JPH03289049A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH03289049A
JPH03289049A JP2091632A JP9163290A JPH03289049A JP H03289049 A JPH03289049 A JP H03289049A JP 2091632 A JP2091632 A JP 2091632A JP 9163290 A JP9163290 A JP 9163290A JP H03289049 A JPH03289049 A JP H03289049A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium
active material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2091632A
Other languages
Japanese (ja)
Inventor
Tadaaki Miyazaki
忠昭 宮崎
Yoshitomo Masuda
善友 増田
Hiroaki Wada
宏明 和田
Takao Ogino
隆夫 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2091632A priority Critical patent/JPH03289049A/en
Publication of JPH03289049A publication Critical patent/JPH03289049A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolytic secondary battery having a large capacity and a high potential, excellent in low temperature characteristic, and allowing static charge and discharge by using a composite mainly containing a specific vanadium oxide as an active material for positive electrode. CONSTITUTION:A composite mainly containing a vanadium oxide represented by the formula 1 in which the value obtained by dividing the peak strength of 2theta=12.3 deg.+1 deg. in X-ray diffraction with CuK ray by the peak strength of 2theta=23.4 deg.+1 deg. is less than 0.5 is used as a positive electrode active material. This composite can be obtained by mixing vanadium pentoxide (V2O5) with a lithium salt and a sodium salt followed by baking. Hence, a nonaqueous electrolytic secondary battery having a large capacity and a high potential, excellent in low temperature characteristic and cycle characteristic, and allowing stable charge and discharge can be obtained.

Description

【発明の詳細な説明】 童呈上皇丑里分立 本発明は、負極活物質にリチウム金属又はリチウム合金
を用いた非水電解質二次電池に関し、更に詳述すると高
電位、高エネルギー密度で低温特性に優れた非水電解質
二次電池に関する。
[Detailed Description of the Invention] The present invention relates to a nonaqueous electrolyte secondary battery using lithium metal or lithium alloy as a negative electrode active material, and more specifically, it has high potential, high energy density, and low temperature characteristics. This invention relates to a non-aqueous electrolyte secondary battery that has excellent properties.

従来の 術 び  が解 しようとする課題従来から、
リチウムを負極活物質として用いる高エネルギー密度電
池に関しては多くの提案がなされており、フン化黒鉛や
二酸化マンガンを正極活物質として用いたリチウム電池
が既に市販されている。しかし、これらの電池は一次電
池であり、充電できないという欠点があった。
Problems that conventional techniques attempt to solve
Many proposals have been made regarding high energy density batteries using lithium as a negative electrode active material, and lithium batteries using fluorinated graphite or manganese dioxide as a positive electrode active material are already on the market. However, these batteries are primary batteries and have the drawback of not being rechargeable.

リチウムを負極活物質として用いる二次電池については
、正極活物質としてチタン、モリブデンニオビウム、バ
ナジウム、ジルコニウムのカルコゲナイド(fL化物、
セレン化物、テルル化物)を用いた電池が提案されてい
るが、電池特性及び経済性が必ずしも十分でないために
、実用化されているものは少ない。最近、正極活物質と
して硫化モリブデンを用いた二次電池が実用化されたが
、これも放電電位が低く、過充電に弱いなどの欠点を持
っている。放電電位の高い正極活物質としてはL1+*
*VJs (X = 0.05又はx = 0.2 )
で示されるリチウム含有バナジウム酸化物が挙げられ、
これを正極に用いた二次電池が提案されている(G、 
Pistoia et al; J、 Electro
chem、 Soc、+νol。
For secondary batteries that use lithium as a negative electrode active material, titanium, molybdenum niobium, vanadium, and zirconium chalcogenides (fL compounds,
Batteries using selenides, tellurides) have been proposed, but few have been put into practical use because the battery characteristics and economic efficiency are not necessarily sufficient. Recently, secondary batteries using molybdenum sulfide as a positive electrode active material have been put into practical use, but these also have drawbacks such as low discharge potential and vulnerability to overcharging. L1+* is a positive electrode active material with a high discharge potential.
*VJs (X = 0.05 or x = 0.2)
Examples include lithium-containing vanadium oxides shown in
A secondary battery using this as a positive electrode has been proposed (G,
Pistoia et al; J, Electro
chem, Soc, +νol.

133、階12.  P2454〜2458.1986
 )。しかし、このような正極を用いた二次電池は、初
期容量が比較的小さく、充放電サイクルに伴う容量低下
も大きい。このためわずか20サイクル程で容量が約5
0%近くまで低下してしまい、実用電池としては寿命が
短かすぎる欠点を持っている。また、−5℃以下の低温
下では放電容量が著しく低下してしまうという問題点も
有している。このため高エネルギー密度で、特に充放電
寿命が長く、しかも低温特性、安定性、信顧性に優れた
リチウム二次電池の開発が望まれている。
133, floor 12. P2454-2458.1986
). However, a secondary battery using such a positive electrode has a relatively small initial capacity and a large capacity decrease with charge/discharge cycles. Therefore, the capacity increases by approximately 5 in just 20 cycles.
The battery life is too short to be used as a practical battery. Another problem is that the discharge capacity is significantly reduced at low temperatures of −5° C. or lower. Therefore, it is desired to develop a lithium secondary battery that has high energy density, particularly long charge/discharge life, and has excellent low-temperature characteristics, stability, and reliability.

本発明は、上記事情に鑑みなされたもので、容量が大き
く、高電位で、しかも低温特性及びサイクル特性に優れ
、また安定した充放電を行ない得る非水電解質二次電池
を提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery that has a large capacity, a high potential, excellent low-temperature characteristics and cycle characteristics, and is capable of stable charging and discharging. shall be.

課題を解決するための手  び作用 本発明は、上記目的を達成するため、正極とリチウム金
属又はリチウムを含む合金を活物質とする負極と、アル
カリ金属イオンを含む非水電解質とを具備する非水電解
質二次電池において、上記正極の活物質としてLi+−
x−yNayV30a−z (0,1≦x≦0.4.0
.1≦y <0.7.−0.5≦z≦0.3)テ示され
るバナジウム酸化物を主成分とする組成物であって、C
uKg線によるX線回折で20= 12.3゜±1°の
ピーク強度を2θ= 23.4°±16のピーク強度で
除した値が0.5以下であるものを使用したことを特徴
とする非水電解質二次電池を提供する。
In order to achieve the above object, the present invention provides a non-aqueous electrolyte comprising a positive electrode, a negative electrode whose active material is lithium metal or an alloy containing lithium, and a non-aqueous electrolyte containing alkali metal ions. In a water electrolyte secondary battery, Li + - is used as the active material of the positive electrode.
x-yNayV30a-z (0,1≦x≦0.4.0
.. 1≦y<0.7. -0.5≦z≦0.3) A composition mainly composed of vanadium oxide shown in C
It is characterized in that the value obtained by dividing the peak intensity at 20 = 12.3° ± 1° by the peak intensity at 2θ = 23.4° ± 16 in X-ray diffraction using uKg rays is 0.5 or less. To provide a non-aqueous electrolyte secondary battery.

即ち、本発明者は、先にLi + +xV:+Os+y
 (0≦x≦0.6.−0.5≦y≦0.3)のリチウ
ムの一部をNa、  Kなどの他のアルカリ金属で置換
することにより、結晶の面間隙が部分的に拡大され、リ
チウムイオンの挿入が容易になり、良好な安定性を有す
る高性能の正極材料となり得ることを見い出し、かかる
正極材料を用いた電池を提案したが(特願平2−211
41号)、この正極材料について、その低温特性(室温
での容量に対する低温下における容量の割合:低温容量
保持率)を測定したところ、特にNa置換物については
、低温容量保持率も改善されることが新たに見い出され
た。しかし、このNa置換物は、上記L!1+xVJ1
−yのXが0.1より小さい場合、即ちLi塩とNa塩
との和がV2O5のバナジウム(V)3原子に対して、
1.1原子以下の割合である場合、合成中に副生成物と
して混入するβ−Na、V2O3が単位重量当りの容量
を低下させることがわかった。そこで、このNaの置換
物、即ちL1+−xNayVioe−jO,l≦x≦0
.4,0.1≦y〈0.7.−0.5≦z≦0.3)で
示されるバナジウム酸化物について更に検討を重ねた結
果、CuKα線によるX線回折で上記副生成物のβ−N
a、xV20.、量を示す2θ= 12.3°±1°の
ピーク強度を2θ=23,4’±16のピーク強度で除
した値が0.5以下となるように調整することにより、
単位重量当りの容量を低下させることなく、低温容量保
持率の向上した正極材料が得られ、これを用いて電池正
極を作製し、これにリチウム金属又はリチウム合金を活
物質とする負極とリチウムイオンを含む非水電解液とを
組み合せて二次電池を構成することにより、高電位、高
エネルギー密度で、しかも低温特性に優れた非水電解質
二次電池が得られることを見い出し、本発明を完成した
ものである。
That is, the inventor first determined that Li + +xV:+Os+y
By replacing part of the lithium (0≦x≦0.6.-0.5≦y≦0.3) with other alkali metals such as Na and K, the interplanar spacing of the crystal is partially expanded. They discovered that lithium ions can be easily inserted into the cathode material and that it can be a high-performance cathode material with good stability, and proposed a battery using such a cathode material (Japanese Patent Application No. 2-211).
No. 41), we measured the low-temperature properties (ratio of capacity at low temperature to capacity at room temperature: low-temperature capacity retention rate) of this positive electrode material, and found that the low-temperature capacity retention rate was also improved, especially for Na substitution. This was newly discovered. However, this Na substituent is similar to the above L! 1+xVJ1
- When X of y is smaller than 0.1, that is, the sum of Li salt and Na salt is for 3 vanadium (V) atoms of V2O5,
It has been found that when the ratio is 1.1 atoms or less, β-Na and V2O3 mixed as by-products during synthesis reduce the capacity per unit weight. Therefore, this Na substitution product, namely L1+-xNayVioe-jO, l≦x≦0
.. 4, 0.1≦y〈0.7. -0.5≦z≦0.3) As a result of further study on the vanadium oxide expressed by
a, xV20. , by adjusting the value obtained by dividing the peak intensity of 2θ = 12.3° ± 1°, which indicates the amount, by the peak intensity of 2θ = 23,4' ± 16, to be 0.5 or less,
A positive electrode material with improved low-temperature capacity retention without reducing capacity per unit weight can be obtained, and this can be used to produce a battery positive electrode, which is then combined with a negative electrode containing lithium metal or lithium alloy as an active material and lithium ions. discovered that a non-aqueous electrolyte secondary battery with high potential, high energy density, and excellent low-temperature characteristics could be obtained by combining a non-aqueous electrolyte containing This is what I did.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の非水電解質二次電池は、上述したように、L 
l + +X−1’Nal’シ30B−(0,1≦x≦
0.4.0.1≦y<0.7.−0.5≦z≦0.3)
で示されるバナジウム酸化物を主成分とし、CuK e
t線によるX線回折で2θ= 12.3°±16のピー
ク強度を2θ=23.4°±1°のピーク強度で除した
値(以下1、□、 3/ T Z:1.4で示す)が0
.5以下である組成物を正極活物質としたものである。
As mentioned above, the non-aqueous electrolyte secondary battery of the present invention has L
l + +X-1'Nal' 30B-(0,1≦x≦
0.4.0.1≦y<0.7. -0.5≦z≦0.3)
The main component is vanadium oxide represented by CuK e
The value obtained by dividing the peak intensity at 2θ = 12.3° ± 16 by the peak intensity at 2θ = 23.4° ± 1° in X-ray diffraction using t-rays (hereinafter 1, □, 3/T Z: 1.4) ) is 0
.. 5 or less is used as a positive electrode active material.

ここで、上記組成物は、五酸化バナジウム(VzOs)
とリチウム塩とナトリウム塩とを混合し、焼成するなど
の方法により得ることができる。この場合リチウム塩と
しては、炭酸リチウム (LizCO:+)、酸化リチ
ウム(LizO)、硝酸リチウム(LiNO:+) 、
シュウ酸リチウム(Li ZC204)、よう化リチウ
ム(Lil)、臭化リチウム(LiBr)、有機酸のL
i塩及びこれらの含水塩などが使用されるが、特にLi
2CO3が好適に用いられる。またナトリウム塩は、上
記リチウム塩のLiをNaに置換えたものを使用するこ
とができるが、特にNa、C03が好適に用いられる。
Here, the above composition includes vanadium pentoxide (VzOs)
It can be obtained by a method such as mixing a lithium salt and a sodium salt and firing the mixture. In this case, the lithium salts include lithium carbonate (LizCO:+), lithium oxide (LizO), lithium nitrate (LiNO:+),
Lithium oxalate (Li ZC204), lithium iodide (Lil), lithium bromide (LiBr), organic acid L
i salts and their hydrated salts are used, but especially Li
2CO3 is preferably used. Further, as the sodium salt, the above-mentioned lithium salt in which Li is replaced with Na can be used, and Na and C03 are particularly preferably used.

本発明の非水電解質二次電池は、このようにして得られ
たアルカリ金属(Li+Na)含有バナジウム酸化物の
うち11□、 3/ I 23.4が0.5以下のもの
を使用したものであるが、■1□、3/I214を0.
5以下に制御する方法としては、上記の製造法において
、五酸化バナジウム(V2O5)とアルカリ金属塩(L
i塩+Na塩)との混合割合、リチウム塩とナトリウム
塩との配合割合、合成(焼成)温度、合成(焼成)時間
、焼成容器の材質などを適宜選定することにより行なう
ことができる。具体的には、五酸化バナジウム(VzO
s)とアルカリ金属との混合割合はバンジウム(■):
アルカリ金属(Li+Na)比で3:1.1〜3:1.
5(モル比)特に3:1.15〜3:1.25とするこ
とが好ましく、またリチウム塩とナトリウム塩との配合
割合はLi : Naの比で1.1:0.1〜0.5:
0.7、特に1.1:0.1〜0.8: 0.04とす
ることが好ましい。焼成温度としては、350〜800
℃、特にアルカリ金属の炭酸塩を用いる場合には650
〜750℃、焼成時間は4〜8時間とすることができ、
焼成容器としては、石英又は白金容器が好適に用いられ
る。これらの条件を使用するリチウム塩及びナトリウム
塩の種類等に応じて適宜選定することによりII2.:
1/I23.4の値を制御することができる。なお、焼
成時の雰囲気は空気中又は酸素雰囲気とすることができ
る。
The non-aqueous electrolyte secondary battery of the present invention uses vanadium oxides containing alkali metals (Li+Na) obtained in this way that have a 11□, 3/I 23.4 of 0.5 or less. There is, but ■1□, 3/I214 is 0.
5 or less, in the above production method, vanadium pentoxide (V2O5) and alkali metal salt (L
This can be carried out by appropriately selecting the mixing ratio of the lithium salt and the sodium salt (i salt + Na salt), the mixing ratio of the lithium salt and the sodium salt, the synthesis (calcination) temperature, the synthesis (calcination) time, the material of the firing container, etc. Specifically, vanadium pentoxide (VzO
The mixing ratio of s) and alkali metal is vandium (■):
The alkali metal (Li+Na) ratio is 3:1.1 to 3:1.
5 (molar ratio), particularly preferably from 3:1.15 to 3:1.25, and the mixing ratio of lithium salt and sodium salt is 1.1:0.1 to 0.5 (Li:Na). 5:
The ratio is preferably 0.7, particularly 1.1:0.1 to 0.8:0.04. The firing temperature is 350 to 800
°C, especially when using alkali metal carbonates, 650 °C
~750°C, baking time can be 4 to 8 hours,
A quartz or platinum container is preferably used as the firing container. By appropriately selecting these conditions depending on the type of lithium salt and sodium salt used, etc., II2. :
The value of 1/I23.4 can be controlled. Note that the atmosphere during firing can be air or oxygen atmosphere.

本発明の非水電解質二次電池の正極活物質は、上記の方
法などにより11□、 :l/ I 23.4の値を0
.5以下に制御した上記アルカリ金属を含むバナジウム
酸化物であるが、より好ましくはCuKa線によるX線
回折で2θ= 12.3°±1°にピーフカ現h ない
ものがよい。また、LI I+x−yNayVsca+
zのX及びyの値は、それぞれ0.1≦x≦0.4.0
.1≦y < 0.7であるが、これらの値は合成時の
値であり、充放電によりXの値は最大5程度まで変化し
、yの値も若干変化することがある。また2の値はバナ
ジウム(V)の酸化状態により−0,5〜0.3の範囲
で変化するものである。なお、このXyのより好ましい
範囲は、Xは0.15〜0.25.yは0.1〜0.4
である。
The positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention has a value of 11□, :l/I 23.4 of 0 by the above method or the like.
.. The vanadium oxide containing the alkali metal controlled to have an alkali metal concentration of 5 or less is more preferable, and it is more preferable to use one that does not exhibit a peak peak at 2θ=12.3°±1° in X-ray diffraction using CuKa rays. Also, LI I+x−yNayVsca+
The X and y values of z are 0.1≦x≦0.4.0, respectively.
.. Although 1≦y<0.7, these values are values at the time of synthesis, and the value of X changes by up to about 5 due to charging and discharging, and the value of y may also change slightly. Moreover, the value of 2 changes in the range of -0.5 to 0.3 depending on the oxidation state of vanadium (V). In addition, the more preferable range of this Xy is 0.15 to 0.25. y is 0.1 to 0.4
It is.

上記アルカリ金属を含むバナジウム酸化物を用いてこれ
を活物質とする正極を作成する場合、該酸化物の粒径は
必ずしも制限されないが、平均粒径が3μ以下のものを
用いるとより高性能の正極を作ることができる。この場
合、これらの粉末に対し、アセチレンブラック等の導電
剤やフッ素樹脂粉末等の結着剤などを添加混合し、有機
溶剤で混練りし、ロールで圧延し、乾燥する等の方法に
より正極を作成することができる。なお、導電剤の混合
量は活物質100重量部に対し3〜25重量部、特に5
〜15重量部とすることができ、本発明にあってはその
活物質の導電性が良好であるため、導電剤使用量を少な
くすることができる。
When creating a positive electrode using vanadium oxide containing the above-mentioned alkali metal as an active material, the particle size of the oxide is not necessarily limited, but if one with an average particle size of 3μ or less is used, higher performance can be achieved. A positive electrode can be made. In this case, the positive electrode is prepared by adding and mixing a conductive agent such as acetylene black or a binder such as fluororesin powder to these powders, kneading with an organic solvent, rolling with a roll, and drying. can be created. The amount of the conductive agent mixed is 3 to 25 parts by weight, especially 5 parts by weight, per 100 parts by weight of the active material.
-15 parts by weight, and in the present invention, since the active material has good conductivity, the amount of conductive agent used can be reduced.

また、結着剤の配合量は上記正極材料100重量部に対
し2〜25重量部とすることが好ましい。
Further, the amount of the binder to be blended is preferably 2 to 25 parts by weight per 100 parts by weight of the positive electrode material.

本発明の二次電池を構成する負極活物質としては、リチ
ウム又はリチウムを吸蔵、放出可能なリチウム合金が用
いられる。この場合、リチウム合金としては、リチウム
を含むII a +  II b 、III a +I
Va、Va族の金属又はその2種以上の合金が使用可能
であるが、特にリチウムを含む/ll+In+Sn、 
Pb、 Bi、 Ca、 Zn又はこれらの2種以上の
合金が好適である。特に、筒型電池を構成する場合には
、合金中のリチウムのモル分率が80%以上のものが好
適である。
As the negative electrode active material constituting the secondary battery of the present invention, lithium or a lithium alloy capable of intercalating and deintercalating lithium is used. In this case, the lithium alloys include II a + II b and III a + I containing lithium.
Va, Va group metals or alloys of two or more thereof can be used, especially /ll+In+Sn containing lithium,
Pb, Bi, Ca, Zn, or an alloy of two or more of these are preferred. In particular, when forming a cylindrical battery, it is preferable that the molar fraction of lithium in the alloy be 80% or more.

また、本発明の二次電池に使用する電解質としては、前
記正極活物質及び負極活物質に対して化学的に安定であ
り、かつリチウムイオンが前記正極活物質酸いは前記負
極活物質と電気化学反応をするための移動を行ない得る
非水物質であればいずれのものでも使用することができ
、具体的にはLiPF6. LiAsFi、、 LiS
bF6.LiBFa、 LiCAO,、LilLiBr
、  LiC1! 、  LiA I C124,Li
HF2+  Li5CN。
Further, the electrolyte used in the secondary battery of the present invention is chemically stable with respect to the positive electrode active material and the negative electrode active material, and lithium ions are electrically connected to the positive electrode active material acid or the negative electrode active material. Any non-aqueous substance that can move for chemical reaction can be used, specifically LiPF6. LiAsFi,, LiS
bF6. LiBFa, LiCAO, LilLiBr
, LiC1! , LiA I C124, Li
HF2+ Li5CN.

Li5O,CF2等が挙げられる。これらのうちでは特
にLIPF br LIASF&1 LiCIt Oa
が好適である。
Examples include Li5O and CF2. Among these, especially LIPF br LIASF&1 LiCIt Oa
is suitable.

なお、上記電解質は通常溶媒により溶解された状態で使
用され、この場合溶媒は特に限定されないが、比較的極
性の大きい溶媒が好適に用いられる。具体的には、プロ
ピレンカーボネートエチレンカーポネート ブチレンカ
ーボネート等の環状カーボネート類、ジエチルカーボネ
ート ジブチルカーボネートなどの非環状カーボネート
類、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、ジオキソラン、ジオキサン、ジメトキシエタン、ジ
エチレンゲルコールジメチルエーテル等のグライム類、
T−ブチロラクトン等のラクトン類、トリエチルフォス
フェート等のリン酸エステル類、ホウ酸トリエチル等の
ホウ酸エステル類、スルホラン、ジメチルスルホキシド
等の硫黄化合物、アセトニトリル等のニトリル類、ジメ
チルホルムアミド、ジメチルアセトアミド等のアミド類
、硫酸ジメチル、ニトロメタン、ニトロベンゼン、ジク
ロロエタンなどの1種又は2種以上の混合物を挙げるこ
とができる。これらの内では、特にエチレンカーボネー
ト、プロピレンカーボネートなどの環状カーボネート類
、ジエチルカーボネートなどの非環状カーボネートiか
ら選ばれた1種又は2種以上の混合溶媒が好適である。
Note that the electrolyte is usually used in a state dissolved in a solvent, and in this case, the solvent is not particularly limited, but a relatively highly polar solvent is preferably used. Specifically, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, acyclic carbonates such as diethyl carbonate, dibutyl carbonate, and grime such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, dioxane, dimethoxyethane, and diethylene gelcol dimethyl ether. kind,
Lactones such as T-butyrolactone, phosphoric acid esters such as triethyl phosphate, boric acid esters such as triethyl borate, sulfur compounds such as sulfolane and dimethyl sulfoxide, nitriles such as acetonitrile, dimethylformamide, dimethylacetamide, etc. Examples include one or a mixture of two or more of amides, dimethyl sulfate, nitromethane, nitrobenzene, dichloroethane, and the like. Among these, particularly preferred are one or more mixed solvents selected from cyclic carbonates such as ethylene carbonate and propylene carbonate, and acyclic carbonates such as diethyl carbonate.

また、これらの溶媒に3〜10重量%の芳香族炭化水素
(ベンゼン トルエン等)を添加することもできる。
Moreover, 3 to 10% by weight of aromatic hydrocarbons (benzene, toluene, etc.) can also be added to these solvents.

本発明の非水電解質二次電池は、通常正負極間に電解液
を介在させることにより構成されるが、この場合、正負
両極間に両極の接触による電流の短絡を防くためセパレ
ーターを介装することができる。セパレーターとしては
多孔質で電解液を通した含んだりすることのできる材料
、例えばポリテトラフルオロエチレン、ポリプロピレン
やポリエチレンなどの合成樹脂製の不織布、織布及び網
等を使用することができる。また、電解質とセパレータ
ーとを兼ねた固体電解質を用いることもできる。
The non-aqueous electrolyte secondary battery of the present invention is usually constructed by interposing an electrolyte between the positive and negative electrodes, but in this case, a separator is interposed between the positive and negative electrodes to prevent current short-circuiting due to contact between the two electrodes. can do. As the separator, it is possible to use porous materials that allow the electrolyte to pass therethrough, such as nonwoven fabrics, woven fabrics, and nets made of synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene. Furthermore, a solid electrolyte that serves both as an electrolyte and a separator can also be used.

なお、本発明の非水電解質二次電池の形態に特に制限は
なく、スパイラル構造の筒型電池、コインタイプ、ボタ
ンタイプ、ペーパータイプ等、種々の形態とすることが
できる。
Note that the form of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and may be in various forms such as a spiral-structured cylindrical battery, a coin type, a button type, a paper type, etc.

主里■四果 本発明の非水電解質二次電池は、容量が大きく、高電位
で、しかも低温特性に優れ、また安定した充放電を行な
い得るものである。
The non-aqueous electrolyte secondary battery of the present invention has a large capacity, a high potential, excellent low-temperature characteristics, and is capable of stable charging and discharging.

以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記の実施例に制限されるものではな
い。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

〔実施例1〕 3モ/L/(7) vzosと0.92モルのLizC
O:+と0.31モルのNa2CO=とをよく混合した
後、石英ルツボに入れ、空気中で630℃で6時間加熱
反応させた後、融液を銅ブロックに流し込んで冷却し、
Li とNaとを含む■酸化物組成物を得た。
[Example 1] 3 mo/L/(7) vzos and 0.92 mole LizC
After thoroughly mixing O:+ and 0.31 mol of Na2CO=, the mixture was placed in a quartz crucible and reacted by heating at 630°C in the air for 6 hours, then the melt was poured into a copper block and cooled.
An oxide composition containing Li and Na was obtained.

この組成物を粉砕して粉末状とし、X線回折(CuKα
)を測定したところ、2θ=12.3’±1゜にはピー
クは現れなかった(第2図参照)。また、この組成物の
元素分析の結果は、■原子3に対してLi原子が0.9
0.Na原子が0.31であった。
This composition was pulverized into a powder, and X-ray diffraction (CuKα
), no peak appeared at 2θ=12.3′±1° (see Figure 2). In addition, the results of elemental analysis of this composition show that the ratio of Li atoms to 3 atoms is 0.9.
0. The Na atom was 0.31.

従って、この組成物はLi0. 、Nao、 31Vl
o8で示される。
Therefore, this composition has Li0. , Nao, 31Vl
It is indicated by o8.

この粉末100重量部に導電剤としてアセチレンブラ、
り15重量部及び結着側としてフッ素樹脂粉末15重量
部を加え、十分混合した後、有機溶剤で混練りし、ロー
ルで約100μmに圧延し、150°Cで真空乾燥し、
所定の径に打抜いて電池正極を作成した。
Acetylene brane as a conductive agent was added to 100 parts by weight of this powder.
Add 15 parts by weight of fluororesin powder and 15 parts by weight of fluororesin powder as a binding side, mix thoroughly, knead with an organic solvent, roll to about 100 μm with a roll, vacuum dry at 150 ° C,
A battery positive electrode was created by punching out the material to a predetermined diameter.

上記電池正極を用い、所定寸法に打抜いたリチウム箔を
負極とし、プロピレンカーボネートトエチレンカーボネ
ートとの混合溶媒(容量比7:3)にリチウム・六フッ
化リン(LtPF、、 )を1.5モル/lで溶解した
ものを電解液として使用して第1図に示す電池を組み立
てた。
Using the above battery positive electrode, a lithium foil punched to a predetermined size was used as the negative electrode, and 1.5 liters of lithium/phosphorus hexafluoride (LtPF) was added to a mixed solvent of propylene carbonate and ethylene carbonate (volume ratio 7:3). The battery shown in FIG. 1 was assembled using the solution dissolved in mol/l as an electrolyte.

ここで、第1図において、1は正極、2はステンレスス
チール製の正極集電体で、正極1と集電体2とは一体化
されており、集電体2は金属板からなるスペーサー3に
スポット溶接させている。
Here, in FIG. 1, 1 is a positive electrode, 2 is a positive electrode current collector made of stainless steel, the positive electrode 1 and the current collector 2 are integrated, and the current collector 2 has a spacer 3 made of a metal plate. spot welded.

また、このスペーサー3は正極缶4の内面にスポット溶
接されている。5は負極、6は負極集電体で、負極5は
負極缶7の内底面に固着した負極集電体6にスポット溶
接されている。更に8は双六質プロピレンよりなるセパ
レーターであり、これに前記電解液が含浸されている。
Further, this spacer 3 is spot welded to the inner surface of the positive electrode can 4. 5 is a negative electrode, 6 is a negative electrode current collector, and the negative electrode 5 is spot-welded to the negative electrode current collector 6 fixed to the inner bottom surface of the negative electrode can 7. Furthermore, 8 is a separator made of staghorn propylene, which is impregnated with the electrolytic solution.

なお、9は絶縁バッキングである。また1、電池寸法は
直径20.On、厚さ1.6韮である。
Note that 9 is an insulating backing. Also 1. The battery dimensions are 20mm in diameter. On, the thickness is 1.6 mm.

この電池を室温で充放電電流1mAにおいて放電終止電
圧2.OV、充電終止電圧3.5vで充放電を繰り返し
た。3サイクル目の活物質当りの容量を第1表に示す。
This battery was charged and discharged at room temperature with a charge/discharge current of 1 mA and a discharge end voltage of 2. Charging and discharging were repeated at OV and a charge end voltage of 3.5V. Table 1 shows the capacity per active material in the third cycle.

次に、この電池を室温で3.5Vまで充電した後、−1
0℃の低温槽に入れ、電池の温度が設定温度まで下がっ
た後に放電を行なって、2、OVまでの放電容量を測定
し、上記室温での3サイクル目の容量に対する放電容量
の割合を低温容量保持率として求めた。結果を第1表に
示す。
Next, after charging this battery to 3.5V at room temperature, -1
Place the battery in a low temperature chamber at 0°C, discharge after the temperature of the battery has fallen to the set temperature, measure the discharge capacity up to 2 OV, and calculate the ratio of the discharge capacity to the capacity at the third cycle at the above room temperature. It was calculated as a capacity retention rate. The results are shown in Table 1.

〔実施例2〕 3−11−ルノV2O5と1 モ/L/(7) Liz
C(hと0.2−E /L/のNazCO,、とを混合
し、この混合物を原料として実施例1と同様の方法によ
りLiとNaを含むV酸化物組成物を得た。この組成物
のX線回折を実施例1と同様に測定したところ、2θ=
12,3°±1°にはピークは現れなかった(第3図参
照)。
[Example 2] 3-11-Luno V2O5 and 1 mo/L/(7) Liz
A V oxide composition containing Li and Na was obtained by mixing C (h) and 0.2-E/L/NazCO, and using this mixture as a raw material in the same manner as in Example 1. When the X-ray diffraction of the object was measured in the same manner as in Example 1, 2θ=
No peak appeared at 12.3°±1° (see Figure 3).

また、この組成物の元素分析の結果、Lio、 qNa
o、 zv303で示されるものであることが確認され
た。
In addition, as a result of elemental analysis of this composition, Lio, qNa
o, zv303.

この組成物を用いて実施例1と同様の電池を組み立てた
A battery similar to that in Example 1 was assembled using this composition.

この電池について実施例1と同様に3サイクル目の活物
質当りの放電容量(室温)と4サイクル目の放電容量(
−10℃)とを測定し、低温容量保持率を求めた。結果
を第1表に示す。
Regarding this battery, as in Example 1, the discharge capacity per active material (room temperature) at the third cycle and the discharge capacity (at room temperature) at the fourth cycle (
-10°C) to determine the low-temperature capacity retention rate. The results are shown in Table 1.

〔実施例3〕 3 モル(D VzOsと0.7−E ルのLi2CO
3と0.5モルのNa2CO1とを混合し、この混合物
を原料として実施例1と同様の方法によりLi とNa
を含むV酸化物組成物を得た。この組成物のX線回折を
実施例1と同様に測定したところ、2θ= 12.3゜
±1°にはピークは現れなかった。また、この組成物の
元素分析の結果、Lio、 )Nao、 411V30
?、 95で示されるものであることが確認された。
[Example 3] 3 mol (D VzOs and 0.7-El Li2CO
3 and 0.5 mol of Na2CO1, and using this mixture as a raw material, Li and Na were prepared in the same manner as in Example 1.
A V oxide composition containing the following was obtained. When X-ray diffraction of this composition was measured in the same manner as in Example 1, no peak appeared at 2θ=12.3°±1°. In addition, as a result of elemental analysis of this composition, Lio, ) Nao, 411V30
? , 95.

この組成物を用いて実施例1と同様の電池を組み立てた
A battery similar to that in Example 1 was assembled using this composition.

この電池について実施例1と同様に3サイクル目の放電
容量(室温)と4サイクル目の放電容量(−10℃)と
を測定し、低温容量保持率を求めた。結果を第1表に示
す。
Regarding this battery, the discharge capacity at the third cycle (room temperature) and the discharge capacity at the fourth cycle (-10°C) were measured in the same manner as in Example 1, and the low-temperature capacity retention rate was determined. The results are shown in Table 1.

〔実施例4〕 3−T−ル(7) V2O3と1.1 モル0:) L
izC03ト0.1 モルのNa2CO1とを混合し、
この混合物を原料として実施例1と同様の方法によりL
i とNaを含むV酸化物組成物を得た。この組成物の
xvA回折を実施例1と同様に測定したところ、2θ=
12,3’±1°にはピークは現れなかった。また、こ
の組成物の元素分析の結果、Li 1. as)Jao
、 l IV307.92で示されるものであることが
確認された。
[Example 4] 3-T-L (7) V2O3 and 1.1 mol 0:) L
Mix izC03 with 0.1 mol of Na2CO1,
Using this mixture as a raw material, L was prepared in the same manner as in Example 1.
A V oxide composition containing i and Na was obtained. When xvA diffraction of this composition was measured in the same manner as in Example 1, 2θ=
No peak appeared at 12,3'±1°. Moreover, as a result of elemental analysis of this composition, Li 1. as)Jao
, l IV307.92.

この組成物を用いて実施例1と同様の電池を組み立てた
A battery similar to that in Example 1 was assembled using this composition.

この電池について実施例1と同様に3サイクル目の放電
容量(室温)と4サイクル目の放電容量(−1σ℃)と
を測定し、低温容量保持率を求めた。結果を第1表に示
す。
Regarding this battery, the discharge capacity at the third cycle (room temperature) and the discharge capacity at the fourth cycle (-1σ°C) were measured in the same manner as in Example 1, and the low-temperature capacity retention rate was determined. The results are shown in Table 1.

〔比較例1〕 3 モ)IiO) vzosと0.7モルのLi2CO
3と0.3モルのNazCO3とを混合し、この混合物
を原料として実施例1と同様の方法によりLi 、l!
: Naを含む■酸化物組成物を得た。この組成物のX
線回折を実施例1と同様に測定したところ、2θ= 1
2.3゜±1°にピークを有しておりI I 2. *
/ I 23.4が26であった(第4図参照)。また
、この組成物の元素分析の結果、Li o、 Jao、
 ff2v3oI IIsで示されるものであることが
確認された。
[Comparative Example 1] 3) IiO) vzos and 0.7 mol of Li2CO
3 and 0.3 mol of NazCO3, and using this mixture as a raw material, Li, l!
: An oxide composition containing Na was obtained. X of this composition
When line diffraction was measured in the same manner as in Example 1, 2θ = 1
It has a peak at 2.3°±1°, and I I 2. *
/I 23.4 was 26 (see Figure 4). In addition, as a result of elemental analysis of this composition, Lio, Jao,
It was confirmed that it was shown by ff2v3oI IIs.

この組成物を用いて実施例1と同様の電池を組み立てた
A battery similar to that in Example 1 was assembled using this composition.

この電池について実施例1と同様に3サイクル目の放電
容量(室温)と4サイクル目の放電容量(−10℃)と
を測定し、低温容量保持率を求めた。結果を第1表に示
す。
Regarding this battery, the discharge capacity at the third cycle (room temperature) and the discharge capacity at the fourth cycle (-10°C) were measured in the same manner as in Example 1, and the low-temperature capacity retention rate was determined. The results are shown in Table 1.

〔比較例2〕 3 モル(7) VzOsと1モルのLi2C0,とを
混合し、この混合物を原料として実施例1と同様の方法
によりLi とNaを含むV酸化物組成物を得た。この
組成物のXwA回折を実施例1と同様に測定したところ
、2θ= 12.3°±1″にはピークは現れなかった
。また、この組成物の元素分析の結果、L、。、 96
V30?、 ’Iで示されるものであることが確認され
た。
[Comparative Example 2] 3 moles (7) of VzOs and 1 mole of Li2C0 were mixed, and a V oxide composition containing Li and Na was obtained in the same manner as in Example 1 using this mixture as a raw material. When the XwA diffraction of this composition was measured in the same manner as in Example 1, no peak appeared at 2θ = 12.3° ± 1''. Also, as a result of elemental analysis of this composition, L,...96
V30? , 'I was confirmed.

この組成物を用いて実施例1と同様の電池を組み立てた
A battery similar to that in Example 1 was assembled using this composition.

この電池について実施例1と同様に3サイクル目の放電
容量(室温)と4サイクル目の放電容量(−10℃)と
を測定し、低温容量保持率を求めた。結果を第1表に示
す。
Regarding this battery, the discharge capacity at the third cycle (room temperature) and the discharge capacity at the fourth cycle (-10°C) were measured in the same manner as in Example 1, and the low-temperature capacity retention rate was determined. The results are shown in Table 1.

第 表No. table

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2〜4図は
それぞれ実施例1,2及び比較例1の電池のX線回折パ
ターンを示すグラフである。 ■・・・正極、2・・・正極集電体、3・・・正極缶、
4・・・負極、5・・・負極集電体、6・・・負極缶、
7・・・セパレーター 8・・・絶縁バッキング。
FIG. 1 is a sectional view showing an example of the present invention, and FIGS. 2 to 4 are graphs showing X-ray diffraction patterns of batteries of Examples 1 and 2 and Comparative Example 1, respectively. ■... Positive electrode, 2... Positive electrode current collector, 3... Positive electrode can,
4... Negative electrode, 5... Negative electrode current collector, 6... Negative electrode can,
7... Separator 8... Insulating backing.

Claims (1)

【特許請求の範囲】 1、正極と、リチウム金属又はリチウムを含む合金を活
物質とする負極と、アルカリ金属イオンを含む非水電解
質とを具備する非水電解質二次電池において、上記正極
の活物質として Li_1_+_x_−_yNa_yV_3O_8_+_
z(但し、0.1≦x≦0.4、0.1≦y<0.7、
−0.5≦z≦0.3) で示されるバナジウム酸化物を主成分とする組成物であ
って、CuKα線によるX線回折で2θ=12.3゜±
1゜のピーク強度を2θ=23.4゜±1゜のピーク強
度で除した値が0.5以下であるものを使用したことを
特徴とする非水電解質二次電池。
[Scope of Claims] 1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode using lithium metal or an alloy containing lithium as an active material, and a non-aqueous electrolyte containing alkali metal ions, wherein the active material of the positive electrode is As a substance, Li_1_+_x_-_yNa_yV_3O_8_+_
z (However, 0.1≦x≦0.4, 0.1≦y<0.7,
-0.5≦z≦0.3), which has a composition mainly composed of vanadium oxide, which shows 2θ=12.3°± by X-ray diffraction using CuKα rays.
A nonaqueous electrolyte secondary battery characterized in that the value obtained by dividing the peak intensity at 1° by the peak intensity at 2θ=23.4°±1° is 0.5 or less.
JP2091632A 1990-04-05 1990-04-05 Nonaqueous electrolytic secondary battery Pending JPH03289049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091632A JPH03289049A (en) 1990-04-05 1990-04-05 Nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2091632A JPH03289049A (en) 1990-04-05 1990-04-05 Nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JPH03289049A true JPH03289049A (en) 1991-12-19

Family

ID=14031920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091632A Pending JPH03289049A (en) 1990-04-05 1990-04-05 Nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JPH03289049A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300234A (en) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd Manufacturing method of electrode material, electrode material, and nonaqueous electrolyte secondary battery
JP2011523614A (en) * 2008-05-30 2011-08-18 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing lithium vanadium oxide and method for using lithium vanadium oxide as positive electrode material
JP2012174546A (en) * 2011-02-22 2012-09-10 Kaneka Corp Nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300234A (en) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd Manufacturing method of electrode material, electrode material, and nonaqueous electrolyte secondary battery
JP2011523614A (en) * 2008-05-30 2011-08-18 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing lithium vanadium oxide and method for using lithium vanadium oxide as positive electrode material
JP2012174546A (en) * 2011-02-22 2012-09-10 Kaneka Corp Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR101885719B1 (en) Method for producing a lithium or sodium battery
US5013620A (en) Nonaqueous electrolyte secondary cell
JP6979586B2 (en) Positive electrode active material for batteries and batteries using positive electrode active materials for batteries
JP6952251B2 (en) Positive electrode active material for batteries and batteries
JP2004152743A (en) Positive electrode for lithium sulfur battery, and lithium sulfur battery containing this
JP2003100347A (en) Nonaqueous electrolyte cell and nonaqueous electrolyte
JPH11219722A (en) Lithium secondary battery
JP5153994B2 (en) Lithium storage battery exhibiting both high potential and high lithium insertion capacity
US6083475A (en) Method for making lithiated metal oxide
JP3229425B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP2006024415A (en) Cathode material and battery
JP3231813B2 (en) Organic electrolyte battery
JPH03289049A (en) Nonaqueous electrolytic secondary battery
JP2003017058A (en) Non-aqueous electrolyte battery
JPH03108261A (en) Nonaqueous solvent secondary battery
JPH065277A (en) Lithium secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JP2020184473A (en) Method for producing negative electrode active material composite for nonaqueous secondary battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JP7287230B2 (en) ELECTRODE MATERIAL, ELECTRICAL STORAGE DEVICE, AND METHOD FOR MANUFACTURING ELECTRODE FOR ELECTRIC STORAGE DEVICE
WO2022050101A1 (en) Positive electrode active material, positive electrode, nonaqueous electrolyte power storage element, power storage device, method for producing positive electrode active material, method for producing positive electrode, and method for producing nonaqueous electrolyte power storage element
JPH03236173A (en) Nonaqueous electrolyte secondary battery
JPH03225760A (en) Nonaqueous electrolytic secondary battery
JPH03225774A (en) Nonaqueous electrolytic secondary battery
JPH03225758A (en) Nonaqueous electrolytic secondary battery