JPH0744042B2 - Electrolyte for lithium secondary battery - Google Patents

Electrolyte for lithium secondary battery

Info

Publication number
JPH0744042B2
JPH0744042B2 JP63302945A JP30294588A JPH0744042B2 JP H0744042 B2 JPH0744042 B2 JP H0744042B2 JP 63302945 A JP63302945 A JP 63302945A JP 30294588 A JP30294588 A JP 30294588A JP H0744042 B2 JPH0744042 B2 JP H0744042B2
Authority
JP
Japan
Prior art keywords
lithium
solvent
charge
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63302945A
Other languages
Japanese (ja)
Other versions
JPH02148665A (en
Inventor
秀 越名
博美 奥野
信夫 江田
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63302945A priority Critical patent/JPH0744042B2/en
Publication of JPH02148665A publication Critical patent/JPH02148665A/en
Publication of JPH0744042B2 publication Critical patent/JPH0744042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム二次電池の電解液に関するものであ
る。
TECHNICAL FIELD The present invention relates to an electrolytic solution for a lithium secondary battery.

従来の技術 従来よりチリウム二次電池は正極活物質に二硫化モリブ
デン(MoS2)、二硫化チタン(TiS2)、二酸化マンガン
(MnO2)、五酸化バナジウム(V2O5)などの遷移金属硫
化物もしくは酸化物を用い、負極に金属リチウムやリチ
ウムイオンを吸蔵、放出する合金、たとえばウッド合金
やLi−Al合金などを用いた電池系が知られている。
2. Description of the Related Art Conventionally, thirium secondary batteries have been used as positive electrode active materials for transition metals such as molybdenum disulfide (MoS 2 ), titanium disulfide (TiS 2 ), manganese dioxide (MnO 2 ), and vanadium pentoxide (V 2 O 5 ). A battery system using a sulfide or an oxide and an alloy that absorbs and releases metallic lithium or lithium ions in the negative electrode, such as a wood alloy or a Li-Al alloy, is known.

正極の充放電特性に関しては利用率が初期より低下し、
ある一定サイクル数から安定し、充放電効率(放電容量
/充電容量×100)も非常に高く、ほぼ100%に近い。
Regarding the charge and discharge characteristics of the positive electrode, the utilization rate is lower than in the initial stage,
It is stable from a certain number of cycles, and the charging / discharging efficiency (discharging capacity / charging capacity × 100) is very high, close to 100%.

ところが負極に関しては、充放電効率が金属リチウムで
最高98%、リチウムイオンを吸蔵、放出する合金で99%
程度である。従ってリチウム二次電池のサイクル寿命を
支配しているのは負極であることがわかる。
However, regarding the negative electrode, the charge / discharge efficiency is up to 98% for metallic lithium and 99% for alloys that absorb and release lithium ions.
It is a degree. Therefore, it is understood that the negative electrode controls the cycle life of the lithium secondary battery.

発明が解決しようとする課題 この正極と負極の充放電効率の差は、一般的に有機溶媒
が酸化、すなわち分子から電子を抜き取られる反応に強
く、逆に還元に弱いことから生じている。例えばプロピ
レンカーボネイト(PC)ではリチウムに対し、酸化分解
電位は5.0Vと正極の充電電位4Vに充分耐え得る程高い
が、還元分解電位は−40mVとリチウムに対し小さな分極
で分解してしまう。従って電池の充電の際、負極ではリ
チウムの析出反応と溶媒の分解反応の競合反応を起こす
ため負極の充放電効率は低くなる。特に負極にリチウム
金属を用いた場合はリチウムイオンを吸蔵、放出する合
金よりも充電電位が溶媒の還元分解電位に近いため、負
極の充放電効率が低い。
Problems to be Solved by the Invention This difference in charge / discharge efficiency between the positive electrode and the negative electrode is generally caused by the fact that the organic solvent is strong in oxidation, that is, in a reaction of extracting an electron from a molecule, and conversely weak in reduction. For example, propylene carbonate (PC) has an oxidation decomposition potential of 5.0 V with respect to lithium, which is high enough to withstand a positive electrode charging potential of 4 V, but has a reduction decomposition potential of -40 mV and decomposes with a small polarization with respect to lithium. Therefore, when the battery is charged, the negative electrode causes a competitive reaction between the lithium precipitation reaction and the solvent decomposition reaction, so that the negative electrode charge / discharge efficiency becomes low. In particular, when lithium metal is used for the negative electrode, the charge potential is closer to the reductive decomposition potential of the solvent than the alloy that absorbs and releases lithium ions, so the charge and discharge efficiency of the negative electrode is low.

負極がリチウムイオンを吸蔵、放出する合金である場合
は、リチウムに対し電位が0.2〜0.6V貴であるため充放
電効率はリチウム金属よりも高くなるが、電池のエネル
ギー密度は逆に小さくなる。また容量密度はリチウム金
属の2062mAh/ccに対し、合金が1700mAh/ccと低いため、
内体積が限られている電池ではさらにエネルギー密度が
低下する。
When the negative electrode is an alloy that absorbs and releases lithium ions, the charge / discharge efficiency is higher than that of lithium metal because the potential is 0.2 to 0.6 V noble with respect to lithium, but the energy density of the battery is conversely small. In addition, the capacity density of the alloy is as low as 1700 mAh / cc compared to 2062 mAh / cc of lithium metal,
Batteries with a limited internal volume have even lower energy densities.

従って高エネルギー密度のリチウム二次電池を実現させ
るためにはリチウム金属を負極とする方がよいと考えら
れる。しかしこの負極の充放電効率が約98%と低いた
め、たとえば、鉛蓄電池なみの300サイクルという電池
寿命を確保するためには正極の充放電容量に対しリチウ
ムはその約6倍という構成になり、エネルギー密度の観
点からすれば低くならざるを得ない状況である。
Therefore, in order to realize a high energy density lithium secondary battery, it is considered better to use lithium metal as the negative electrode. However, since the charge and discharge efficiency of this negative electrode is as low as about 98%, for example, in order to ensure a battery life of 300 cycles like a lead storage battery, lithium is about 6 times as much as the charge and discharge capacity of the positive electrode. From the viewpoint of energy density, the situation is unavoidable.

このように従来の電池では高エネルギー密度で、かつ高
サイクル寿命を実現することは難しく、さらに耐還元性
の優れたリチウム二次電池用電解液が求められている。
As described above, it is difficult to realize a high energy density and a long cycle life in a conventional battery, and there is a demand for an electrolytic solution for a lithium secondary battery having excellent reduction resistance.

本発明はこのような課題を解決することを目的とする。The present invention aims to solve such problems.

課題を解決するための手段 上記課題を解決するため、本発明はリチウム二次電池用
電解液に次式で示す鎖状炭酸エステル (但しR1≠R2、R1,R2は炭素数1〜4のアルキル基)を
単独もしくは他の溶媒との混合溶媒として用いたもので
ある。
Means for Solving the Problems In order to solve the above problems, the present invention provides an electrolytic solution for a lithium secondary battery, which comprises a chain ester carbonate represented by the following formula: (However, R 1 ≠ R 2 , R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms) are used alone or as a mixed solvent with another solvent.

作用 上記電解液を用いることにより、充電時に溶媒が還元さ
れ難く、そのため負極の充放電効率が向上し、従来の構
成より負極リチウム量も低減できるため、サイクル寿命
が長く、かつ高エネルギー密度のリチウム二次電池が得
られることとなる。
By using the above-mentioned electrolytic solution, the solvent is less likely to be reduced at the time of charging, so that the charge / discharge efficiency of the negative electrode is improved, and the amount of negative electrode lithium can be reduced as compared with the conventional configuration, so that the cycle life is long and the lithium with high energy density is A secondary battery will be obtained.

実施例 以下、本発明の一実施例を第1図、第2図に基づき説明
する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明に係るリチウム二次電池の一部断面図で
あり、たとえば直径が20mm、高さが1.6mmのものであ
る。
FIG. 1 is a partial cross-sectional view of a lithium secondary battery according to the present invention, which has a diameter of 20 mm and a height of 1.6 mm, for example.

第1図中、1は有機溶媒(以下、溶媒という)に電解質
として六フッ化リン酸リチウム(LiPF6)を1モル/l溶
解した電解液をしみこませたポリプロピレン製セパレー
タである。この溶媒の主溶媒として直鎖炭酸エステル (但しR1≠R2、R1,R2は炭素数1〜4のアルキル基) が使用される。2は負極活物質としてのリチウム金属で
あり、ステンレス製封口板3の内面に形成したステンレ
ス製負極集電体4に圧着固定されている。5は二酸化マ
ンガンを正極活物質とした正極合剤であり、ステンレス
製ケース6の内面に固定したチタン製正極集電体7に圧
着固定されている。8はポリプロピレン製ガスケットで
ある。なお、正極合剤5は、たとえば組成が重量部でMn
O2100に対し、カーボンブラック20、フッ素樹脂系結着
剤20とし、容量が10mAhとなるようにされている。リチ
ウム金属2は容量が25mAhとなるようにされている。
In FIG. 1, reference numeral 1 denotes a polypropylene separator impregnated with an electrolytic solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in an organic solvent (hereinafter referred to as a solvent) at 1 mol / l. Linear carbonate as the main solvent of this solvent (However, R 1 ≠ R 2 , R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms) are used. Reference numeral 2 denotes lithium metal as a negative electrode active material, which is pressure-bonded and fixed to a stainless steel negative electrode current collector 4 formed on the inner surface of a stainless steel sealing plate 3. Reference numeral 5 denotes a positive electrode mixture containing manganese dioxide as a positive electrode active material, which is fixed by pressure to a titanium positive electrode current collector 7 fixed to the inner surface of a stainless case 6. 8 is a polypropylene gasket. The positive electrode mixture 5 has, for example, a composition of Mn in parts by weight.
With respect to O 2 100, carbon black 20 and fluororesin-based binder 20 were used, and the capacity was set to 10 mAh. Lithium metal 2 has a capacity of 25 mAh.

ここで、上記構成の電池において、溶媒を各種異ならせ
た場合のサイクル特性を調べた結果を第2図に示す。な
お、充電は0.5mAhの電流で3.8Vまで行い、放電は1.5mAh
の電流で2.0Vまで行った。また第2図中A〜Gまでの溶
媒の成分を第1表に示す。混合溶媒の場合の組成比は体
積比で1:1であり、かつ電解質LiPF6の濃度は1モル/lで
ある。
Here, FIG. 2 shows the results of examining the cycle characteristics of the battery having the above-mentioned structure when various solvents were used. In addition, charging is up to 3.8 V at a current of 0.5 mAh, discharging is 1.5 mAh
Current up to 2.0V. Table 1 shows the components of the solvents A to G in FIG. In the case of the mixed solvent, the composition ratio is 1: 1 by volume, and the concentration of the electrolyte LiPF 6 is 1 mol / l.

なお、比較のために、R1=R2で炭素数1の炭酸ジメチル
(DMC)、炭素数2の炭酸ジエチル(DEC)、炭酸プロピ
レン(PC)、及び炭酸プロピレンとジメトキシエタン
(DME)との混合溶媒についても示した。
For comparison, R 1 = R 2 and dimethyl carbonate (DMC) having 1 carbon atom, diethyl carbonate (DEC) having 2 carbon atoms, propylene carbonate (PC), and propylene carbonate and dimethoxyethane (DME) Mixed solvents are also shown.

第2図より本発明の溶媒を使用した電池(図中B,C,D)
が他のものよりサイクル寿命が長いことがわかる。
From FIG. 2, batteries using the solvent of the present invention (B, C, D in the figure)
Shows that the cycle life is longer than the others.

R1=R2で炭素数1の炭酸ジメチルAは構造的に対象性が
良く、融点が0.5℃と高く、実際にリチウム二次電池の
溶媒としては使い難い。また炭素数2の炭酸ジエチルE
は炭酸数が多いだけ構造的自由度が高く融点も低くなる
が、逆に誘電率が低くなり、電解質の溶解度は低くなる
ため溶媒としては使い難い。さらに炭酸プロピレンFで
は融点も低く、誘電率も高いが、耐還元性に劣るためサ
イクル寿命が短くなっている。
Dimethyl carbonate A having R 1 = R 2 and 1 carbon atom has structurally good symmetry and has a high melting point of 0.5 ° C., so that it is actually difficult to use as a solvent for a lithium secondary battery. Also, C2 diethyl carbonate E
The higher the carbon number, the higher the degree of structural freedom and the lower the melting point, but the lower the dielectric constant and the lower the solubility of the electrolyte, the more difficult it is to use as a solvent. Further, propylene carbonate F has a low melting point and a high dielectric constant, but its cycle life is short because of its poor resistance to reduction.

これらに対し、本発明の溶媒B,C,Dは炭酸ジメチル、炭
酸ジエチルと同等以上のサイクル寿命を示し、かつ構造
が非対称であるため、融点も低く、リチウム二次電池用
の溶媒としては非常に有用である。本発明で炭素数が4
より大となるアルキル基をもつと分子自体が嵩ばり、粘
性の増大、さらには誘電率の低下を引き起こし、リチウ
ム二次電池用の溶媒としては使い難くなる。
On the other hand, the solvents B, C, and D of the present invention show a cycle life equivalent to or longer than that of dimethyl carbonate and diethyl carbonate, and have an asymmetric structure, so that they have a low melting point and are extremely useful as a solvent for a lithium secondary battery. Useful for. 4 carbon atoms in the present invention
If it has a larger alkyl group, the molecule itself becomes bulky, causing an increase in viscosity and a decrease in dielectric constant, making it difficult to use as a solvent for a lithium secondary battery.

第2図から得られたサイクル寿命から負極の充放電効率
を以下の式によって算出した結果、 は電池すなわち正極の平均充放電容量で、ここでは第
2図より9mAhである。Qexはリチウムの容量から充放電
中に正極に残存したリチウム容量を除いたもの、すなわ
ち充放電中に消費されたリチウム量を示し、ここでは20
mAh(リチウム量25mAh−サイクル寿命時の容量5mAh)と
なる。nはサイクル寿命で、ここでは50%の容量劣化時
のサイクル数をサイクル寿命とした。
From the cycle life obtained from FIG. 2, the charge and discharge efficiency of the negative electrode was calculated by the following formula, Is the average charge / discharge capacity of the battery, that is, the positive electrode, which is 9 mAh from FIG. 2 here. Qex is the lithium capacity less the lithium capacity remaining in the positive electrode during charging / discharging, that is, the amount of lithium consumed during charging / discharging.
mAh (lithium amount 25 mAh-capacity at cycle life 5 mAh). n is the cycle life, and here, the number of cycles at 50% capacity deterioration is taken as the cycle life.

本発明の溶媒を用いた電池B,C,Dの負極の充放電効率は
第2表に示すように全て98.5〜99.0%を示し、従来の溶
媒A,E,F,Gを用いた電池よりも高いことがわかる。本実
施例に用いた電池は負極の充放電効率を時間的に早く算
出するためリチウム量Qex(20mAh)を正極に充放電容量
(9mAh)に対し、2.2倍にしているため、300サイクルま
でには至らない構成になっている。しかし第2表で算出
した充放電効率を用いることによって300サイクルの寿
命を達成できる電池にするためのリチウム量がわかり、
電池設計ができる。すなわち、負極の充放電効率が98.5
〜99.0%である本発明の溶媒を用いると、上記式から30
0サイクルの寿命を有する電池を設計するためのリチウ
ム量が算出でき、そのリチウム量Qexは第2表に示すよ
うに正極の充放電容量の3.0〜4.5倍となる。一方、従来
の溶媒A,E,F,Gを用いた電池では正極の充放電容量の5.7
〜18.9倍になる。従って、本発明と従来の溶媒を用いた
電池を比較するとわかるように従来のように負極の充放
電効率が低ければ低い程電池内にリチウム量が必要で、
逆に本発明のように負極の充放電効率が高い程、電池内
のリチウム量は少なくて良い。従って本発明の電池はリ
チウム量が少ない分だけ正極活物質の充填量を増すこと
ができ、これによって電池の高容量化すなわち高エネル
ギー密度化が可能となる。
As shown in Table 2, the charge and discharge efficiencies of the negative electrodes of the batteries B, C and D using the solvent of the present invention were all 98.5 to 99.0%, and the battery using the conventional solvents A, E, F and G You can see that it is also expensive. In the battery used in this example, the lithium amount Qex (20 mAh) was set to 2.2 times the charge / discharge capacity (9 mAh) in the positive electrode in order to calculate the charging / discharging efficiency of the negative electrode quickly in time. Is not reached. However, by using the charge and discharge efficiency calculated in Table 2, the amount of lithium for a battery that can achieve a life of 300 cycles was found,
Can design batteries. That is, the charge / discharge efficiency of the negative electrode is 98.5.
With the solvent of the present invention, which is ~ 99.0%,
The amount of lithium for designing a battery having a life of 0 cycle can be calculated, and the amount of lithium Qex is 3.0 to 4.5 times the charge / discharge capacity of the positive electrode as shown in Table 2. On the other hand, in batteries using conventional solvents A, E, F, and G, the charge and discharge capacity of the positive electrode was 5.7%.
~ 18.9 times. Therefore, as can be seen by comparing the battery using the present invention and the conventional solvent, the lower the charge and discharge efficiency of the negative electrode as in the conventional case, the more lithium amount is required in the battery,
Conversely, the higher the charge / discharge efficiency of the negative electrode as in the present invention, the smaller the amount of lithium in the battery may be. Therefore, in the battery of the present invention, the filling amount of the positive electrode active material can be increased as much as the amount of lithium is smaller, which allows the battery to have higher capacity, that is, higher energy density.

また負極の充放電効率と溶媒の耐還元性とは密接な関係
にあり、耐還元性の高い溶媒を用いたほど充電の際、電
解液とリチウムとの反応により消費されるリチウム量が
少なく抑えられ、負極の充放電効率が高くなる。そし
て、耐還元性の高い溶媒は、従来から知られているよう
なエチレンカーボネイト、プロピレンカーボネイト、テ
トラヒドロフラン、1,2ジメトキシエタン、アセトニト
リル、ジメチルホルムアミドなどを他の溶媒とし、これ
らと適宜組み合わせて混合した状態であっても、負極の
充放電効率を高めて電池の充放電サイクル寿命特性を向
上させることができる。このことから同一リチウム量で
あると耐還元性が高い溶媒を用いた場合ほど負極の充放
電効率が高くなり、サイクル寿命が長くなる。従って本
発明の溶媒は耐還元性が高く、リチウム二次電池用電解
液に用いる溶媒として優れたものであると言える。
Also, there is a close relationship between the charge and discharge efficiency of the negative electrode and the reduction resistance of the solvent, and the higher the reduction resistance of the solvent used, the smaller the amount of lithium consumed by the reaction between the electrolyte and lithium during charging. Therefore, the charge and discharge efficiency of the negative electrode is increased. Then, the solvent having high resistance to reduction is ethylene carbonate, propylene carbonate, tetrahydrofuran, 1,2 dimethoxyethane, acetonitrile, dimethylformamide, etc. which are conventionally known as other solvents, and they are appropriately combined and mixed. Even in the state, the charge / discharge efficiency of the negative electrode can be increased and the charge / discharge cycle life characteristics of the battery can be improved. From this, when the amount of lithium is the same, the charge and discharge efficiency of the negative electrode becomes higher and the cycle life becomes longer when a solvent having high reduction resistance is used. Therefore, it can be said that the solvent of the present invention has high reduction resistance and is an excellent solvent for use in the electrolytic solution for a lithium secondary battery.

発明の効果 以上の説明から明らかなように本発明の溶媒を用いれば
負極の充放電効率を向上させることができ、その結果高
エネルギー密度でかつサイクル寿命が長いという特徴を
有するリチウム二次電池が得られる。
EFFECTS OF THE INVENTION As is clear from the above description, the charge and discharge efficiency of the negative electrode can be improved by using the solvent of the present invention, and as a result, a lithium secondary battery having a feature of high energy density and long cycle life can be obtained. can get.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における二次電池の一部断面
図、第2図は同二次電池のサイクル特性を示す図であ
る。 1……セパレータ、2……リチウム金属、5…正極。
FIG. 1 is a partial sectional view of a secondary battery according to an embodiment of the present invention, and FIG. 2 is a diagram showing cycle characteristics of the secondary battery. 1 ... Separator, 2 ... Lithium metal, 5 ... Positive electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム塩を溶解させた溶媒からなるリチ
ウム二次電池用電解液であって、前記溶媒が次式で示す
鎖状炭酸エステル (但しR1≠R2、R1,R2は炭素数1〜4のアルキル基) の単独もしくは他の溶媒との混合溶媒であることを特徴
とするリチウム二次電池用電解液。
1. An electrolytic solution for a lithium secondary battery comprising a solvent in which a lithium salt is dissolved, wherein the solvent is a chain ester carbonate represented by the following formula: (Wherein R 1 ≠ R 2 , R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms) alone or as a mixed solvent with another solvent, an electrolytic solution for a lithium secondary battery.
JP63302945A 1988-11-30 1988-11-30 Electrolyte for lithium secondary battery Expired - Lifetime JPH0744042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63302945A JPH0744042B2 (en) 1988-11-30 1988-11-30 Electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63302945A JPH0744042B2 (en) 1988-11-30 1988-11-30 Electrolyte for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH02148665A JPH02148665A (en) 1990-06-07
JPH0744042B2 true JPH0744042B2 (en) 1995-05-15

Family

ID=17915032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63302945A Expired - Lifetime JPH0744042B2 (en) 1988-11-30 1988-11-30 Electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0744042B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69127251T3 (en) * 1990-10-25 2005-01-13 Matsushita Electric Industrial Co., Ltd., Kadoma Non-aqueous electrochemical secondary battery
US5521027A (en) * 1990-10-25 1996-05-28 Matsushita Electric Industrial Co., Ltd. Non-aqueous secondary electrochemical battery
US5484669A (en) * 1991-12-27 1996-01-16 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary batteries
DE69309861T2 (en) * 1992-11-18 1997-09-11 Sony Corp Carbonate compounds, non-aqueous electrolyte solutions and batteries containing non-aqueous electrolyte solutions
FR2702311B1 (en) * 1993-03-02 1995-04-14 Accumulateurs Fixes Electrolyte for rechargeable lithium generator.
JP3341524B2 (en) * 1995-04-04 2002-11-05 宇部興産株式会社 Electrolyte for lithium secondary battery
JP3416016B2 (en) * 1997-03-18 2003-06-16 富士通株式会社 Ion conductor for lithium secondary battery and lithium secondary battery using the same
US5962720A (en) * 1997-05-29 1999-10-05 Wilson Greatbatch Ltd. Method of synthesizing unsymmetric organic carbonates and preparing nonaqueous electrolytes for alkali ion electrochemical cells
EP1890357B1 (en) 2005-06-10 2012-06-13 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery and carbonate compound
JP5109288B2 (en) * 2006-05-10 2012-12-26 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056663A (en) * 1975-11-03 1977-11-01 P. R. Mallory & Co. Inc. Performance in an organic electrolyte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056663A (en) * 1975-11-03 1977-11-01 P. R. Mallory & Co. Inc. Performance in an organic electrolyte

Also Published As

Publication number Publication date
JPH02148665A (en) 1990-06-07

Similar Documents

Publication Publication Date Title
JP3439085B2 (en) Non-aqueous electrolyte secondary battery
JPH1027626A (en) Lithium secondary battery
JP2021511640A (en) Mixtures of potassium and lithium salts and their use in batteries
JPH0520874B2 (en)
JPH0744042B2 (en) Electrolyte for lithium secondary battery
JP3029271B2 (en) Non-aqueous secondary battery
JP2701327B2 (en) Non-aqueous electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JPH03291863A (en) Secondary cell
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3229531B2 (en) Non-aqueous electrolyte secondary battery
US6413677B1 (en) Lithium secondary battery electrolyte and lithium secondary battery using the same
JPH04355056A (en) Nonaqueous electrolyte secondary battery
JP4127890B2 (en) Non-aqueous electrolyte battery
JP2975627B2 (en) Battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP2953024B2 (en) Non-aqueous electrolyte secondary battery
JP2707657B2 (en) Electrolyte for lithium secondary battery
JP2558957B2 (en) Non-aqueous electrolyte secondary battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JP3119928B2 (en) Non-aqueous solvent for battery electrolyte
JPH0355770A (en) Lithium secondary battery
JP3021526B2 (en) Electrolyte for lithium secondary battery
JPH1083837A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14