JPH03236173A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH03236173A
JPH03236173A JP2032781A JP3278190A JPH03236173A JP H03236173 A JPH03236173 A JP H03236173A JP 2032781 A JP2032781 A JP 2032781A JP 3278190 A JP3278190 A JP 3278190A JP H03236173 A JPH03236173 A JP H03236173A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
negative electrode
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2032781A
Other languages
Japanese (ja)
Inventor
Tadaaki Miyazaki
忠昭 宮崎
Yoshitomo Masuda
善友 増田
Hiroaki Wada
宏明 和田
Takao Ogino
隆夫 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2032781A priority Critical patent/JPH03236173A/en
Publication of JPH03236173A publication Critical patent/JPH03236173A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a nonaqueous electrolyte secondary battery with excellent characteristics by using a specific lithium containing vanadium oxide for the active material of a positive electrode, and adjusting the capacity ratio per unit area of a negative electrode against the positive electrode to 2.6-13. CONSTITUTION:In a lithium secondary battery using a lithium metal or a lithium alloy for a negative electrode active material, a lithium containing vanadium oxide expressed by the formula I or II is used for a positive electrode active material, and the thickness is adjusted so that the capacity ratio per unit area between a negative electrode 2 and a positive electrode 1 is preferably set to 3-7, where M indicates Na, K, Rb or Cs and 0<=x<=0.6, -0.5<=y<=0.3, 0<a<=0.5. A nonaqueous material such as LiPF6, LiAsF6, LiClO4 through which lithium ions can be electrochemically moved with the positive/negative electrode active materials is used for an electrolyte. The battery has a large capacity and a high potential and excellent cycle characteristics, and a stable charge/ discharge can be performed.

Description

【発明の詳細な説明】 皇呈上皇五里分! 本発明は、負極活物質にリチウム又はリチウム合金を用
いた非水電解質二次電池に関し、更に詳述すると高電位
、高エネルギー密度でサイクル特性に優れた非水電解液
二次電池に関する。
[Detailed Description of the Invention] Emperor Retired Emperor Five Miles! The present invention relates to a nonaqueous electrolyte secondary battery using lithium or a lithium alloy as a negative electrode active material, and more specifically, to a nonaqueous electrolyte secondary battery that has a high potential, high energy density, and excellent cycle characteristics.

従来の   び  が解゛ しようとする従来から、リ
チウムを負極活物質として用いる高エネルギー密度電池
に関しては多くの提案がなされており、フッ化黒鉛や二
酸化マンガンを正極活物質として用いたリチウム電池が
既に市販されている。しかし、これらの電池は一次電池
であり、充電できないという欠点があった。
Many proposals have been made for high-energy density batteries that use lithium as the negative electrode active material, and lithium batteries that use fluorinated graphite or manganese dioxide as the positive electrode active material have already been developed. It is commercially available. However, these batteries are primary batteries and have the disadvantage of not being rechargeable.

リチウムを負極活物質として用いる二次電池については
、正極活物質としてチタン、モリブデン。
For secondary batteries that use lithium as the negative electrode active material, titanium and molybdenum are used as the positive electrode active material.

ニオビウム、バナジウム、ジルコニウムのカルコゲナイ
ド(硫化物、セレン化物、テルル化物)を用いた電池が
提案されているが、電池特性及び経済性が必ずしも十分
でないために、実用化されているものは少ない。最近、
正極活物質として硫化モリブデンを用いた二次電池が実
用化されたが、これも放電電位が低く、過充電に弱いな
どの欠点を持っている。放電電位の高い正極活物質とし
てはLi1.x V6O13(X = 0.05又はx
 = 0.2 )で示されるリチウム含有バナジウム酸
化物が挙げられ、これを正極に用いた二次電池が提案さ
れている(J、 Electrochem、 Soc、
 Vol、 133. Na 12゜P2454〜24
58.1986)。しかし、このような正極を用いた二
次電池は充放電サイクルに伴う容量低下が大きく、わず
か20サイクル程で容量が約50%近くまで低下してし
まう。このため、実用電池としては寿命が短かすぎる欠
点を持っている。このため高エネルギー密度で、特に充
放電寿命が長(、安定性、信頼性に優れたリチウム二次
電池の開発が望まれている。
Batteries using chalcogenides (sulfides, selenides, tellurides) of niobium, vanadium, and zirconium have been proposed, but few have been put into practical use because the battery characteristics and economic efficiency are not necessarily sufficient. recently,
Secondary batteries using molybdenum sulfide as the positive electrode active material have been put into practical use, but these also have drawbacks such as low discharge potential and vulnerability to overcharging. As a positive electrode active material with a high discharge potential, Li1. x V6O13 (X = 0.05 or x
= 0.2), and a secondary battery using this as a positive electrode has been proposed (J, Electrochem, Soc,
Vol, 133. Na 12゜P2454~24
58.1986). However, a secondary battery using such a positive electrode has a large capacity drop with charge/discharge cycles, and the capacity drops to nearly 50% after only about 20 cycles. For this reason, they have the disadvantage of having too short a lifespan to be used as a practical battery. For this reason, it is desired to develop a lithium secondary battery that has high energy density, particularly long charging/discharging life, stability, and reliability.

本発明は、上記事情に鑑みなされたもので、容量が大き
く、高電位で、しかもサイクル特性に優れ、また安定し
た充放電を行ない得る非水電解質二次電池を提供するこ
とを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a nonaqueous electrolyte secondary battery that has a large capacity, a high potential, excellent cycle characteristics, and is capable of stable charging and discharging.

課 を解 するための   び作用 本発明は、上記目的を達成するため、正極と、リチウム
金属又はリチウムを含む合金からなる負極と、リチウム
イオンを含む非水電解質とを具備する非水電解質二次電
池において、上記正極の活物質として下記式+11又は
(2) Lit、xV30a−v      −(1)Lil 
−g−aMaV30a+Y    ”’  <2)(た
だし、式中MはNa、に、Rh又はCsで、0≦X≦0
.6.−0.5≦y≦0.3.0<a≦0.5である)
で示されるリチウム含有バナジウム酸化物を用い、かつ
上記負極の正極に対する単位面積当りの容量比を2.6
〜13に調整したことを特徴とする非水電解質二次電池
を提供する。
In order to achieve the above object, the present invention provides a non-aqueous electrolyte secondary comprising a positive electrode, a negative electrode made of lithium metal or an alloy containing lithium, and a non-aqueous electrolyte containing lithium ions. In the battery, as the active material of the positive electrode, the following formula +11 or (2) Lit, xV30a-v - (1) Lil
-g-aMaV30a+Y''<2) (wherein, M is Na, Rh, or Cs, and 0≦X≦0
.. 6. -0.5≦y≦0.3.0<a≦0.5)
A lithium-containing vanadium oxide represented by is used, and the capacity ratio per unit area of the negative electrode to the positive electrode is 2.6.
Provided is a nonaqueous electrolyte secondary battery characterized in that the electrolyte is adjusted to 13 to 13.

即ち、本発明者は、高容量、高電位リチウム二次電池の
充放電サイクル性劣化の原因について検討を行なった結
果、充放電サイクル寿命の低下は、正極の劣化及び負極
と正極との容量比が重要な因子となっていることを見い
出した。そこで、リチウム金属又はリチウム合金を負極
活物質とするリチウム二次電池に好適な正極活物質及び
負極と該正極との好適な容量比を見い出すべく、更に検
討を重ねた結果、正極活物質として下記式(1)又は(
2)Lit−xVJs−v     −(11Li t
 Jx−aMaVJs、y   −(2)(ただし、式
中MはNa、に、Rb又はCsで、0≦X≦0.6.−
0.5≦y≦0.3.0<a≦0.5である)で示され
るリチウム含有バナジウム酸化物を用い、負極と正極と
の容量比を単位面積当り2.4〜13(負極/正極)に
調整し、リチウム金属又はリチウム合金からなる負極及
びリチウムを含む非水電解質を有する二次電池を構成す
ることにより、高容量、高電位でサイクル特性に優れ、
長期に亘って安定した充放電を行い得る非水電解質二次
電池が得られることを見い出し、本発明を完成したもの
である。
That is, as a result of examining the causes of deterioration in charge-discharge cycle performance of high-capacity, high-potential lithium secondary batteries, the present inventor found that the decrease in charge-discharge cycle life is due to deterioration of the positive electrode and the capacity ratio between the negative electrode and the positive electrode. was found to be an important factor. Therefore, in order to find a suitable positive electrode active material and a suitable capacity ratio between the negative electrode and the positive electrode for a lithium secondary battery that uses lithium metal or lithium alloy as the negative electrode active material, we have conducted further studies to find the following positive electrode active materials: Formula (1) or (
2) Lit-xVJs-v -(11Li t
Jx-aMaVJs,y-(2) (wherein M is Na, Rb or Cs, 0≦X≦0.6.-
0.5≦y≦0.3.0<a≦0.5) is used, and the capacity ratio of the negative electrode to the positive electrode is set to 2.4 to 13 per unit area (negative electrode/ By configuring a secondary battery with a negative electrode made of lithium metal or lithium alloy, and a nonaqueous electrolyte containing lithium, the battery has high capacity, high potential, and excellent cycle characteristics.
The present invention was completed based on the discovery that a non-aqueous electrolyte secondary battery that can be stably charged and discharged over a long period of time can be obtained.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の非水電解質二次電池を構成する正極活物質は下
記式(11又は(2) Lit、xV+Os、v     ++  (1)LI
 ++x−aMaV30s+y   ++  (2)(
ただし、式中MはNa、に、Rh又はCsで、O≦X≦
0.6.−Q、5≦y≦Q、3. 0<a≦0.5であ
る)で示されるリチウム含有バナジウム酸化物である。
The positive electrode active material constituting the non-aqueous electrolyte secondary battery of the present invention has the following formula (11 or (2) Lit, xV+Os, v ++ (1) LI
++x−aMaV30s+y ++ (2)(
However, in the formula, M is Na, Rh, or Cs, and O≦X≦
0.6. -Q, 5≦y≦Q, 3. 0<a≦0.5).

ここで上記(11式で示されるリチウム含有バナジウム
酸化物は、五酸化バナジウム(V、0.)とリチウム塩
とを混合し、焼成処理するなどの方法により得ることが
でき、この場合リチウム塩としてはLtzCOa + 
LizO+ LINO:l +  シュウ酸リチウム、
有機酸のLi塩などが使用されるが、特にLizCO3
が好適に用いられる。また、五酸化バナジウムとリチウ
ム塩との混合比は、特に限定されないが、V=Li比で
3:0.8〜3:1.6、特に3:0.9〜3:1.3
とすることが好ましい。なお、焼成温度は特に制限され
ないが300〜800℃とすることが好ましい。
Here, the lithium-containing vanadium oxide represented by the above (Formula 11) can be obtained by mixing vanadium pentoxide (V, 0.) and a lithium salt and firing the mixture, and in this case, the lithium salt is is LtzCOa +
LizO+ LINO:l + lithium oxalate,
Li salts of organic acids are used, especially LizCO3
is preferably used. Further, the mixing ratio of vanadium pentoxide and lithium salt is not particularly limited, but the V=Li ratio is 3:0.8 to 3:1.6, particularly 3:0.9 to 3:1.3.
It is preferable that Note that the firing temperature is not particularly limited, but is preferably 300 to 800°C.

ここで、L11+XVxO*−vのXの値はO〜0.6
であるが、この値は合成時又は3.5v以上に充電され
た状態の値であり、このXの値は充放電時にはOから5
程度まで変化する。また、yの値はバナジウム(V)の
酸化状態により−0,5〜0.3の範囲で変化するもの
である。なお、このx、yのより好ましい範囲は、Xは
O〜0.3.yは−0,3〜0である。
Here, the value of X in L11+XVxO*-v is O~0.6
However, this value is the value at the time of synthesis or when charged to 3.5V or more, and the value of this X varies from 0 to 5 when charging and discharging.
It changes to a certain degree. Moreover, the value of y changes in the range of -0.5 to 0.3 depending on the oxidation state of vanadium (V). In addition, the more preferable range of x and y is that X is O to 0.3. y is −0,3 to 0.

次に、上記(2)式で示されるリチウム含有バナジラム
酸化物は、前述のリチウム塩の一部をNa、に、Rh又
はCsを含む他のアルカリ金属塩で置換したものを用い
ることにより上記(1)式の場合と同様の方法で得るこ
とができる。この場合、置換するアルカリ金属塩の陰イ
オン種はリチウム塩の陰イオン種と同じでも異なってい
てもよく、具体的には、CO:1z−I N03−I 
CE−+ Br−、r−、02−、OH−、5CN−。
Next, the lithium-containing vanadiram oxide represented by the above formula (2) can be obtained by replacing a part of the above lithium salt with Na and other alkali metal salts containing Rh or Cs. It can be obtained in the same way as in the case of equation 1). In this case, the anion species of the alkali metal salt to be substituted may be the same as or different from the anion species of the lithium salt, and specifically, CO:1z-I N03-I
CE-+ Br-, r-, 02-, OH-, 5CN-.

CH,COO−、その他の有機酸陰イオン等を挙げるこ
とができる。こられアルカリ金属塩の置換量は(2)式
中のaで示され、Q<a≦0.5であるが、より好まし
くは0.1〜0.3である。なお、(2)式中のX及び
yの値は上記(11式と同様である。
Examples include CH, COO-, and other organic acid anions. The amount of substitution of these alkali metal salts is represented by a in formula (2), and Q<a≦0.5, more preferably from 0.1 to 0.3. Note that the values of X and y in formula (2) are the same as in formula (11) above.

上記式(IJ又は(2)で示されるリチウム含有バナジ
ウム酸化物を用いてこれを活物質とする正極を作成する
場合、正極活物質の粒径は必ずしも制限されないが、平
均粒径が3μ以下のものを用いるとより高性能の正極を
作ることができる。この場合、これらの粉末に対し、ア
セチレンブラック等の導電剤やフッ素樹脂粉末等の結着
剤などを添加混合し、有機溶剤で混練りし、ロールで圧
延し、乾燥する等の方法により正極を作成することがで
きる。
When creating a positive electrode using a lithium-containing vanadium oxide represented by the above formula (IJ or (2)) as an active material, the particle size of the positive electrode active material is not necessarily limited, but the average particle size is 3μ or less. A higher performance cathode can be made by using powders.In this case, conductive agents such as acetylene black and binders such as fluororesin powder are added and mixed with these powders, and the mixture is kneaded with an organic solvent. A positive electrode can be produced by a method such as rolling the material with a roll and drying it.

なお、導電剤の混合量は活物1tloo重量部に対し3
〜25重量部、特に5〜15重量部とすることができ、
本発明にあってはその活物質の導電性が良好であるため
、導電剤使用量を少なくすることができる。また、結着
剤の配合量は上記正極材料100重量部に対し2〜25
重量部とすることが好ましい。
The amount of the conductive agent mixed is 3 parts by weight of the active material.
~25 parts by weight, especially 5 to 15 parts by weight,
In the present invention, since the active material has good conductivity, the amount of conductive agent used can be reduced. The amount of the binder added is 2 to 25 parts by weight per 100 parts by weight of the above positive electrode material.
Preferably, it is expressed in parts by weight.

本発明の二次電池を構成する負極活物質としては、リチ
ウム金属又はリチウムを吸蔵、放出可能なリチウム合金
が用いられる。この場合、リチウム合金としては、リチ
ウムを含むUa、  I[b。
As the negative electrode active material constituting the secondary battery of the present invention, lithium metal or a lithium alloy capable of intercalating and deintercalating lithium is used. In this case, the lithium alloy includes lithium-containing Ua, I[b.

ma、IVa、Va族の金属又はその2種以上の合金が
使用可能であるが、特にリチウムを80モル%以上含む
A II 、In + Sn 、Pb +  at +
 Cd + Zn又はこれらの2種以上の合金が好適で
ある。
Metals of the ma, IVa, and Va groups or alloys of two or more thereof can be used, but especially A II containing 80 mol% or more of lithium, In + Sn, Pb + at +
Cd + Zn or an alloy of two or more of these is preferred.

また、本発明の二次電池に使用する電解質としては、前
記正極活物質及び負極活物質に対して化学的に安定であ
り、かつリチウLイオンが前記正極活物質酸いは前記負
極活物質と電気化学反応をするための移動を行ない得る
非水物質であればいずれのものでも使用することができ
、具体的にはLiPFb + LiSbF6+ LiS
bF6 、 LiBF4.  LiCj!04+Lir
 、 LiBr 、 LiCj!  、 LiAlCl
、 、 LiHF2L1SCN 、 Li5ChCF3
等が挙げられる。これらのうちでは特にLiPFa +
 LiAsF6. LiC1)4が好適である。
Furthermore, the electrolyte used in the secondary battery of the present invention is chemically stable with respect to the positive electrode active material and the negative electrode active material, and lithium L ions are mixed with the positive electrode active material acid or the negative electrode active material. Any non-aqueous substance that can move for electrochemical reaction can be used, specifically LiPFb + LiSbF6 + LiS
bF6, LiBF4. LiCj! 04+Lir
, LiBr, LiCj! , LiAlCl
, , LiHF2L1SCN, Li5ChCF3
etc. Among these, especially LiPFa +
LiAsF6. LiC1)4 is preferred.

なお、上記電解質は通常溶媒により溶解された状態で使
用され、この場合溶媒は特に限定されないが、比較的極
性の大きい溶媒が好適に用いられる。具体的には、プロ
ピレンカーボネートエチレンカーボネート、ブチレンカ
ーボネート等の環状カーボネート類、ジエチルカーボネ
ート、ジブチルカーボネートなどの非環状カーボネート
I、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、ジオキソラン、ジオキサン、ジメトキシエタン、ジ
エチレングリコールジメチルエーテル等のグライム類、
γ−ブチロラクトン等のラクトン類、トリエチルフォス
フェート等のリン酸エステル類、ホウ酸トリエチル類の
ホウ酸エステル類、スルホラン、ジメチルスルホキシド
等の硫黄化合物、アセトニトリル等のニトリル類、ジメ
チルホルムアミド、ジメチルアセトアミド等のアミド類
、硫酸ジメチル、ニトロメタン、ニトロベンゼン、ジク
ロロエタンなどの1種又は2種以上の混合物を挙げるこ
とができる、これらの内では、特にエチレンカーボネー
ト、プロピレンカーボネートなどの環状カーボネート!
、ジエチルカーボネートなどの非環状カーボネートiか
ら選ばれた1種又は2種以上の混合溶媒が好適である。
Note that the electrolyte is usually used in a state dissolved in a solvent, and in this case, the solvent is not particularly limited, but a relatively highly polar solvent is preferably used. Specifically, cyclic carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate, acyclic carbonates I such as diethyl carbonate and dibutyl carbonate, glymes such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, dioxane, dimethoxyethane, and diethylene glycol dimethyl ether. ,
Lactones such as γ-butyrolactone, phosphoric acid esters such as triethyl phosphate, boric acid esters such as triethyl borate, sulfur compounds such as sulfolane and dimethyl sulfoxide, nitriles such as acetonitrile, dimethylformamide, dimethylacetamide, etc. Among these, cyclic carbonates such as ethylene carbonate and propylene carbonate are included!
, acyclic carbonates i such as diethyl carbonate, or a mixed solvent of two or more thereof is suitable.

また、これらの溶媒に3〜10重量%の芳香族炭化水素
(ベンゼン、トルエン等)を添加することもできる。
Moreover, 3 to 10% by weight of aromatic hydrocarbons (benzene, toluene, etc.) can also be added to these solvents.

本発明の非水電解質二次電池は、通常上記正負極間に上
記電解質を介在させ、更に必要により正・負両極間にポ
リテトラフルオロエチレン、ポリプロピレンやポリエチ
レンなどの合成樹脂製の不織布、織布、綱等をセパレー
ターとして介装し、コインタイプ、ボタンタイプ、ペー
パータイプ。
The non-aqueous electrolyte secondary battery of the present invention usually has the electrolyte interposed between the positive and negative electrodes, and if necessary, a nonwoven fabric or woven fabric made of synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene between the positive and negative electrodes. , a rope, etc. is used as a separator, and coin type, button type, and paper type are used.

筒形等、種々の形状の電池に構成することができるが、
この場合に本発明の二次電池は、負極の正極に対する単
位面積当りの容量比を2.6〜13、好ましくは3〜7
に調整したものである。
Although it can be configured into batteries of various shapes such as cylindrical,
In this case, the secondary battery of the present invention has a capacity ratio of the negative electrode to the positive electrode of 2.6 to 13, preferably 3 to 7.
It has been adjusted to

ここで、負極の正極に対する単位面積当りの容量比(以
下、C−/C+という)を2.6〜13に調整する方法
としては、特に制限されず、正極や負極を作成する際に
これらの活物質量の増減により調整する方法や正極と負
極の厚さにより調整する方法等を採用することができる
が、正・負極の厚さを調整する方法が簡便であり好まし
い。
Here, the method for adjusting the capacitance ratio per unit area of the negative electrode to the positive electrode (hereinafter referred to as C-/C+) to 2.6 to 13 is not particularly limited. Although a method of adjusting by increasing or decreasing the amount of active material or a method of adjusting by adjusting the thickness of the positive and negative electrodes can be adopted, a method of adjusting the thickness of the positive and negative electrodes is simple and preferred.

なお、本発明の非水電解質二次電池は、上記のように種
々の形態とすることができるが、特にスパイラル構造電
極を存する筒形二次電池とすることが好ましく、この場
合スパイラル構造電極は通常集電体シートの両面に活物
性シートが積層一体化された正極シート又は負極シート
の両側にセパレーターが配置され、両極シートを該セパ
レーターを介して重ね合せると共に、スパイラル状に巻
き上げることにより構成される。ここで、このようなス
パイラル構造電極においては、負極はセパレーターを介
して両面が正極に向い合っているので、正極・セパレー
ター・負極を1ユニツトと考えると、負極はその厚みの
半分が、一方正極は片面がそれぞれlユニット中で充放
電に関与する部分となる。従って、このようなスパイラ
ル構造電池においては、この1ユニツト中の負極の厚み
の半分及び正極の片面におけるC−/C+を2.4〜1
3に調節するものである。なお、他の形態の電池におい
ても同様のユニットにおけるC−/C+を2.4〜13
に調整することが肝要である。
Although the non-aqueous electrolyte secondary battery of the present invention can have various forms as described above, it is particularly preferable to use a cylindrical secondary battery having a spiral structure electrode; in this case, the spiral structure electrode is Usually, a separator is arranged on both sides of a positive electrode sheet or a negative electrode sheet, in which active material sheets are laminated and integrated on both sides of a current collector sheet. Ru. In such a spiral structure electrode, both sides of the negative electrode face the positive electrode with a separator in between, so if we consider the positive electrode, separator, and negative electrode as one unit, half of the thickness of the negative electrode is opposite to the positive electrode. One side of each becomes a part involved in charging and discharging in the l unit. Therefore, in such a spiral structure battery, C-/C+ at half the thickness of the negative electrode and on one side of the positive electrode in one unit should be 2.4 to 1.
It is adjusted to 3. In addition, in other types of batteries, C-/C+ in similar units is 2.4 to 13.
It is important to adjust the

生肌旦肱果 本発明の非水電解質二次電池は、容量が大きく、高電位
で、しかもサイクル特性に優れ、また安定した充放電を
行ない得るものである。
The nonaqueous electrolyte secondary battery of the present invention has a large capacity, a high potential, excellent cycle characteristics, and is capable of stable charging and discharging.

以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記の実施例に制限されるものではな
い。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

〔実施例1〕 正極活物質として、1モルのLizCOzと3モルのv
20.を750℃で焼成することによって合成したLi
VJs粉末を使用し、その100重量部に導電剤として
導電性カーボンブラックを15重量部及び結着剤として
フッ素樹脂粉末7.5重量部を加え、充分混合した後、
有機溶剤で混練りし、ロールで約300μmに圧延し、
150℃で真空乾燥した。
[Example 1] As positive electrode active materials, 1 mol of LizCOz and 3 mol of v
20. Li synthesized by firing at 750°C
Using VJs powder, 15 parts by weight of conductive carbon black as a conductive agent and 7.5 parts by weight of fluororesin powder as a binder were added to 100 parts by weight of the VJs powder, and after thorough mixing,
Kneaded with an organic solvent and rolled to approximately 300 μm with a roll,
It was vacuum dried at 150°C.

更にこれを圧延ロールで圧延し、厚さ102μmの正極
シートを得た。これを所定の寸法に切断し、ステンレス
スチール箔の両側にカーボンを含む導電性接着剤で貼り
付けたものを正極とした。また、負極として、厚さ15
0μmのリチウム箔を所定の寸法に切断したものを用い
た。この負極の厚さ方向の半分と正極の片面側とのC−
/C+は5.3であった。
This was further rolled with a rolling roll to obtain a positive electrode sheet with a thickness of 102 μm. This was cut to a predetermined size and attached to both sides of stainless steel foil with a conductive adhesive containing carbon to form a positive electrode. In addition, as a negative electrode, a thickness of 15
A piece of 0 μm lithium foil cut into a predetermined size was used. C- between half of this negative electrode in the thickness direction and one side of the positive electrode
/C+ was 5.3.

次に、上記正極、負極間にセパレーターを挿入した一体
化物を巻き芯を中心としてスパイラル状に成形し、円筒
形電池容器に収納した。その後1モル/ l LiPF
、をエチレンカーボネートとプロピレンカーボネートと
の混合溶媒(1: l)に溶解した非水電解液を注ぎ込
み、封口して第1図に示す如き高さ50.5m、直径1
4.5鶴の単3型電池を作成した。
Next, the integrated product in which a separator was inserted between the positive and negative electrodes was formed into a spiral shape around the core, and was housed in a cylindrical battery container. Then 1 mol/l LiPF
, into a non-aqueous electrolyte dissolved in a mixed solvent of ethylene carbonate and propylene carbonate (1: 1), and the container was sealed to form a container with a height of 50.5 m and a diameter of 1 as shown in Figure 1.
I made 4.5 AA size batteries.

ここで、第1図において、lは正極、2は負極、3はセ
パレーター、4は巻き芯であり、5は電池容器、6は封
口ガスケット、7は隔壁である。
Here, in FIG. 1, l is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a winding core, 5 is a battery container, 6 is a sealing gasket, and 7 is a partition.

〔実施例2〕 厚さ128μmの正極シートを集電体の片面側のみに貼
り付けた正極及び厚さ108μmの負極を用いた以外は
実施例1と同様にして電池を作成した。C−/C+は3
.06であった。
[Example 2] A battery was produced in the same manner as in Example 1, except that a positive electrode with a 128 μm thick positive electrode sheet pasted only on one side of the current collector and a 108 μm thick negative electrode were used. C-/C+ is 3
.. It was 06.

〔実施例3〕 厚さ72μmの正極シートを集電体の片面側のみに貼り
付けた正極及び204μ−の負極を用いた以外は実施例
1と同様にして電池を作成した。
[Example 3] A battery was produced in the same manner as in Example 1, except that a positive electrode with a 72 μm thick positive electrode sheet pasted only on one side of the current collector and a 204 μm negative electrode were used.

C−/C+は9.8であった。C-/C+ was 9.8.

〔比較例1〕 厚さ141μ−の正極シートを集電体の片面側のみに貼
り付けた正極及び85μ幅の負極を用いた以外は実施例
1と同様にして電池を作成した。
[Comparative Example 1] A battery was produced in the same manner as in Example 1, except that a positive electrode with a 141 μm-thick positive electrode sheet pasted only on one side of the current collector and a negative electrode with a width of 85 μm were used.

C−/C+は2.05であった。C-/C+ was 2.05.

〔比較例2〕 厚さ50μ−の正極シートを集電体の片面側のみに貼り
付けた正極及び243μmの負極を用いた以外は実施例
1と同様にして電池を作成した。
[Comparative Example 2] A battery was produced in the same manner as in Example 1, except that a positive electrode with a 50 μm thick positive electrode sheet pasted only on one side of the current collector and a 243 μm negative electrode were used.

C−/C+は16.9であった。C-/C+ was 16.9.

上記実施例1〜3及び比較例1.2の電池につき放電電
流15(1+A、充電電流75n+Aの定電流で放電終
止電圧2.OV、充電終止電圧3.OVで充放電を行な
った。この時の3サイクル目の容量及び容量が3サイク
ル目の65%になるまでのサイクル数を第2図に示す。
The batteries of Examples 1 to 3 and Comparative Example 1.2 were charged and discharged at a constant current of a discharge current of 15 (1+A) and a charging current of 75n+A with an end-of-discharge voltage of 2.OV and an end-of-charge voltage of 3.OV. Figure 2 shows the capacity at the third cycle and the number of cycles until the capacity reaches 65% of the capacity at the third cycle.

第2図の結果から明らかなように、本発明の電池は高放
電容量でかつサイクル特性も良好であり、二次電池とし
てバランスのとれたものである。
As is clear from the results shown in FIG. 2, the battery of the present invention has a high discharge capacity and good cycle characteristics, and is well-balanced as a secondary battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る筒形電池を示す断面
図、第2図は実施例及び比較例の電池の電池特性を示す
グラフである。 ■・・・正極、2・・・負極、3・・・セパレーター、
4・・・巻き芯、5・・・電池容器、6・・・封ロガス
ケソト、7・・・隔壁。
FIG. 1 is a sectional view showing a cylindrical battery according to an example of the present invention, and FIG. 2 is a graph showing battery characteristics of batteries of the example and comparative example. ■...Positive electrode, 2...Negative electrode, 3...Separator,
4... Winding core, 5... Battery container, 6... Sealing gasket, 7... Partition wall.

Claims (1)

【特許請求の範囲】[Claims] 1、正極と、リチウム金属又はリチウムを含む合金から
なる負極と、リチウムイオンを含む非水電解質とを具備
する非水電解質二次電池において、上記正極の活物質と
して下記式(1)又は(2)Li_1_+_xV_3O
_8_+_y・・・(1)Li_1_+_X_−_aM
aV_3O_8_+_Y・・・(2)(ただし、式中M
はNa、K、Rb又はCsで、0≦x≦0.6、−0.
5≦y≦0.3、0<a≦0.5である)で示されるリ
チウム含有バナジウム酸化物を用い、かつ上記負極の正
極に対する単位面積当りの容量比を2.6〜13に調整
したことを特徴とする非水電解質二次電池。
1. In a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode made of lithium metal or an alloy containing lithium, and a non-aqueous electrolyte containing lithium ions, the active material of the positive electrode is the following formula (1) or (2). )Li_1_+_xV_3O
_8_+_y...(1) Li_1_+_X_-_aM
aV_3O_8_+_Y...(2) (However, in the formula M
is Na, K, Rb or Cs, 0≦x≦0.6, -0.
5≦y≦0.3, 0<a≦0.5), and the capacity ratio per unit area of the negative electrode to the positive electrode was adjusted to 2.6 to 13. A non-aqueous electrolyte secondary battery characterized by:
JP2032781A 1990-02-14 1990-02-14 Nonaqueous electrolyte secondary battery Pending JPH03236173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2032781A JPH03236173A (en) 1990-02-14 1990-02-14 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2032781A JPH03236173A (en) 1990-02-14 1990-02-14 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH03236173A true JPH03236173A (en) 1991-10-22

Family

ID=12368396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2032781A Pending JPH03236173A (en) 1990-02-14 1990-02-14 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH03236173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials
US6258478B1 (en) * 1998-01-22 2001-07-10 Samsung Display Devices Co., Ltd. Electrode assembly having a reliable capacity ratio between negative and positive active materials and battery having the same
JP2007234336A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258478B1 (en) * 1998-01-22 2001-07-10 Samsung Display Devices Co., Ltd. Electrode assembly having a reliable capacity ratio between negative and positive active materials and battery having the same
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials
JP2007234336A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Lithium secondary battery

Similar Documents

Publication Publication Date Title
US5013620A (en) Nonaqueous electrolyte secondary cell
US9368786B2 (en) Positive active material and lithium battery including the same
US5650244A (en) Nonaqueous electrolyte battery comprising a non-aqueous electrolyte with at least one calcium salt
JPH10208730A (en) Non-aqueous electrolyte secondary battery
JPH01309261A (en) Nonaqueous cell
JPH11312518A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2751624B2 (en) Non-aqueous electrolyte secondary battery
JP7209093B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same
JPH03236173A (en) Nonaqueous electrolyte secondary battery
JP2000228215A (en) Lithium secondary battery
JPS62271370A (en) Electrolyte for lithium battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JP4055414B2 (en) Positive electrode active material for lithium ion secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JP6125719B1 (en) Charging system and method for charging non-aqueous electrolyte battery
JPS6191868A (en) Nonaqueous electrolyte secondary battery
JPH03225774A (en) Nonaqueous electrolytic secondary battery
JPH03289049A (en) Nonaqueous electrolytic secondary battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JP2000277113A (en) Lithium secondary battery
JPH03225757A (en) Nonaqueous electrolytic secondary battery
JPH04249870A (en) Nonaqueous electrolyte secondary battery
JPH10188976A (en) Lithium secondary battery
JPH05290846A (en) Nonaqueous electrolytic secondary battery