substance having the chemical formula shown in (Chemical formula 6) as a positive electrode active material, and 1.8 g of lithium hydroxide as an alkali metal hydroxide was added as an aqueous solution and mixed. This mixture was dried at 80° C. for 10 hours, and then 4.0 g of polytetrafluoroethylene resin as a binder was mixed to prepare a positive electrode mixture.

【0020】[0020]

【化6】[C6]

【0021】正極合剤0.1グラムを直径17.5mm
に1トン/cm2でプレス成型して、正極とした。製造
した電池の断面図を図3に示す。成型した正極1をケー
ス2に置く。正極1の上にセパレータ3としての多孔性
ポリプロピレンフィルムを置いた。負極として直径17
.5mm厚さ0.3mmのリチウム板4を、ポリプロピ
レン製ガスケット6を付けた封口板5に圧着した。非水
電解液として、1モル/lの過塩素酸リチウムを溶解し
たプロピレンカーボネート溶液を用い、これをセパレー
タ3上および負極4上に加えた。その後電池を封口した
。上記のようにして得られた電池をAとする。
[0021] 0.1 gram of positive electrode mixture is 17.5 mm in diameter.
The positive electrode was press-molded at 1 ton/cm2. A cross-sectional view of the manufactured battery is shown in FIG. Place the molded positive electrode 1 in the case 2. A porous polypropylene film as a separator 3 was placed on the positive electrode 1 . Diameter 17 as negative electrode
.. A lithium plate 4 having a thickness of 5 mm and a thickness of 0.3 mm was press-bonded to a sealing plate 5 equipped with a gasket 6 made of polypropylene. A propylene carbonate solution in which 1 mol/l of lithium perchlorate was dissolved was used as the non-aqueous electrolyte, and this was added onto the separator 3 and the negative electrode 4. After that, the battery was sealed. The battery obtained as described above is designated as A.

【0022】同様の方法により水酸化カリウムを添加し
た正極を用いた電池をB、水酸化ナトリウムを添加した
正極を用いた電池をC、水酸化カリウムと水酸化ナトリ
ウムをそれぞれ0.9g添加した正極を用いた電池をD
、水酸化リチウム、水酸化カリウム、水酸化ナトリウム
をそれぞれ0.6g添加した正極を用いた電池をEとす
る。
A battery using a positive electrode to which potassium hydroxide was added using the same method was B, a battery using a positive electrode to which sodium hydroxide was added was C, a positive electrode to which 0.9 g each of potassium hydroxide and sodium hydroxide were added. A battery using D
, a battery using a positive electrode to which 0.6 g of each of lithium hydroxide, potassium hydroxide, and sodium hydroxide was added is designated as E.

【0023】比較例として、アルカリ金属水酸化物を添
加しない電池として、(化6)に示す化学式の物質10
0g、アセチレンブラック3.0g、ポリ4弗化エチレ
ン樹脂4.0gを混合して正極合剤として使用し、以下
、同様に電池を構成した。この電池をFとする。
As a comparative example, as a battery to which no alkali metal hydroxide was added, substance 10 having the chemical formula shown in (Chemical formula 6) was used.
0 g, acetylene black 3.0 g, and polytetrafluoroethylene resin 4.0 g were mixed and used as a positive electrode mixture, and a battery was constructed in the same manner. This battery is designated as F.

【0024】電池の自己放電試験を次の方法で行なう。 すなわち上記の方法で得られた電池について、1mAの
定電流で4.2ボルトまで充電し、3ボルトまで放電し
、この充電放電を10サイクル行なった後、11サイク
ル目の充電が終わった後、60℃で3週間貯蔵した。 貯蔵後同じ条件で放電した。ここで、自己放電率は次の
ように定義した。
A self-discharge test of the battery was conducted in the following manner. That is, the battery obtained by the above method was charged to 4.2 volts with a constant current of 1 mA, discharged to 3 volts, and after 10 cycles of charging and discharging, after the 11th cycle of charging was completed, Stored at 60°C for 3 weeks. After storage, it was discharged under the same conditions. Here, the self-discharge rate was defined as follows.

【0025】自己放電率=(10サイクル目の放電電気
量−11サイクル目の放電電気量)/10サイクル目の
放電電気量上記各電池の60℃保存にともなう電池内部
抵抗の変化を図1に示す。従来構成の電池Fでは保存直
後から急激な電池内部抵抗の増加が認められ、4週間後
には30Ω以上になる。一方、本実施例の電池A〜Eに
おいては、電池内部抵抗の増加は小さいものであり、電
池Fの1/4程度である。
Self-discharge rate = (Amount of discharged electricity in the 10th cycle - Amount of electricity discharged in the 11th cycle) / Amount of discharged electricity in the 10th cycle Figure 1 shows the change in battery internal resistance of each of the above batteries as they are stored at 60°C. show. In battery F with the conventional configuration, a rapid increase in battery internal resistance was observed immediately after storage, and it reached 30Ω or more after 4 weeks. On the other hand, in batteries A to E of this example, the increase in battery internal resistance is small, about 1/4 of that in battery F.

【0026】また、(表1)には、各電池の3週間後の
自己放電率を示す。
Table 1 also shows the self-discharge rate of each battery after 3 weeks.

【0027】[0027]

【表1】[Table 1]

【0028】電池Fは非常に大きな自己放電率であるが
、本実施例の電池A〜Eでは10%以内に抑えられてい
る。このように正極へアルカリ金属水酸化物を添加する
ことは高温保存にともなう自己放電を抑制する効果があ
り、水酸化カリウム、水酸化、水酸化リチウムのいずれ
を添加した場合にも効果がある。
Battery F has a very high self-discharge rate, but batteries A to E of this example have a self-discharge rate that is suppressed to within 10%. Adding an alkali metal hydroxide to the positive electrode in this way has the effect of suppressing self-discharge associated with high-temperature storage, and the addition of potassium hydroxide, hydroxide, or lithium hydroxide is also effective.

【0029】さらに、これらのアルカリ金属水酸化物を
混合して添加した場合にも同様の効果が認められる。
Furthermore, similar effects are observed when a mixture of these alkali metal hydroxides is added.

【0030】(実施例2)さらに、正極への水酸化リチ
ウムの添加量について検討した。正極活物質としては、
(化7)に示す化学式の物質100gを用いた。図2に
水酸化リチウムの添加量(活物質100gに対するモル
数)とこれらの正極を用いた電池の60℃、3週間保存
後の電池内部抵抗との関係を示す。
(Example 2) Furthermore, the amount of lithium hydroxide added to the positive electrode was investigated. As a positive electrode active material,
100 g of a substance having the chemical formula shown in (Chemical formula 7) was used. FIG. 2 shows the relationship between the amount of lithium hydroxide added (number of moles per 100 g of active material) and the internal resistance of batteries using these positive electrodes after storage at 60° C. for 3 weeks.

【0031】[0031]

【化7】[C7]

【0032】結果から正極への水酸化リチウムの添加量
が0.05モル〜0.15モルの範囲で電池内部抵抗の
増加を抑える効果が認められる。したがって、正極への
水酸化リチウムの添加量は活物質100gに対して、0
.05モル〜0.15モルの範囲が望ましい。
[0032] The results show that the addition amount of lithium hydroxide to the positive electrode in the range of 0.05 mol to 0.15 mol has the effect of suppressing the increase in battery internal resistance. Therefore, the amount of lithium hydroxide added to the positive electrode is 0 per 100 g of active material.
.. A range of 0.05 mol to 0.15 mol is desirable.

【0033】また、水酸化カリウム、水酸化ナトリウム
の場合にも、同様の結果が得られ、正極活物質として(
化8)に示す化学式の物質を用いた場合にも同じ効果が
認められた。
Similar results were also obtained in the case of potassium hydroxide and sodium hydroxide, and (
The same effect was observed when a substance having the chemical formula shown in Chemical Formula 8) was used.

【0034】[0034]

【化8】[Chemical formula 8]

【0035】以上のように、(化5)に示す化学式で表
わされる複合酸化物を正極活物質とする非水電解質電池
において、正極中にアルカリ金属水酸化物を添加するこ
とにより、自己放電特性に優れた非水電解質二次電池を
得ることができる。
As described above, in a non-aqueous electrolyte battery using a composite oxide represented by the chemical formula (5) as a positive electrode active material, the self-discharge characteristics can be improved by adding an alkali metal hydroxide to the positive electrode. A non-aqueous electrolyte secondary battery with excellent properties can be obtained.

【0036】以上の実施例では、電解液として1モル/
lの過塩素酸リチウムを溶解したプロピレンカーボネー
ト溶液を用いた場合の結果であるが、電解液としてこれ
以外に、溶質として過塩素酸リチウム、6フッ化燐酸リ
チウムやトリフロロメタンスルフォン酸リチウム、ホウ
フッ化リチウム、溶媒としてプロピレンカーボネート、
エチレンカーボネートなどのカーボネート類、ガンマー
ブチロラクトン、酢酸メチルなどのエステル類を用いた
電解液が良好であった。しかしながら、ジメトキシエタ
ンやテトラヒドロフランなどのエーテル類を使用した場
合には、自己放電特性は悪く、正極中にアルカリ金属水
酸化物を添加することによる自己放電特性の向上は認め
られず、実施例で示したプロピレンカーボネートを用い
た場合の約2倍の自己放電率であった。本実施例では正
極は4V以上の電圧となるため、エーテル類は酸化され
るためと考えている。
[0036] In the above examples, the electrolyte was 1 mol/
These are the results when using a propylene carbonate solution in which 1 liter of lithium perchlorate was dissolved, but in addition to this as an electrolyte, lithium perchlorate, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, and borofluoride were used as solutes. Lithium chloride, propylene carbonate as solvent,
Electrolytes using carbonates such as ethylene carbonate, and esters such as gamma butyrolactone and methyl acetate were good. However, when ethers such as dimethoxyethane and tetrahydrofuran are used, the self-discharge characteristics are poor, and no improvement in self-discharge characteristics was observed by adding an alkali metal hydroxide to the positive electrode. The self-discharge rate was approximately twice that when using propylene carbonate. In this example, since the positive electrode has a voltage of 4 V or more, it is thought that the ethers are oxidized.

【0037】[0037]

【発明の効果】  以上の実施例の説明で明らかなよう
に本発明の非水電解液二次電池によれば、リチウム、リ
チウム合金またはリチウム化合物の負極、(化5)に示
す化学式で表わされる複合酸化物を用いた正極活物質、
および非水電解液を有し、前記正極活物質にアルカリ金
属水酸化物を添加したものを用いることにより自己放電
特性が良好な非水電解液二次電池を得ることができ、産
業上の意義は大きい。
[Effects of the Invention] As is clear from the description of the above embodiments, according to the nonaqueous electrolyte secondary battery of the present invention, a negative electrode of lithium, lithium alloy, or lithium compound, represented by the chemical formula shown in (Chemical formula 5) Cathode active material using composite oxide,
By using a positive electrode active material containing a non-aqueous electrolyte and an alkali metal hydroxide added to the positive electrode active material, a non-aqueous electrolyte secondary battery with good self-discharge characteristics can be obtained, which has industrial significance. is big.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1の電池の60℃保存にともな
う電池内部抵抗の変化を示したグラフ
FIG. 1 is a graph showing the change in internal resistance of the battery according to Example 1 of the present invention as it is stored at 60°C.

【図2】本発明の実施例2の水酸化リチウムの添加量(
活物質100gに対するモル数)とこれらの正極を用い
た電池の60℃保存後の電池内部抵抗との関係を示した
グラフ
FIG. 2: Addition amount of lithium hydroxide in Example 2 of the present invention (
Graph showing the relationship between the number of moles per 100 g of active material) and the battery internal resistance after storage at 60°C of batteries using these positive electrodes

【図3】本発明の実施例に用いたコイン型の電池の縦断
面図
[Fig. 3] Vertical cross-sectional view of a coin-shaped battery used in an example of the present invention

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウム、リチウム合金またはリチウム化
合物の負極、(化1)に示す化学式で表わされる複合酸
化物を用いた正極活物質、および非水電解液を有し、前
記正極活物質にアルカリ金属水酸化物を添加した非水電
解液二次電池。 【化1】
1. A negative electrode made of lithium, a lithium alloy, or a lithium compound, a positive electrode active material using a composite oxide represented by the chemical formula shown in (Chemical formula 1), and a non-aqueous electrolyte, wherein the positive electrode active material contains an alkali. A non-aqueous electrolyte secondary battery containing metal hydroxide. [Chemical formula 1]
【請求項2】アルカリ金属水酸化物の添加量が正極活物
質100gあたり0.05〜0.15モルである請求項
1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of the alkali metal hydroxide added is 0.05 to 0.15 mol per 100 g of positive electrode active material.
JP3005038A 1991-01-21 1991-01-21 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2558957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005038A JP2558957B2 (en) 1991-01-21 1991-01-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005038A JP2558957B2 (en) 1991-01-21 1991-01-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04237967A true JPH04237967A (en) 1992-08-26
JP2558957B2 JP2558957B2 (en) 1996-11-27

Family

ID=11600279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005038A Expired - Fee Related JP2558957B2 (en) 1991-01-21 1991-01-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2558957B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378012B1 (en) * 2000-11-09 2003-03-29 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery and lithium secondary battery using same
US20100237277A1 (en) * 2004-12-20 2010-09-23 Haruchika Ishii Nonaqueous electrolyte battery, battery pack and positive electrode active material
JP2013131392A (en) * 2011-12-21 2013-07-04 Toyota Motor Corp Method of manufacturing lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378012B1 (en) * 2000-11-09 2003-03-29 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery and lithium secondary battery using same
US20100237277A1 (en) * 2004-12-20 2010-09-23 Haruchika Ishii Nonaqueous electrolyte battery, battery pack and positive electrode active material
JP2013131392A (en) * 2011-12-21 2013-07-04 Toyota Motor Corp Method of manufacturing lithium ion secondary battery

Also Published As

Publication number Publication date
JP2558957B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
JPH04355065A (en) Nonaqueous electrolyte secondary battery
JPH08236155A (en) Lithium secondary battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JPH0744042B2 (en) Electrolyte for lithium secondary battery
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
JPH04237967A (en) Nonaqueous electrolyte secondary battery
JPH07230825A (en) Nonaqueous electrolyte battery
JPH0778632A (en) Lithium secondary battery
JP3157152B2 (en) Non-aqueous electrolyte battery
JPH04351860A (en) Non-aqueous electrolyte battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JP2975627B2 (en) Battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JP2830479B2 (en) Non-aqueous electrolyte secondary battery
JPH0359963A (en) Lithium secondary battery
JPH0355770A (en) Lithium secondary battery
JP3374124B2 (en) Non-aqueous electrolyte secondary battery
JP3021478B2 (en) Non-aqueous secondary battery
JPH0630256B2 (en) Non-aqueous electrolyte secondary battery
JP2022139890A (en) Recovery method for non-aqueous electrolyte secondary battery and manufacturing method for non-aqueous electrolyte secondary battery
JP2707657B2 (en) Electrolyte for lithium secondary battery
JPH07226231A (en) Lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees