JP2000277113A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2000277113A
JP2000277113A JP11080905A JP8090599A JP2000277113A JP 2000277113 A JP2000277113 A JP 2000277113A JP 11080905 A JP11080905 A JP 11080905A JP 8090599 A JP8090599 A JP 8090599A JP 2000277113 A JP2000277113 A JP 2000277113A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
lithium secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11080905A
Other languages
Japanese (ja)
Other versions
JP3615416B2 (en
Inventor
Hiroshi Nakajima
中島  宏
Hiroshi Watanabe
浩志 渡辺
Shin Fujitani
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08090599A priority Critical patent/JP3615416B2/en
Priority to US09/506,588 priority patent/US6391496B1/en
Publication of JP2000277113A publication Critical patent/JP2000277113A/en
Application granted granted Critical
Publication of JP3615416B2 publication Critical patent/JP3615416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery excellent in charge/discharge characteristics compared with a lithium secondary battery with an active material of MoO3. SOLUTION: One of positive and negative electrodes has an active material of lithium containing composite oxides of orthorhombic system expressed by a formula MxMo1-xOy or these composite oxides containing Li. In the formula, M is at least one kind of transition element selected from Cu, V, Mn, Fe, Co and Ni and satisfies 0<x<=0.46; 2.6<=y<=3.1. A lithium secondary battery excellent in charge/discharge characteristics compared with a lithium secondary battery used with an active material of MoO3 is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、リチウム二次電池
に係わり、詳しくは、充放電サイクル特性が良いリチウ
ム二次電池を提供することを目的とした、活物質の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to improvement of an active material for the purpose of providing a lithium secondary battery having good charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】MoO
3 (三酸化モリブデン)が、リチウム二次電池の正極活
物質として、提案されている(T. Tsumura, Solid Stat
e Ionic, Vol. 104, P183 (1997)参照)。
2. Description of the Related Art MoO
3 (Molybdenum trioxide) has been proposed as a positive electrode active material for lithium secondary batteries (T. Tsumura, Solid Stat
e Ionic, Vol. 104, P183 (1997)).

【0003】MoO3 は、斜方晶系に属し、酸化モリブ
デンの中では比較的安定な酸化物であるが、MoO3
正極活物質とするリチウム二次電池の充放電サイクル特
性は良くない。充放電時の膨張・収縮の繰り返しによ
り、MoO3 の結晶構造が大きく変化するからである。
MoO 3 belongs to the orthorhombic system and is a relatively stable oxide among molybdenum oxides. However, the charge / discharge cycle characteristics of a lithium secondary battery using MoO 3 as a positive electrode active material are not good. This is because the repetition of expansion and contraction during charging and discharging significantly changes the crystal structure of MoO 3 .

【0004】したがって、本発明は、MoO3 を活物質
とするリチウム二次電池に比べて充放電サイクル特性が
良いリチウム二次電池を提供することを目的とする。
Accordingly, an object of the present invention is to provide a lithium secondary battery having better charge / discharge cycle characteristics than a lithium secondary battery using MoO 3 as an active material.

【0005】[0005]

【課題を解決するための手段】本発明に係るリチウム二
次電池(本発明電池)は、正極と、負極と、非水電解質
とを備え、前記正極又は前記負極のいずれか一方が、組
成式:Mx Mo1-x y (MはCu、V、Mn、Fe、
Co及びNiよりなる群から選ばれた少なくとも一種の
遷移元素;0<x≦0.46;2.6≦y≦3.1)で
表される斜方晶系の複合酸化物又は当該複合酸化物にリ
チウムを含有せしめてなる斜方晶系のリチウム含有複合
酸化物を活物質として有する。
According to the present invention, there is provided a lithium secondary battery according to the present invention.
The secondary battery (the battery of the present invention) includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
And either one of the positive electrode or the negative electrode is
Formula: MxMo1-xO y(M is Cu, V, Mn, Fe,
At least one selected from the group consisting of Co and Ni
Transition element; 0 <x ≦ 0.46; 2.6 ≦ y ≦ 3.1)
The orthorhombic composite oxide represented or the composite oxide
Rhodium containing orthorhombic lithium-containing composites
It has an oxide as an active material.

【0006】上記複合酸化物は、MoO3 相の結晶格子
中のMoの一部が特定の遷移元素Mで置換された結晶構
造を有しており、MoO3 に比べて、充放電サイクルに
おいて結晶構造が劣化しにくい。結晶格子中のMとO
(酸素)との化学結合がMoとOとの化学結合に比べて
強いからである。
[0006] The composite oxide, part of Mo in the crystal lattice of the MoO 3 phase has a crystal structure substituted with a specific transition element M, compared to MoO 3, crystals in the charge-discharge cycle The structure does not easily deteriorate. M and O in the crystal lattice
This is because the chemical bond with (oxygen) is stronger than the chemical bond between Mo and O.

【0007】組成式中のxが0.46以下に限定される
のは、xが0.46を越えると、複合酸化物が、不安定
な遷移元素Mの酸化物相を含有するようになり、充放電
サイクル特性が低下するからである。充放電サイクル特
性が極めて良いリチウム二次電池を得るためには、組成
式中のxが0.02〜0.45の複合酸化物を使用する
ことが好ましく、組成式中のxが0.05〜0.40の
複合酸化物を使用することがより好ましい。組成式中の
yが2.6〜3.1に限定されるのは、遷移元素Mの種
類、並びに、複合酸化物を合成する際の焼成温度及び焼
成雰囲気によりyは変動するものの、上記の範囲を外れ
ることはないからである。なお、yに依る複合酸化物の
安定性(充放電サイクル特性)の変動は極めて小さい。
The reason why x in the composition formula is limited to 0.46 or less is that if x exceeds 0.46, the composite oxide will contain an unstable transition element M oxide phase. This is because the charge / discharge cycle characteristics deteriorate. In order to obtain a lithium secondary battery having extremely excellent charge / discharge cycle characteristics, it is preferable to use a composite oxide in which x in the composition formula is 0.02 to 0.45, and x in the composition formula is 0.05 It is more preferred to use a composite oxide of ~ 0.40. The reason why y in the composition formula is limited to 2.6 to 3.1 is that although y varies depending on the kind of the transition element M and the firing temperature and the firing atmosphere when synthesizing the composite oxide, This is because they do not go outside the range. Note that the variation in stability (charge / discharge cycle characteristics) of the composite oxide due to y is extremely small.

【0008】上記の複合酸化物又はリチウム含有複合酸
化物を正極活物質として有する本発明電池の負極材料の
具体例としては、リチウムイオンを電気化学的に吸蔵及
び放出することが可能な物質及びリチウム金属が挙げら
れる。この種の本発明電池の充電電圧は約3V、放電電
圧は約2Vである。リチウムイオンを電気化学的に吸蔵
及び放出することが可能な物質としては、黒鉛、コーク
ス、有機物焼成体等の炭素材料、及び、リチウム−アル
ミニウム合金、リチウム−マグネシウム合金、リチウム
−インジウム合金、リチウム−アルミニウム−マンガン
合金等のリチウム合金が例示される。充放電サイクル特
性が良いリチウム二次電池を得る上で、デンドライト
(樹枝状の電析リチウム)がセパレータを貫通すること
により生じる内部短絡の虞れが無い炭素材料を負極材料
として使用することが好ましい。リチウム含有複合酸化
物を正極活物質として使用する場合は、リチウム含有炭
素材料又はリチウム非含有炭素材料を負極材料として使
用し、一方リチウムを含有しない複合酸化物を正極活物
質として使用する場合は、リチウム含有炭素材料を負極
材料として使用する。
Specific examples of the negative electrode material of the battery of the present invention having the above-mentioned composite oxide or lithium-containing composite oxide as a positive electrode active material include a substance capable of electrochemically occluding and releasing lithium ions and lithium. Metal. The charge voltage of this type of battery of the present invention is about 3V, and the discharge voltage is about 2V. Examples of the substance capable of electrochemically storing and releasing lithium ions include carbon materials such as graphite, coke, and fired organic materials; lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and lithium-carbon alloy. A lithium alloy such as an aluminum-manganese alloy is exemplified. In order to obtain a lithium secondary battery having good charge / discharge cycle characteristics, it is preferable to use a carbon material that does not have a risk of internal short circuit caused by dendrite (dendritic lithium) penetrating the separator as a negative electrode material. . When using a lithium-containing composite oxide as the positive electrode active material, using a lithium-containing carbon material or a lithium-free carbon material as the negative electrode material, while using a lithium-free composite oxide as the positive electrode active material, A lithium-containing carbon material is used as a negative electrode material.

【0009】上記の複合酸化物又はリチウム含有複合酸
化物を負極活物質として有する本発明電池の正極活物質
の具体例としては、LiCoO2 、LiNiO2 、Li
Mn 2 4 、LiMnO2 、リチウム含有MnO2 、L
iCo0.5 Ni0.5 2 、LiCo0.2 Ni0.7 Mn
0.1 2 等のリチウム含有遷移金属酸化物が挙げられ
る。この種の本発明電池の充電電圧は約2.5V、放電
電圧は約1.5Vであり、充放電サイクル特性が極めて
良い。充電電圧が約2.5Vと低いために、充電時の非
水電解質の分解が抑制されるからである。
The above composite oxide or lithium-containing composite acid
Active material of the battery of the present invention having a nitride as a negative electrode active material
As a specific example, LiCoOTwo, LiNiOTwo, Li
Mn TwoOFour, LiMnOTwo, Lithium-containing MnOTwo, L
iCo0.5Ni0.5OTwo, LiCo0.2Ni0.7Mn
0.1OTwoSuch as lithium-containing transition metal oxides
You. The charging voltage of this type of battery of the present invention is about 2.5 V,
The voltage is about 1.5V, and the charge / discharge cycle characteristics are extremely
good. Since the charging voltage is as low as about 2.5V,
This is because the decomposition of the water electrolyte is suppressed.

【0010】非水電解質は、溶媒及び溶質が充放電時及
び保存時の電圧で分解しない限り、特に限定されない。
非水電解質の溶媒としては、エチレンカーボネート、プ
ロピレンカーボネート、ブチレンカーボネート等の環状
炭酸エステルと、ジメチルカーボネート、ジエチルカー
ボネート、メチルエチルカーボネート等の鎖状炭酸エス
テルとの混合溶媒、及び、環状炭酸エステルと、1,2
−ジエトキシエタン、1,2−ジメトキシエタン等のエ
ーテル系溶媒との混合溶媒が例示される。非水電解質の
溶質としては、LiPF6 、LiBF4 、LiCF3
3 、LiN(CF3 SO2 2 、LiN(C2 5
2 2 、LiN(CF3 SO2 )(C 4 9
2 )、LiC(CF3 SO2 3 及びLiC(C2
5 SO2 3 が例示される。これらのリチウム塩は一種
単独を使用してもよく、必要に応じて、2種以上を併用
してもよい。非水電解質として、ポリエチレンオキシ
ド、ポリアクリロニトリル等の高分子に非水電解液を含
浸せしめてなるゲル状電解質、又は、LiI、Li3
等の無機固体電解質を使用してもよい。
The non-aqueous electrolyte is used when the solvent and solute are charged and discharged.
There is no particular limitation as long as it does not decompose at the voltage during storage and storage.
Non-aqueous electrolyte solvents include ethylene carbonate and
Cyclic such as propylene carbonate and butylene carbonate
Carbonic acid ester, dimethyl carbonate, diethyl car
Chain carbonates such as carbonate and methyl ethyl carbonate
A mixed solvent with ter, a cyclic carbonate, and 1,2
Ethane such as diethoxyethane, 1,2-dimethoxyethane, etc.
A mixed solvent with an ether-based solvent is exemplified. Non-aqueous electrolyte
As a solute, LiPF6, LiBFFour, LiCFThreeS
OThree, LiN (CFThreeSOTwo)Two, LiN (CTwoFFiveS
OTwo)Two, LiN (CFThreeSOTwo) (C FourF9S
OTwo), LiC (CFThreeSOTwo)ThreeAnd LiC (CTwoF
FiveSOTwo)ThreeIs exemplified. These lithium salts are a kind
One type may be used alone, or two or more types may be used in combination as needed.
May be. Polyethyleneoxy as non-aqueous electrolyte
And non-aqueous electrolytes in polymers such as polyacrylonitrile.
A gel electrolyte immersed, or LiI, LiThreeN
And the like may be used.

【0011】本発明電池は、MoO3 に比べて結晶構造
が安定な特定の複合酸化物又はリチウム含有複合酸化物
を正極又は負極のいずれか一方の活物質として有するの
で、MoO3 を活物質とするリチウム二次電池に比べて
充放電サイクル特性が良い。
[0011] The present invention battery, because it has a crystalline structure stable specific composite oxide or lithium-containing composite oxide compared to MoO 3 as one of the active material of the positive electrode or the negative electrode, and the MoO 3 active material Charge / discharge cycle characteristics are better than lithium secondary batteries.

【0012】[0012]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲で適宜変更して実施す
ることが可能なものである。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples, and can be carried out by appropriately changing the scope without changing the gist. It is something.

【0013】(実験1)本発明電池及び比較電池を作製
し、充放電サイクル特性を比較した。
(Experiment 1) A battery of the present invention and a comparative battery were prepared, and charge / discharge cycle characteristics were compared.

【0014】(実施例1〜6) 〔正極の作製〕硝酸銅(Cu(NO3 2 )、塩化バナ
ジウム(VCl3 )、酢酸マンガン(Mn(CH3 CO
O)2 )、硝酸鉄(Fe(NO3 3 )、酢酸コバルト
(Co(CH3 COO)2 )又は硝酸ニッケル(Ni
(NO3 2 )と、モリブデンカルボニル(Mo(C
O)6 )とを、M(Cu、V、Mn、Fe、Co又はN
i):Moの原子比0.20:0.80で秤取し、乳鉢
にて混合し、直径17mmの円盤金型にて成型圧115
kg/cm2 で加圧成型した後、酸素気流中にて700
°Cで12時間焼成し、乳鉢にて粉砕して、それぞれ組
成式:Cu0.20Mo0. 803 、V0.20Mo0.803 、M
0.20Mo0.803 、Fe0.20Mo0.803 、Co0.20
Mo0.803 及びNi0.20Mo0.803 で表される平均
粒径10μmの複合酸化物粉末を作製した。
(Examples 1 to 6) [Preparation of positive electrode] Copper nitrate (Cu (NO 3 ) 2 ), vanadium chloride (VCl 3 ), manganese acetate (Mn (CH 3 CO 3 ))
O) 2 ), iron nitrate (Fe (NO 3 ) 3 ), cobalt acetate (Co (CH 3 COO) 2 ) or nickel nitrate (Ni
(NO 3 ) 2 ) and molybdenum carbonyl (Mo (C
O) 6 ) and M (Cu, V, Mn, Fe, Co or N
i): Mo was weighed at an atomic ratio of 0.20: 0.80, mixed in a mortar, and molded at a molding pressure of 115 in a disk mold of 17 mm in diameter.
After molding under pressure at kg / cm 2 , 700
° calcined 12 hours at C, and then pulverized in a mortar, respectively formula: Cu 0.20 Mo 0. 80 O 3 , V 0.20 Mo 0.80 O 3, M
n 0.20 Mo 0.80 O 3 , Fe 0.20 Mo 0.80 O 3 , Co 0.20
A composite oxide powder having an average particle diameter of 10 μm represented by Mo 0.80 O 3 and Ni 0.20 Mo 0.80 O 3 was produced.

【0015】正極活物質としての上記の各複合酸化物粉
末と、導電剤としての炭素粉末と、結着剤としてのポリ
フッ化ビニリデン粉末とを、重量比85:10:5で混
合し、得られた混合物とNMP(N−メチルピロリド
ン)とを混合して、スラリーを調製し、このスラリーを
厚み20μmのアルミニウム製の集電体の片面にドクタ
ーブレード法により塗布し、150°Cで乾燥した後、
打ち抜いて、直径10mm、厚み約80μmの円盤状の
正極を作製した。
The above composite oxide powder as a positive electrode active material, carbon powder as a conductive agent, and polyvinylidene fluoride powder as a binder are mixed in a weight ratio of 85: 10: 5 to obtain a mixture. The obtained mixture was mixed with NMP (N-methylpyrrolidone) to prepare a slurry, and this slurry was applied to one surface of a 20 μm-thick aluminum current collector by a doctor blade method, and dried at 150 ° C. ,
The blank was punched out to produce a disk-shaped positive electrode having a diameter of 10 mm and a thickness of about 80 μm.

【0016】上記の各正極と、対極としての円盤状のリ
チウム金属とを、セパレータ(イオン透過性のポリプロ
ピレンフィルム)を間に介して積層して電極体を作製
し、この電極体を、エチレンカーボネートとジエチルカ
ーボネートとの体積比1:1の混合溶媒にLiPF6
1モル/リットル溶かした非水電解液に浸漬し、100
μAで1.5V(vs.Li/Li+ )まで電解して、
各正極の複合酸化物にリチウムを含有せしめた。
Each of the above positive electrodes and a disc-shaped lithium metal as a counter electrode are laminated with a separator (ion-permeable polypropylene film) interposed therebetween to produce an electrode body. This electrode body is made of ethylene carbonate. Immersed in a non-aqueous electrolyte obtained by dissolving 1 mol / l of LiPF 6 in a mixed solvent of
Electrolyze to 1.5 V (vs. Li / Li + ) with μA,
The composite oxide of each positive electrode contained lithium.

【0017】〔負極の作製〕天然黒鉛粉末と、結着剤と
してのポリフッ化ビニリデン粉末とを、重量比95:5
で混合し、得られた混合粉末とNMP(N−メチルピロ
リドン)とを混合して、スラリーを調製し、このスラリ
ーを厚み20μmの銅製の集電体の片面にドクターブレ
ード法により塗布し、150°Cで乾燥した後、打ち抜
いて、直径10mm、厚み約60μmの円盤状の負極を
作製した。
[Preparation of Negative Electrode] A natural graphite powder and a polyvinylidene fluoride powder as a binder were mixed at a weight ratio of 95: 5.
And the obtained mixed powder is mixed with NMP (N-methylpyrrolidone) to prepare a slurry. The slurry is applied to one surface of a 20 μm-thick copper current collector by a doctor blade method, After drying at ° C., punching was performed to produce a disk-shaped negative electrode having a diameter of 10 mm and a thickness of about 60 μm.

【0018】〔非水電解質の調製〕エチレンカーボネー
トとジエチルカーボネートとの体積比1:1の混合溶媒
にLiPF6 を1モル/リットル溶かして、非水電解質
を調製した。
[Preparation of Nonaqueous Electrolyte] A nonaqueous electrolyte was prepared by dissolving 1 mol / l of LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.

【0019】〔リチウム二次電池の作製〕上記の各正
極、負極及び非水電解質を使用して、扁平形のリチウム
二次電池A1〜A6(本発明電池)を作製した。セパレ
ータには、イオン透過性のポリプロピレンフィルムを使
用した。図1は、作製したリチウム二次電池の断面図で
あり、図示のリチウム二次電池Aは、正極1、負極2、
これらを離間するセパレータ3、正極缶4、負極缶5、
正極集電体6、負極集電体7、ポリプロピレン製の絶縁
パッキング8などからなる。正極1及び負極2は、非水
電解質を含浸したセパレータ3を介して対向して正極缶
4及び負極缶5が形成する電池缶内に収容されており、
正極1は正極集電体6を介して正極缶4に、負極2は負
極集電体7を介して負極缶5に、それぞれ接続され、電
池缶内に生じた化学エネルギーを電気エネルギーとして
外部へ取り出し得るようになっている。
[Preparation of Lithium Secondary Battery] Flat lithium secondary batteries A1 to A6 (the batteries of the present invention) were prepared using the above positive electrode, negative electrode and nonaqueous electrolyte. An ion-permeable polypropylene film was used for the separator. FIG. 1 is a cross-sectional view of a manufactured lithium secondary battery. The illustrated lithium secondary battery A has a positive electrode 1, a negative electrode 2,
Separator 3, positive electrode can 4, negative electrode can 5, separating them
It comprises a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like. The positive electrode 1 and the negative electrode 2 face each other via a separator 3 impregnated with a nonaqueous electrolyte, and are housed in a battery can formed by a positive electrode can 4 and a negative electrode can 5.
The positive electrode 1 is connected to the positive electrode can 4 via the positive electrode current collector 6, and the negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7, and the chemical energy generated in the battery can is supplied to the outside as electric energy. It can be taken out.

【0020】(実施例7及び8)実施例1における正極
の作製方法と同様にして、正極を作製した。但し、正極
の複合酸化物(Cu0.20Mo0.803 )にリチウムを含
有せしめる操作である電解は行わなかった。また、リチ
ウム圧延シート及びリチウム−アルミニウム合金シート
(リチウム含有率:20.6重量%)を打ち抜いて、直
径10mm、厚み1.0mmの2種の円盤状の負極を作
製した。正極及び負極として、それぞれ上記の正極及び
各負極を使用したこと以外は実施例1と同様にして、本
発明電池A7及びA8を作製した。
(Examples 7 and 8) A positive electrode was manufactured in the same manner as in the method of manufacturing the positive electrode in Example 1. However, electrolysis, which is an operation for incorporating lithium into the composite oxide (Cu 0.20 Mo 0.80 O 3 ) of the positive electrode, was not performed. Further, a lithium rolled sheet and a lithium-aluminum alloy sheet (lithium content: 20.6% by weight) were punched out to produce two kinds of disc-shaped negative electrodes having a diameter of 10 mm and a thickness of 1.0 mm. Batteries A7 and A8 of the present invention were produced in the same manner as in Example 1 except that the above-mentioned positive electrode and each negative electrode were used as the positive electrode and the negative electrode, respectively.

【0021】(実施例9〜11)正極活物質としてのL
iCoO2 、LiNiO2 又はLiMn2 4 と、導電
剤としての炭素粉末と、結着剤としてのポリフッ化ビニ
リデン粉末とを、重量比85:10:5で混合し、得ら
れた混合物とNMP(N−メチルピロリドン)とを混合
して、スラリーを調製し、このスラリーを厚み20μm
のアルミニウム製の集電体の片面にドクターブレード法
により塗布し、150°Cで乾燥した後、打ち抜いて、
直径10mm、厚み約80μmの円盤状の正極を作製し
た。また、組成式:Cu0.20Mo0.803 で表される平
均粒径10μmの複合酸化物粉末(実施例1で作製した
ものと同じもの)と、導電剤としての炭素粉末と、結着
剤としてのポリフッ化ビニリデン粉末とを、重量比8
5:10:5で混合し、得られた混合物とNMP(N−
メチルピロリドン)とを混合して、スラリーを調製し、
このスラリーを厚み20μmの銅製の集電体の片面にド
クターブレード法により塗布し、150°Cで乾燥した
後、打ち抜いて、直径10mm、厚み1.0mmの円盤
状の負極を作製した。正極及び負極として、上記の各正
極及び負極を使用したこと以外は実施例1と同様にし
て、本発明電池A9〜A11を作製した。
(Examples 9 to 11) L as a positive electrode active material
iCoO 2 , LiNiO 2 or LiMn 2 O 4 , carbon powder as a conductive agent, and polyvinylidene fluoride powder as a binder were mixed at a weight ratio of 85: 10: 5, and the obtained mixture was mixed with NMP ( N-methylpyrrolidone) to prepare a slurry.
It was applied to one side of an aluminum current collector by a doctor blade method, dried at 150 ° C., and punched out.
A disk-shaped positive electrode having a diameter of 10 mm and a thickness of about 80 μm was produced. Further, a composite oxide powder having an average particle size of 10 μm represented by the composition formula: Cu 0.20 Mo 0.80 O 3 (the same as that prepared in Example 1), a carbon powder as a conductive agent, and a binder as a binder Of polyvinylidene fluoride powder at a weight ratio of 8
The mixture was mixed at 5: 10: 5, and the resulting mixture was mixed with NMP (N-
Methylpyrrolidone) to prepare a slurry,
The slurry was applied to one surface of a copper current collector having a thickness of 20 μm by a doctor blade method, dried at 150 ° C., and punched out to produce a disk-shaped negative electrode having a diameter of 10 mm and a thickness of 1.0 mm. Batteries A9 to A11 of the invention were produced in the same manner as in Example 1, except that the above-described positive electrode and negative electrode were used as the positive electrode and the negative electrode.

【0022】(比較例1)正極活物質としてのMoO3
粉末と、導電剤としての炭素粉末と、結着剤としてのポ
リフッ化ビニリデン粉末とを、重量比85:10:5で
混合し、得られた混合粉末とNMPとを混合して、スラ
リーを調製し、このスラリーを厚み20μmのアルミニ
ウム製の集電体の片面にドクターブレード法により塗布
し、150°Cで乾燥した後、打ち抜いて、直径10m
m、厚み約80μmの円盤状の正極を作製した。MoO
3 粉末としては、600°Cで焼成したものを使用し
た。以下に登場するMoO3 粉末も、全て600°Cで
焼成したものである。次いで、実施例1で行ったものと
同じ条件の電解を行って、正極のMoO3 にリチウムを
含有せしめた。正極として、上記の正極を使用したこと
以外は実施例1と同様にして、比較電池B1を作製し
た。
Comparative Example 1 MoO 3 as a positive electrode active material
Powder, carbon powder as a conductive agent, and polyvinylidene fluoride powder as a binder are mixed at a weight ratio of 85: 10: 5, and the obtained mixed powder and NMP are mixed to prepare a slurry. Then, this slurry was applied to one side of a 20 μm-thick aluminum current collector by a doctor blade method, dried at 150 ° C., punched out, and punched to a diameter of 10 m.
m, a disc-shaped positive electrode having a thickness of about 80 μm was prepared. MoO
As the three powders, those fired at 600 ° C. were used. All of the MoO 3 powders described below were fired at 600 ° C. Next, electrolysis was performed under the same conditions as those performed in Example 1 so that MoO 3 of the positive electrode contained lithium. A comparative battery B1 was produced in the same manner as in Example 1 except that the above positive electrode was used as the positive electrode.

【0023】(比較例2及び3)正極活物質としてのM
oO3 粉末と、導電剤としての炭素粉末と、結着剤とし
てのポリフッ化ビニリデン粉末とを、重量比85:1
0:5で混合し、得られた混合粉末とNMPとを混合し
て、スラリーを調製し、このスラリーを厚み20μmの
アルミニウム製の集電体の片面にドクターブレード法に
より塗布し、150°Cで乾燥した後、打ち抜いて、直
径10mm、厚み約80μmの円盤状の正極を作製し
た。リチウム圧延シート及びリチウム−アルミニウム合
金シート(リチウム含有率:20.6重量%)を打ち抜
いて、直径10mm、厚み1.0mmの2種の円盤状の
負極を作製した。正極及び負極として、それぞれ上記の
正極及び各負極を使用したこと以外は比較例1と同様に
して、比較電池B2及びB3を作製した。
(Comparative Examples 2 and 3) M as a positive electrode active material
An oO 3 powder, a carbon powder as a conductive agent, and a polyvinylidene fluoride powder as a binder were mixed at a weight ratio of 85: 1.
The mixture was mixed at 0: 5, and the obtained mixed powder and NMP were mixed to prepare a slurry. The slurry was applied to one side of a 20 μm-thick aluminum current collector by a doctor blade method, , And punched out to produce a disk-shaped positive electrode having a diameter of 10 mm and a thickness of about 80 µm. A lithium rolled sheet and a lithium-aluminum alloy sheet (lithium content: 20.6% by weight) were punched out to produce two kinds of disc-shaped negative electrodes having a diameter of 10 mm and a thickness of 1.0 mm. Comparative batteries B2 and B3 were produced in the same manner as in Comparative Example 1 except that the above positive electrode and each negative electrode were used as the positive electrode and the negative electrode, respectively.

【0024】〈各電池の充放電サイクル特性〉本発明電
池A1〜A6及び比較電池B1については、100μA
で3.0Vまで充電した後、100μAで1.5Vまで
放電する充放電を50サイクル行い、各電池の50サイ
クル目の容量維持率を下式より求めた。本発明電池A7
及びA8並びに比較電池B2及びB3については、10
0μAで1.5Vまで放電し、次いで、100μAで
3.0Vまで充電した後、100μAで1.5Vまで放
電する充放電を50サイクル行い、各電池の50サイク
ル目の容量維持率を下式より求めた。本発明電池A9〜
A11については、100μAで2.5Vまで充電した
後、100μAで0.5Vまで放電する充放電を50サ
イクル行い、各電池の50サイクル目の容量維持率を下
式より求めた。充放電サイクル試験は全て室温(25°
C)で行った。各電池の放電電圧(放電終止電圧に到る
までの平均放電電圧)、初期容量(1サイクル目の放電
容量)及び容量維持率を表1に示す。
<Charge / Discharge Cycle Characteristics of Each Battery> For the batteries A1 to A6 of the present invention and the comparative battery B1, 100 μA
The battery was charged to 3.0 V and then charged and discharged at 100 μA to 1.5 V for 50 cycles, and the capacity retention ratio of each battery at the 50th cycle was determined by the following equation. Invention battery A7
And A8 and comparative batteries B2 and B3
The battery was discharged at 0 μA to 1.5 V, then charged at 100 μA to 3.0 V, and then charged and discharged at 100 μA to 1.5 V for 50 cycles. I asked. Inventive batteries A9 to
As for A11, after charging to 2.5 V at 100 μA, discharging and discharging to 0.5 V at 100 μA was performed for 50 cycles, and the capacity retention ratio of the 50th cycle of each battery was determined by the following formula. All charge and discharge cycle tests were performed at room temperature (25 °
C). Table 1 shows the discharge voltage (average discharge voltage until reaching the discharge end voltage), initial capacity (discharge capacity in the first cycle), and capacity retention of each battery.

【0025】容量維持率(%)=(50サイクル目の放
電容量/1サイクル目の放電容量)×100
Capacity retention (%) = (discharge capacity at 50th cycle / discharge capacity at 1st cycle) × 100

【0026】[0026]

【表1】 [Table 1]

【0027】表1より、本発明電池A1〜A11は、比
較電池B1〜B3に比べて、容量維持率が大きく、充放
電サイクル特性が良いことが分かる。また、本発明電池
A1と本発明電池A7及びA8との容量維持率の比較か
ら、充放電サイクル特性の良いリチウム二次電池を得る
上で、負極材料としては、充放電を繰り返してもデンド
ライトが生成する虞れが無い黒鉛(炭素材料)を使用す
ることが好ましいことが分かる。さらに、本発明電池の
中でも本発明電池A9〜A11の容量維持率が特に大き
いことから、リチウム含有遷移金属酸化物を正極活物質
として使用し、本発明で規定する複合酸化物を負極活物
質として使用することが好ましいことが分かる。本発明
電池A9〜A11の容量維持率が90〜91%と特に大
きいのは、充電電圧が2.5Vと低いために、非水電解
液の分解が抑制されたためである。
Table 1 shows that the batteries A1 to A11 of the present invention have a larger capacity retention ratio and better charge / discharge cycle characteristics than the comparative batteries B1 to B3. Also, from the comparison of the capacity retention ratio between the battery A1 of the present invention and the batteries A7 and A8 of the present invention, in order to obtain a lithium secondary battery having good charge / discharge cycle characteristics, dendrite was used as a negative electrode material even after repeated charge / discharge. It can be seen that it is preferable to use graphite (carbon material) that is not likely to be generated. Further, among the batteries of the present invention, the batteries A9 to A11 of the present invention have particularly high capacity retention rates. Therefore, a lithium-containing transition metal oxide is used as the positive electrode active material, and the composite oxide defined by the present invention is used as the negative electrode active material. It turns out that it is preferable to use. The reason why the capacity retention ratios of the batteries A9 to A11 of the present invention are particularly large as 90 to 91% is that the decomposition of the non-aqueous electrolyte is suppressed because the charging voltage is as low as 2.5 V.

【0028】(実験2) 組成式:Mx Mo1-x 3 中のxと充放電サイクル特性
の関係を調べた。
(Experiment 2) Composition formula: The relationship between x in M x Mo 1-x O 3 and charge / discharge cycle characteristics was examined.

【0029】硝酸銅(Cu(NO3 2 )と、モリブデ
ンカルボニル(Mo(CO)6 )とを、Cu:Moの原
子比0.02:0.98、0.05:0.95、0.1
0:0.90、0.30:0.70、0.40:0.6
0、0.45:0.55、0.46:0.54及び0.
47:0.53で秤取し、乳鉢にて混合し、直径17m
mの円盤金型にて成型圧115kg/cm2 で加圧成型
した後、酸素気流中にて700°Cで12時間焼成し、
乳鉢にて粉砕して、それぞれ組成式:Cu0.02Mo0.98
3 、Cu0.05Mo0.953 、Cu0.10Mo0.903
Cu0.30Mo0. 703 、Cu0.40Mo0.603 、Cu
0.45Mo0.553 、Cu0.46Mo0.543及びCu0.47
Mo0.533 で表される平均粒径10μmの複合酸化物
粉末を作製した。正極の作製において、組成式:Cu
0.20Mo0.803 で表される複合酸化物粉末に代えて、
上記の各複合酸化物粉末を使用したこと以外は実施例1
と同様にして、順に、電池X1〜X7及び電池B4を作
製した。電池X1〜X7は本発明電池であり、電池B4
は比較電池である。各電池について、実験1で本発明電
池A1〜A6及び比較電池B1について行ったものと同
じ条件の充放電サイクル試験を行い、容量維持率を調べ
た。各電池の放電電圧(放電終止電圧に到るまでの平均
放電電圧)、初期容量(1サイクル目の放電容量)及び
容量維持率を、表2に示す。図2は、組成式:Cux
1-x 3 中のxと充放電サイクル特性の関係を、縦軸
に容量維持率(%)を、横軸に組成式:Cux Mo1-x
3 中のxの値をとって示したグラフである。表2及び
図2には、本発明電池A1及び比較電池B1の容量維持
率も示してある。
Copper nitrate (Cu (NO 3 ) 2 ) and molybdenum carbonyl (Mo (CO) 6 ) are converted to a Cu: Mo atomic ratio of 0.02: 0.98, 0.05: 0.95, 0 .1
0: 0.90, 0.30: 0.70, 0.40: 0.6
0, 0.45: 0.55, 0.46: 0.54 and 0.
47: weighed at 0.53 and mixed in a mortar, 17m in diameter
After molding under pressure with a molding pressure of 115 kg / cm 2 in a disc mold of m, calcining was performed at 700 ° C. for 12 hours in an oxygen stream,
Pulverized in a mortar, each having the composition formula: Cu 0.02 Mo 0.98
O 3 , Cu 0.05 Mo 0.95 O 3 , Cu 0.10 Mo 0.90 O 3 ,
Cu 0.30 Mo 0. 70 O 3, Cu 0.40 Mo 0.60 O 3, Cu
0.45 Mo 0.55 O 3 , Cu 0.46 Mo 0.54 O 3 and Cu 0.47
A composite oxide powder having an average particle size of 10 μm represented by Mo 0.53 O 3 was produced. In the preparation of the positive electrode, the composition formula: Cu
Instead of the composite oxide powder represented by 0.20 Mo 0.80 O 3 ,
Example 1 except that each of the above composite oxide powders was used.
In the same manner as in, batteries X1 to X7 and a battery B4 were sequentially manufactured. The batteries X1 to X7 are the batteries of the present invention, and the battery B4
Is a comparative battery. For each battery, a charge / discharge cycle test was performed under the same conditions as those performed for the batteries A1 to A6 of the present invention and the comparative battery B1 in Experiment 1, and the capacity retention ratio was examined. Table 2 shows the discharge voltage (the average discharge voltage up to the discharge end voltage), the initial capacity (the first cycle discharge capacity), and the capacity retention rate of each battery. FIG. 2 shows the composition formula: Cu x M
o 1-x The relationship between x in O 3 and charge / discharge cycle characteristics, the capacity retention rate (%) is plotted on the vertical axis, and the composition formula: Cu x Mo 1-x is plotted on the horizontal axis.
5 is a graph showing values of x in O 3 . Table 2 and FIG. 2 also show the capacity retention ratio of the battery A1 of the present invention and the comparative battery B1.

【0030】[0030]

【表2】 [Table 2]

【0031】表2及び図2より、xが0より大きく、且
つ0.46以下の複合酸化物を使用すれば、充放電サイ
クル特性は向上するが、充放電サイクル特性を大きく向
上させるためには、xが0.02〜0.45の複合酸化
物を使用することが好ましく、xが0.05〜0.40
の複合酸化物を使用することがより好ましいことが分か
る。なお、この実験2では、遷移元素MがCuである場
合を例にして組成式:Cux Mo1-x 3 中のxと充放
電サイクル特性の関係を調べたが、遷移元素Mの種類に
かかわらず、充放電サイクル特性を大きく向上させるた
めには、組成式:Mx Mo1-x 3 中のxが0.02〜
0.45の複合酸化物を使用することが好ましく、xが
0.05〜0.40の複合酸化物を使用することがより
好ましいことを確認した。
From Table 2 and FIG. 2, the use of a composite oxide in which x is greater than 0 and 0.46 or less improves the charge-discharge cycle characteristics. However, in order to greatly improve the charge-discharge cycle characteristics, , X is preferably from 0.02 to 0.45, and x is from 0.05 to 0.40.
It can be seen that it is more preferable to use the composite oxide of the above. In Experiment 2, the relationship between x in the composition formula: Cu x Mo 1-x O 3 and charge / discharge cycle characteristics was examined by taking the case where the transition element M is Cu as an example. Regardless, in order to greatly improve the charge / discharge cycle characteristics, x in the composition formula: M x Mo 1-x O 3 is 0.02 to 0.02.
It was confirmed that it is preferable to use a composite oxide of 0.45, and it is more preferable to use a composite oxide of x of 0.05 to 0.40.

【0032】上記の実施例では、本発明を扁平形のリチ
ウム二次電池に適用する場合を例に挙げて説明したが、
本発明は、電池の形状に制限は無く、円筒形等の種々の
形状のリチウム二次電池に適用可能である。
In the above embodiment, the case where the present invention is applied to a flat type lithium secondary battery has been described as an example.
The present invention is not limited to the shape of the battery, and is applicable to lithium secondary batteries having various shapes such as a cylindrical shape.

【0033】[0033]

【発明の効果】MoO3 を活物質とするリチウム二次電
池に比べて充放電サイクル特性の良いリチウム二次電池
が提供される。
According to the present invention, a lithium secondary battery having better charge / discharge cycle characteristics than a lithium secondary battery using MoO 3 as an active material is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作製した扁平形のリチウム二次電池の
断面図である。
FIG. 1 is a cross-sectional view of a flat lithium secondary battery manufactured in an example.

【図2】組成式:Cux Mo1-x 3 中のxと充放電サ
イクル特性の関係を示したグラフである。
FIG. 2 is a graph showing the relationship between x in the composition formula: Cu x Mo 1-x O 3 and charge / discharge cycle characteristics.

【符号の説明】[Explanation of symbols]

A リチウム二次電池 1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング A Lithium secondary battery 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Positive current collector 7 Negative current collector 8 Insulation packing

フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H003 AA04 BB05 BC01 BC06 BD00 5H014 AA01 AA06 EE07 EE10 HH00 5H029 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 BJ03 BJ16 DJ16 DJ17 HJ02 Continuation of the front page (72) Inventor Shin Fujitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H003 AA04 BB05 BC01 BC06 BD00 5H014 AA01 AA06 EE07 EE10 HH00 5H029 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 BJ03 BJ16 DJ16 DJ17 HJ02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正極と、負極と、非水電解質とを備えるリ
チウム二次電池において、前記正極又は前記負極のいず
れか一方が、組成式:Mx Mo1-x y (MはCu、
V、Mn、Fe、Co及びNiよりなる群から選ばれた
少なくとも一種の遷移元素;0<x≦0.46;2.6
≦y≦3.1)で表される斜方晶系の複合酸化物又は当
該複合酸化物にリチウムを含有せしめてなる斜方晶系の
リチウム含有複合酸化物を活物質として有することを特
徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein one of the positive electrode and the negative electrode has a composition formula: M x Mo 1-x O y (M is Cu,
At least one transition element selected from the group consisting of V, Mn, Fe, Co and Ni; 0 <x ≦ 0.46; 2.6
.Ltoreq.y.ltoreq.3.1), characterized by having as an active material an orthorhombic lithium-containing composite oxide obtained by adding lithium to the composite oxide. Rechargeable lithium battery.
【請求項2】正極と、負極と、非水電解質とを備えるリ
チウム二次電池において、前記正極が、組成式:Mx
1-x y (MはCu、V、Mn、Fe、Co及びNi
よりなる群から選ばれた少なくとも一種の遷移元素;0
<x≦0.46;2.6≦y≦3.1)で表される斜方
晶系の複合酸化物にリチウムを含有せしめてなる斜方晶
系のリチウム含有複合酸化物を活物質として有し、前記
負極が、炭素材料又は炭素材料にリチウムを含有せしめ
てなるリチウム含有炭素材料をリチウムイオン吸蔵材と
して有するリチウム二次電池。
2. A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode has a composition formula: M x M
o 1-x O y (M is Cu, V, Mn, Fe, Co and Ni
At least one transition element selected from the group consisting of: 0
<X ≦ 0.46; 2.6 ≦ y ≦ 3.1) An orthorhombic lithium-containing composite oxide obtained by adding lithium to an orthorhombic composite oxide represented by the following formula: A lithium secondary battery, wherein the negative electrode includes, as a lithium ion storage material, a carbon material or a lithium-containing carbon material obtained by adding lithium to a carbon material.
【請求項3】正極と、負極と、非水電解質とを備えるリ
チウム二次電池において、前記正極が、組成式:Mx
1-x y (MはCu、V、Mn、Fe、Co及びNi
よりなる群から選ばれた少なくとも一種の遷移元素;0
<x≦0.46;2.6≦y≦3.1)で表される斜方
晶系の複合酸化物を活物質として有し、前記負極が、炭
素材料にリチウムを含有せしめてなるリチウム含有炭素
材料をリチウムイオン吸蔵材として有するリチウム二次
電池。
3. A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode has a composition formula: M x M
o 1-x O y (M is Cu, V, Mn, Fe, Co and Ni
At least one transition element selected from the group consisting of: 0
<X ≦ 0.46; 2.6 ≦ y ≦ 3.1) lithium as an active material, wherein the negative electrode contains lithium in a carbon material. A lithium secondary battery having a carbon material as a lithium ion storage material.
【請求項4】正極と、負極と、非水電解質とを備えるリ
チウム二次電池において、前記正極が、リチウム含有遷
移金属酸化物を活物質として有し、前記負極が、組成
式:M x Mo1-x y (MはCu、V、Mn、Fe、C
o及びNiよりなる群から選ばれた少なくとも一種の遷
移元素;0<x≦0.46;2.6≦y≦3.1)で表
される斜方晶系の複合酸化物を活物質として有するリチ
ウム二次電池。
4. A rechargeable battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte.
In the lithium secondary battery, the positive electrode is a lithium-containing
Having a transfer metal oxide as an active material, wherein the negative electrode has a composition
Formula: M xMo1-xOy(M is Cu, V, Mn, Fe, C
at least one transition selected from the group consisting of o and Ni
Transfer element; 0 <x ≦ 0.46; 2.6 ≦ y ≦ 3.1)
With orthorhombic composite oxide as active material
Rechargeable battery.
【請求項5】前記複合酸化物が、組成式:Mx Mo1-x
y (MはCu、V、Mn、Fe、Co及びNiよりな
る群から選ばれた少なくとも一種の遷移元素;0.02
≦x≦0.45;2.6≦y≦3.1)で表される請求
項1〜4のいずれかに記載のリチウム二次電池。
5. The composite oxide has a composition formula: M x Mo 1-x
O y (M is at least one transition element selected from the group consisting of Cu, V, Mn, Fe, Co and Ni; 0.02
≦ x ≦ 0.45; 2.6 ≦ y ≦ 3.1), the lithium secondary battery according to claim 1.
【請求項6】前記複合酸化物が、組成式:Mx Mo1-x
y (MはCu、V、Mn、Fe、Co及びNiよりな
る群から選ばれた少なくとも一種の遷移元素;0.05
≦x≦0.40;2.6≦y≦3.1)で表される請求
項1〜4のいずれかに記載のリチウム二次電池。
6. The composite oxide has a composition formula: M x Mo 1-x
O y (M is at least one transition element selected from the group consisting of Cu, V, Mn, Fe, Co and Ni; 0.05
≤x≤0.40; 2.6≤y≤3.1), wherein the lithium secondary battery according to any one of claims 1 to 4.
JP08090599A 1999-03-25 1999-03-25 Lithium secondary battery Expired - Fee Related JP3615416B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08090599A JP3615416B2 (en) 1999-03-25 1999-03-25 Lithium secondary battery
US09/506,588 US6391496B1 (en) 1999-03-25 2000-02-18 Lithium secondary battery with orthorhombic molybdenum and niobium oxide electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08090599A JP3615416B2 (en) 1999-03-25 1999-03-25 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000277113A true JP2000277113A (en) 2000-10-06
JP3615416B2 JP3615416B2 (en) 2005-02-02

Family

ID=13731402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08090599A Expired - Fee Related JP3615416B2 (en) 1999-03-25 1999-03-25 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3615416B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135325A (en) * 2008-12-05 2010-06-17 Samsung Sdi Co Ltd Cathode and lithium battery adopting the same
JP2014519136A (en) * 2011-03-14 2014-08-07 イムラ アメリカ インコーポレイテッド Nanostructured multi-component electrode material and method of making same
CN104733716A (en) * 2014-12-04 2015-06-24 辽宁石油化工大学 Molybdenum oxide/nitrogen-doped carbon composite electrode material and preparation method thereof
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135325A (en) * 2008-12-05 2010-06-17 Samsung Sdi Co Ltd Cathode and lithium battery adopting the same
US9059462B2 (en) 2008-12-05 2015-06-16 Samsung Sdi Co., Ltd. Cathode and lithium battery using same
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
JP2014519136A (en) * 2011-03-14 2014-08-07 イムラ アメリカ インコーポレイテッド Nanostructured multi-component electrode material and method of making same
US9643842B2 (en) 2011-03-14 2017-05-09 Imra America, Inc. Nanoarchitectured multi-component electrode materials and methods of making the same
CN104733716A (en) * 2014-12-04 2015-06-24 辽宁石油化工大学 Molybdenum oxide/nitrogen-doped carbon composite electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP3615416B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP3625680B2 (en) Lithium secondary battery
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP4307005B2 (en) Non-aqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
KR20040018154A (en) Nonaqueous electrolyte secondary battery
KR20080031616A (en) Cathode active material and lithium battery using the same
JPH08195220A (en) Manufacture of nonaqueous polymer battery and of polymer film for use in same
JP3573992B2 (en) Lithium secondary battery
JP2007095354A (en) Charge and discharge method of nonaqueous electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JP3717544B2 (en) Lithium secondary battery
JP3768046B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
US6482546B1 (en) Rechargeable lithium battery
JP2002270181A (en) Non-aqueous electrolyte battery
US6403258B1 (en) Lithium secondary battery comprising tungsten composite oxide
JP3670878B2 (en) Lithium secondary battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP3670879B2 (en) Lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH0935714A (en) Lithium secondary battery
JP3615416B2 (en) Lithium secondary battery
JP3619702B2 (en) Lithium secondary battery
JP3289259B2 (en) Negative electrode for lithium secondary battery
JP2002170569A (en) Lithium secondary cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees