JPH01109662A - Nonaqueous electrolytic secondary cell - Google Patents

Nonaqueous electrolytic secondary cell

Info

Publication number
JPH01109662A
JPH01109662A JP62267455A JP26745587A JPH01109662A JP H01109662 A JPH01109662 A JP H01109662A JP 62267455 A JP62267455 A JP 62267455A JP 26745587 A JP26745587 A JP 26745587A JP H01109662 A JPH01109662 A JP H01109662A
Authority
JP
Japan
Prior art keywords
lithium
electrode active
active material
positive electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62267455A
Other languages
Japanese (ja)
Inventor
Takao Ogino
隆夫 荻野
Tadaaki Miyazaki
忠昭 宮崎
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP62267455A priority Critical patent/JPH01109662A/en
Publication of JPH01109662A publication Critical patent/JPH01109662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the capacity at 2V or above and improve the charging and discharging cycle characteristics by using a lithium-manganese oxide expressed by LiMn2O4 and having a spinel type structure as a positive electrode active material, using a lithium alloy as a negative electrode active material, and using a nonaqueous electrolyte containing lithium. CONSTITUTION:A lithium-mangenese oxide expressed by LiMn2O4 and having a spinel type structure is used as a positive electrode active material. A lithium alloy is used as a negative electrode active material. A lithium-aluminum alloy is used as the lithium alloy. The lithium content in the lithium alloy is set to 10-60atom.%. The electrolyte contains lithium ions, and one kind or two kinds or more selected among LiClO4, LiBF4, LiAsF4, LiSO3CF3, and LiPF6 are used as a lithium ion source.

Description

【発明の詳細な説明】 皮呈上■■朋豆団 本発明は、高電圧、高エネルギー密度で充放電のサイク
ル寿命が長く、安定性、信幀性に優れた非水電解質二次
電池に関する。
[Detailed Description of the Invention] The present invention relates to a non-aqueous electrolyte secondary battery that is high voltage, high energy density, has a long charge/discharge cycle life, and has excellent stability and reliability. .

来の (r び  が解決しようとする問題点従来から
、リチウムを負極活物質として用いる高エネルギー密度
電池に関しては多くの提案がなされており、フン化黒鉛
や二酸化マンガンを正極活物質として用いたリチウム電
池が既に市販されている。しかし、これらの電池は一次
電池であり、充電できない欠点があった。
Problems to be solved by the future (r bi) Many proposals have been made for high-energy density batteries that use lithium as the negative electrode active material. Batteries are already commercially available. However, these batteries are primary batteries and have the disadvantage that they cannot be recharged.

リチウムを負極活物質として用いる二次電池については
、正極活物質としてチタン、モリブデン。
For secondary batteries that use lithium as the negative electrode active material, titanium and molybdenum are used as the positive electrode active material.

ニオビウム、バナジウム、ジルコニウムのカルコゲナイ
ド(硫化物、セレン化物、テルル化物)を用いた電池が
提案されているが、電池特性が必ずしも十分でないため
に、実用化されているものは少ない。
Batteries using chalcogenides (sulfides, selenides, tellurides) of niobium, vanadium, and zirconium have been proposed, but few have been put into practical use because the battery characteristics are not necessarily sufficient.

例えば、負極に金属リチウム、正極に二硫化チタン(T
iSz)を用いる非水電解質二次電池が提案されている
(特開昭50−54836号公報)が、この電池は、T
i5zの酸化還元電位が低いため電位が平均2■と低い
ものであり、また負極の金属リチウムを充電する際にデ
ンドライトが発生するためサイクル特性も悪いものであ
った。
For example, metallic lithium is used as the negative electrode, and titanium disulfide (T) is used as the positive electrode.
A non-aqueous electrolyte secondary battery using T.
Since the oxidation-reduction potential of i5z was low, the average potential was as low as 2■, and the cycle characteristics were also poor because dendrites were generated when charging the metal lithium of the negative electrode.

このデンドライトの問題を解決するために、負極に原子
数の百分率で63〜92%のリチウムを含むリチウム・
アルミニウム合金を使用することも提案された(特開昭
52−5423号公報)が、この電池はサイクル特性に
改良は見られるものの、電圧が金属リチウムを負極とす
るものよりも更に低下し、1.7Vと低い欠点を有して
いた。
In order to solve this dendrite problem, we developed a lithium-ion solution containing 63 to 92% lithium atoms in the negative electrode.
It was also proposed to use an aluminum alloy (Japanese Patent Application Laid-Open No. 52-5423), but although this battery showed improvement in cycle characteristics, the voltage was lower than that of a battery using metallic lithium as the negative electrode, and It had the disadvantage of a low voltage of .7V.

また、最近二硫化モリブデンを電極材料として用いた二
次電池が実用化されたが、これも放電電圧が約1.8V
と低く、過充電に弱いなどの欠点を有している。
In addition, a secondary battery using molybdenum disulfide as an electrode material has recently been put into practical use, but this also has a discharge voltage of about 1.8V.
It has disadvantages such as low power consumption and vulnerability to overcharging.

一方、金属酸化物を用いたものとして、正極に五酸化バ
ナジウム(V冨OS) 、負極に金属リチウムという電
池構成が提案されている(例えば特開昭48−6024
0号公報; W、 B、 Ehner and  %1
.C0Merz、 Roc 28th Power 5
ources Sympo、 June1978、 P
214) 、 Lかし、この電池も負極に金属リチウム
を使用しているのでサイクル特性が悪く、しかもVオ0
.は導電性が悪いという問題点を有している。この場合
、この電池において、負極として金属リチウムの代わり
にリチウム・アルミニウム合金を用いるとサイクル特性
はかなり改善されるが、2V以上での容量が低くなると
いう欠点が生じる。
On the other hand, as a battery using metal oxides, a battery configuration has been proposed in which vanadium pentoxide (V-FOS) is used as the positive electrode and metal lithium is used as the negative electrode (for example, Japanese Patent Laid-Open No. 48-6024
Publication No. 0; W, B, Ehner and %1
.. C0Merz, Roc 28th Power 5
sources Sympo, June 1978, P
214) However, this battery also uses metallic lithium for the negative electrode, so its cycle characteristics are poor, and the V
.. has the problem of poor conductivity. In this case, in this battery, if a lithium-aluminum alloy is used instead of metallic lithium as the negative electrode, the cycle characteristics are considerably improved, but there is a drawback that the capacity at 2 V or more is lowered.

リチウム二次電池の大きな用途としては、ICメモリー
のバックアップ電源があるが、かかる用途においては、
2V未満ではメモリーバックアップが困難となるため、
2V以上での容量が重要であり、2V以上の電位で高容
量を存するリチウム二次電池が望まれる。
A major use of lithium secondary batteries is as a backup power source for IC memory;
If the voltage is less than 2V, memory backup becomes difficult.
Capacity at 2V or more is important, and a lithium secondary battery that has high capacity at a potential of 2V or more is desired.

本発明は上記事情に鑑みなされたもので、2V以上の高
電位で大容量を有し、かつサイクル特性に優れた高電位
の非水電解質二次電池を提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a high-potential non-aqueous electrolyte secondary battery that has a large capacity at a high potential of 2 V or more and has excellent cycle characteristics.

。 占を”するための   び 用 本発明者らは、上記目的を達成するため鋭意検討を進め
た結果、非水電解質リチウム二次電池の正極活物質とし
てスピネル型構造を有するLiMnzOaで示されるリ
チウムマンガン酸化物を使用すると共に、負極活物質と
してリチウム合金、特にリチウム−アルミニウム合釡を
使用することが有効であることを知見した。
. In order to achieve the above object, the inventors of the present invention have carried out intensive studies and found that lithium manganese represented by LiMnzOa having a spinel structure can be used as a positive electrode active material for non-aqueous electrolyte lithium secondary batteries. It has been found that it is effective to use a lithium alloy, particularly a lithium-aluminum alloy, as a negative electrode active material in addition to using an oxide.

即ち、従来より二酸化マンガン(MnOz)は電圧、容
量、経済性の観点において優れていることから正極活物
質に好適な材料であることが知られており、従来−次電
池の正極活物質として用いられているが、充放電のサイ
クル特性に問題があり、二次電池には不適とされている
In other words, manganese dioxide (MnOz) has been known to be a suitable material for positive electrode active materials due to its excellent voltage, capacity, and economical aspects, and has traditionally been used as positive electrode active materials for secondary batteries. However, it has problems with charge/discharge cycle characteristics, making it unsuitable for secondary batteries.

MnO2を正極、リチウムを負極にそれぞれ用いた電池
において、MnO!は放電に伴いLiイオンをその眉間
に吸蔵し、LixMnOz (0≦x〈1)で示される
リチウムマンガン酸化物に変化し、Mn0t 1モルに
対して最大1モルのLiイオンを取り込むことが可能で
ある。そして、充電時にはLi原子を放出する反応が引
き起こされるが、その反応においてMnO。
In a battery using MnO2 as the positive electrode and lithium as the negative electrode, MnO! As it discharges, it absorbs Li ions between its eyebrows and changes into lithium manganese oxide, which is represented by LixMnOz (0≦x<1), and it is possible to incorporate up to 1 mole of Li ions per 1 mole of Mn0t. be. Then, during charging, a reaction is caused that releases Li atoms, and in this reaction, MnO.

中から放電により吸蔵したLiイオンを完全には放出で
きず、約0.4モルのLiイオンが残留してしまう、即
ち、電気化学的に充電できない状態のLi原子が約0.
4モル存在することになり、サイクル特性、即ち初期に
対して2サイクル目以降の容量保持率が大きく低下し、
二次電池の正極材料としては不適なものとなる。
The Li ions occluded by the discharge cannot be completely released from inside, and approximately 0.4 moles of Li ions remain. In other words, approximately 0.4 moles of Li atoms remain that cannot be electrochemically charged.
4 moles of it will be present, and the cycle characteristics, that is, the capacity retention rate from the second cycle onward will greatly decrease compared to the initial stage.
This makes it unsuitable as a positive electrode material for secondary batteries.

ところが、本発明者らの検討によれば、LiMnzOa
で示されるリチウムマンガン酸化物は予めLi原子を吸
蔵した(ドープした)もので、上記のようなサイクル劣
化を抑制することができ、しかもこのマンガン酸化物は
面心立方格子を持つスピネルと呼ばれる構造であり、こ
のためLiイオンの侵入サイトが多く、かつ広く、リチ
ウムイオンの吸蔵、放出が非常に容易となるものであり
、このスピネル型のLiMnzOaで示されるリチウム
マンガン酸化物が非水電解質リチウム二次電池の正極活
物質として優れた特性を有することを知見すると共に、
このリチウムマンガン酸化物を負極活物質としてリチウ
ム−アルミニウム合金等のリチウム合金、電解質として
リチウムイオンを含む電解質、特にLiCI Oi+ 
LiBFa+ LiAshlLiSO4CFs、LIP
F&の1種又は2種以上を含む電解質と組合せることに
より、高電圧、高エネルギー密度を有し、かつ充放電寿
命が長く、ICメモリーのバックアンプ電源用電池等と
して好適に用いられる非水電解質二次電池が得られるこ
とを知見し、本発明を完成するに至ったものである。
However, according to the inventors' study, LiMnzOa
The lithium manganese oxide represented by is pre-occluded (doped) with Li atoms, and can suppress the cycle deterioration described above.Moreover, this manganese oxide has a structure called spinel with a face-centered cubic lattice. Therefore, there are many and wide sites for Li ions to enter, making it very easy to absorb and release lithium ions.The lithium manganese oxide represented by this spinel-type LiMnzOa is used as a non-aqueous electrolyte lithium dihydride. In addition to discovering that it has excellent properties as a positive electrode active material for next-generation batteries,
This lithium manganese oxide can be used as a negative electrode active material for a lithium alloy such as lithium-aluminum alloy, and as an electrolyte for an electrolyte containing lithium ions, especially LiCI Oi+
LiBFa+ LiAshlLiSO4CFs, LIP
By combining with an electrolyte containing one or more types of F&, it has high voltage, high energy density, and long charge/discharge life, and is suitable for use as a battery for back amplifier power supply of IC memory. It was discovered that an electrolyte secondary battery could be obtained, and the present invention was completed.

従って、本発明は、スピネル型構造を有する下記式(1
1 %式%(1) で示されるリチウムマンガン酸化物を正極活物質とし、
リチウムを吸蔵及び放出可能なリチウム合金を負極活物
質とし、かつリチウムイオンを含む電解質を用いたこと
を特徴とする非水電解質二次電池を提供するものである
Therefore, the present invention provides the following formula (1
A lithium manganese oxide represented by the formula % (1) is used as a positive electrode active material,
The present invention provides a non-aqueous electrolyte secondary battery characterized by using a lithium alloy capable of intercalating and deintercalating lithium as a negative electrode active material and an electrolyte containing lithium ions.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明に係る二次電池は、上述したようにスピネル型構
造を有する下記式(1) %式%() で示されるリチウムマンガン酸化物を正極活物質とする
ものである。
The secondary battery according to the present invention uses, as a positive electrode active material, a lithium manganese oxide represented by the following formula (1) having a spinel structure as described above.

この式(1)で示されるスピネル型リチウムマンガン酸
化物について、Liイオンへ吸蔵、放出により生成され
る物質はLi、Mn、0.と書き表わされるが、この物
質は0≦X≦2の状態で充放電が可能である。ここで、
上記範囲においてリチウム−アルミニウム合金を負極活
物質として用いた場合、0≦X≦1の間で3.4〜3.
5vの電圧平坦性の良好な放電を示し、1≦X≦2の間
では2.4〜2.5vという二段放電挙動を示す。
Regarding the spinel type lithium manganese oxide represented by this formula (1), the substances produced by intercalation and desorption into Li ions are Li, Mn, 0. This substance can be charged and discharged under the condition 0≦X≦2. here,
When a lithium-aluminum alloy is used as a negative electrode active material in the above range, 3.4 to 3.
It shows a discharge with good voltage flatness of 5V, and shows a two-stage discharge behavior of 2.4 to 2.5V between 1≦X≦2.

即ち、上記(1)式で示されるスピネル型構造を有する
リチウムマンガン酸化物は約4〜2v間での充放電サイ
クルが可能であると考えられるが、LiJIJOaにお
ける0≦X≦1の範囲内では充放電による構造の崩れが
顕著でサイクルに伴う容量低下が大きく、また電解液の
分解という問題も生ずる。一方l≦X≦2での放電は2
.4〜2.5vで非常に優れた電圧平坦性を示し、かつ
2v以上で高容量であり、サイクルに伴う容量低下も非
常に小さい。従って、本発明電池は放電時の作動電圧を
2〜2.6vの間とすることが好ましく、より好ましく
は2.4〜2.5vの間である。
That is, it is thought that lithium manganese oxide having a spinel structure represented by the above formula (1) is capable of charge/discharge cycles between approximately 4 to 2V, but within the range of 0≦X≦1 in LiJIJOa. The structure collapses significantly during charging and discharging, and the capacity decreases significantly with cycles, and there is also the problem of decomposition of the electrolyte. On the other hand, when l≦X≦2, the discharge is 2
.. It exhibits excellent voltage flatness at 4 to 2.5V, and has high capacity at 2V or more, with very little capacity loss due to cycles. Therefore, in the battery of the present invention, the operating voltage during discharge is preferably between 2 and 2.6V, more preferably between 2.4 and 2.5V.

上記式(11で示されるリチウムマンガン酸化物を正極
活物質として用い、正極を作成する場合、リチウムマン
ガン酸化物の粒径は必ずしも制限されないが、平均粒径
が3μ以下のものを用いるとより高性能の正極を作るこ
とができる。この場合、これらの粉末に対し、グラファ
イトやアセチレンブラック等の導電剤、フッ素樹脂粉末
等の結着剤などを添加混合し、プレスし、有機溶剤で混
練し、ロールで圧延し、乾燥する等の方法により正極を
作成することができる。なお、導電剤の混合量は(1)
式の正極材料100重量部に対し3〜25重量部、特に
5〜15重量部とすることが好ましい。
When creating a positive electrode using a lithium manganese oxide represented by the above formula (11) as a positive electrode active material, the particle size of the lithium manganese oxide is not necessarily limited, but it is better to use one with an average particle size of 3μ or less. A positive electrode with high performance can be made.In this case, a conductive agent such as graphite or acetylene black, a binder such as fluororesin powder, etc. are added to and mixed with these powders, pressed, and kneaded with an organic solvent. A positive electrode can be created by rolling with a roll and drying, etc.The amount of the conductive agent mixed is (1)
It is preferably 3 to 25 parts by weight, particularly 5 to 15 parts by weight, based on 100 parts by weight of the positive electrode material of the formula.

次に、本発明電池の負極活物質としてはリチウム合金を
用いるが、これにより、リチウム金属を用いた時に生じ
るデンドライト生成によるサイクル特性の悪化を防止す
ることが可能となる。この場合、リチウム合金としては
リチウムを含むUa。
Next, a lithium alloy is used as the negative electrode active material of the battery of the present invention, which makes it possible to prevent deterioration of cycle characteristics due to dendrite formation that occurs when lithium metal is used. In this case, the lithium alloy is Ua containing lithium.

11b、ma、Na、Va族の金属又はその2種以上の
合金が使用可能であるが、特にリチウムを含むAI、I
n+ Sn+ pb、 Bt、 Cti、 Zn又はこ
れらの2種以上の合金が好適であり、最も好ましくは、
クローン効率が良好なこと、その酸化還元電位が低く、
電池電圧が高くとれることなどからリチウム−アルミニ
ウム合金が用いられる。この場合、リチウム合金中のリ
チウム含有量は原子数の百分率で10〜60%とするこ
とが好ましく、特に25〜40%とすることが最も好適
であり、かかるリチウム含有量のリチウム合金、とりわ
けリチウム−アルミニウム合金を使用することにより、
上述した本発明の目的がより効果的に達成される。
11b, ma, Na, Va group metals or alloys of two or more thereof can be used, especially AI, I containing lithium.
n+ Sn+ pb, Bt, Cti, Zn or alloys of two or more of these are preferred, and most preferably,
Good cloning efficiency, low redox potential,
Lithium-aluminum alloy is used because it can provide high battery voltage. In this case, the lithium content in the lithium alloy is preferably from 10 to 60% in terms of percentage of atoms, most preferably from 25 to 40%. - By using aluminum alloy,
The above-mentioned objects of the present invention are more effectively achieved.

なお、リチウム合金の製造法に制限はなく、公知の方法
が採用できる。例えば、リチウム−アルミニウム合金を
得る場合は、冶金学的に溶融合金化する方法や電気化学
的に合金化する方法などが採用し得る。しかし、これら
の中では電解液中で電気化学的に合金化したものがより
好ましい、この場合、アルミニウムの形状などは適宜選
定し得、電池の種類等に応じて板状のもの、粉末アルミ
ニウムをバインダーで結着成型したものなどが使用され
る。
Note that there are no restrictions on the method for producing the lithium alloy, and any known method can be employed. For example, when obtaining a lithium-aluminum alloy, a metallurgical melt-alloying method or an electrochemical alloying method may be employed. However, among these, aluminum that is electrochemically alloyed in an electrolytic solution is more preferable. In this case, the shape of aluminum can be selected as appropriate, and plate-shaped or powdered aluminum may be used depending on the type of battery. Those bonded and molded with a binder are used.

更に、本発明の二次電池を構成する電解質はリチウムイ
オンを含むものであるが、リチウムイオン源としてはL
iCl O,、、LiBP、、 LiAsF、、 Li
5OICF3及びLiPP1から選ばれる1種又は2種
以上が最も好適に使用される。
Furthermore, although the electrolyte constituting the secondary battery of the present invention contains lithium ions, the lithium ion source is L.
iClO, , LiBP, , LiAsF, , Li
One or more selected from 5OICF3 and LiPP1 are most preferably used.

これらの電解質は通常溶媒により溶解された状態で使用
され、この場合溶媒は特に限定されないが、比較的極性
の大きい溶媒が好適に用いられる。
These electrolytes are usually used in a state dissolved in a solvent, and in this case, the solvent is not particularly limited, but relatively polar solvents are preferably used.

具体的には、プロピレンカーボネートエチレンカーボネ
ート、テトラヒドロフラン、2−メチルテトラヒドロフ
ラン、ジオキソラン、ジオキサン。
Specifically, propylene carbonate ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, and dioxane.

ジメトキシエタン、ジエチレングリコールジメチルエー
テル等のグライム類、T−ブチロラクトン等のラクトン
類、トリエチルフォスフェート等のリン酸エステル類、
ホウ酸トリエチル等のホウ酸エステル類、スルホラン、
ジメチルスルホキシド等の硫黄化合物、アセトニトリル
等のニトリル類、ジメチルホルムアミド、ジメチルアセ
トアミド等のアミド類、硫酸ジメチル、ニトロメタン、
ニトロベンゼン、ジクロロエタンなどの1種又は2種以
上の混合物を挙げることができる。これらのうちでは、
特にエチレンカーボネートプロピレンカーボネート、ブ
チレンカーボネート、テトラヒドロフラン、2−メチル
テトラヒドロフラン、ジメトキシエタン、ジオキソラン
及びT−ブチロラクトンから選ばれた1種又は2種以上
の混合溶媒が好適である。
Glymes such as dimethoxyethane and diethylene glycol dimethyl ether, lactones such as T-butyrolactone, phosphoric acid esters such as triethyl phosphate,
Boric acid esters such as triethyl borate, sulfolane,
Sulfur compounds such as dimethyl sulfoxide, nitrites such as acetonitrile, amides such as dimethylformamide and dimethylacetamide, dimethyl sulfate, nitromethane,
One or a mixture of two or more of nitrobenzene, dichloroethane and the like can be mentioned. Among these,
Particularly suitable are one or more mixed solvents selected from ethylene carbonate, propylene carbonate, butylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolane, and T-butyrolactone.

本発明の二次電池は、通常正負極間に電解液を介在させ
ることにより構成されるが、この場合正負両種間に両極
の接触による電流の短絡を防ぐためセパレーターを介装
することができる。セパレーターとしては多孔質で電解
液を通したり含んだりすることのできる材料、例えばポ
リテトラフルオロエチレン、ポリプロピレンやポリエチ
レンなどの合成樹脂製の不織布、不織多孔体及び網等を
使用することができる。
The secondary battery of the present invention is usually constructed by interposing an electrolyte between the positive and negative electrodes, but in this case, a separator can be interposed between the positive and negative electrodes to prevent short circuits of current due to contact between the two electrodes. . As the separator, it is possible to use porous materials that can pass or contain the electrolyte, such as nonwoven fabrics, nonwoven porous bodies, and nets made of synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene.

衾夙q四来 本発明に係る二次電池は、2v以上の高電圧で容量が大
きく、高エネルギー密度である上、サイクル特性に優れ
、安定性、信顛性に優れたものである。
The secondary battery according to the present invention has a high voltage of 2V or more, a large capacity, a high energy density, and has excellent cycle characteristics, stability, and reliability.

以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記の実施例に制限されるものではな
い。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

〔実施例〕〔Example〕

正極活物質としてLiMntO=粉末(平均粒径2μm
)を使用し、その100重量部に導電剤としてアセチレ
ンブラック15重量部及び結着剤としてフッ素樹脂粉末
10重量部を加え、十分混合した後、有機溶媒で混練し
、ロールで約400μmに圧延し、150℃で真空乾燥
後、所定の径に打ち抜いたものを正極とした。一方、所
定寸法に打チ抜いたアルミニウム板にリチウムを圧着し
、リチウム塩を含む電解液中でリチウム−アルミニウム
合金化したもの(リチウム含有量30原子%)を負極と
して、プロピレンカーボネイトとジメトキシエタンとの
混合溶媒(容量比l:1)にリチウムバークロレート(
LiCII On)を1モル/lで溶解したものを電解
液としてそれぞれ使用し、第1図に示す如き電池Aを組
み立てた。
As a positive electrode active material, LiMntO=powder (average particle size 2 μm
), 15 parts by weight of acetylene black as a conductive agent and 10 parts by weight of fluororesin powder as a binder were added to 100 parts by weight of the mixture, mixed thoroughly, kneaded with an organic solvent, and rolled to about 400 μm with a roll. After vacuum drying at 150° C., the positive electrode was punched out to a predetermined diameter. On the other hand, lithium was pressed onto an aluminum plate punched to a predetermined size, and a lithium-aluminum alloy (lithium content: 30 at%) was formed in an electrolytic solution containing lithium salt as a negative electrode. Lithium barchlorate (
A battery A as shown in FIG. 1 was assembled using a solution of 1 mol/l of LiCII On) as an electrolyte.

ここで、第1図において、lは正極、2はステンレスス
チール製の正極集電体で、正極lと集電体2とは一体化
されており、集電体2は正掘缶3の内底面にスポット溶
接されている。また、4は負極、5は負極集電体で、負
極4は負極缶6の内底面に固着した集電体にスポット溶
接されている。
Here, in FIG. 1, l is a positive electrode, 2 is a stainless steel positive electrode current collector, and the positive electrode l and current collector 2 are integrated, and the current collector 2 is inside the can 3. Spot welded on the bottom. Further, 4 is a negative electrode, 5 is a negative electrode current collector, and the negative electrode 4 is spot-welded to the current collector fixed to the inner bottom surface of the negative electrode can 6.

更に、7はポリプロピレン不織布よりなるセパレーター
であり、これに前記電解液が含浸されている。なお、8
は絶縁バッキングである。また、電池寸法は直径20.
0mm、厚さ1.6flである。
Furthermore, 7 is a separator made of polypropylene nonwoven fabric, which is impregnated with the electrolytic solution. In addition, 8
is an insulating backing. Also, the battery dimensions are 20mm in diameter.
0mm, thickness 1.6fl.

この電池Aを充放電電流1mAにおいて放電終止電圧2
.OV、充電終止電圧3.Ovで充放電を繰り返し、5
0サイクルまでの充放電特性を測定した。
This battery A has a discharge end voltage of 2 at a charging/discharging current of 1 mA.
.. OV, charge end voltage 3. Repeat charging and discharging with Ov, 5
The charge/discharge characteristics up to 0 cycles were measured.

第2図に3サイクル目の放電曲線を、第5図に50サイ
クルまでの容量変化をそれぞれ示す。
FIG. 2 shows the discharge curve at the third cycle, and FIG. 5 shows the capacity change up to the 50th cycle.

〔比較例1〕 正極活物質としてMnO□を用いた以外は実施例と同様
にして第1図に示す如き電池Bを作製した。
[Comparative Example 1] Battery B as shown in FIG. 1 was produced in the same manner as in the example except that MnO□ was used as the positive electrode active material.

この電池Bにつき実施例と同様の条件及び方法で充放電
特性を測定した。第3図に3サイクル目の放電曲線を、
第5図に50サイクルまでの容量変化をそれぞれ示す。
The charging and discharging characteristics of this battery B were measured under the same conditions and method as in the examples. Figure 3 shows the discharge curve of the third cycle.
Figure 5 shows the capacitance changes up to 50 cycles.

〔比較例2〕 正極活物質としてv!0.を用いた以外は実施例と同様
にして第1図に示す如き電池Cを作製した。
[Comparative Example 2] v! as a positive electrode active material 0. A battery C as shown in FIG. 1 was produced in the same manner as in the example except that the battery C was used.

この電池Cにつき実施例と同様の条件及び方法で充放電
特性を測定した。第4図に3サイクル目の放電曲線を第
5図に50サイクルまでの容量変化を示す。
The charging and discharging characteristics of this battery C were measured under the same conditions and method as in Examples. FIG. 4 shows the discharge curve at the third cycle, and FIG. 5 shows the capacity change up to the 50th cycle.

以上の結果より、本発明に係る電池は2v以上での容量
も大きく、また充放電サイクル特性も良好であることが
認められ、従って、本発明によれば、高電圧で高い放電
容量を有する優れた非水電解液二次電池を得ることがで
きるものであり、その工業的価値は極めて大である。
From the above results, it is confirmed that the battery according to the present invention has a large capacity at 2V or more and also has good charge/discharge cycle characteristics. It is possible to obtain a non-aqueous electrolyte secondary battery, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は充放電試験に使用した電池の断面図、第2図、
第3図及び第4図はそれぞれ正極活物質としてLiMn
1Oa+ Mn0z+ VgOsを用いた電池の初期放
電曲線を示すグラフ、第5図は、正極活物質としてLi
MntO,Mn0z+ VzOsをそれぞれ用いた電池
A、、B、Cの充放電サイクルに伴う容量変化を示すグ
ラフである。
Figure 1 is a cross-sectional view of the battery used in the charge/discharge test, Figure 2,
Figures 3 and 4 show LiMn as the positive electrode active material, respectively.
Figure 5 is a graph showing the initial discharge curve of a battery using 1Oa+ Mn0z+ VgOs, using Li as the positive electrode active material.
It is a graph showing the capacity change accompanying the charging/discharging cycle of batteries A, B, and C using MntO and Mn0z+VzOs, respectively.

Claims (1)

【特許請求の範囲】 1、スピネル型構造を有する下記式(1) LiMn_2O_4・・・(1) で示されるリチウムマンガン酸化物を正極活物質とし、
リチウムを吸蔵及び放出可能なリチウム合金を負極活物
質とし、かつリチウムイオンを含む非水電解質を用いた
ことを特徴とする非水電解質二次電池。 2、リチウム合金がリチウム−アルミニウム合金である
特許請求の範囲第1項記載の非水電解質二次電池。 3、リチウム合金中のリチウム量が10〜60原子%で
ある特許請求の範囲第1項又は第2項記載の非水電解質
二次電池。 4、リチウムイオンを含む非水電解質が LiClO_4、LiBF_4、LiAsF_4、Li
SO_3CF_3及びLiPF_4から選ばれる1種又
は2種以上のリチウム塩を含有するものである特許請求
の範囲第1項乃至第3項のいずれか1項記載の非水電解
質二次電池。 5、放電時の作動電圧が2〜2.6Vの範囲である特許
請求の範囲第2項乃至第4項のいずれか1項記載の非水
電解質二次電池。
[Claims] 1. Lithium manganese oxide having a spinel structure and represented by the following formula (1) LiMn_2O_4...(1) is used as a positive electrode active material,
A non-aqueous electrolyte secondary battery characterized by using a lithium alloy capable of inserting and releasing lithium as a negative electrode active material and a non-aqueous electrolyte containing lithium ions. 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium alloy is a lithium-aluminum alloy. 3. The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the lithium content in the lithium alloy is 10 to 60 at.%. 4. Non-aqueous electrolytes containing lithium ions are LiClO_4, LiBF_4, LiAsF_4, Li
The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, which contains one or more lithium salts selected from SO_3CF_3 and LiPF_4. 5. The non-aqueous electrolyte secondary battery according to any one of claims 2 to 4, wherein the operating voltage during discharge is in the range of 2 to 2.6 V.
JP62267455A 1987-10-22 1987-10-22 Nonaqueous electrolytic secondary cell Pending JPH01109662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267455A JPH01109662A (en) 1987-10-22 1987-10-22 Nonaqueous electrolytic secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267455A JPH01109662A (en) 1987-10-22 1987-10-22 Nonaqueous electrolytic secondary cell

Publications (1)

Publication Number Publication Date
JPH01109662A true JPH01109662A (en) 1989-04-26

Family

ID=17445082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267455A Pending JPH01109662A (en) 1987-10-22 1987-10-22 Nonaqueous electrolytic secondary cell

Country Status (1)

Country Link
JP (1) JPH01109662A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169736A (en) * 1990-08-09 1992-12-08 Varta Batterie Aktiengesellschaft Electrochemical secondary element
US5716737A (en) * 1995-03-20 1998-02-10 Matsushita Electric Industrial Co. Nonaqueous electrolyte secondary battery, cathode active material and method for producing the same
JP2001266874A (en) * 2000-03-16 2001-09-28 Toho Titanium Co Ltd Lithium ion secondary battery
KR100297402B1 (en) * 1993-12-09 2001-12-01 카이저, 크루거 Rechargeable battery
EP1172877A1 (en) * 2000-07-11 2002-01-16 Sony Corporation Non-aqueous electrolyte secondary cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169736A (en) * 1990-08-09 1992-12-08 Varta Batterie Aktiengesellschaft Electrochemical secondary element
KR100297402B1 (en) * 1993-12-09 2001-12-01 카이저, 크루거 Rechargeable battery
US5716737A (en) * 1995-03-20 1998-02-10 Matsushita Electric Industrial Co. Nonaqueous electrolyte secondary battery, cathode active material and method for producing the same
JP2001266874A (en) * 2000-03-16 2001-09-28 Toho Titanium Co Ltd Lithium ion secondary battery
EP1172877A1 (en) * 2000-07-11 2002-01-16 Sony Corporation Non-aqueous electrolyte secondary cell
US6649307B2 (en) 2000-07-11 2003-11-18 Sony Corporation Non-aqueous electrolyte secondary cell

Similar Documents

Publication Publication Date Title
US5013620A (en) Nonaqueous electrolyte secondary cell
US4956247A (en) Nonaqueous electrolyte secondary cell
JPH06342673A (en) Lithium secondary battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP3030996B2 (en) Non-aqueous electrolyte secondary battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2000164207A (en) Nonaqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JPH03196467A (en) Secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP2002203551A (en) Non-aqueous electrolyte battery
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JP2898056B2 (en) Rechargeable battery
JPH09171839A (en) Secondary battery having nonaqueous solvent electrolyte
JP3168615B2 (en) Non-aqueous electrolyte secondary battery
JPH10125323A (en) Lithium secondary battery
JPH03236173A (en) Nonaqueous electrolyte secondary battery
JPH0212778A (en) Nonaqueous electrolyte secondary battery